Browsing by Author "Van Niekerk, Gustav"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemCommentary on : "A common origin for immunity and digestion"(Frontiers Media, 2015-05) Van Niekerk, Gustav; Engelbrecht, Anna-MartNo abstract
- ItemDomesticating cancer : an evolutionary strategy in the war on cancer(Frontiers Media, 2017) Van Niekerk, Gustav; Nell, Theo A.; Engelbrecht, Anna-MartSince cancer shares the same molecular machinery as the host, most therapeutic interventions that aim to target cancer would inadvertently also adversely affect the host. In addition, cancer continuously evolves, streamlining its host-derived genome for a new single-celled existence. In particular, short-term clinical success observed with most antineoplastic therapies directly relate to the fact that cancer is constantly evolving. However, the clonal evolution of cancer occasionally also render cancer cells uniquely susceptible to therapeutic interventions, as is exemplified by the clinical relevance of synthetic lethality. Synthetic lethality describes a situation where the simultaneous loss of function in two genes results in lethality, but where a loss of function in either single gene is tolerated. This observation suggests that the evolution of cancer, usually seen as a major clinical challenge, may also afford a key opportunity in lowering on-target toxicities accosted with chemotherapy. As an example, by subjecting cancer to specific selection regimes, cancer can in effect be placed on evolutionary trajectories leading to the development of “targetable” phenotypes such as synthetic lethal interactions. However, such a selection regime would have to overcome a range of obstacles such as on-target toxicity and the selection of an evolvable trait. Since the majority of cancer evolution manifests as a loss of function, we suggest that the induction of auxotrophic phenotypes (i.e., where an organism lose the ability to synthesize specific organic compounds required for growth and thus become dependent on it from dietary sources) may represent an attractive therapeutic option. As an example, animals can obtain vitamin C either by de novo synthesis or from their diet. However, since the maintenance of synthetic pathways is costly, such pathways are often lost if no longer necessary, resulting in the organism being auxotrophic toward the dietary compound. Similarly, increasing the maintenance cost of a redundant pathway in cancer cells is likely to select for clones that have lost such a redundant pathway. Inhibition of a pathway, while supporting the activity of a compensating pathway, may thus induce auxotrophism in cancer cells but not in genomic stable host cells.
- ItemEnhanced therapeutic efficacy in cancer patients by short-term fasting : the autophagy connection(Frontiers Media, 2016) Van Niekerk, Gustav; Hattingh, Suzel M.; Engelbrecht, Anna-MartPreclinical studies suggest that fasting prior to chemotherapy may be an effective strategy to protect patients against the adverse effects of chemo-toxicity. Fasting may also sensitize cancer cells to chemotherapy. It is further suggested that fasting may similarly augment the efficacy of oncolytic viral therapy. The primary mechanism mediating these beneficial effects is thought to relate to the fact that fasting results in a decrease of circulating growth factors. In turn, such fasting cues would prompt normal cells to redirect energy toward cell maintenance and repair processes, rather than growth and proliferation. However, fasting is also known to upregulate autophagy, an evolutionarily conserved catabolic process that is upregulated in response to various cell stressors. Here, we review a number of mechanisms by which fasting-induced autophagy may have an impact on both chemo-tolerance and chemo-sensitization. First, fasting may exert a protective effect by mobilizing autophagic components prior to chemo-induction. In turn, the autophagic apparatus can be repurposed for removing cellular components damaged by chemotherapy. Autophagy also plays a key role in epitope expression as well as in modulating inflammation. Chemo-sensitization resulting from fasting may in fact be an effect of enhanced immune surveillance as a result of better autophagy-dependent epitope processing. Finally, autophagy is involved in host defense against viruses, and aspects of the autophagic process are also often targets for viral subversion. Consequently, altering autophagic flux by fasting may alter viral infectivity. These observations suggest that fasting-induced autophagy may have an impact on therapeutic efficacy in various oncological contexts.
- ItemAn evaluation of the hepatic proteomic signature in identifying cancer tolerance and resistance mechanisms in a mouse allograft system(Stellenbosch : Stellenbosch University, 2017-03) Van Niekerk, Gustav; Engelbrecht, Anna-Mart; Loos, Benjamin; Nell, Theo A.; Stellenbosch University. Faculty of Science. Dept. of Physiological Sciences.ENGLISH ABSTRACT: Background The unfavourable therapeutic index of most treatment modalities has greatly impeded progress in the development of effective cancer therapy. Therefore a need exists for treatment modalities that are less taxing on a patient’s health status (i.e. maintain a patients reserve capacity and thus prolong survival) while additionally not invoking counter evolutionary strategies from tumour cells. Plant biologist have long distinguished between the host’s ability to accommodate pathogen burden, as oppose to its ability to antagonise pathogen load. Hence, the disease trajectory is not only dependent on the hosts’ ability to resist an infection, but also on the capacity to tolerate pathogen burden. This distinction have only recently been applied to animals. A number of observations suggest that this distinction may be of great immunological relevance, including the prevalence of asymptomatic carriers and natural variation in the population with regards to disease progression. Thus, the tolerance/resistance (T/R) paradigm represents a novel approach for understanding disease progression. We hypothesise that similar mechanisms might underlie host-tumour dynamics. Study aims and experimental design The current study aimed to evaluate the application of the T/R framework within an oncological context. A syngeneic mice model system was used to compare tolerance and resistance between two cancer cell lines. C57BL/6 mice were inoculated with either mammary carcinoma cells (EO771) or melanoma cells (B16). In a clinical setting, health status would not only be influenced by tumour load, but also by therapeutic interventions such as cytotoxic therapies, which must also be tolerated. Thus, a second study was performed using chemotherapeutic regimes as a variable to explore the effect of high (5 mg/kg) and low (2 mg/kg) dose doxorubicin (DXR) treatment on tolerance and resistance in mice. In addition, attempts were made to identify mechanisms underlying differences between groups with regards to variation in tolerance and resistance. To this end, a combination of immunoblotting and proteomic analyses were performed. Methodology: quantifying tolerance and resistance Resistance was quantified as the slope of a regression line, with tumour volume as response variable, and time as independent variable. Tolerance was measured similarly, but with body weight as response variable and tumour load as independent variable. Differences in regression slopes was used to compare tolerance and resistance. To confirm tolerance, differences in gastrocnemius muscle cross-sectional area (MCA) were compared between groups. Results Mice inoculated with melanoma (B16) cells showed a significantly lower resistance compared to mice inoculated with breast cancer EO771 cells. With regards to tolerance, B16 cells also exhibited lower tolerance, though tests for homogeneity of regression slopes demonstrated that these differences did not reach significance (p = 0.0856). Similarly, B16 and EO771 groups did not exhibit any difference in MCA. Comparing the effect of high and low dose DXR on mice bearing EO771 revealed that DXR decreases resistance: both low dose and higher dose DXR increased tumour growth as demonstrated by significantly steeper slopes in DXR groups compared to the tumour control group. In order to explain the increase in EO771 tumour growth in mice receiving DXR, the activation of a panel of signalling proteins associated with cell growth and survival (cRaf, ERK, p38 MAPK, JNK, PTEN, PI3Kp85, PDK1, Akt, mTOR, Bcl-2) as well as apoptotic markers (Caspase 3, 8 and 9) in tumour samples were evaluated by western blot analyses. However, the only significant finding include elevated ERK activation in mice receiving DXR, suggesting that extracellular signalling molecules might drive tumour growth. Since the liver plays a critical role in energy homeostasis, as well as in the production and clearance of circulating factors, western blot analyses were performed on liver samples. Markers of autophagy (p62 and LC3B-II) as well as growth signalling proteins (Akt and mTOR) and apoptosis (Caspase 3) were evaluated by western blot analyses. Mice inoculated with B16 demonstrated a marked increase in both p62 and LC3B-II, signifying an increase in autophagosome pool size, most likely due to dysfunctional lysosomal fusion. Surprisingly, other makers in both EO771 and B16 did not significantly differ from control liver samples. Subsequently, liver proteomics were performed making use of a Gene Ontology approach in order to describe biological, functional, structural and other processes that are uniquely altered between groups. Interestingly, a comparison between livers of mice inoculated with B16 melanoma cells and EO771 breast cancer cells also suggested that autophagic activity was not upregulated compared to the control group. DXR groups also did not exhibit differences in autophagic processes, though proteins involved in the proteasomal pathway were upregulated in mice receiving high doses of DXR. An increase expression of enzymes associated with retinoic acid metabolism was observed in the B16 group, which might explain decrease tolerance and resistance in this group. An increase in steroid metabolism was also observed in mice receiving DXR. Since cholesterol form a key component of cell membranes, it is possible that cholesterol synthesis might enable rapidly growing tumours of mice receiving DXR. Finally, concurrent up- and downregulation of certain proteins involved in radical scavenging in DXR mice might suggest a differential free radical scavenging response, thus explaining why anti-oxidant therapies have not proven successful in clinical settings in response to DXR. Collectively, these observations highlight alteration in hepatic activities through which tolerance and resistance mechanism might manifest. In summary, this study have demonstrated the implementation of the T/R framework within an oncological setting. Evidence suggest that defects in hepatic autophagy might contribute to lower tolerance, and possibly also resistance. Autophagy was not significantly upregulated in response to DXR which was associated with lower tolerance. Similar, mice inoculated with B16 tumours exhibited lower tolerance as well as evidence for suppressed lysosomal fusion with autophagosome. These observations suggest that a compromised autophagic apparatus might contribute towards the lower tolerance. Proteomic results are also suggestive of a potential role played by altered liver metabolism, including retinoic acid and steroid metabolism. Future studies evaluating the role of this pathways might identify novel tolerance-promoting pathways.
- ItemHyperglycaemia in critically ill patients : the immune system’s sweet tooth(BioMed Central, 2017) Van Niekerk, Gustav; Davis, Tanja Andrea; Engelbrecht, Anna-MartThere is an ongoing debate regarding the efficacy of glycaemic control in critically ill patients. Here we briefly highlight the key function of elevated glucose in critically ill patients, namely, to enable elevation of aerobic glycolysis in rapidly dividing cells. In particular, aerobic glycolysis provides metabolic intermediates necessary for expansion of biomass in immune cells and promotion of tissue repair. Furthermore, we emphasise that insulin may inhibit autophagy, a cell survival process used in the bulk degradation of cellular debris and damaged organelles. These observations provide a rational basis for tolerating elevated glucose levels in certain critically ill patients.
- ItemInsulin as an immunomodulatory hormone(Elsevier, 2019) Van Niekerk, Gustav; Christowitz, Claudia; Conradie, Daleen; Engelbrecht, Anna-MartInsulin plays an indispensable role in the management of hyperglycaemia that arises in a variety of settings, including Type I and II diabetes, gestational diabetes, as well as is in hyperglycaemia following a severe inflammatory insult. However, insulin receptors are also expressed on a range of cells that are not canonically implicated in glucose homeostasis. This includes immune cells, where the anti-inflammatory effects of insulin have been repeatedly reported. However, recent findings have also implicated a more involved role for insulin in shaping the immune response during an infection. This includes the ability of insulin to modulate immune cell differentiation and polarisation as well as the modulation of effector functions such as biocidal ROS production. Finally, inflammatory mediators can through both direct and indirect mechanisms also regulate serum insulin levels, suggesting that insulin may be co-opted by the immune system during an infection to direct immunological operations. Collectively, these observations implicate insulin as a bona fide immune-modulating hormone and suggest that a better understanding of insulin’s immunological function may aid in optimising insulin therapy in a range of clinical settings.
- ItemMechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model(BMC (part of Springer Nature), 2019-08-01) Christowitz, Claudia; Davis, Tanja Andrea; Isaacs, Ashwin; Van Niekerk, Gustav; Hattingh, Suzel; Engelbrecht, Anna-MartBackground: Doxorubicin is currently the most effective chemotherapeutic drug used to treat breast cancer. It has, however, been shown that doxorubicin can induce drug resistance resulting in poor patient prognosis and survival. Studies reported that the interaction between signalling pathways can promote drug resistance through the induction of proliferation, cell cycle progression and prevention of apoptosis. The aim of this study was therefore to determine the effects of doxorubicin on apoptosis signalling, autophagy, the mitogen-activated protein kinase (MAPK)- and phosphoinositide 3-kinase (PI3K)/Akt signalling pathway, cell cycle control, and regulators of the epithelial-mesenchymal transition (EMT) process in murine breast cancer tumours. Methods: A tumour-bearing mouse model was established by injecting murine E0771 breast cancer cells, suspended in Hank’s Balances Salt Solution and Corning® Matrigel® Basement Membrane Matrix, into female C57BL/ 6 mice. Fourty-seven mice were randomly divided into three groups, namely tumour control (received Hank’s Balances Salt Solution), low dose doxorubicin (received total of 6 mg/ml doxorubicin) and high dose doxorubicin (received total of 15 mg/ml doxorubicin) groups. A higher tumour growth rate was, however, observed in doxorubicin-treated mice compared to the untreated controls. We therefore compared the expression levels of markers involved in cell death and survival signalling pathways, by means of western blotting and fluorescencebased immunohistochemistry. Results: Doxorubicin failed to induce cell death, by means of apoptosis or autophagy, and cell cycle arrest, indicating the occurrence of drug resistance and uncontrolled proliferation. Activation of the MAPK/ extracellularsignal- regulated kinase (ERK) pathway contributed to the resistance observed in treated mice, while no significant changes were found with the PI3K/Akt pathway and other MAPK pathways. Significant changes were also observed in cell cycle p21 and DNA replication minichromosome maintenance 2 proteins. No significant changes in EMT markers were observed after doxorubicin treatment. Conclusions: Our results suggest that doxorubicin-induced drug resistance and tumour growth can occur through the adaptive role of the MAPK/ERK pathway in an effort to protect tumour cells. Previous studies have shown that the efficacy of doxorubicin can be improved by inhibition of the ERK signalling pathway and thereby treatment failure can be overcome.
