Browsing by Author "Payne, Megan Wendy"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemBayesian machine learning : theory and applications(Stellenbosch : Stellenbosch University, 2020-12) Payne, Megan Wendy; Harvey, Justin; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH SUMMARY : Machine learning problems in general are concerned with the ability of different methods and algorithms to extract useful and interpretable information from large datasets, possibly ones which are corrupt due to noisy measurements or errors in data capturing. As the size and complexity of data increases, the demand for efficient and robust machine learning techniques is greater than ever. All statistical techniques can be divided into either a frequentist approach or a Bayesian approach depending on how probability is interpreted and how the unknown parameter set is treated. Bayesian methods have been present for several centuries; however, it was the advent of improved computational power and memory storage that catalysed the use of Bayesian modelling approaches in a wider range of scientific fields. This is largely due to many Bayesian methods requiring the computation of complex integrals, sometimes ones that are analytically intractable to compute in closed form, now being more accessible for use since approximation methods are less time-consuming to execute. This thesis will consider a Bayesian approach to statistical modelling and takes the form of a postgraduate course in Bayesian machine learning. A comprehensive overview of several machine learning topics are covered from a Bayesian perspective and, in many cases, compared with their frequentist counterparts as a means of illustrating some of the benefits that arise when making use of Bayesian modelling. The topics covered are focused on the more popular methods in the machine learning literature. Firstly, Bayesian approaches to classification techniques as well as a fully Bayesian approach to linear regression are discussed. Further, no discussion on machine learning methods would be complete without consideration of variable selection techniques, thus, a range of Bayesian variable selection and sparse Bayesian learning methods are considered and compared. Finally, probabilistic graphical models are presented since these methods form an integral part of Bayesian artificial intelligence. Included with the discussion of each technique is a practical implementation. These examples are all easily reproducible and demonstrate the performance of each method. Where applicable, a comparison of the Bayesian and frequentist methods are provided. The topics covered are by no means exhaustive of the Bayesian machine learning literature but rather provide a comprehensive overview of the most commonly encountered methods.