Browsing by Author "Hoal, Eileen G."
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- ItemAnalysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis : a case-control association study(BioMed Central, 2010-06) Moller, Marlo; Nebel, Almut; Van Helden, Paul D.; Schreiber, Stefan; Hoal, Eileen G.Background: Interferon gamma is a major macrophage-activating cytokine during infection with Mycobacterium tuberculosis, the causative pathogen of tuberculosis, and its role has been well established in animal models and in humans. This cytokine is produced by activated T helper 1 cells, which can best deal with intracellular pathogens such as M. tuberculosis. Based on the hypothesis that genes which regulate interferon gamma may influence tuberculosis susceptibility, we investigated polymorphisms in eight candidate genes. Methods: Fifty-four polymorphisms in eight candidate genes were genotyped in over 800 tuberculosis cases and healthy controls in a population-based case-control association study in a South African population. Genotyping methods used included the SNPlex Genotyping System™, capillary electrophoresis of fluorescently labelled PCR products, TaqMan® SNP genotyping assays or the amplification mutation refraction system. Single polymorphisms as well as haplotypes of the variants were tested for association with TB using statistical analyses. Results: A haplotype in interleukin 12B was nominally associated with tuberculosis (p = 0.02), but after permutation testing, done to assess the significance for the entire analysis, this was not globally significant. In addition a novel allele was found for the interleukin 12B D5S2941 microsatellite. Conclusions: This study highlights the importance of using larger sample sizes when attempting validation of previously reported genetic associations. Initial studies may be false positives or may propose a stronger genetic effect than subsequently found to be the case.
- ItemThe complete genome sequence of the African buffalo (Syncerus caffer)(BioMed Central, 2016-12-07) Glanzmann, Brigitte; Moller, Marlo; Le Roex, Nikki; Tromp, Gerard; Hoal, Eileen G.; Van Helden, Paul D.Background: The African buffalo (Syncerus caffer) is an important role player in the savannah ecosystem. It has become a species of relevance because of its role as a wildlife maintenance host for an array of infectious and zoonotic diseases some of which include corridor disease, foot-and-mouth disease and bovine tuberculosis. To date, no complete genome sequence for S. caffer had been available for study and the genomes of other species such as the domestic cow (Bos taurus) had been used as a proxy for any genetics analysis conducted on this species. Here, the high coverage genome sequence of the African buffalo (S. caffer) is presented. Results: A total of 19,765 genes were predicted and 19,296 genes could be successfully annotated to S. caffer while 469 genes remained unannotated. Moreover, in order to extend a detailed annotation of S. caffer, gene clusters were constructed using twelve additional mammalian genomes. The S. caffer genome contains 10,988 gene clusters, of which 62 are shared exclusively between B. taurus and S. caffer. Conclusions: This study provides a unique genomic perspective for the S. caffer, allowing for the identification of novel variants that may play a role in the natural history and physiological adaptations.
- ItemContext‐dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host(Wiley Open Access, 2018) Tavalire, Hannah F.; Beechler, Brianna R.; Buss, Peter E.; Gorsich, Erin E.; Hoal, Eileen G.; Le Roex, Nikki; Spaan, Johannie M.; Spaan, Robert S.; Van Helden, Paul D.; Ezenwa, Vanessa O.; Jolles, Anna E.Disease acts as a powerful driver of evolution in natural host populations, yet individuals in a population often vary in their susceptibility to infection. Energetic trade‐offs between immune and reproductive investment lead to the evolution of distinct life history strategies, driven by the relative fitness costs and benefits of resisting infection. However, examples quantifying the cost of resistance outside of the laboratory are rare. Here, we observe two distinct forms of resistance to bovine tuberculosis (bTB), an important zoonotic pathogen, in a free‐ranging African buffalo (Syncerus caffer) population. We characterize these phenotypes as “infection resistance,” in which hosts delay or prevent infection, and “proliferation resistance,” in which the host limits the spread of lesions caused by the pathogen after infection has occurred. We found weak evidence that infection resistance to bTB may be heritable in this buffalo population (h2 = 0.10) and comes at the cost of reduced body condition and marginally reduced survival once infected, but also associates with an overall higher reproductive rate. Infection‐resistant animals thus appear to follow a “fast” pace‐of‐life syndrome, in that they reproduce more quickly but die upon infection. In contrast, proliferation resistance had no apparent costs and was associated with measures of positive host health—such as having a higher body condition and reproductive rate. This study quantifies striking phenotypic variation in pathogen resistance and provides evidence for a link between life history variation and a disease resistance trait in a wild mammalian host population.
- ItemDetermining ancestry proportions in complex admixture scenarios in South Africa using a novel proxy ancestry selection method(PLoS, 2013-09) Chimusa, Emile R.; Daya, Michelle; Möller, Marlo; Ramesar, Raj; Henn, Brenna M.; Van Helden, Paul D.; Mulder, Nicola J.; Hoal, Eileen G.Admixed populations can make an important contribution to the discovery of disease susceptibility genes if the parental populations exhibit substantial variation in susceptibility. Admixture mapping has been used successfully, but is not designed to cope with populations that have more than two or three ancestral populations. The inference of admixture proportions and local ancestry and the imputation of missing genotypes in admixed populations are crucial in both understanding variation in disease and identifying novel disease loci. These inferences make use of reference populations, and accuracy depends on the choice of ancestral populations. Using an insufficient or inaccurate ancestral panel can result in erroneously inferred ancestry and affect the detection power of GWAS and meta-analysis when using imputation. Current algorithms are inadequate for multi-way admixed populations. To address these challenges we developed PROXYANC, an approach to select the best proxy ancestral populations. From the simulation of a multi-way admixed population we demonstrate the capability and accuracy of PROXYANC and illustrate the importance of the choice of ancestry in both estimating admixture proportions and imputing missing genotypes. We applied this approach to a complex, uniquely admixed South African population. Using genome-wide SNP data from over 764 individuals, we accurately estimate the genetic contributions from the best ancestral populations: isiXhosa (33%±0:226), {Khomani SAN (31%±0:195), European (16%±0:118), Indian (13%±0:094), and Chinese (7%±0:0488). We also demonstrate that the ancestral allele frequency differences correlate with increased linkage disequilibrium in the South African population, which originates from admixture events rather than population bottlenecks.
- ItemEvaluating the accuracy of imputation methods in a five-way admixed population(Frontiers Media, 2019) Schurz, Haiko; Muller, Stephanie J.; Van Helden, Paul David; Tromp, Gerard; Hoal, Eileen G.; Kinnear, Craig J.; Moller, MarloGenotype imputation is a powerful tool for increasing statistical power in an association analysis. Meta-analysis of multiple study datasets also requires a substantial overlap of SNPs for a successful association analysis, which can be achieved by imputation. Quality of imputed datasets is largely dependent on the software used, as well as the reference populations chosen. The accuracy of imputation of available reference populations has not been tested for the five-way admixed South African Colored (SAC) population. In this study, imputation results obtained using three freely-accessible methods were evaluated for accuracy and quality. We show that the African Genome Resource is the best reference panel for imputation of missing genotypes in samples from the SAC population, implemented via the freely accessible Sanger Imputation Server.
- ItemExome capture from saliva produces high quality genomic and metagenomic data(BioMed Central, 2014-04) Kidd, Jeffrey M.; Sharpton, Thomas J.; Bobo, Dean; Norman, Paul J.; Martin, Alicia R.; Carpenter, Meredith L.; Sikora, Martin; Gignoux, Christopher R.; Nemat-Gorgani, Neda; Adams, Alexandra; Guadalupe, Moraima; Guo, Xiaosen; Feng, Qiang; Li, Yingrui; Liu, Xiao; Parham, Peter; Hoal, Eileen G.; Feldman, Marcus W.; Pollard, Katherine S.; Wall, Jeffrey D.; Bustamante, Carlos D.; Henn, Brenna M.Background Targeted capture of genomic regions reduces sequencing cost while generating higher coverage by allowing biomedical researchers to focus on specific loci of interest, such as exons. Targeted capture also has the potential to facilitate the generation of genomic data from DNA collected via saliva or buccal cells. DNA samples derived from these cell types tend to have a lower human DNA yield, may be degraded from age and/or have contamination from bacteria or other ambient oral microbiota. However, thousands of samples have been previously collected from these cell types, and saliva collection has the advantage that it is a non-invasive and appropriate for a wide variety of research. Results We demonstrate successful enrichment and sequencing of 15 South African KhoeSan exomes and 2 full genomes with samples initially derived from saliva. The expanded exome dataset enables us to characterize genetic diversity free from ascertainment bias for multiple KhoeSan populations, including new exome data from six HGDP Namibian San, revealing substantial population structure across the Kalahari Desert region. Additionally, we discover and independently verify thirty-one previously unknown KIR alleles using methods we developed to accurately map and call the highly polymorphic HLA and KIR loci from exome capture data. Finally, we show that exome capture of saliva-derived DNA yields sufficient non-human sequences to characterize oral microbial communities, including detection of bacteria linked to oral disease (e.g. Prevotella melaninogenica). For comparison, two samples were sequenced using standard full genome library preparation without exome capture and we found no systematic bias of metagenomic information between exome-captured and non-captured data. Conclusions DNA from human saliva samples, collected and extracted using standard procedures, can be used to successfully sequence high quality human exomes, and metagenomic data can be derived from non-human reads. We find that individuals from the Kalahari carry a higher oral pathogenic microbial load than samples surveyed in the Human Microbiome Project. Additionally, rare variants present in the exomes suggest strong population structure across different KhoeSan populations.
- ItemGene polymorphisms in African buffalo sssociated with susceptibility to Bovine tuberculosis infection(Public Library of Science -- PLoS, 2013-05) Le Roex, Nikki; Koets, Ad P.; Van Helden, Paul D.; Hoal, Eileen G.Bovine tuberculosis (BTB) is a chronic, highly infectious disease that affects humans, cattle and numerous species of wildlife. In developing countries such as South Africa, the existence of extensive wildlife-human-livestock interfaces poses a significant risk of Mycobacterium bovis transmission between these groups, and has far-reaching ecological, economic and public health impacts. The African buffalo (Syncerus caffer), acts as a maintenance host for Mycobacterium bovis, and maintains and transmits the disease within the buffalo and to other species. In this study we aimed to investigate genetic susceptibility of buffalo for Mycobacterium bovis infection. Samples from 868 African buffalo of the Cape buffalo subspecies were used in this study. SNPs (n = 69), with predicted functional consequences in genes related to the immune system, were genotyped in this buffalo population by competitive allele-specific SNP genotyping. Case-control association testing and statistical analyses identified three SNPs associated with BTB status in buffalo. These SNPs, SNP41, SNP137 and SNP144, are located in the SLC7A13, DMBT1 and IL1a genes, respectively. SNP137 remained significantly associated after permutation testing. The three genetic polymorphisms identified are located in promising candidate genes for further exploration into genetic susceptibility to BTB in buffalo and other bovids, such as the domestic cow. These polymorphisms/genes may also hold potential for marker-assisted breeding programmes, with the aim of breeding more BTB-resistant animals and herds within both the national parks and the private sector.
- ItemGenetic resistance to Mycobacterium Tuberculosis infection and disease(Frontiers Media, 2018-09) Moller, Marlo; Kinnear, Craig J.; Orlova, Marianna; Kroon, Elouise E.; van Helden, Paul D.; Schurr, Erwin; Hoal, Eileen G.; Biomedical Sciences: Molecular Biology and Human GeneticsNatural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacteriumwill become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5–15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease.
- ItemGenetic resistance to mycobacterium tuberculosis infection and disease(Frontiers Media, 2017) Moller, Marlo; Kinnear, Craig J.; Orlova, Marianna; Kroon, Elouise E.; Van Helden, Paul D.; Schurr, Erwin; Hoal, Eileen G.Natural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacterium will become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5–15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease.
- ItemIdentification of a novel WAS mutation in a South African patient presenting with atypical Wiskott-Aldrich syndrome : a case report(BioMed Central, 2020-06-05) Glanzmann, Brigitte; Möller, Marlo; Schoeman, Mardelle; Urban, Michael; Van Helden, Paul D.; Frigati, Lisa; Grewal, Ravnit; Pieters, Hermanus; Loos, Ben; Hoal, Eileen G.; Glashoff, Richard H.; Cornelissen, Helena; Rabie, Helena; Esser, Monika M.; Kinnear, Craig J.Background: The X-linked recessive primary immunodeficiency disease (PIDD) Wiskott-Aldrich syndrome (WAS) is identified by an extreme susceptibility to infections, eczema and thrombocytopenia with microplatelets. The syndrome, the result of mutations in the WAS gene which encodes the Wiskott-Aldrich protein (WASp), has wide clinical phenotype variation, ranging from classical WAS to X-linked thrombocytopaenia and X-linked neutropaenia. In many cases, the diagnosis of WAS in first affected males is delayed, because patients may not present with the classic signs and symptoms, which may intersect with other thrombocytopenia causes. Case presentation: Here, we describe a three-year-old HIV negative boy presenting with recurrent infections, skin rashes, features of autoimmunity and atopy. However, platelets were initially reported as normal in numbers and morphology as were baseline immune investigations. An older male sibling had died in infancy from suspected immunodeficiency. Uncertainty of diagnosis and suspected severe PIDD prompted urgent further molecular investigation. Whole exome sequencing identified c. 397 G > A as a novel hemizygous missense mutation located in exon 4 of WAS. Conclusion: With definitive molecular diagnosis, we could target treatment and offer genetic counselling and prenatal diagnostic testing to the family. The identification of novel variants is important to confirm phenotype variations of a syndrome.
- ItemInvestigating the role of gene-gene interactions in TB susceptibility(Public Library of Science, 2015-04) Daya, Michelle; Van der Merwe, Lize; Van Helden, Paul D.; Moller, Marlo; Hoal, Eileen G.Tuberculosis (TB) is the second leading cause of mortality from infectious disease worldwide. One of the factors involved in developing disease is the genetics of the host, yet the field of TB susceptibility genetics has not yielded the answers that were expected. A commonly posited explanation for the missing heritability of complex disease is gene-gene interactions, also referred to as epistasis. In this study we investigate the role of gene-gene interactions in genetic susceptibility to TB using a cohort recruited from a high TB incidence community from Cape Town, South Africa. Our discovery data set incorporates genotypes from a large a number of candidate gene studies as well as genome-wide data. After limiting our search space to pairs of putative TB susceptibility genes, as well as pairs of genes that have been curated in online databases as potential interactors, we use statistical modelling to identify pairs of interacting SNPs. We attempt to validate the top models identified in our discovery data set using an independent genome-wide TB case-control data set from The Gambia. A number of models were successfully validated, indicating that interplay between the NRG1 - NRG3, GRIK1 - GRIK3 and IL23R - ATG4C gene pairs may modify susceptibility to TB. Gene pairs involved in the NF-κB pathway were also identified in the discovery data set (SFTPD - NOD2, ISG15 - TLR8 and NLRC5 - IL12RB1), but could not be tested in the Gambian study group due to lack of overlapping data.
