Thermochemical biomass upgrading for co-gasification with coal

Date
2018-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: Lignocellulosic biomass is considered as a sustainable and renewable fuel source with the potential to substitute or partially replace coal in applications such as gasification for energy generation due to its sustainable carbon as well as its potential to reduce greenhouse gas emissions. However, raw biomass differs significantly from coal in terms of several important fuel properties, such as low energy density, high moisture, oxygen and volatile matter contents. Due to this the co-utilization of raw biomass with coal in gasification systems has been shown to result in the increase in the production of oxygenated volatile compounds (tar precursors) which impacts negatively on the quality of the gasification products and causes critical operational problems. This challenge has limited the development of biomass-based gasification processes. Hence to ensure the effective and efficient utilization of lignocellulosic biomass with coal, an upgrading process is required to improve some biomass properties to make them more similar to that of coal. The approach of this work consists in a thermal pretreatment in order to generate char products with reduced oxygen and volatile matter contents. The overall aim of the study therefore was to use thermochemical technologies (torrefaction and slow pyrolysis) as methods to pretreat lignocellulosic biomass feedstocks; pine (PN), bamboo (BB), corn cob (CC) and corn stover (CS) to produce upgraded biomass feedstocks (char), with reduced oxygen content as well as improved fuel properties, comparable to coal for use in co-gasification. For this task the study was divided into several objectives. The initial part focused on the characterization of the lignocellulosic chemical composition of the various biomass feedstocks. Next the types and quantities of oxygenated volatile products produced during the devolatilization of raw biomass feedstocks were studied. For this objective a novel analytical method incorporating the use of Thermogravimetric Analysis, thermal desorption and Gas Chromatography–Mass Spectrometry (herein referred as (TGA-TD/GC-MS) was developed and used to analyse and quantify the oxygenated volatile products. The analysis of the volatile composition data by means of principal components analysis (PCA) showed a clear correlation between lignocellulose chemical composition and the type and quantities of oxygenated volatile compounds produced during biomass devolatilization. The influence of thermal pretreatment conditions (temperature and time) on the structural transformation of raw biomass and on the volatile evolution mechanism of the resulting char during subsequent char devolatilization was also studied. Thermal pretreatment was done within the temperature range of 250-400 oC and hold time at pretreatment temperature of 30 and 60 min. It was observed that the temperature had a more profound effect than hold time during thermal pretreatment. The distribution of char devolatilization products was shown to be consistent with the extent of biomass transformation during thermal pretreatment. The biomass composition, particularly cellulose crystallinity, had an impact during thermal pretreatment. It was shown that for biomass feedstock with high degree of crystallinity such as PN a higher temperature (>300 oC) was required to achieve significant cellulose degradation. Hence char produced from such feedstock at temperature ≤300 oC generated high amount of anhydrosugar and furan volatiles during the char devolatilization. With the aim of using pretreated biomass with coal for co-gasification, biomass chars produced at different pretreatment temperatures were compared to coal in terms of fuel properties (proximate and elemental composition and Higher Heating Value), with particular attention given to the composition of oxygenated volatile compounds generated during the devolatilization stage. The result of the study showed that chars produced at temperature ≥350 oC had fuel properties comparable to that of coal. In addition these chars produced mainly aromatic hydrocarbons and phenolics during devolatilization which were similar to the volatiles generated from coal under identical conditions. Hence the pretreatment temperature of at least 350 oC is recommended when considering coal substitution, while 400 °C could be considered in the case of samples with high lignin (softwood) or high inorganic contents. Finally, the reactivity of the biomass chars under gasification condition was investigated. The devolatilization characteristics and CO2 gasification kinetics of biomass/char (produced at 350 oC) and coal at different blend ratios were studied. The devolatilization characteristics of char were found to follow the profile of coal especially at blend ratios of 10 wt% and 20 wt% with no particular synergy detected, while the kinetic parameters were also comparable. This work confirmed the potential of the use of thermally pretreated biomass chars for coal substitution in gasification process and brought decisive insights for the implementation of future tests at pilot scale.
AFRIKAANS OPSOMMING: Lignosellulosiese biomassa word beskou as ’n volhoubare en hernubare bron van brandstof met die potensiaal om steenkool heeltemal of gedeeltelik te vervang in toepassings soos vergassing vir energie generasie. Hierdie beskouing is as gevolg van die lignosellulosiese biomassa se koolstof en sy potensiaal om groenhuisgasuitlate te verminder. Nogtans verskil biomassa van steenkool in terme van verskeie brandstofeienskappe, soos lae energiedigtheid, hoë voginhoud, hoë suurstofinhoud, en hoë vlugtige-materiaal-inhoud. Daarom was dit bevind dat die gesamentlike gebruik van biomassa met steenkool in vergassing sisteme ’n toename in oksigeneerde vlugtige verbindings (teer-voorgangers) tot gevolg het, wat ’n negtiewe impak op die kwaliteit van die vergassingprodukte het en kritiese bedryfsprobleme veroorsaak. Hierdie uitdaging beperk die ontwikkeling van biomassa-baseerde vergassing sisteme. Dus, om die effektiewe en doeltreffende gebruik van biomassa met steenkool te verseker, word ’n opgegradeerde proses benodig om sommige van die biomassa einskappe te verbeter om meer soos die van steenkool te wees. Die benadering in hierdie werk bestaan uit ‘n termiese voorbehandeling om houtskool produkte met verminderde suurstof en vlugtige-materiaal inhoud te genereer. Die algehele doelwit was dus om termochemiese tegnologie (uitdroging en stadige pirolise) as metodes te gebruik vir die voorbehandeling van lignosellulosiese biomassa grondstowwe: denne (PN), bamboes (BB), mieliestronk (CC), en mieliestrooi (CS) om opgegradeerde biomassa grondstof (houtskool) te produseer, wat verminderde suurstofinhoud sowel as verbeterde brandstofeienskappe vergelykend met die van steenkool het, vir die gebruik in gesamentlike vergassing. Vir die taak is die studie in verskeie doelstellings verdeel. Die aanvanklike gedeelte het gefokus op die karaktarisering van die lignosellulosiese chemiese samestelling van die verskeie biomassa grondstowwe. Volgende is die tipes en hoeveelhede oksigeneerde vlugtige produkte wat tydens die verwydering van vlugtige komponente uit rou biomassa grondstowwe verkry is studeer. Vir hierdie doelstelling was ’n nuwe analitiese metode ontwikkel wat die gebruik van Termogravimetriese Analise, termiese-desorpsie en Gas-Chromatografie-Massaspektrometrie (verwys na as TGA-TD/GC-MS) insluit. Die metode was gebruik om die oksigeneerde vlugtige produkte te analiseer en te kwantifiseer. Die analise van die data oor die vlugtige komponente samestelling is gedoen met hoofkomponente-analise (PCA) en dit het ’n duidelike verwantskap gewys tussen lignosellulosiese-chemiese-samestelling en die tipe en hoeveelhede oksigeneerde vlugtige verbindings wat produseer word tydens die verwydering van vlugtige komponente uit biomassa uit. Die invloed van termiese voorbehandeling kondisies (temperatuur en tyd) op die strukturele verandering van rou biomassa en op die vlugtige komponent evolusie meganisme van die resulterende houtskool tydens die opvolgende verwydering van vlugtige komponente uit die houtskool uit, was ook gebestudeer. Termiese voorbehandeling was gedoen binne die temperatuuromvang van 250-400 oC en hou-tyd by voorbehandelingstemperatuur van 30 en 60 min. Dit was opgemerk dat temperatuur ‘n groter effek as hou-tyd gehad het tydens termiese voorbehandeling. Dit was gewys dat die verspreiding van produkte van die verwydering van vlugtige komponente uit die houtskool uit ooreenstem met die mate van biomassa verandering tydens termiese voorbehandeling. Die biomassa samestelling, veral sellulose kristalliniteit, het ‘n impak gehad tydens termiese voorbehandeling. Dit was bevind dat vir ‘n biomassa grondstof met ‘n hoë graad van kristalliniteit, soos PN, was ‘n hoër temperatuur (>300 oC) benodig om beduidende sellulose degradasie te behaal. Gevolglik het die houtskool geproduseer van sulke grondstowwe by temperature <300 oC, hoë hoeveelhede anhidriese suikers en furan vlugtige komponente gegenereer tydens die verwydering van vlugtige komponente vanuit die houtskool. Met die doelwit om voorbehandelde biomassa te gebruik in die gesamentlike vergassing met steenkool, was biomassa-houtskool, geproduseer by verskillende voorbehandelingstemperature, vergelyk met steenkool in terme van brandstofeienskappe (algemene en elementele samestelling en Hoër Verbrandings Waarde), met spesifieke aandag aan die samestelling oksigeneerde vlugtige verbindings wat gegenereer is tydens die verwydering van vlugtige komponente. Die resultaat van die studie het gewys dat houtskool geproduseer by temperature ≥350 oC, brandstofeienskappe vergelykbaar met die van steenkool gehad het. Daarbenewens het die houtskole hoofsaaklik aromatiese koolwaterstowwe en fenole geproduseer tydens die verwydering van vlugtige komponente, wat soortgelyk was aan die vlugtige komponente gegenereer van steenkool onder identiese kondisies. Daarom word die voorbehandelingstemperatuur van ten minste 350 oC aanbeveel wanneer steenkoolvervanging oorweeg word, terwyl 400 oC oorweeg kan word in die geval van monsters met hoë lignien (sagtehout) of hoë anorganiese inhoud. Laastelik was die reaktiwiteit van biomassa houtskool onder vergassingtoestande ondersoek. Die eienskappe tydens die verwydering van vlugtige komponente en die CO2 vergassings-kinetika van biomassa/houtskool (geproduseer by 350 oC) en steenkool by verskillende vermengingsverhoudinge was gebestudeer. Dit was gevind dat die eienskappe van houtskool tydens die verwydering van vlugtige komponente dieselfde profiel as steenkool volg veral by vermengingsverhoudinge van 10 wt% en 20 wt% en geen spesifieke sinergie was opgemerk nie, terwyl die kinetiese parameters ook vergelykbaar was. Die werk het die potensiaal van die gebruik van termiese voorbehandelde biomassa houtskool in die vervanging van steenkool in vergassing prosesse bevestig en beslissende insigte voortgebring vir die implementering van toekomstige toetse op toetsskaal.
Description
Thesis (PhD)--Stellenbosch University, 2018.
Keywords
Biomass gasification, UCTD, Coal gasification, Renewable energy sources, Lignocellulose -- Biodegradation, Thermochemistry, Thermal pretreatment, Pyrolysis, Torrefaction
Citation