Masters Degrees (Institute for Wine Biotechnology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Institute for Wine Biotechnology) by Subject "Cell differentiation -- Molecular aspects"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCell differentiation in response to nutrient availability : the repressor of meiosis, RME1, positively regulates invasive growth in Saccharomyces cerevisiae(Stellenbosch : Stellenbosch University, 2003-03) Hansson, Guy Robert, 1974-; Bauer, Florian; Pretorius, I. S.; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Yeasts, like most organisms, have to survive in highly variable and hostile environments. Survival therefore requires adaptation to the changing external conditions. On the molecular level, specific adaptation to specific environmental conditions requires the yeast to be able: (i) to sense all relevant environmental parameters; (ii) to relay the perceived signals to the interior of the cell via signal transduction networks; and (iii) to implement a specific molecular response by modifying enzyme activities and by regulating transcription of the appropriate genes. The availability of nutrients is one of the major trophic factors for all unicellular organisms, including yeast. Saccharomyces cerevisiae senses the nutritional composition of the media and implements a specific developmental choice in response to the level of essential nutrients. In conditions in which ample nutrients are available, S. cerevisiae will divide mitotically and populate the growth environment. If the nutrients are exhausted, diploid S. cerevisiae cells can undergo meiosis, which produces four ascospores encased in an ascus. These ascospores are robust and provide the yeast with a means to survive adverse environmental conditions. The ascospores can lie dormant for extended periods of time until the onset of favourable growth conditions, upon which the spores will germinate, mate and give rise to a new yeast population. However, S. cerevisiae has a third developmental option, referred to as pseudohyphal and invasive growth. In growth conditions in which nutrients are limited, but not exhausted, the yeast can undergo a morphological switch, altering its budding pattern and forming chains of elongated cells that can penetrate the growth substrate to forage for nutrients. The focus of this study was on elements of the signal transduction networks regulating invasive growth in S. cerevisiae. Some components of the signal transduction pathways are well characterised, while several transcription factors that are regulated via these pathways remain poorly studied. In this study, the RMEt gene was identified for its ability to enhance starch degradation and invasive growth when present on a multiple copy plasmid. Rme1 p had previously been identified as a repressor of meiosis and, for this reason, the literature review focuses on the regulation of the meiotic process. In particular, the review focuses on the factors governing entry into meiosis in response to nutrient starvation and ploidy. Also, the transcriptional regulation of the master initiator of meiosis, IMEt, and the action of Ime1 p are included in the review. The experimental part of the study entailed a genetic analysis of the role of Rme1 p in invasive growth and starch metabolism. Epistasis analysis was conducted of Rme1 p and elements of the MAP Kinase module, as well as of the transcription factors, Mss11p, Msn1p/Mss10p, Tec1p, Phd1p and F108p. Rme1p is known to bind to the promoter of CLN2, a G1-cyclin, and enhances its expression. Therefore, the cell cyclins CLN1 and CLN2 were included in the study. The study revealed that Rme1 p functions independently or downstream of the MAP Kinase cascade and does not require Cln1 p or Cln2p to induce invasive growth. FL011/MUC1 encodes a cell wall protein that is required for invasive growth. Like the above-mentioned factors, Rme1 p requires FL011 to induce invasive growth. We identified an Rme1 p binding site in the promoter of FL011. Overexpression of Rme1p was able to induce FL01t expression, despite deletions of mss11, msn1, ttos, tee1 and phd1. In the inverse experiment, these factors were able to induce FL011 expression in an rme1 deleted strain. This would indicate that Rme1 p does not function in a hierarchical signalling system with these factors, but could function in a more general role to modify transcription.