Browsing by Author "Steenkamp, Shaun Francois"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemA Bayesian extreme value approach to the optimal reinsurance problem in a multivariate risk setting(Stellenbosch : Stellenbosch University, 2023-12) Steenkamp, Shaun Francois; Harvey, Justin; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH SUMMARY: This thesis investigates a Bayesian extreme value theory approach to analyse the optimal reinsurance problem, more specifically the optimal layer selection of an excess of loss reinsurance contract. This thesis suggests a simulation approach to the optimization of the layer selection. This thesis proposes a multivariate excess of loss (XL) reinsurance structure, referred to as the simultaneous XL reinsurance structure and applies the developed optimization algorithm to this structure in several numerical examples. The approach takes a particular focus on extreme risks, thereby investigating the optimal reinsurance contract that best protects the insurance company from rare large claims. The methodology is explained for a univariate risk case, thereafter the model is extended to the bivariate and the multivariate risk cases. The optimal reinsurance agreement can be investigated using a variety of different models. This thesis develops a risk measure minimization model, with a focus on the conditional tail expectation (CTE) riskmeasure. The model allows for the insurance company’s reinsurance budget as a constraint in the optimization problem. Bayesian techniques are especially useful in problems where data is sparse, therefore this thesis suggests utilizing a Bayesian approach to the optimal reinsurance problem where rare large claims are considered. A Bayesian extreme value theory approach could improve the process of investigating the optimal reinsurance problem by utilising Markov Chain Monte Carlo (MCMC) methods to supplement the information from the data that the insurance company has available. The approach is extended into the bivariate and multivariate risk cases where a fictitious insurer, involved in various lines of business is considered. The dependence structure is modelled using a copula approach. Numerical examples are examined, and the results are interpreted. This thesis takes a focus on the tail of the data, thereby evaluating the optimal excess of loss reinsurance contract for very large claims with very small probabilities. The research suggests an algorithm for evaluating the optimal reinsurance strategy in a multivariate risk environment for insurance companies involved in different lines of business. The analysis will improve understanding and assist decision making on the reinsurance strategy from the insurer’s perspective.