Browsing by Author "Louwa, Johan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAdipose tissue as a possible therapeutic target for polyphenols : a case for Cyclopia extracts as anti-obesity nutraceuticals(Elsevier, 2019) Jack, Babalwa U.; Malherbe, Christiaan J.; Mamushi, Mokadi Peggy; Muller, Christo J. F.; Joubert, Elizabeth; Louwa, Johan; Pheiffer, CarmenENGLISH ABSTRACT: Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
- ItemN-Acetyl cysteine ameliorates hyperglycemia-induced cardiomyocyte toxicity by improving mitochondrial energetics and enhancing endogenous Coenzyme Q9/10 levels(Elsevier, 2019) Dludla, Phiwayinkosi V.; Orlando, Patrick; Silvestri, Sonia; Mazibuko-Mbeje, Sithandiwe E.; Johnson, Rabia; Marcheggiani, Fabio; Cirilli, Ilenia; Muller, Christo J. F.; Louwa, Johan; Obonye, Nnini; Nyawo, Thembeka; Nkambule, Bongani B.; Tiano, LucaENGLISH ABSTRACT: The diabetic heart has been linked with reduced endogenous levels of coenzyme Q9/10 (CoQ), an important antioxidant and component of the electron transport chain. Although CoQ has displayed cardioprotective potential in experimental models of diabetes, the impact of N-acetyl cysteine (NAC) on mitochondrial energetics and endogenous levels of CoQ remains to be clarified. To explore these effects, high glucose-exposed H9c2 cardiomyocytes were used as an experimental model of hyperglycemia-induced cardiac injury. The results showed that high glucose exposure caused an increased production of reactive oxygen species (ROS), which was associated with impaired mitochondrial energetics as confirmed by a reduction of maximal respiration rate and depleted ATP levels. These detrimental effects were consistent with significantly reduced endogenous CoQ levels and accelerated cell toxicity. Although metformin demonstrated similar effects on mitochondrial energetics and cell viability, NAC demonstrated a more pronounced effect in ameliorating cytosolic and mitochondrial ROS production. Interestingly, the ameliorative effects of NAC against hyperglycemia-induced injury were linked with its capability to enhance endogenous CoQ levels. Although such data are to be confirmed in other models, especially in vivo studies, the overall findings provide additional evidence on the therapeutic mechanisms by which NAC protects against diabetes-induced cardiac injury.