Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse the repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Schmitz, Ruth A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Regulation of the phytoplankton heme b iron pool during the North Atlantic spring bloom
    (Frontiers Media, 2019-07-11) Louropoulou, Evangelia; Gledhill, Martha; Browning, Thomas J.; Desai, Dhwani K.; Barraqueta, Jan-Lukas Menzel; Tonnard, Manon; Sarthou, Geraldine; Planquette, Helene; Bowie, Andrew R.; Schmitz, Ruth A.; LaRoche, Julie; Achterberg, Eric P.
    Heme b is an iron-containing co-factor in hemoproteins. Heme b concentrations are low (<1 pmol L⁻²) in iron limited phytoplankton in cultures and in the field. Here, we determined heme b in marine particulate material (>0.7 μm) from the North Atlantic Ocean (GEOVIDE cruise – GEOTRACES section GA01), which spanned several biogeochemical regimes. We examined the relationship between heme b abundance and the microbial community composition, and its utility for mapping iron limited phytoplankton. Heme b concentrations ranged from 0.16 to 5.1 pmol L⁻² (median = 2.0 pmol L⁻², n = 62) in the surface mixed layer (SML) along the cruise track, driven mainly by variability in biomass. However, in the Irminger Basin, the lowest heme b levels (SML: median = 0.53 pmol L⁻², n = 12) were observed, whilst the biomass was highest (particulate organic carbon, median = 14.2 μmol L⁻², n = 25; chlorophyll a: median = 2.0 nmol L⁻², n = 23) pointing to regulatory mechanisms of the heme b pool for growth conservation. Dissolved iron (DFe) was not depleted (SML: median = 0.38 nmol L⁻², n = 11) in the Irminger Basin, but large diatoms (Rhizosolenia sp.) dominated. Hence, heme b depletion and regulation is likely to occur during bloom progression when phytoplankton class-dependent absolute iron requirements exceed the available ambient concentration of DFe. Furthermore, high heme b concentrations found in the Iceland Basin and Labrador Sea (median = 3.4 pmol L⁻², n = 20), despite having similar DFe concentrations to the Irminger Basin, were attributed to an earlier growth phase of the extant phytoplankton populations. Thus, heme b provides a snapshot of the cellular activity in situ and could both be used as indicator of iron limitation and contribute to understanding phytoplankton adaptation mechanisms to changing iron supplies.

DSpace software copyright © 2002-2023 LYRASIS | Supported by Stellenbosch University


  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback