Browsing by Author "Peterson, Garry D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemKey features for more successful place-based sustainability research on social-ecological systems : a Programme on Ecosystem Change and Society (PECS) perspective(Resilience Alliance, 2017) Balvanera, Patricia; Daw, Tim M.; Gardner, Toby A.; Martin-Lopez, Berta; Norstrom, Albert V.; Speranza, Chinwe Ifejika; Spierenburg, Marja; Bennett, Elena M.; Farfan, Michelle; Hamann, Maike; Kittinger, John N.; Luthe, Tobias; Maass, Manuel; Peterson, Garry D.; Perez-Verdin, GustavoThe emerging discipline of sustainability science is focused explicitly on the dynamic interactions between nature and society and is committed to research that spans multiple scales and can support transitions toward greater sustainability. Because a growing body of place-based social-ecological sustainability research (PBSESR) has emerged in recent decades, there is a growing need to understand better how to maximize the effectiveness of this work. The Programme on Ecosystem Change and Society (PECS) provides a unique opportunity for synthesizing insights gained from this research community on key features that may contribute to the relative success of PBSESR. We surveyed the leaders of PECS-affiliated projects using a combination of open, closed, and semistructured questions to identify which features of a research project are perceived to contribute to successful research design and implementation. We assessed six types of research features: problem orientation, research team, and contextual, conceptual, methodological, and evaluative features. We examined the desirable and undesirable aspects of each feature, the enabling factors and obstacles associated with project implementation, and asked respondents to assess the performance of their own projects in relation to these features. Responses were obtained from 25 projects working in 42 social-ecological study cases within 25 countries. Factors that contribute to the overall success of PBSESR included: explicitly addressing integrated social-ecological systems; a focus on solution- and transformation-oriented research; adaptation of studies to their local context; trusted, long-term, and frequent engagement with stakeholders and partners; and an early definition of the purpose and scope of research. Factors that hindered the success of PBSESR included: the complexities inherent to social-ecological systems, the imposition of particular epistemologies and methods on the wider research group, the need for long periods of time to initiate and conduct this kind of research, and power asymmetries both within the research team and among stakeholders. In the self-assessment exercise, performance relating to team and context-related features was ranked higher than performance relating to methodological, evaluation, and problem orientation features. We discuss how these insights are relevant for balancing place-based and global perspectives in sustainability science, fostering more rapid progress toward inter- and transdisciplinary integration, redefining and measuring the success of PBSESR, and facing the challenges of academic and research funding institutions. These results highlight the valuable opportunity that the PECS community provides in helping build a community of practice for PBSESR.
- ItemThe Regime Shifts Database : a framework for analyzing regime shifts in social-ecological systems(Resilience Alliance, 2018) Biggs, Reinette, 1979-; Peterson, Garry D.; Rocha, Juan C.Regime shifts, i.e., large, persistent, and usually unexpected changes in ecosystems and social-ecological systems, can have major impacts on ecosystem services, and consequently, on human well-being. However, the vulnerability of different regions to various regime shifts is largely unknown because evidence for the existence of regime shifts in different ecosystems and parts of the world is scattered and highly uneven. Furthermore, research tends to focus on individual regime shifts rather than comparisons across regime shifts, limiting the potential for identifying common drivers that could reduce the risk of multiple regime shifts simultaneously. Here, we introduce the Regime Shifts Database, an open-access database that systematically synthesizes information on social-ecological regime shifts across a wide range of systems using a consistent, comparative framework, providing a wide-ranging information resource for environmental planning, assessment, research, and teaching initiatives. The database currently contains 28 generic types of regime shifts and > 300 specific case studies. Each entry provides a literature-based synthesis of the key drivers and feedbacks underlying the regime shift, as well as impacts on ecosystem services and human well-being, and possible management options. Across the 28 regime shifts, climate change and agriculture-related activities are the most prominent among a wide range of drivers. Biodiversity, fisheries, and aquatic ecosystems are particularly widely affected, as are key aspects of human well-being, including livelihoods, food and nutrition, and an array of cultural ecosystem services. We hope that the database will stimulate further research and teaching on regime shifts that can inform policy and practice and ultimately enhance our collective ability to manage and govern large, abrupt, systemic changes in the Anthropocene.
- ItemRegime shifts in the anthropocene : drivers, risks, and resilience(Public Library of Science, 2015) Rocha, Juan Carlos; Peterson, Garry D.; Biggs, Reinette, 1979-Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers.