Browsing by Author "Winter, Marten"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemBiodiversity assessments : origin matters(Public Library of Science, 2018-11-13) Pauchard, Anibal; Meyerson, Laura A.; Bacher, Sven; Blackburn, Tim M.; Brundu, Giuseppe; Cadotte, Marc W.; Courchamp, Franck; Essl, Franz; Genovesi, Piero; Haider, Sylvia; Holmes, Nick D.; Hulme, Philip E.; Jeschke, Jonathan M.; Lockwood, Julie L.; Novoa, Ana; Nunez, Martin A.; Peltzer, Duane A.; Pysek, Petr; Richardson, David M.; Simberloff, Daniel; Smith, Kevin; Van Wilgen, Brian W.; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Zenni, Rafael D.Recent global efforts in biodiversity accounting, such as those undertaken through the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), are vital if we are to track conservation progress, ensure that we can address the challenges of global change, and develop powerful and scientifically sound indicators. Schlaepfer [1] proposes that we should work toward inventories of biodiversity that account for native and non-native species regardless of species origin and ecological context. We strongly disagree with the approach of combining counts of native and non-native species because this will reduce our capacity to detect the effects of non-native species on native biodiversity with potentially devastating consequences. Compelling and abundant evidence demonstrates that some non-native species can become invasive and produce major ecosystem disruptions and even native species extinction. Unfortunately, we still cannot be certain which non-native species will be the most detrimental (e.g., [2]). Combining native and non-native species together into a single biodiversity index would not only inflate biodiversity estimates and risk promoting the spread of invasive non-native species but would also ignore the fundamental ecological differences between the two groups.
- ItemData descriptor : Pacific introduced flora (PaciFLora)(Pensoft, 2021-07-20) Wohlwend, Michael Rudolf; Craven, Dylan; Weigelt, Patrick; Seebens, Hanno; Winter, Marten; Kreft, Holger; Dawson, Wayne; Essl, Franz; Van Kleunen, Marl; Pergl, Jan; Pysek, Petr; Space, James; Thomas, Philip; Knight, TiffanyENGLISH ABSTRACT: The Pacific region has the highest density of naturalized plant species worldwide, which makes it an important area for research on the ecology, evolution and biogeography of biological invasions. While different data sources on naturalized plant species exist for the Pacific, there is no taxonomically and spatially harmonized database available for different subsets of species and islands. A comprehensive, accessible database containing the distribution of naturalized vascular plant species in the Pacific will enable new basic and applied research for researchers and will be an important information source for practitioners working in the region.Here, we present PacIFlora, an updated and taxonomically standardized list of naturalized species, their unified nativeness, cultivation and invasiveness status, and their distribution across the Pacific Ocean, including harmonized location denommination. This list is based on the two largest databases on naturalized plants for the region, specifically the Pacific Island Ecosystems at Risk (PIER) and the Global Naturalized Alien Flora (GloNAF) databases. We provide an outlook for how this database can contribute to numerous research questions and conservation efforts.
- ItemDefining the impact of non-native species(Wiley, 2014) Jeschke, Jonathan M.; Bacher, Sven; Blackburn, Tim M.; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugala, Agata; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Winter, Marten; Kumschick, SabrinaENGLISH ABSTRACT: Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.
- ItemNaturalization of European plants on other continents : the role of donor habitats(National Academy of Sciences, 2019) Kalusova, Veronika; Chytry, Milan; Van Kleunen, Mark; Mucina, Ladislav; Dawson, Wayne; Essl, Franz; Kreft, Holger; Pergl, Jan; Weigelt, Patrick; Winter, Marten; Pysek, PetrThe success of European plant species as aliens worldwide is thought to reflect their association with human-disturbed environments. However, an explicit test including all human-made, seminatural and natural habitat types of Europe, and their contributions as donor habitats of naturalized species to the rest of the globe, has been missing. Here we combine two databases, the European Vegetation Checklist and the Global Naturalized Alien Flora, to assess how human influence in European habitats affects the probability of naturalization of their plant species on other continents. A total of 9,875 native European vascular plant species were assigned to 39 European habitat types; of these, 2,550 species have become naturalized somewhere in the world. Species that occur in both human-made habitats and seminatural or natural habitats in Europe have the highest probability of naturalization (64.7% and 64.5% of them have naturalized). Species associated only with human-made or seminatural habitats still have a significantly higher probability of becoming naturalized (41.7% and 28.6%, respectively) than species confined to natural habitats (19.4%). Species associated with arable land and human settlements were recorded as naturalized in the largest number of regions worldwide. Our findings highlight that plant species’ association with native-range habitats disturbed by human activities, combined with broad habitat range, play an important role in shaping global patterns of plant invasions.
