Browsing by Author "Pysek, Petr"
Now showing 1 - 20 of 39
Results Per Page
Sort Options
- ItemAlien plant invasions in tropical savanna ecosystems: patterns, processes and prospects(Springer, 2010-07-11) Foxcroft, Llewellyn C.; Richardson, David M.; Rejmanek, Marcel; Pysek, PetrBiological invasions affect virtually all ecosystems on earth, but the degree to which different regions and biomes are invaded, and the quality of information from different regions, varies greatly. A large body of literature exists on the invasion of savannas in the Neotropics and northern Australia where invasive plants, especially African grasses, have had major impacts. Less has been published on plant invasions in African savannas, except for those in South Africa. Negative impacts due to plant invasions in African savannas appear to be less severe than in other regions at present. As savannas cover about 60% of the continent, with tens of millions of people relying on the services they provide, it is timely to assess the current status of invasions as a threat to these ecosystems. We reviewed the literature, contrasting the African situation with that of Neotropical and Australian savannas. A number of drivers and explanatory factors of plant invasions in savannas have been described, mostly from the Neotropics and Australia. These include herbivore presence, residence time, intentional introductions for pasture improvements, fire regimes, the physiology of the introduced species, and anthropogenic disturbance. After comparing these drivers across the three regions, we suggest that the lower extent of alien plant invasions in African savannas is largely attributable to: (1) significantly lower rates of intentional plant introductions and widespread plantings (until recently); (2) the role of large mammalian herbivores in these ecosystems; (3) historical and biogeographical issues relating to the regions of origin of introduced species; and (4) the adaptation of African systems to fire. We discuss how changing conditions in the three regions are likely to affect plant invasions in the future.
- ItemBiodiversity assessments : origin matters(Public Library of Science, 2018-11-13) Pauchard, Anibal; Meyerson, Laura A.; Bacher, Sven; Blackburn, Tim M.; Brundu, Giuseppe; Cadotte, Marc W.; Courchamp, Franck; Essl, Franz; Genovesi, Piero; Haider, Sylvia; Holmes, Nick D.; Hulme, Philip E.; Jeschke, Jonathan M.; Lockwood, Julie L.; Novoa, Ana; Nunez, Martin A.; Peltzer, Duane A.; Pysek, Petr; Richardson, David M.; Simberloff, Daniel; Smith, Kevin; Van Wilgen, Brian W.; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Zenni, Rafael D.Recent global efforts in biodiversity accounting, such as those undertaken through the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), are vital if we are to track conservation progress, ensure that we can address the challenges of global change, and develop powerful and scientifically sound indicators. Schlaepfer [1] proposes that we should work toward inventories of biodiversity that account for native and non-native species regardless of species origin and ecological context. We strongly disagree with the approach of combining counts of native and non-native species because this will reduce our capacity to detect the effects of non-native species on native biodiversity with potentially devastating consequences. Compelling and abundant evidence demonstrates that some non-native species can become invasive and produce major ecosystem disruptions and even native species extinction. Unfortunately, we still cannot be certain which non-native species will be the most detrimental (e.g., [2]). Combining native and non-native species together into a single biodiversity index would not only inflate biodiversity estimates and risk promoting the spread of invasive non-native species but would also ignore the fundamental ecological differences between the two groups.
- ItemBiological invasions and natural colonisations are different – the need for invasion science(Pensoft, 2016) Wilson, John R. U.; Garcia-Diaz, Pablo; Cassey, Phillip; Richardson, David M.; Pysek, Petr; Blackburn, Tim M.In a recent Discussion Paper, Hoffmann and Courchamp (2016) posed the question: are biological invasions and natural colonisations that different? This apparently simple question resonates at the core of the biological study of human-induced global change, and we strongly believe that the answer is yes: biological invasions and natural colonisations differ in processes and mechanisms in ways that are crucial for science, management, and policy. Invasion biology has, over time, developed into the broader transdisciplinary field of invasion science. At the heart of invasion science is the realisation that biological invasions are not just a biological phenomenon: the human dimension of invasions is a fundamental component in the social-ecological systems in which invasions need to be understood and managed.
