Browsing by Author "Hulme, Philip E."
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- ItemAround the world in 500 years: Inter-regional spread of alien species over recent centuries(John Wiley & Sons Ltd., 2021) Seebens, Hanno; Blackburn, Tim M.; Hulme, Philip E.; Van Kleunen, Mark; Liebhold, Andrew M.; Orlova-Bienkowskaja, Marina; Pyšek, Petr; Schindler, Stefan; Essl, FranzAim: The number of alien species has been increasing for centuries world-wide, but temporal changes in the dynamics of their inter-regional spread remain unclear. Here, we analyse changes in the rate and extent of inter-regional spread of alien species over time and how these dynamics vary among major taxonomic groups. Location: Global. Time period: 1500–2010. Major taxa studied: Vascular plants, mammals, birds, fishes, arthropods and other invertebrates. Methods: Our analysis is based on the Alien Species First Record Database, which comprises >60,000 entries describing the year when an alien species was first recorded in a region (mostly countries and large islands) where it later established as an alien species. Based on the number and distribution of first records, we calculated metrics of spread between regions, which we termed “inter-regional spread”, and conducted statistical analyses to assess variations over time and across taxonomic groups. Results: Almost all (>90%) species introduced before 1700 are found in more than one region today. Inter-regional spread often took centuries and is ongoing for many species. The intensity of inter-regional spread increased over time, with particularly steep increases after 1800. Rates of spread peaked for plants in the late 19th century, for birds and invertebrates in the late 20th century, and remained largely constant for mammals and fishes. Inter-regional spread for individual species showed hump-shaped temporal patterns, with the highest rates of spread at intermediate alien range sizes. Approximately 50% of widespread species showed signs of declines in spread rates. Main conclusions: Our results show that, although rates of spread have declined for many widespread species, for entire taxonomic groups they have tended to increase continuously over time. The large numbers of alien species that are currently observed in only a single region are anticipated to be found in many other regions in the future.
- ItemBiodiversity assessments : origin matters(Public Library of Science, 2018-11-13) Pauchard, Anibal; Meyerson, Laura A.; Bacher, Sven; Blackburn, Tim M.; Brundu, Giuseppe; Cadotte, Marc W.; Courchamp, Franck; Essl, Franz; Genovesi, Piero; Haider, Sylvia; Holmes, Nick D.; Hulme, Philip E.; Jeschke, Jonathan M.; Lockwood, Julie L.; Novoa, Ana; Nunez, Martin A.; Peltzer, Duane A.; Pysek, Petr; Richardson, David M.; Simberloff, Daniel; Smith, Kevin; Van Wilgen, Brian W.; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Zenni, Rafael D.Recent global efforts in biodiversity accounting, such as those undertaken through the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), are vital if we are to track conservation progress, ensure that we can address the challenges of global change, and develop powerful and scientifically sound indicators. Schlaepfer [1] proposes that we should work toward inventories of biodiversity that account for native and non-native species regardless of species origin and ecological context. We strongly disagree with the approach of combining counts of native and non-native species because this will reduce our capacity to detect the effects of non-native species on native biodiversity with potentially devastating consequences. Compelling and abundant evidence demonstrates that some non-native species can become invasive and produce major ecosystem disruptions and even native species extinction. Unfortunately, we still cannot be certain which non-native species will be the most detrimental (e.g., [2]). Combining native and non-native species together into a single biodiversity index would not only inflate biodiversity estimates and risk promoting the spread of invasive non-native species but would also ignore the fundamental ecological differences between the two groups.
- ItemClassifying the introduction pathways of alien species: are we moving in the right direction?(2020) Faulkner, Katelyn T.; Hulme, Philip E.; Pagad,Shyama; Wilson, John R. U.; Robertson, Mark P.Alien species are introduced to new regions in many different ways and for different purposes. A number of frameworks have been developed to group such pathways of introduction into discrete categories in order to improve our understanding of biological invasions, provide information for interventions that aim to prevent introductions, enable reporting to national and international organisations and facilitate the prediction of threats. The introduction pathway classification framework proposed by the Convention on Biological Diversity (CBD) as a global standard is comprised of six main categories and 44 sub-categories. However, issues have arisen with its implementation. In this position paper, we outline five desirable properties of an introduction pathway classification framework – it should be compatible (i.e. the level of detail of the categories is similar to that of the available data), actionable (i.e. categories link to specific interventions), general (i.e. categories are applicable across the contexts that are of interest (e.g. taxa, habitats and regions)), equivalent (i.e. categories are equivalent in their level of detail) and distinct (i.e. categories are discrete and easily distinguished) – termed the CAGED properties. The six main categories of the CBD framework have all of the CAGED properties, but the detailed sub-categories have few. Therefore, while the framework has been proposed by the CBD as a global standard and efforts have been made to put it into practice, we argue that there is room for improvement. We conclude by presenting scenarios for how the issues identified could be addressed, noting that a hybrid model might be most appropriate.
- ItemA conceptual map of invasion biology : integrating hypotheses into a consensus network(Wiley, 2020-03-25) Enders, Martin; Havemann, Frank; Ruland, Florian; Bernard-Verdier, Maud; Catford, Jane A.; Gomez-Aparicio, Lorena; Haider, Sylvia; Heger, Tina; Kueffer, Christoph; Kuh, Ingolf; Meyerson, Laura A.; Musseau, Camille; Novoa, Ana; Ricciardi, Anthony; Sagouis, Alban; Schittko, Conrad; Strayer, David L.; Vilà, Montserrat; Essl, Franz; Hulme, Philip E.; Van Kleunen, Mark; Kumschick, Sabrina; Lockwood, Julie L.; Mabey, Abigail L.; McGeoch, Melodie A.; Estibaliz, Palma; Pysek, Petr; Saul, Wolf-Christian; Yannelli, Florencia A.; Jeschke, Jonathan M.Background and aims: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. Results: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). Significance: The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.
- ItemDefining the impact of non-native species(Wiley, 2014) Jeschke, Jonathan M.; Bacher, Sven; Blackburn, Tim M.; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugala, Agata; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Winter, Marten; Kumschick, SabrinaNon-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.
- ItemFramework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT)(Wiley, 2015) Hawkins, Charlotte L.; Bacher, Sven; Essl, Franz; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Richardson, David M.; Vila, Montserrat; Wilson, John R. U.; Genovesi, Piero; Blackburn, Tim M.Recently, Blackburn et al. (2014) developed a simple, objective and transparent method for classifying alien taxa in terms of the magnitude of their detrimental environmental impacts in recipient areas. Here, we present a comprehensive framework and guidelines for implementing this method, which we term the Environmental Impact Classification for Alien Taxa, or EICAT. We detail criteria for applying the EICAT scheme in a consistent and comparable fashion, prescribe the supporting information that should be supplied along with classifications, and describe the process for implementing the method. This comment aims to draw the attention of interested parties to the framework and guidelines, and to present them in their entirety in a location where they are freely accessible to any potential users.
- ItemHitting the right target : taxonomic challenges for, and of, plant invasions(Oxford University Press, 2013) Pysek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarosik, Vojtech; Richardson, David M.; Suda, Jan; Wilson, John R. U.This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.
- ItemMAcroecological Framework for Invasive Aliens (MAFIA) : disentangling large-scale context dependence in biological invasions(2020) Pysek, Petr; Bacher, Sven; Kuhn, Ingolf; Novoa, Ana; Catford, Jane A.; Hulme, Philip E.; Pergl, Jan; Richardson, David M.; Wilson, John R. U.; Blackburn, Tim M.Macroecology is the study of patterns, and the processes that determine those patterns, in the distribution and abundance of organisms at large scales, whether they be spatial (from hundreds of kilometres to global), temporal (from decades to centuries), and organismal (numbers of species or higher taxa). In the context of invasion ecology, macroecological studies include, for example, analyses of the richness, diversity, distribution, and abundance of alien species in regional floras and faunas, spatio-temporal dynamics of alien species across regions, and cross-taxonomic analyses of species traits among comparable native and alien species pools. However, macroecological studies aiming to explain and predict plant and animal naturalisations and invasions, and the resulting impacts, have, to date, rarely considered the joint effects of species traits, environment, and socioeconomic characteristics. To address this, we present the MAcroecological Framework for Invasive Aliens (MAFIA). The MAFIA explains the invasion phenomenon using three interacting classes of factors – alien species traits, location characteristics, and factors related to introduction events – and explicitly maps these interactions onto the invasion sequence from transport to naturalisation to invasion. The framework therefore helps both to identify how anthropogenic effects interact with species traits and environmental characteristics to determine observed patterns in alien distribution, abundance, and richness; and to clarify why neglecting anthropogenic effects can generate spurious conclusions. Event-related factors include propagule pressure, colonisation pressure, and residence time that are important for mediating the outcome of invasion processes. However, because of context dependence, they can bias analyses, for example those that seek to elucidate the role of alien species traits. In the same vein, failure to recognise and explicitly incorporate interactions among the main factors impedes our understanding of which macroecological invasion patterns are shaped by the environment, and of the importance of interactions between the species and their environment. The MAFIA is based largely on insights from studies of plants and birds, but we believe it can be applied to all taxa, and hope that it will stimulate comparative research on other groups and environments. By making the biases in macroecological analyses of biological invasions explicit, the MAFIA offers an opportunity to guide assessments of the context dependence of invasions at broad geographical scales.
- ItemOpen minded and open access : introducing NeoBiota, a new peer-reviewed journal of biological invasions(Pensoft, 2011) Kuhn, Ingolf; Kowarik, Ingo; Kollmann, Johannes; Starfinger, Uwe; Bacher, Sven; Blackburn, Tim M.; Bustamante, Ramiro O.; Celesti-Grapow, Laura; Chytry, Milan; Colautti, Robert I.; Essl, Franz; Foxcroft, Llewellyn C.; Garcia-Berthou, Emili; Gollasch, Stephan; Hierro, Jose; Hufbauer, Ruth A.; Hulme, Philip E.; Jarosik, Vojtech; Jeschke, Jonathan M.; Karrer, Gerhard; Mack, Richard N.; Molofsky, Jane; Murray, Brad R.; Nentwig, Wolfgang; Osborne, Bruce; Pysek, Petr; Rabitsch, Wolfgang; Rejmanek, Marcel; Roques, Alain; Shaw, Richard; Sol, Daniel; Van Kleunen, Mark; Vila, Montserrat; Von der Lippe, Moritz; Wolfe, Lorne M.; Penev, LyubomirThe Editorial presents the focus, scope, policies, and the inaugural issue of NeoBiota, a new open access peer-reviewed journal of biological invasions. The new journal NeoBiota is a continuation of the former NEOBIOTA publication series. The journal will deal with all aspects of invasion biology and impose no restrictions on manuscript size neither on use of color. NeoBiota implies an XML-based editorial workflow and several cutting-edge innovations in publishing and dissemination, such as semantic markup of and enhancements to published texts, data publication, and extensive cross-linking within the journal and to external sources.
- ItemProjecting the continental accumulation of alien species through to 2050(John Wiley & Sons, 2020) Seebens, Hanno; Bacher, Sven; Blackburn, Tim M.; Capinha, Cesar; Dawson, Wayne; Dullinger, Stefan; Genovesi, Piero; Hulme, Philip E.; Van Kleunen, Mark; Kuhn, Ingolf; Jeschke, Jonathan M.; Lenzner, Bernd; Liebhold, Andrew M.; Pattison, Zarah; Pergl, Jan; Pysek, Petr; Winter, Marten; Essl, FranzBiological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business‐as‐usual scenario). We first validated performance of different model versions by conducting a back‐casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon–continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.
- ItemScientists’ warning on invasive alien species(Wiley, 2019) Pysek, Petr; Hulme, Philip E.; Simberloff, Dan; Bacher, Sven; Blackburn, Tim M.; Carlton, James T.; Dawson, Wayne; Essl, Franz; Foxcroft, Llewellyn C.; Genovesi, Piero; Jeschke, Jonathan M.; Kühn, Ingolf; Liebhold, Andrew M.; Mandrak, Nicholas E.; Meyerson, Laura A.; Pauchard, Aníbal; Pergl, Jan; Roy, Helen E.; Seebens, Hanno; Van Kleunen, Mark; Vila, Montserrat; Wingfield, Michael J.; Richardson, David M.Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
- ItemTroubling travellers : are ecologically harmful alien species associated with particular introduction pathways?(Pensoft Publishers, 2017) Pergl, Jan; Pysek, Petr; Bacher, Sven; Essl, Franz; Genovesi, Piero; Harrower, Colin A.; Hulme, Philip E.; Jeschke, Jonathan M.; Kenis, Marc; Kuhn, Ingolf; Perglova, Irena; Rabitsch, Wolfgang; Roques, Alain; Roy, David B.; Roy, Helen E.; Vila, Montserrat; Winter, Marten; Nentwig, WolfgangPrioritization of introduction pathways is seen as an important component of the management of biological invasions. We address whether established alien plants, mammals, freshwater fish and terrestrial invertebrates with known ecological impacts are associated with particular introduction pathways (release, escape, contaminant, stowaway, corridor and unaided). We used the information from the European alien species database DAISIE (www.europe-aliens.org) supplemented by the EASIN catalogue (European Alien Species Information Network), and expert knowledge. Plants introduced by the pathways release, corridor and unaided were disproportionately more likely to have ecological impacts than those introduced as contaminants. In contrast, impacts were not associated with particular introduction pathways for invertebrates, mammals or fish. Thus, while for plants management strategies should be targeted towards the appropriate pathways, for animals, management should focus on reducing the total number of taxa introduced, targeting those pathways responsible for high numbers of introductions. However, regardless of taxonomic group, having multiple introduction pathways increases the likelihood of the species having an ecological impact. This may simply reflect that species introduced by multiple pathways have high propagule pressure and so have a high probability of establishment. Clearly, patterns of invasion are determined by many interacting factors and management strategies should reflect this complexity.
- ItemA unified classification of alien species based on the magnitude of their environmental impacts(PLoS, 2014) Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Markova, Zuzana; Mrugala, Agata; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, SvenSpecies moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact—ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.
- ItemA unified classification on alien species based on the magnitude of their environmental impacts(Public Library of Science, 2014-05-06) Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Markova, Zuzana; Mrugala, Agata; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, SvenSpecies moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to themagnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact— ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications.We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.