- ItemPhylogenetic structure of alien plant species pools from European donor habitats(John Wiley & Sons Ltd., 2021) Kalusova, Veronika; Cubino, Josep Padulles; Fristoe, Trevor S.; Chytry, Milan; Van Kleunen, Mark; Dawson, Wayne; Essl, Franz; Kreft, Holger; Mucina, Ladislav; Pergl, Jan; Pysek, Petr; Weigelt, Patrick; Winter, Marten; Lososova, ZdenkaAim: Many plant species native to Europe have naturalized worldwide. We tested whether the phylogenetic structure of the species pools of European habitats is related to the proportion of species from each habitat that has naturalized outside Europe (habitat’s donor role) and whether the donated species are more phylogenetically related to each other than expected by chance. Location: Europe (native range), the rest of the world (invaded range). Time period: Last c. 100 years. Major taxa studied: Angiospermae. Methods: We selected 33 habitats in Europe and analysed their species pools, including 9,636 plant species, of which 2,293 have naturalized outside Europe. We assessed the phylogenetic structure of each habitat as the difference between the observed and expected mean pairwise phylogenetic distance (MPD) for (a) the whole species pool and (b) subgroups of species that have naturalized outside Europe and those that have not. We used generalized linear models to test for the effects of the phylogenetic structure and the level of human influence on the habitat’s donor role.
- ItemProjecting the continental accumulation of alien species through to 2050(John Wiley & Sons, 2020) Seebens, Hanno; Bacher, Sven; Blackburn, Tim M.; Capinha, Cesar; Dawson, Wayne; Dullinger, Stefan; Genovesi, Piero; Hulme, Philip E.; Van Kleunen, Mark; Kuhn, Ingolf; Jeschke, Jonathan M.; Lenzner, Bernd; Liebhold, Andrew M.; Pattison, Zarah; Pergl, Jan; Pysek, Petr; Winter, Marten; Essl, FranzBiological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business‐as‐usual scenario). We first validated performance of different model versions by conducting a back‐casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon–continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.
- ItemRole of diversification rates and evolutionary history as a driver of plant naturalization success(Wiley, 2020) Lenzner, Bernd; Magallon, Susana; Dawson, Wayne; Kreft, Holger; Konig, Christian; Pergl, Jan; Pysek, Petr; Weigelt, Patrick; Van Kleunen, Mark; Winter, Marten; Dullinger, Stefan; Essl, FranzENGLISH ABSTRACT: Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.
- ItemSource pools and disharmony of the world's island floras(Nordic Society Oikos, 2020) Konig, Christian; Weigelt, Patrick; Taylor, Amanda; Stein, Anke; Dawson, Wayne; Essl, Franz; Pergl, Jan; Pysek, Petr; Van Kleunen, Mark; Winter, Marten; Chatelain, Cyrille; Wieringa, Jan J.; Krestov, Pavel; Kreft, HolgerIsland disharmony refers to the biased representation of higher taxa on islands compared to their mainland source regions and represents a central concept in island biology. Here, we develop a generalizable framework for approximating these source regions and conduct the first global assessment of island disharmony and its underlying drivers. We compiled vascular plant species lists for 178 oceanic islands and 735 mainland regions. Using mainland data only, we modelled species turnover as a function of environmental and geographic distance and predicted the proportion of shared species between each island and mainland region. We then quantified the over- or under-representation of families on individual islands (representational disharmony) by contrasting the observed number of species against a null model of random colonization from the mainland source pool, and analysed the effects of six family-level functional traits on the resulting measure. Furthermore, we aggregated the values of representational disharmony per island to characterize overall taxonomic bias of a given flora (compositional disharmony), and analysed this second measure as a function of four island biogeographical variables. Our results indicate considerable variation in representational disharmony both within and among plant families. Examples of generally over-represented families include Urticaceae, Convolvulaceae and almost all pteridophyte families. Other families such as Asteraceae and Orchidaceae were generally under-represented, with local peaks of over-representation in known radiation hotspots. Abiotic pollination and a lack of dispersal specialization were most strongly associated with an insular over-representation of families, whereas other family-level traits showed minor effects. With respect to compositional disharmony, large, high-elevation islands tended to have the most disharmonic floras. Our results provide important insights into the taxon- and island-specific drivers of disharmony. The proposed framework allows overcoming the limitations of previous approaches and provides a quantitative basis for incorporating functional and phylogenetic approaches into future studies of island disharmony.
