A machine learning-remote sensing framework for modelling water stress in Shiraz vineyards

Loggenberg, Kyle Devronne (2018-12)

Thesis (MA)--Stellenbosch University, 2018.

Thesis

ENGLISH ABSTRACT: Water is a limited natural resource and a major environmental constraint for crop production in viticulture. The unpredictability of rainfall patterns, combined with the potentially catastrophic effects of climate change, further compound water scarcity, presenting dire future scenarios of undersupplied irrigation systems. Major water shortages could lead to devastating loses in grape production, which would negatively affect job security and national income. It is, therefore, imperative to develop management schemes and farming practices that optimise water usage and safeguard grape production. Hyperspectral remote sensing techniques provide a solution for the monitoring of vineyard water status. Hyperspectral data, combined with the quantitative analysis of machine learning ensembles, enables the detection of water-stressed vines, thereby facilitating precision irrigation practices and ensuring quality crop yields. To this end, the thesis set out to develop a machine learning–remote sensing framework for modelling water stress in a Shiraz vineyard. The thesis comprises two components. Component one assesses the utility of terrestrial hyperspectral imagery and machine learning ensembles to detect water-stressed Shiraz vines. The Random Forest (RF) and Extreme Gradient Boosting (XGBoost) ensembles were employed to discriminate between water-stressed and non-stressed Shiraz vines. Results showed that both ensemble learners could effectively discriminate between water-stressed and non-stressed vines. When using all wavebands (p = 176), RF yielded a test accuracy of 83.3% (KHAT = 0.67), with XGBoost producing a test accuracy of 80.0% (KHAT = 0.6). Component two explores semi-automated feature selection approaches and hyperparameter value optimisation to improve the developed framework. The utility of the Kruskal-Wallis (KW) filter, Sequential Floating Forward Selection (SFFS) wrapper, and a Filter-Wrapper (FW) approach, was evaluated. When using optimised hyperparameter values, an increase in test accuracy ranging from 0.8% to 5.0% was observed for both RF and XGBoost. In general, RF was found to outperform XGBoost. In terms of predictive competency and computational efficiency, the developed FW approach was the most successful feature selection method implemented. The developed machine learning–remote sensing framework warrants further investigation to confirm its efficacy. However, the thesis answered key research questions, with the developed framework providing a point of departure for future studies.

AFRIKAANSE OPSOMMING: Water is 'n beperkte natuurlike hulpbron en 'n groot omgewingsbeperking vir gewasproduksie in wingerdkunde. Die onvoorspelbaarheid van reënvalpatrone, gekombineer met die potensiële katastrofiese gevolge van klimaatsverandering, voorspel ‘n toekoms van water tekorte vir besproeiingstelsels. Groot water tekorte kan lei tot groot verliese in druiweproduksie, wat 'n negatiewe uitwerking op werksekuriteit en nasionale inkomste sal hê. Dit is dus noodsaaklik om bestuurskemas en boerderypraktyke te ontwikkel wat die gebruik van water optimaliseer en druiweproduksie beskerm. Hyperspectrale afstandswaarnemingstegnieke bied 'n oplossing vir die monitering van wingerd water status. Hiperspektrale data, gekombineer met die kwantitatiewe analise van masjienleer klassifikasies, fasiliteer die opsporing van watergestresde wingerdstokke. Sodoende verseker dit presiese besproeiings praktyke en kwaliteit gewasopbrengs. Vir hierdie doel het die tesis probeer 'n masjienleer-afstandswaarnemings raamwerk ontwikkel vir die modellering van waterstres in 'n Shiraz-wingerd. Die tesis bestaan uit twee komponente. Komponent 1 het die nut van terrestriële hiperspektrale beelde en masjienleer klassifikasies gebruik om watergestresde Shiraz-wingerde op te spoor. Die Ewekansige Woud (RF) en Ekstreme Gradiënt Bevordering (XGBoost) algoritme was gebruik om te onderskei tussen watergestresde en nie-gestresde Shiraz-wingerde. Resultate het getoon dat beide RF en XGBoost effektief kan diskrimineer tussen watergestresde en nie-gestresde wingerdstokke. Met die gebruik van alle golfbande (p = 176) het RF 'n toets akkuraatheid van 83.3% (KHAT = 0.67) behaal en XGBoost het 'n toets akkuraatheid van 80.0% (KHAT = 0.6) gelewer. Komponent twee het die gebruik van semi-outomatiese veranderlike seleksie benaderings en hiperparameter waarde optimalisering ondersoek om die ontwikkelde raamwerk te verbeter. Die nut van die Kruskal-Wallis (KW) filter, sekwensiële drywende voorkoms seleksie (SFFS) wrapper en 'n Filter-Wrapper (FW) benadering is geëvalueer. Die gebruik van optimaliseerde hiperparameter waardes het gelei tot 'n toename in toets akkuraatheid (van 0.8% tot 5.0%) vir beide RF en XGBoost. In die algeheel het RF beter presteer as XGBoost. In terme van voorspellende bevoegdheid en berekenings doeltreffendheid was die ontwikkelde FW benadering die mees suksesvolle veranderlike seleksie metode. Die ontwikkelde masjienleer-afstandwaarnemende raamwerk benodig verder navorsing om sy doeltreffendheid te bevestig. Die tesis het egter sleutelnavorsingsvrae beantwoord, met die ontwikkelde raamwerk wat 'n vertrekpunt vir toekomstige studies verskaf.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/105210
This item appears in the following collections: