Browsing by Author "Maartens, Michelle"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAntioxidant supplementation as protective strategy against stem cell impairment in Type 2 Diabetes(Stellenbosch : Stellenbosch University, 2021-03) Maartens, Michelle; Van de Vyver, Mari; Marais, Erna; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Biomedical Sciences.ENGLISH ABSTRACT: Type 2 Diabetes Mellitus (T2DM) is a global epidemic. It is a complex disorder that leads to cellular dysfunction and the development of co-morbidities. The underlying pathologic microenvironment in T2DM, associated with hyperglycaemia, include the accumulation of advanced glycation end products, excessive oxidative stress, and chronic inflammation. Bone marrow mesenchymal stem cells (MSC) are especially susceptible to this damaging microenvironment and as consequence the endogenous repair mechanisms within the body fail giving rise to secondary complications such as non-healing wounds, retinopathy, and neuropathy. There is thus a need for a holistic approach when it comes to disease management in which anti-diabetic drugs focussed on glucose control is complemented by supplementary treatment aimed at restoring homeostasis. Natural and synthetic antioxidants such as Ascorbic acid-2-phosphate (AAP) and N-acetyl-l-cysteine (NAC) are known to protect cells against oxidative stress-induced damage in vitro and have been shown to reduce inflammation in various models. The efficacy of these antioxidants to restore homeostasis and prevent cellular dysfunction in T2DM is however still unknown. The aim of this study was to investigate the protective effects of combined NAC and AAP supplementation against MSCs impairment using an animal model of obese diabetic (B6.C-Lepob/J) (ob/ob) (n=14) and wild type control (C57BL6/J) (n=20) mice. All mice received jelly cubes containing either antioxidants (NAC7.5mM+AAP0.6mM) or placebo (vehicle control) for a period of 6-weeks. Metabolic parameters (weight and blood glucose) were assessed on a weekly basis and the overall antioxidant status of animals assessed at the end of the 6-week period by analysing the total antioxidant capacity (TAC) and Malondialdehyde (MDA) levels in serum. Bone marrow MSCs were isolated from mice in each of the respective treatment groups and their ex vivo growth rate, viability, multi-lineage differentiation capacity and paracrine responsiveness upon stimulation with wound fluid assessed. Compared to the wild type (C) mice, excessive weight gain (weight: C 28.7±1.6 g; DM 44.3±3.5 g) (p<0.05) and hyperglycaemia (blood glucose: C 10.1±1.3 mmol/L; DM 23.6±5.7 mmol/L) (p<0.05) was evident in the DM animals validating the animal model as representative of T2DM. The antioxidant supplementation did not affect metabolic parameters indicating that differences observed between supplement and placebo treated mice were not due to weight loss or changes in glucose metabolism. NAC/AAP significantly (p<0.05) reduced lipid peroxidation in DM animals (DM:P 39.0±14.7 nmol/L; DM:S 21.5±11.6 nmol/L) to a level comparable to that of controls (C:P 22.9±11.4 nmol/L; C:S 30.5±3.3 nmol/L) and increased the overall TAC (C:P 3.7±1.3 U/mL; C:S 4.0±0.7 U/mL; DM:P 5.2±0.9 U/mL; DM:S 5.8±1.5 U/mL). The ex vivo growth rate of cells derived from DM animals were impaired (Time to confluence: C 8 days; DM 12 days). NAC/AAP supplementation did however improve the growth rate and viability of MSCs derived from both animal models. NAC/AAP furthermore reduced the adipogenic differentiation capacity of MSCs but could not restore osteogenesis in DM MSCs. Upon stimulation with wound fluid, slightly increased IL6 (DM:S+WF 1583.3±481.9 pg/mL) and IL10 (DM:S+WF 27.1±9.8 pg/mL) release was evident in MSCs derived from NAC/AAP supplemented animals. In conclusion, NAC/AAP supplementation was able to reduce oxidative stress in animals and improved MSCs viability.