- ItemMulti-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort(Elsevier Inc., 2021-04) Müller, Stephanie J.; Haiko, Schurz; Tromp, Gerard; Van der Spuy, Gian D.; Hoal, Eileen G.; Van Helden, Paul D.; Owusu-Dabo, Ellis; Meyer, Christian G.; Muntau, Birgit; Thye, Thorsten; Niemann, Stefan; Warren, Robin M.; Streicher, Elizabeth; Muller, Marlo; Kinnear, CraigDespite decades of research and advancements in diagnostics and treatment, tuberculosis remains a major public health concern. New computational methods are needed to interrogate the intersection of host- and bacterial genomes. Paired host genotype datum and infecting bacterial isolate information were analysed for associations using a multinomial logistic regression framework implemented in SNPTest. A cohort of 853 admixed South African participants and a Ghanaian cohort of 1359 participants were included. Two directly genotyped variants, namely rs529920 and rs41472447, were identified in the Ghanaian cohort as being statistically significantly associated with risk for infection with strains of different members of the MTBC. Thus, a multinomial logistic regression using paired host-pathogen data may prove valuable for investigating the complex relationships driving infectious disease.
- ItemNeutrophils : innate effectors of TB resistance?(Frontiers Media, 2018) Kroon, Elouise E.; Coussens, Anna K.; Kinnear, Craig; Orlova, Marianna; Moller, Marlo; Seeger, Allison; Wilkinson, Robert J.; Hoal, Eileen G.; Schurr, ErwinENGLISH ABSTRACT: Certain individuals are able to resist Mycobacterium tuberculosis infection despite persistent and intense exposure. These persons do not exhibit adaptive immune priming as measured by tuberculin skin test (TST) and interferon-γ (IFN-γ) release assay (IGRA) responses, nor do they develop active tuberculosis (TB). Genetic investigation of individuals who are able to resist M. tuberculosis infection shows there are likely a combination of genetic variants that contribute to the phenotype. The contribution of the innate immune system and the exact cells involved in this phenotype remain incompletely elucidated. Neutrophils are prominent candidates for possible involvement as primers for microbial clearance. Significant variability is observed in neutrophil gene expression and DNA methylation. Furthermore, inter-individual variability is seen between the mycobactericidal capacities of donor neutrophils. Clearance of M. tuberculosis infection is favored by the mycobactericidal activity of neutrophils, apoptosis, effective clearance of cells by macrophages, and resolution of inflammation. In this review we will discuss the different mechanisms neutrophils utilize to clear M. tuberculosis infection. We discuss the duality between neutrophils' ability to clear infection and how increasing numbers of neutrophils contribute to active TB severity and mortality. Further investigation into the potential role of neutrophils in innate immune-mediated M. tuberculosis infection resistance is warranted since it may reveal clinically important activities for prevention as well as vaccine and treatment development.
- ItemNovel SNP discovery in African buffalo, Syncerus caffer, using high-throughput sequencing(PLoS, 2012-11-07) Le Roex, Nikki; Noyes, Harry; Brass, Andrew; Bradley, Daniel G.; Kemp, Steven J.; Kay, Suzanne; Van Helden, Paul D.; Hoal, Eileen G.The African buffalo, Syncerus caffer, is one of the most abundant and ecologically important species of megafauna in the savannah ecosystem. It is an important prey species, as well as a host for a vast array of nematodes, pathogens and infectious diseases, such as bovine tuberculosis and corridor disease. Large-scale SNP discovery in this species would greatly facilitate further research into the area of host genetics and disease susceptibility, as well as provide a wealth of sequence information for other conservation and genomics studies. We sequenced pools of Cape buffalo DNA from a total of 9 animals, on an ABI SOLiD4 sequencer. The resulting short reads were mapped to the UMD3.1 Bos taurus genome assembly using both BWA and Bowtie software packages. A mean depth of 2.76coverage over the mapped regions was obtained. Btau4 gene annotation was added to all SNPs identified within gene regions. Bowtie and BWA identified a maximum of 2,222,665 and 276,847 SNPs within the buffalo respectively, depending on analysis method. A panel of 173 SNPs was validated by fluorescent genotyping in 87 individuals. 27 SNPs failed to amplify, and of the remaining 146 SNPs, 43–54% of the Bowtie SNPs and 57–58% of the BWA SNPs were confirmed as polymorphic. dN/dS ratios found no evidence of positive selection, and although there were genes that appeared to be under negative selection, these were more likely to be slowly evolving house-keeping genes.
- ItemA post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility(Public Library of Science, 2017) Uren, Caitlin; Henn, Brenna M.; Franke, Andre; Wittig, Michael; Van Helden, Paul D.; Hoal, Eileen G.; Moller, MarloUtilizing data from published tuberculosis (TB) genome-wide association studies (GWAS), we use a bioinformatics pipeline to detect all polymorphisms in linkage disequilibrium (LD) with variants previously implicated in TB disease susceptibility. The probability that these variants had a predicted regulatory function was estimated using RegulomeDB and Ensembl's Variant Effect Predictor. Subsequent genotyping of these 133 predicted regulatory polymorphisms was performed in 400 admixed South African TB cases and 366 healthy controls in a population-based case-control association study to fine-map the causal variant. We detected associations between tuberculosis susceptibility and six intronic polymorphisms located in MARCO, IFNGR2, ASHAS2, ACACA, NISCH and TLR10. Our post- GWAS approach demonstrates the feasibility of combining multiple TB GWAS datasets with linkage information to identify regulatory variants associated with this infectious disease.
- ItemPromoter variation in the DC-SIGN–Encoding Gene CD209 is associated with tuberculosis(Public Library of Science (PLOS), 2006-01) Barreiro, Luis B.; Neyrolles, Olivier; Babb, Chantal L.; Tailleux, Ludovic; Quach, Helene; McElreavey, Ken; Van Helden, Paul D.; Hoal, Eileen G.; Gicquel, Brigitte; Quintana-Murci, LluisBackground Tuberculosis, which is caused by Mycobacterium tuberculosis, remains one of the leading causes of mortality worldwide. The C-type lectin DC-SIGN is known to be the major M. tuberculosis receptor on human dendritic cells. We reasoned that if DC-SIGN interacts with M. tuberculosis, as well as with other pathogens, variation in this gene might have a broad range of influence in the pathogenesis of a number of infectious diseases, including tuberculosis. Methods and Findings We tested whether polymorphisms in CD209, the gene encoding DC-SIGN, are associated with susceptibility to tuberculosis through sequencing and genotyping analyses in a South African cohort. After exclusion of significant population stratification in our cohort, we observed an association between two CD209 promoter variants ( 871G and 336A) and decreased risk of developing tuberculosis. By looking at the geographical distribution of these variants, we observed that their allelic combination is mainly confined to Eurasian populations. Conclusions Our observations suggest that the two 871G and 336A variants confer protection against tuberculosis. In addition, the geographic distribution of these two alleles, together with their phylogenetic status, suggest that they may have increased in frequency in non-African populations as a result of host genetic adaptation to a longer history of exposure to tuberculosis. Further characterization of the biological consequences of DC-SIGN variation in tuberculosis will be crucial to better appreciate the role of this lectin in interactions between the host immune system and the tubercle bacillus as well as other pathogens.
- ItemPutting RFMix and ADMIXTURE to the test in a complex admixed population(BMC (part of Springer Nature), 2020) Uren, Caitlin; Hoal, Eileen G.; Moller, MarloBackground: Global and local ancestry inference in admixed human populations can be performed using computational tools implementing distinct algorithms. The development and resulting accuracy of these tools has been tested largely on populations with relatively straightforward admixture histories but little is known about how well they perform in more complex admixture scenarios. Results: Using simulations, we show that RFMix outperforms ADMIXTURE in determining global ancestry proportions even in a complex 5-way admixed population, in addition to assigning local ancestry with an accuracy of 89%. The ability of RFMix to determine global and local ancestry to a high degree of accuracy, particularly in admixed populations provides the opportunity for more accurate association analyses. Conclusion: This study highlights the utility of the extension of computational tools to become more compatible to genetically structured populations, as well as the need to expand the sampling of diverse world-wide populations. This is particularly noteworthy as modern-day societies are becoming increasingly genetically complex and some genetic tools and commonly used ancestral populations are less appropriate. Based on these caveats and the results presented here, we suggest that RFMix be used for both global and local ancestry estimation in worldwide complex admixture scenarios particularly when including these estimates in association studies.
- ItemThe risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community(Public Library of Science, 2015) Uys, Pieter; Brand, Hilmarie; Warren, Robin M.; Van der Spuy, Gian; Hoal, Eileen G.; Van Helden, Paul D.Elevated rates of reinfection tuberculosis in various hyperendemic regions have been reported and, in particular, it has been shown that in a high-incidence setting near Cape Town, South Africa, the rate of reinfection tuberculosis (TB) disease after cure of a previous TB disease episode is about four times greater than the rate of first-time TB disease. It is not known whether this elevated rate is caused by a high reinfection rate due, for instance, to living circumstances, or a high rate of progress to disease specific to the patients, or both. In order to address that question we analysed an extensive data set from clinics attended by TB patients in the high-incidence setting near Cape Town, South Africa and found that, in fact, the (average) rate of reinfection (as opposed to the rate of reinfection disease) after cure of a previous TB disease episode is initially about 0.85 per annum. This rate diminishes rapidly over time and after about ten years this rate is similar to the rate of infection in the general population. Also, the rate of progress to disease after reinfection is initially high but declines in subsequent years down to the figure typical for the general population. These findings suggest that the first few months after cure of a TB disease episode form a critical period for controlling reinfection disease in a hyperendemic setting and that monitoring such cured patients could pre-empt a reinfection progressing to active disease.
- ItemA sex-stratified genome-wide association study of tuberculosis using a multi-ethnic genotyping array(Frontiers Media, 2019) Schurz, Haiko; Kinnear, Craig J.; Gignoux, Chris; Wojcik, Genevieve; Van Helden, Paul D.; Tromp, Gerard; Henn, Brenna; Hoal, Eileen G.; Moller, MarloTuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome.
- ItemTLR1, 2, 4, 6 and 9 variants associated with tuberculosis susceptibility: a systematic review and meta-analysis(PLoS ONE, 2015) Schurz, Haiko; Daya, Michelle; Moller, Marlo; Hoal, Eileen G.; Salie, MuneebBackground: Studies investigating the influence of toll-like receptor (TLR) polymorphisms and tuberculosis susceptibility have yielded varying and often contradictory results in different ethnic groups. A meta-analysis was conducted to investigate the relationship between TLR variants and susceptibility to tuberculosis, both across and within specific ethnic groups. Methods: An extensive database search was performed for studies investigating the relationship between TLR and tuberculosis (TB) susceptibility. Data was subsequently extracted from included studies and statistically analysed. Results: 32 articles involving 18907 individuals were included in this meta-analysis, and data was extracted for 14 TLR polymorphisms. Various genetic models were employed. An increased risk of TB was found for individuals with the TLR2 rs3804100 CC and the TLR9 rs352139 GA and GG genotypes, while decreased risk was identified for those with the AG genotype of TLR1 rs4833095. The T allele of TLR6 rs5743810 conferred protection across all ethnic groups. TLR2 rs5743708 subgroup analysis identified the A allele to increase susceptibility to TB in the Asian ethnic group, while conferring protection in the Hispanic group. The T allele of TLR4 rs4986791 was also found to increase the risk of TB in the Asian subgroup. All other TLR gene variants investigated were not found to be associated with TB in this meta-analysis. Discussion: Although general associations were identified, most TLR variants showed no significant association with TB, indicating that additional studies investigating a wider range of pattern recognition receptors is required to gain a better understanding of this complex disease