- ItemTroubling travellers : are ecologically harmful alien species associated with particular introduction pathways?(Pensoft Publishers, 2017) Pergl, Jan; Pysek, Petr; Bacher, Sven; Essl, Franz; Genovesi, Piero; Harrower, Colin A.; Hulme, Philip E.; Jeschke, Jonathan M.; Kenis, Marc; Kuhn, Ingolf; Perglova, Irena; Rabitsch, Wolfgang; Roques, Alain; Roy, David B.; Roy, Helen E.; Vila, Montserrat; Winter, Marten; Nentwig, WolfgangPrioritization of introduction pathways is seen as an important component of the management of biological invasions. We address whether established alien plants, mammals, freshwater fish and terrestrial invertebrates with known ecological impacts are associated with particular introduction pathways (release, escape, contaminant, stowaway, corridor and unaided). We used the information from the European alien species database DAISIE (www.europe-aliens.org) supplemented by the EASIN catalogue (European Alien Species Information Network), and expert knowledge. Plants introduced by the pathways release, corridor and unaided were disproportionately more likely to have ecological impacts than those introduced as contaminants. In contrast, impacts were not associated with particular introduction pathways for invertebrates, mammals or fish. Thus, while for plants management strategies should be targeted towards the appropriate pathways, for animals, management should focus on reducing the total number of taxa introduced, targeting those pathways responsible for high numbers of introductions. However, regardless of taxonomic group, having multiple introduction pathways increases the likelihood of the species having an ecological impact. This may simply reflect that species introduced by multiple pathways have high propagule pressure and so have a high probability of establishment. Clearly, patterns of invasion are determined by many interacting factors and management strategies should reflect this complexity.
- ItemA unified classification of alien species based on the magnitude of their environmental impacts(PLoS, 2014) Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Markova, Zuzana; Mrugala, Agata; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, SvenSpecies moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact—ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.
- ItemA unified classification on alien species based on the magnitude of their environmental impacts(Public Library of Science, 2014-05-06) Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Markova, Zuzana; Mrugala, Agata; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, SvenSpecies moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to themagnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact— ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications.We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.
- ItemA vision for global monitoring of biological invasions(Elsevier Ltd., 2017) Latombe, Guillaume; Pysek, Petr; Jeschke, Jonathan M.; Blackburn, Tim M.; Bacher, Sven; Capinha, Cesar; Costello, Mark J.; Fernandez, Miguel; Gregory, Richard D.; Hobern, Donald; Hui, Cang; Jetz, Walter; Kumschick, Sabrina; McGrannachan, Chris; Pergl, Jan; Roy, Helen E.; Scalera, Riccardo; Squires, Zoe E.; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; McGeoch, Melodie A.ENGLISH ABSTRACT: Managing biological invasions relies on good global coverage of species distributions. Accurate information on alien species distributions, obtained from international policy and cross-border co-operation, is required to evaluate trans-boundary and trading partnership risks. However, a standardized approach for systematically monitoring alien species and tracking biological invasions is still lacking. This Perspective presents a vision for global observation and monitoring of biological invasions. We show how the architecture for tracking biological invasions is provided by a minimum information set of Essential Variables, global collaboration on data sharing and infrastructure, and strategic contributions by countries. We show how this novel, synthetic approach to an observation system for alien species provides a tangible and attainable solution to delivering the information needed to slow the rate of new incursions and reduce the impacts of invaders. We identify three Essential Variables for Invasion Monitoring; alien species occurrence, species alien status and alien species impact. We outline how delivery of thisminimum information set by joint, complementary contributions from countries and global community initiatives is possible. Country contributions are made feasible using a modular approach where all countries are able to participate and strategically build their contributions to a global information set over time. The vision we outline will deliver wide-ranging benefits to countries and international efforts to slow the rate of biological invasions and minimize their environmental impacts. These benefits will accrue over time as global coverage and information on alien species increases.
- ItemA workflow for standardising and integrating alien species distribution data(Pensoft, 2020-07-20) Seebens, Hanno; Clarke, David A.; Groom, Quentin; Wilson, John R. U.; Garcia-Berthou, Emili; Kuhn, Ingolf; Roige, Mariona; Pagad, Shyama; Essl, Franz; Vicente, Joana; Winter, Marten; McGeoch, MelodieENGLISH ABSTRACT: Biodiversity data are being collected at unprecedented rates. Such data often have significant value for purposes beyond the initial reason for which they were collected, particularly when they are combined and collated with other data sources. In the field of invasion ecology, however, integrating data represents a major challenge due to the notorious lack of standardisation of terminologies and categorisations, and the application of deviating concepts of biological invasions. Here, we introduce the SInAS workflow, short for Standardising and Integrating Alien Species data. The SInAS workflow standardises terminologies following Darwin Core, location names using a proposed translation table, taxon names based on the GBIF backbone taxonomy, and dates of first records based on a set of predefined rules. The output of the SInAS workflow provides various entry points that can be used both to improve coherence among the databases and to check and correct the original data. The workflow is flexible and can be easily adapted and extended to the needs of different users. We illustrate the workflow using a case-study integrating five widely used global databases of information on biological invasions. The comparison of the standardised databases revealed a surprisingly low degree of overlap, which indicates that the amount of data may currently not be fully exploited in the original databases. We highly recommend the use and development of publicly available workflows to ensure that the integration of databases is reproducible and transparent. Workflows, such as SInAS, ultimately increase trust in data, study results, and conclusions.