- ItemA conceptual map of invasion biology : integrating hypotheses into a consensus network(Wiley, 2020-03-25) Enders, Martin; Havemann, Frank; Ruland, Florian; Bernard-Verdier, Maud; Catford, Jane A.; Gomez-Aparicio, Lorena; Haider, Sylvia; Heger, Tina; Kueffer, Christoph; Kuh, Ingolf; Meyerson, Laura A.; Musseau, Camille; Novoa, Ana; Ricciardi, Anthony; Sagouis, Alban; Schittko, Conrad; Strayer, David L.; Vilà, Montserrat; Essl, Franz; Hulme, Philip E.; Van Kleunen, Mark; Kumschick, Sabrina; Lockwood, Julie L.; Mabey, Abigail L.; McGeoch, Melodie A.; Estibaliz, Palma; Pysek, Petr; Saul, Wolf-Christian; Yannelli, Florencia A.; Jeschke, Jonathan M.Background and aims: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. Results: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). Significance: The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.
- ItemData descriptor : Pacific introduced flora (PaciFLora)(Pensoft, 2021) Wohlwend, Michael Rudolf; Craven, Dylan; Weigelt, Patrick; Seebens, Hanno; Winter, Marten; Kreft, Holger; Dawson, Wayne; Essl, Franz; Van Kleunen, Marl; Pergl, Jan; Pysek, Petr; Space, James; Thomas, Philip; Knight, TiffanyThe Pacific region has the highest density of naturalized plant species worldwide, which makes it an important area for research on the ecology, evolution and biogeography of biological invasions. While different data sources on naturalized plant species exist for the Pacific, there is no taxonomically and spatially harmonized database available for different subsets of species and islands. A comprehensive, accessible database containing the distribution of naturalized vascular plant species in the Pacific will enable new basic and applied research for researchers and will be an important information source for practitioners working in the region.Here, we present PacIFlora, an updated and taxonomically standardized list of naturalized species, their unified nativeness, cultivation and invasiveness status, and their distribution across the Pacific Ocean, including harmonized location denommination. This list is based on the two largest databases on naturalized plants for the region, specifically the Pacific Island Ecosystems at Risk (PIER) and the Global Naturalized Alien Flora (GloNAF) databases. We provide an outlook for how this database can contribute to numerous research questions and conservation efforts.
- ItemDefining the impact of non-native species(Wiley, 2014) Jeschke, Jonathan M.; Bacher, Sven; Blackburn, Tim M.; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugala, Agata; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Winter, Marten; Kumschick, SabrinaNon-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.
- ItemDrivers of future alien species impacts: an expert-based assessment(Wiley, 2020) Essl, Franz; Lenzner, Bernd; Bacher, Sven; Bailey, Sarah; Hui, Cang; Kuhn, Ingolf; Pysek, Petr; Richardson, David M.Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio-economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.
- ItemDrivers of species turnover vary with species commonness for native and alien plants with different residence times(Ecological Society of America, 2018) Latombe, Guillaume; Richardson, David M.; Pysek, Petr; Kucera, Tomas; Hui, CangCommunities comprising alien species with different residence times are natural experiments allowing the assessment of drivers of community assembly over time. Stochastic processes (such as dispersal and fluctuating environments) should be the dominant factors structuring communities of exotic species with short residence times. In contrast, communities should become more similar, or systematically diverge, if they contain exotics with increasing resident times, due to the increasing importance of deterministic processes (such as environmental filtering). We use zeta diversity (the number of species shared by multiple assemblages) to explore the relationship between the turnover of native species and two categories of alien species with different residence times (archaeophytes [introduced between 4000 BC and 1500 AD] and neophytes [introduced after 1500 AD]) in a network of nature reserves in central Europe. By considering multiple assemblages simultaneously, zeta diversity allows us to determine the contribution of rare and widespread species to turnover. Specifically, we explore the relative effects of assembly processes representing isolation by distance, environmental filtering, and environmental stochasticity (fluctuating environments) on zeta diversity using Multi‐Site Generalized Dissimilarity Modelling (MS‐GDM). Four clusters of results emerged. First, stochastic processes for structuring plant assemblages decreased in importance with increasing residence time. Environmental stochasticity only affected species composition for neophytes, offering possibilities to predict the spread debt of recent invasions. Second, native species turnover was well explained by environmental filtering and isolation by distance, although these factors did not explain the turnover of archaeophytes and neophytes. Third, native and alien species compositions were only correlated for rare species, whereas turnover in widespread alien species was surprisingly unrelated to the composition of widespread native species. Site‐specific approaches would therefore be more appropriate for the monitoring and management of rare alien species, whereas species‐specific approaches would suit widespread species. Finally, the size difference of nature reserves influences not only native species richness, but also their richness‐independent turnover. A network of reserves must therefore be designed and managed using a variety of approaches to enhance native diversity, while controlling alien species with different residence times and degrees of commonness.
- ItemEMAPi 2015 : highlighting links between science and management of alien plant invasions(Pensoft, 2016) Daehler, Curtis C.; Van Kleunen, Mark; Pysek, Petr; Richardson, David M.The 13th International Conference on Ecology and Management of Alien Plant Invasions (EMAPi) was held in Waikoloa Village, Hawaii, 20–24 September 2015. EMAPi is the only international conference that focuses exclusively on alien plants; its history and broad significance were outlined by Richardson et al. (2010). During EMAPi 2015, over 200 presentations were delivered by delegates hailing from 31 countries. The presentations covered a wide range of topics in invasion biology, addressing organizational levels ranging from the gene to global patterns. Connecting science with management emerged as a unifying theme across the conference program. Commonalities emerged through lively discussions, giving new insights into research needs, management strategies, and more effective implementation of biosecurity and control.
- ItemFramework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT)(Wiley, 2015) Hawkins, Charlotte L.; Bacher, Sven; Essl, Franz; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Richardson, David M.; Vila, Montserrat; Wilson, John R. U.; Genovesi, Piero; Blackburn, Tim M.Recently, Blackburn et al. (2014) developed a simple, objective and transparent method for classifying alien taxa in terms of the magnitude of their detrimental environmental impacts in recipient areas. Here, we present a comprehensive framework and guidelines for implementing this method, which we term the Environmental Impact Classification for Alien Taxa, or EICAT. We detail criteria for applying the EICAT scheme in a consistent and comparable fashion, prescribe the supporting information that should be supplied along with classifications, and describe the process for implementing the method. This comment aims to draw the attention of interested parties to the framework and guidelines, and to present them in their entirety in a location where they are freely accessible to any potential users.
- ItemGlobal actions for managing cactus invasions(MDPI, 2019-10-16) Novoa, Ana; Brundu, Giuseppe; Day, Michael D.; Deltoro, Vicente; Essl, Franz; Foxcroft, Llewellyn C.; Fried, Guillaume; Kaplan, Haylee; Kumschick, Sabrina; Lloyd, Sandy; Marchante, Elizabete; Marchante, Helia; Paterson, Iain D.; Pysek, Petr; Richardson, David M.; Witt, Arne; Zimmermann, Helmuth G.; Wilson, John R. U.The family Cactaceae Juss. contains some of the most widespread and damaging invasive alien plant species in the world, with Australia (39 species), South Africa (35) and Spain (24) being the main hotspots of invasion. The Global Cactus Working Group (IOBC GCWG) was launched in 2015 to improve international collaboration and identify key actions that can be taken to limit the impacts caused by cactus invasions worldwide. Based on the results of an on-line survey, information collated from a review of the scientific and grey literature, expertise of the authors, and because invasiveness appears to vary predictably across the family, we (the IOBC GCWG): (1) recommend that invasive and potentially invasive cacti are regulated, and to assist with this, propose five risk categories; (2) recommend that cactus invasions are treated physically or chemically before they become widespread; (3) advocate the use of biological control to manage widespread invasive species; and (4) encourage the development of public awareness and engagement initiatives to integrate all available knowledge and perspectives in the development and implementation of management actions, and address conflicts of interest, especially with the agricultural and ornamental sectors. Implementing these recommendations will require global co-operation. The IOBC GCWG aims to assist with this process through the dissemination of information and experience.
