ITEM VIEW

Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface

dc.contributor.authorRehman, Khalil-Uren_ZA
dc.contributor.authorMalik, M. Y.en_ZA
dc.contributor.authorMakinde, O. D.en_ZA
dc.date.accessioned2019-10-09T07:55:29Z
dc.date.available2019-10-09T07:55:29Z
dc.date.issued2018
dc.identifier.citationRehman, K. U., Malik, M. Y. & Makinde, O. D. 2018. Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface. Journal of King Saud University - Science, 30(4): 440-449, doi:10.1016/j.jksus.2017.02.003
dc.identifier.issn1018-3647
dc.identifier.otherdoi:10.1016/j.jksus.2017.02.003
dc.identifier.urihttp://hdl.handle.net/10019.1/106606
dc.descriptionCITATION: Rehman, K. U., Malik, M. Y. & Makinde, O. D. 2018. Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface. Journal of King Saud University - Science, 30(4): 440-449, doi:10.1016/j.jksus.2017.02.003.
dc.descriptionThe original publication is available at https://www.sciencedirect.com
dc.description.abstractThe current analysis is carried out to envision the properties of magneto-hydrodynamic boundary layer stagnation point flow of Eyring-Powell (non-Newtonian) fluid induced by an inclined stretching cylindrical surface in the presence of both mixed convection and Joule heating effects. Flow analysis is manifested with temperature stratification phenomena. The strength of temperature adjacent to the cylindrical surface is assumed to be higher in strength as compared to the ambient fluid. A suitable similarity transformations are utilized to convert the flow conducting equations (mathematically modelled) into system of coupled non-linear ordinary differential equations. A fifth order Runge-Kutta algorithm charted with shooting scheme is used to trace out the numerical additions. It was found that the velocity profile is an increasing function of both mixed convection and curvature parameters. Temperature profile show inciting nature towards Eckert number. In addition, a straight line and parabolic curve fitting way of study is executed to inspect the effect logs of mixed convection parameter, magnetic field parameter, thermal stratification parameter and heat generation parameter on skin friction coefficient and heat rate. It seems to be first attempt in this direction and will serve as a facilitating source for the preceding studies regarding fluid rheology.en_ZA
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S1018364716307716#!
dc.format.extent10 pages
dc.language.isoen_ZAen_ZA
dc.publisherElsevier
dc.subjectJoule heatingen_ZA
dc.titleParabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surfaceen_ZA
dc.typeArticleen_ZA
dc.description.versionPublisher's version
dc.rights.holderAuthors retain copyright


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW