Browsing by Author "Jacobson, Daniel A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Item3-way networks : application of hypergraphs for modelling increased complexity in comparative genomics(PLoS, 2015-03) Weighill, Deborah A.; Jacobson, Daniel A.We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes.
- ItemNetworks and multivariate statistics as applied to biological datasets and wine-related omics(Stellenbosch : Stellenbosch University, 2013-12) Jacobson, Daniel A.; Vivier, Melane A.; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Introduction: Wine production is a complex biotechnological process aiming at productively coordinating the interactions and outputs of several biological systems, including grapevine and many microorganisms such as wine yeast and wine bacteria. High-throughput data generating tools in the elds of genomics, transcriptomics, proteomics, metabolomics and microbiomics are being applied both locally and globally in order to better understand complex biological systems. As such, the datasets available for analysis and mining include de novo datasets created by collaborators as well as publicly available datasets which one can use to get further insight into the systems under study. In order to model the complexity inherent in and across these datasets it is necessary to develop methods and approaches based on network theory and multivariate data analysis as well as to explore the intersections between these two approaches to data modelling, mining and interpretation. Networks: The traditional reductionist paradigm of analysing single components of a biological system has not provided tools with which to adequately analyse data sets that are attempting to capture systems-level information. Network theory has recently emerged as a new discipline with which to model and analyse complex systems and has arisen from the study of real and often quite large networks derived empirically from the large volumes of data that have collected from communications, internet, nancial and biological systems. This is in stark contrast to previous theoretical approaches to understanding complex systems such as complexity theory, synergetics, chaos theory, self-organised criticality, and fractals which were all sweeping theoretical constructs based on small toy models which proved unable to address the complexity of real world systems. Multivariate Data Analysis: Principle components analysis (PCA) and Partial Least Squares (PLS) regression are commonly used to reduce the dimensionality of a matrix (and amongst matrices in the case of PLS) in which there are a considerable number of potentially related variables. PCA and PLS are variance focused approaches where components are ranked by the amount of variance they each explain. Components are, by de nition, orthogonal to one another and as such, uncorrelated. Aims: This thesis explores the development of Computational Biology tools that are essential to fully exploit the large data sets that are being generated by systems-based approaches in order to gain a better understanding of winerelated organisms such as grapevine (and tobacco as a laboratory-based plant model), plant pathogens, microbes and their interactions. The broad aim of this thesis is therefore to develop computational methods that can be used in an integrated systems-based approach to model and describe di erent aspects of the wine making process from a biological perspective. To achieve this aim, computational methods have been developed and applied in the areas of transcriptomics, phylogenomics, chemiomics and microbiomics. Summary: The primary approaches taken in this thesis have been the use of networks and multivariate data analysis methods to analyse highly dimensional data sets. Furthermore, several of the approaches have started to explore the intersection between networks and multivariate data analysis. This would seem to be a logical progression as both networks and multivariate data analysis are focused on matrix-based data modelling and therefore have many of their roots in linear algebra.