Browsing by Author "Forsyth, Gregory G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFire management in Mediterranean-climate shrublands : a case study from the Cape fynbos, South Africa(Wiley Online, 2010) Van Wilgen, Brian W.; Forsyth, Gregory G.; De Klerk, Helen; Das, Sonali; Khuluse, Sibusisiwe; Schmitz, PeterSummary: 1. Fire is an important process in Mediterranean-ecosystem shrublands, and prescribed burning is often used to manage these ecosystems. Analyses of past fire regimes are required to interpret biotic responses to fire, as well as to assess the degree to which management interventions have been able to influence the fire regime. 2. We used a spatial data base of fires within 10 protected areas covering >720 000 ha to examine the frequency, seasonality, size and cause of fires over four decades. Our study covered five fire climate zones and a range of mountain fynbos shrubland types. We examined whether regular prescribed burning would be necessary to rejuvenate the vegetation, and also to reduce the incidence and extent of wildfires. 3. Cumulative fire frequency distributions indicated that the probability of fire was not strongly affected by post-fire age, with 50% of the area experiencing a successive fire within 10–13 years after the previous fire in most areas. This suggests that the accumulation of fuel did not limit the occurrence of wildfires, and that regular prescribed burning would not necessarily reduce the risk of wildfires. 4. Inland zones experienced more severe fire weather than coastal zones (∼35% vs. 11–19% of days with high to very high fire danger, respectively). Despite these differences, fire return periods were similar (10–13 years), suggesting that the availability of ignitions, and not fuel or weather, limited the occurrence of wildfires. 5. Despite a policy that promoted prescribed burning, a relatively small area (between 4·6% and 32·4% of the area of all fires) burned in prescribed burns. Seasonal restrictions for safety and ecological reasons, the imperative to integrate planned fires with invasive alien plant treatments and unplanned wildfires have all contributed to the relatively small area that burnt in prescribed burns. 6. Synthesis and applications. Recurrent wildfires, and not prescribed burning, are providing sufficient opportunities for fire-stimulated regeneration in fynbos ecosystems. Because of this, and because burning to reduce fuel loads is unlikely to prevent wildfires, there should be less pressure to conduct prescribed burning. The predicted growth in human populations in all areas is expected to increase the number of ignition opportunities and the frequency of fires, with detrimental consequences for biodiversity conservation and the control of invasive alien trees. Fire frequency should thus be monitored and steps should be taken to protect areas that burn too frequently.
- ItemTowards adaptive fire management for biodiversity conservation : experience in South African National Parks(AOSIS, 2011-05-13) Van Wilgen, Brian W.; Govender, Navashni; Forsyth, Gregory G.; Kraaij, TinekeThis paper reviews the experience gained in three South African national parks (Kruger, Table Mountain and Bontebok) with regard to the adaptive management of fire for the conservation of biodiversity. In the Kruger National Park, adaptive approaches have evolved over the past 15 years, beginning initially as a form of ‘informed trial and error’, but progressing towards active adaptive management in which landscape-scale, experimental burning treatments are being applied in order to learn. In the process, significant advances in understanding regarding the role and management of fire have been made. Attempts have been made to transfer the approaches developed in Kruger National Park to the other two national parks. However, little progress has been made to date, both because of a failure to provide an agreed context for the introduction of adaptive approaches, and because (in the case of Bontebok National Park) too little time has passed to be able to make an assessment. Fire management interventions, ultimately, will manifest themselves in terms of biodiversity outcomes, but definite links between fire interventions and biodiversity outcomes have yet to be made. Conservation implications: Significant challenges face the managers of fire-prone and fire adapted ecosystems, where the attainment of ecosystem goals may require approaches (like encouraging high-intensity fires at hot and dry times of the year) that threaten societal goals related to safety. In addition, approaches to fire management have focused on encouraging particular fire patterns in the absence of a sound understanding of their ecological outcomes. Adaptive management offers a framework for addressing these issues, but will require higher levels of agreement, monitoring and assessment than have been the case to date.