- ItemGlobal guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts(Pensoft, 2020) Brundu, Giuseppe; Pauchard, Anibal; Pysek, Petr; Pergl, Jan; Essl, Franz; Wilson, John R. U.; Richardson, David M.Sustainably managed non-native trees deliver economic and societal benefits with limited risk of spread to adjoining areas. However, some plantations have launched invasions that cause substantial damage to biodiversity and ecosystem services, while others pose substantial threats of causing such impacts. The challenge is to maximise the benefits of non-native trees, while minimising negative impacts and preserving future benefits and options. A workshop was held in 2019 to develop global guidelines for the sustainable use of non-native trees, using the Council of Europe – Bern Convention Code of Conduct on Invasive Alien Trees as a starting point. The global guidelines consist of eight recommendations: 1) Use native trees, or non-invasive non-native trees, in preference to invasive non-native trees; 2) Be aware of and comply with international, national, and regional regulations concerning non-native trees; 3) Be aware of the risk of invasion and consider global change trends; 4) Design and adopt tailored practices for plantation site selection and silvicultural management; 5) Promote and implement early detection and rapid response programmes; 6) Design and adopt tailored practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems; 7) Engage with stakeholders on the risks posed by invasive non-native trees, the impacts caused, and the options for management; and 8) Develop and support global networks, collaborative research, and information sharing on native and non-native trees. The global guidelines are a first step towards building global consensus on the precautions that should be taken when introducing and planting non-native trees. They are voluntary and are intended to complement statutory requirements under international and national legislation. The application of the global guidelines and the achievement of their goals will help to conserve forest biodiversity, ensure sustainable forestry, and contribute to the achievement of several Sustainable Development Goals of the United Nations linked with forest biodiversity.
- ItemHitting the right target : taxonomic challenges for, and of, plant invasions(Oxford University Press, 2013) Pysek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarosik, Vojtech; Richardson, David M.; Suda, Jan; Wilson, John R. U.This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.
- ItemHow the Yellowhammer became a Kiwi : the history of an alien bird invasion revealed(Pensoft, 2015-01-15) Pipek, Pavel; Pysek, Petr; Blackburn, Tim M.New Zealand harbours a considerable number of alien plants and animals, and is often used as a model region for studies on factors determining the outcome of introductions. Alien birds have been a particular focus of research attention, especially to understand the effect of propagule pressure, as records exist for the numbers of birds introduced to New Zealand. However, studies have relied on compilations of bird numbers, rather than on primary data. Here, we present a case study of the alien yellowhammer (Emberiza citrinella) introduced from the UK to New Zealand, to demonstrate how recourse to the primary literature highlights significant data gaps and misinterpretations in these compilations. We show that the history of the introduction, establishment and spread of the yellowhammer in New Zealand can be reconstructed with surprising precision, including details of the ships importing yellowhammers, their survival rates on board, the numbers and locations of release, and the development of public perception of the species. We demonstrate that not all birds imported were released, as some died or were re-transported to Australia, and that some birds thought to be introductions were in fact translocations of individuals captured in one region of New Zealand for liberation in another. Our study confirms the potential of precise historical reconstructions that, if done for all species, would address criticisms of historical data in the evidence base for the effect of propagule pressure on establishment success for alien populations.
- ItemIncreasing functional modularity with residence time in the co-distribution of native and introduced vascular plants(Nature Publishing Group, 2013-09) Hui, Cang; Richardson, David M.; Pysek, Petr; Le Roux, Johannes J.; Kucera, Tomas; Jarosik, VojtechSpecies gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities.
- ItemIntegrative invasion science : model systems, multi-site studies, focused meta-analysis and invasion syndromes(Wiley Online Library, 2013) Kueffer, Christoph; Pysek, Petr; Richardson, David M.Invasion science is a very active subdiscipline of ecology. However, some scientists contend that theoretical integration has been limited and that predictive power remains weak. This paper, focusing on plants, proposes a new multi-pronged research strategy that builds on recent advances in invasion science. More intensive studies on particular model organisms and ecosystems are needed to improve our understanding of the full suite of interacting factors that influence invasions (‘model system research’). At the same time, comparative studies across many study systems are essential for unravelling the context-dependencies of insights that emerge from particular studies (‘multi-site studies’); and quantitative synthesis based on large datasets should be constrained to well-defined theoretical domains (‘focused meta-analysis’). We also suggest ways for better integration of information about species biology and ecosystem characteristics (‘invasion syndromes’).We expect that a resulting theory of invasions will need to be conceived as a somewhat heterogeneous conglomerate of elements of varying generality and predictive power: laws that apply to well-specified domains, general concepts and theoretical frameworks that can guide thinking in research and management, and in-depth knowledge about the drivers of particular invasions.
- ItemInto the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park?(2020) Pysek, Petr; Hejda, Martin; Cuda, Jan; Zambatis, Guin; Pyskova, Klara; MacFadyen, Sandra; Storch, David; Tropek, Robert; Foxcroft, Llewellyn C.Protected areas play an important role as refuges from invasive species impacts on biodiversity. Within the MOSAIK (Monitoring Savanna Biodiversity in the Kruger National Park) project, plant species were recorded in a representative set of 60 plots, 50 × 50 m in size, across the entire KNP, distributed so as to cover a range of savanna habitats, i.e. perennial rivers, seasonal rivers and dry crests, and two main bedrock types (granite and basalt). The data were used to assess the role of rivers in the dispersal of alien plants and study whether the alien plant species spread from rivers to open dry savanna. The resulting dataset provided the first thorough information on the spatial distribution of naturalised alien plants in KNP. In total, we recorded 20 plant species that are alien to the park, four of them considered invasive: Parthenium hysterophorus, Opuntia stricta, Xanthium strumarium and Zinnia peruviana. The most widespread species in KNP was Tridax procumbens, recorded in 11 plots (i.e. 18% of all sampled), four other species were found in > 10% of the plots. One species, Bidens bipinnata, was not previously reported from the park and represents a new record. The majority of aliens were concentrated along perennial rivers (60% of all occurrences), but some were repeatedly recorded at seasonal rivers as well and two of the most invasive species in KNP, Opuntia stricta and Parthenium hysterophorus, occurred also on dry crests away from water. The average number of alien species per plot was low (1.6), as was their mean percentage contribution to all species in a plot (2.2%), but some plots harboured as many as seven species and contributed up to 11.9%. Moreover, only 21 plots (35%) were alien-species free. In terms of the total species number per habitat, perennial rivers had significantly more aliens than crests and were marginally significantly richer than seasonal rivers. By recording all naturalised alien species occurring in the plots – many of them are not invasive but may become so in the future – and by using the GloNAF database of global distribution of naturalised species, we assessed the invasion potential of the recorded species.
- ItemInvasion costs, impacts, and human agency : response to Sagoff 2020(Wiley, 2020) Cuthbert, Ross N.; Bacher, Sven; Blackburn, Tim M.; Briski, Elizabeta; Diagne, Christophe; Dick, Jaimie T. A.; Essl, Franz; Genovesi, Piero; Haubrock, Phillip J.; Latombe, Guillaume; Lenzner, Bernd; Meinard, Yves; Pauchard, Anibal; Pysek, Petr; Ricciardi, Anthony; Richardson, David M.; Russell, James C.; Simberloff, Daniel; Courchamp, FranckArticle impact statement: In an era of profound biodiversity crisis, invasion costs, invader impacts, and human agency should not be dismissed.
- ItemInvasive alien species add to the uncertain future of protected areas(Pensoft, 2020) Moodley, Desika; Foxcroft, Llewellyn C.; Novoa, Ana; Pyskova, Klara; Pergl, Jan; Pysek, Petr
- ItemThe invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees(2021-10-21) Novoa, Ana; Foxcroft, Llewellyn C.; Keet, Jan‑Hendrik; Pysek, Petr; Le Roux, Johannes J.The patchy distribution of trees typical of savannas often results in a discontinuous distribution of water, nutrient resources, and microbial communities in soil, commonly referred to as “islands of fertility”. We assessed how this phenomenon may affect the establishment and impact of invasive plants, using the invasion of Opuntia stricta in South Africa’s Kruger National Park as case study. We established uninvaded and O. stricta-invaded plots under the most common woody tree species in the study area (Vachellia nilotica subsp. kraussiana and Spirostachys africana) and in open patches with no tree cover. We then compared soil characteristics, diversity and composition of the soil bacterial communities, and germination performance of O. stricta and native trees between soils collected in each of the established plots. We found that the presence of native trees and invasive O. stricta increases soil water content and nutrients, and the abundance and diversity of bacterial communities, and alters soil bacterial composition. Moreover, the percentage and speed of germination of O. stricta were higher in soils conditioned by native trees compared to soils collected from open patches. Finally, while S. africana and V. nilotica trees appear to germinate equally well in invaded and uninvaded soils, O. stricta had lower and slower germination in invaded soils, suggesting the potential release of phytochemicals by O. stricta to avoid intraspecific competition. These results suggest that the presence of any tree or shrub in savanna ecosystems, regardless of origin (i.e. native or alien), can create favourable conditions for the establishment and growth of other plants.