Browsing by Author "Visser, Ilze"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemRNAi of selected insect genes(Stellenbosch : Stellenbosch University, 2016-12) Visser, Ilze; Botha-Oberholster, Anna-Maria; Stellenbosch University. Faculty of AgriSciences. Dept. of Genetics.ENGLISH ABSTRACT: Diuraphis noxia (Kurdjumov, Hemiptera: Aphididae), commonly known as the Russian wheat aphid (RWA), is regarded as one of the most destructive and widely distributed insect species in the world. Nonetheless, the currently available control strategies, including chemical pesticides, biological control agents, and RWA resistant wheat cultivars, are still very limited and rather ineffective. The process of double-stranded RNA (dsRNA)-mediated interference (RNAi) displays high specificity and the prospect of developing into a new specific method for managing agricultural pests. Plants can potentially be genetically engineered to express dsRNA to down-regulate vital gene functions present in pest insects, resulting in the protection of plants. In order to survive and reproduce, aphids require close interaction with their host plants, during which effectors are transported inside the plant to modify host cell processes. Four previously identified RWA salivary secretion proteins were investigated in the present study. However, cloning and sequencing results indicated that only two of the aforementioned proteins – C002 and 14-3-3 epsilon (ɛ) – could be potential protein elicitors in RWA. Thus, these two transcripts were subjected to RNAi experiments via artificial diet feeding and feeding on siRNA injected wheat leaf trials in order to investigate their role in RWA-host interactions and their importance in the survival and reproduction of the RWA. The relative expression levels of C002 and 14-3-3 ɛ at 0h were compared between SAM, the most virulent RWA biotype, and SA1, the least virulent RWA biotype in South Africa, and the results indicated that both transcripts had a higher relative expression in SAM than in SA1. Therefore, suggesting that C002 and 14-3-3 ɛ might play an important part in RWA virulence. From the RT-qPCR results it was evident that successful silencing of both C002 and 14-3-3 ɛ were achieved at 24h after initial siRNA exposure and that the transient silencing effect subsided thereafter. The expression data pertaining to the wheat leaf injection experiments, however, displayed high standard deviations that are not ideal and suggested that the expression of the transcripts differs greatly between the aphids within each group. This is likely due to the custom-made aphid cages and injection procedure of the siRNA into wheat leaves that appears to hinder the accuracy of the results. The fecundity data produced quite inconclusive results due to previously mentioned inadequacies and therefore an accurate and decisive conclusion cannot be drawn as to how the C002 and 14-3-3 ɛ silencing effects the survival and reproduction of the RWA. Both methods used for RNAi – the artificial diet trial and the injection of wheat leaves trial – have their drawback. After considering the RT-qPCR data, it appears as though the artificial diet trial produced more accurate and feasible results. Even so, the injection method establishes a more natural mode of feeding for the aphids and consequently more optimal cages need to be designed and tested to produce precise results.