Medical Microbiology
Permanent URI for this community
Browse
Browsing Medical Microbiology by Subject "Anti-Tuberculosis drugs"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemElucidation of the substrates of mycosin 3, an essential protease of Mycobacterium tuberculosis(Stellenbosch : University of Stellenbosch, 2011-03) Fang, Zhuo; Gey van Pittius, Nicolaas Claudius; Warren, Robert Mark; University of Stellenbosch. Faculty of Health Sciences. Dept. of Biomedical Sciences.ENGLISH ABSTRACT: Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects one third of the world’s population and kills 1.7 million people per year. The increasing prevalence of multi- and extensively drug resistant M. tuberculosis strains means that there is an urgent need to develop new anti-TB drugs. The genome of M. tuberculosis has five copies of the ESAT-6 gene clusters (ESX-1, -2, -3, -4 and -5), which are essential for the survival (ESX-3) and pathogenicity (ESX-1 and ESX-5) of the bacterium. The ESX clusters encode for proteins which form a novel secretion system which has been shown to secreted small T-cell antigens of the esx gene family, as well as other proteins such as the PE and PPE’s. The mycosins are a family of genes situated in the ESX clusters which encode for putative subtilisin-like serine proteases. These proteins are the most conserved proteins within the five clusters. Apart from their conserved protein sequence, mycosin-3 is also an essential protein specific to the mycobacteria, which makes it an attractive potential drug target. Identifying the substrate(s) of mycosin-3 could help to understand the function of this enzyme and discover novel inhibitors from which new drugs could be designed. We hypothesize that the secreted products of the ESX system could be potential substrates for the mycosins. Specifically, we hypothesize that PE5, PPE4, esxG and esxH (all found in ESX-3) might be the substrates for mycosin-3. Mycosin-3, PE5, PPE4, esxG and esxH were thus cloned, expressed and purified respectively. The four substrates were used for protease assays using mycosin-3 as the protease. The protease-substrate mixture were subsequently separated on 2-D SDS-PAGE gels to check whether there were any cleavage of the four substrates. Although all the target fusion proteins were cloned and expressed successfully, the protease assay results showed no cleavage for any of the four substrates. Possible explanations for the failure of cleavage were: (1) impure enzyme and substrate(s); (2) inappropriate buffer conditions; (3) the hypothesized substrates might not be the substrates of mycosin-3; and (4) incorrect folding or modification of the target fusion proteins might have taken place. Future research will aim to address these possible limitations in order to fully elucidate the function and substrate specificity of mycosin-3 and to use this information for the design of novel drugs against M. tuberculosis.