The ribbon microphone multi‑physics educational aid

Van Wyk, Marius (2017-12)

Thesis (MEng)--Stellenbosch University

Thesis

ENGLISH ABSTRACT: Engineering education has historically been mostly mathematics based, with advanced mathematics used to derive simple models for physics phenomena and then using these models to study basic behaviour. However, recent years have seen a proliferation in numerical multi-physics analysis software that performs finite element and finite volume analysis to provide high accuracy solutions to problems. It provides visualisation of solutions that were not possible earlier, thereby giving engineers new insight into problems and solutions. Only using analysis software can however easily cause dissociation from real-world physics and prevent early identification of flawed solutions. To correctly interpret simulation results it is important to first understand how the practical model behaves. The ribbon microphone is a real-life example that can serve as a laboratory tool for students to make the link between theory, computer simulation and the physical world. Simulation of this seemingly simple device is not trivial. The ribbon microphone is an all-in-one example for simulations in acoustics, mechanics, magnetics and electromagnetics – and the interaction between these disciplines. The value of the ribbon microphone as a teaching aid can be extended by adding transformers and electronic amplifiers to the model. The complete model can be used to illustrate the importance of impedance matching and noise suppression. The thesis argues a case for the ribbon microphone as a laboratory aid in engineering education. The case for good laboratory examples is supported by related information from engineering education publications. The thesis is structured around a selection of experiments to illustrate how students can learn different aspects of four physics domains through exercises concerned with the ribbon microphone. The experiments consist of computer simulations and real-world exercises. Theory is provided for each physics domain as an introduction to the experiments.

AFRIKAANSE OPSOMMING: Geskiedkundig was ingenieursonderrig hoofsaaklik wiskundig geskoei, met gevorderde wiskunde wat gebruik word om eenvoudige modelle van natuurlike verskynsels af te lei en dan hierdie modelle te gebruik om die basiese gedrag daarvan te bestudeer. Die afgelope tyd is daar egter „n klemverskuiwing na die gebruik van numeriese veelvuldige-fisika analisesagteware wat eindige-element en eindige-volume analise uitvoer om hoogs akkurate oplossings vir probleme te verskaf. Dit voorsien die gebruiker met visuele terugvoer wat voorheen nie moontlik was nie. Dit gee ingenieurs dieper insig in probleme en oplossings. Deur slegs analisesagteware te gebruik, kan die gebruiker egter maklik van die werklikheid vervreem word en word foutiewe oplossings nie betyds geïdentifiseer nie. Dit is belangrik om eers die gedrag van die praktiese model te verstaan voordat gesimuleerde oplossings met die nodige insig vertolk kan word. Die lintmikrofoon is „n praktiese voorbeeld wat studente in die laboratorium kan gebruik om die skakel tussen teorie, rekenaarsimulasie en die fisiese wêreld duidelik te verstaan. Simulasie van hierdie oënskynlik eenvoudige toestel is alles behalwe eenvoudig. Die lintmikrofoon is „n samevattende voorbeeld van akoestiek, meganika, magnetika, elektromagnetika en die interaksie tussen hierdie dissiplines. Die waarde van die lintmikrofoon as onderrigshulpmiddel kan uitgebrei word deur „n tranformator en elektroniese versterker by die model te voeg. Die volledige model kan aangewend word om die belangrikheid van impedansiepassing en ruisbeheer te beklemtoon. Die tesis stel „n saak vir die lintmikrofoon as laboratoriumhulpmiddel vir ingenieursonderrig. Publikasies oor ingenieursonderrig ondersteun die saak vir goeie hulpmiddels. Die tesis is gestruktureer na aanleiding van „n aantal eksperimente om aan te toon hoe studente vier verskillende fisika dissiplines kan bestudeer deur middel van die lintmikrofoon. Die eksperimente bestaan uit rekenaarsimulasies en praktiese oefeninge. Die nodige teorie word vir elke dissipline verskaf as inleiding tot die betrokke eksperimente.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/102975
This item appears in the following collections: