Doctoral Degrees (Molecular Biology and Human Genetics)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Molecular Biology and Human Genetics) by Subject "Animal diagnosis"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemNatural animal model systems to study tuberculosis(Stellenbosch : University of Stellenbosch, 2010-03) Parsons, Sven David Charles; Van Helden, Paul D.; University of Stellenbosch. Faculty of Health Sciences. Dept. of Biomedical Sciences. Molecular Biology and Human Genetics.ENGLISH ABSTRACT: The growing global epidemic of human tuberculosis (TB) results in 8 million new cases of this disease and 2 million deaths annually. Control thereof will require greater insight into the biology of the causative organism, Mycobacterium tuberculosis, and into the pathogenesis of the disease. This will benefit the design of new vaccines and diagnostic assays which may reduce the degree of both disease transmission and progression. Animal models have played a vital role in the understanding of the aetiology, pathogenesis, and treatment of TB. Much of such insight has been obtained from experimental infection models, and the development of new vaccines, for example, is dependant on these. Nonetheless, studies utilising naturally occurring TB in animals, such as those which have investigated the use of interferon-gamma release assays (IGRA) for its diagnosis, have contributed substantially to the body of knowledge in this field. However, there are few such examples, and this study sought to identify and investigate naturally occuring animal TB in South Africa as an opportunity to gain further insight into this disease. During the course of this study, the dassie bacillus, a distinctly less virulent variant of M. tuberculosis, was isolated from a rock hyrax from the Western Cape Province of South Africa. This has provided new insight into the widespread occurrence of this organism in rock hyrax populations, and has given impetus to further exploring the nature of the difference in virulence between these pathogens. Also investigated was M. tuberculosis infection in dogs in contact with human TB patients. In so doing, the first reported case of canine TB in South Africa was described, v a novel canine IGRA was developed, and a high level of M. tuberculosis infection in these animals was identified. This supports human data reflecting high levels of transmission of this pathogen during the course of human disease. Additionally, the fact that infected companion animals may progress to disease and potentially act as a source of human infection was highlighted. However, an attempt to adapt a flow cytometric assay to study cell-mediated immune responses during canine TB revealed the limitations of such studies in species in which the immune system remains poorly characterised. The use of IGRAs to diagnose TB was further explored by adapting a human assay, the QuantiFERON-TB Gold (In-Tube Method), for use in non-human primates. These studies have shown that such an adaption allows for the sensitive detection of TB in baboons (Papio ursinus) and rhesus macaques (Macaca mulatta) and may be suitable for adaption for use in other species. However, they have also evidenced the limitation of this assay to specifically detect infection by M. tuberculosis. Finally, to contextualise the occurrence of the mycobacterial infections described above, and other similar examples, these have been reviewed as an opinion piece. Together, these investigations confirm that animal models will continue to make important contributions to the study of TB. More specifically, they highlight the opportunities that naturally occuring animal TB provides for the discovery of novel insights into this disease.