- ItemNutritional support in sepsis : when less may be more(BMC (part of Springer Nature), 2020-02-14) Van Niekerk, Gustav; Meaker, Charne; Engelbrecht, Anna-MartDespite sound basis to suspect that aggressive and early administration of nutritional support may hold therapeutic benefits during sepsis, recommendations for nutritional support have been somewhat underwhelming. Current guidelines (ESPEN and ASPEN) recognise a lack of clear evidence demonstrating the beneficial effect of nutritional support during sepsis, raising the question: why, given the perceived low efficacy of nutritionals support, are there no high-quality clinical trials on the efficacy of permissive underfeeding in sepsis? Here, we review clinically relevant beneficial effects of permissive underfeeding, motivating the urgent need to investigate the clinical benefits of delaying nutritional support during sepsis.
- ItemThe role of bile acids in nutritional support(BioMed Central, 2018-09-30) Van Niekerk, Gustav; Davis, Tanja Andrea; De Villiers, Willem; Engelbrecht, Anna-MartAbstract: Nutritional support continues to receive much attention as a possible intervention to prevent loss of lean tissue mass, promote recovery and re-establish proper immune function in critical care patients. Yet there remains much controversy regarding the clinical efficacy of such interventions. In addition to the direct effect of nutrition in terms of micro- and macronutrient content, nutritional formulations may exert an effect via the physiological response to feeding. Here, we highlight the key role of postprandial reabsorbed bile acids in attenuating both the inflammatory response and autophagy. These observations suggest that not all patients would benefit from aggressive nutritional support.
- ItemSickness-associated anorexia : mother nature’s idea of immunonutrition?(Hindawi Publishing Corporation, 2016) Van Niekerk, Gustav; Isaacs, Ashwin W.; Nell, Theo A.; Engelbrecht, Anna-MartDuring an infection, expansion of immune cells, assembly of antibodies, and the induction of a febrile response collectively place continual metabolic strain on the host. These considerations also provide a rationale for nutritional support in critically ill patients. Yet, results from clinical and preclinical studies indicate that aggressive nutritional support does not always benefit patients and may occasionally be detrimental. Moreover, both vertebrates and invertebrates exhibit a decrease in appetite during an infection, indicating that such sickness-associated anorexia (SAA) is evolutionarily conserved. It also suggests that SAA performs a vital function during an infection. We review evidence signifying that SAA may present a mechanism by which autophagic flux is upregulated systemically. A decrease in serum amino acids during an infection promotes autophagy not only in immune cells, but also in nonimmune cells. Similarly, bile acids reabsorbed postprandially inhibit hepatic autophagy by binding to farnesoid X receptors, indicating that SAA may be an attempt to conserve autophagy. In addition, augmented autophagic responses may play a critical role in clearing pathogens (xenophagy), in the presentation of epitopes in nonprovisional antigen presenting cells and the removal of damaged proteins and organelles. Collectively, these observations suggest that some patients might benefit from permissive underfeeding.
- ItemWas the evolutionary road towards adaptive immunity paved with endothelium?(BioMed Central, 2015) Van Niekerk, Gustav; Davis, Tanja Andrea; Engelbrecht, Anna-MartBackground: The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However, these theories either fail to explain why invertebrates would not similarly develop an AIS and are confounded by issues of causality, or have been challenged by more recent findings. Presentation of the hypothesis: Instead of identifying a selective pressure that would drive the development of an AIS, we hypothesise that invertebrates failed to develop an AIS because of the evolutionary constraints imposed by these animals’ physiological context. In particular, we argue that a number of vascular innovations in vertebrates allowed the effective implementation of an AIS. A lower blood volume allowed for a higher antibody titer (i.e., less ‘diluted’ antibody concentration), rendering these immune effectors more cost-effective. In addition, both a high circulatory velocity and the ability of endothelium to coordinate immune cell trafficking promote ‘epitope sampling’. Collectively, these innovations allowed the effective implementation of AIS in vertebrates. Testing the hypothesis: The hypothesis posits that a number of innovations to the vascular system provided the release from constraints which allowed the implementation of an AIS. However, this hypothesis would be refuted by phylogenetic analysis demonstrating that the AIS preceded these vascular innovations. The hypothesis also suggests that vascular performance would have an impact on the efficacy of an AIS, thus predicting a correlation between the vascular parameters of a species and its relative investment in AIS. The contribution of certain vascular innovations in augmenting immune functionality of an AIS can be tested by modelling the effect of different vascular parameters on AIS efficacy. Implications of the hypothesis: The hypothesis not only explains the immunological dimorphism between vertebrates and invertebrates but also brings to attention the fact that immunity is dependent on more than just an immune system.