ITEM VIEW

L-classifier chains classification and variable selection for multi-label datasets

dc.contributor.advisorSteel, S. J.en_ZA
dc.contributor.authorDu Toit, Monikaen_ZA
dc.contributor.otherStellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics & Actuarial Science.en_ZA
dc.date.accessioned2016-12-22T13:22:20Z
dc.date.available2016-12-22T13:22:20Z
dc.date.issued2016-12
dc.identifier.urihttp://hdl.handle.net/10019.1/100164
dc.descriptionThesis (MCom)--Stellenbosch University, 2016.
dc.description.abstractENGLISH SUMMARY : Multi-label classification extends binary and multi-class classification to scenarios where every data case is assigned several labels simultaneously. Applications include labelling images with tags, identifying instruments that are playing in a musical piece and classifying text according to two or more labels. Variable selection is an important part of multi-label data analysis, but it has received little attention in the literature. Multi-label variable selection is more complex than for binary classification, mainly due to the presence of more than one response as well as label dependence. In this thesis, a multi-label classification approach called L-classifier chains (LCC) is proposed. This method implements a compromise between simple classifier chains and the ensemble of classifier chains procedures. The LCC approach uses an ensemble of classifier chains with a semi-random chain structure and random forests as base learners to perform variable selection. The specific structural assumptions of the LCC method allow for variable importance inference based on the output from the random forests. The results from LCC include multi-label predictions and a matrix of variable importance values. This thesis illustrates the application of the LCC clasifier by conducting empirical work using multi-label benchmark datasets, simulated datasets and a practical dataset obtained from a South African credit bureau. Throughout the practical applications, it compares the performance of LCC relative to three other classifiers, namely binary relevance, classifier chains and ensemble of classifier chains.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : Geen opsomming beskikbaar.af_ZA
dc.format.extentxii, 169 pages ; illustrations, includes annexures
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch University
dc.subjectMulti-label classificationen_ZA
dc.subjectStatistical methodsen_ZA
dc.subjectRandom-forestsen_ZA
dc.subjectInstrumental variables (Statistics)en_ZA
dc.subjectUCTD
dc.titleL-classifier chains classification and variable selection for multi-label datasetsen_ZA
dc.typeThesisen_ZA
dc.rights.holderStellenbosch University


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW