Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse the repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Eksteen, Pieter De Waal"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Development of incrementally formed patient-specific titanium knee prosthesis
    (Stellenbosch : Stellenbosch University, 2013-03) Eksteen, Pieter De Waal; Van der Merwe, A. F.; Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering.
    ENGLISH ABSTRACT: Osteoarthritis (OA), also known as degenerative joint disease is a progressive disorder of the joints caused by gradual loss of cartilage and resulting in the development of bony spurs and cysts at the margins of the joints. The degradation of the musculoskeletal system, which is mainly caused by joint injury, obesity (leading to musculoskeletal fatigue) and aging can also lead to osteoarthritis. The hands, feet, spine, and large weight-bearing joints, such as the hips and knees are commonly affected. The only medical solution to severe cases of osteoarthritis is the surgical reconstruction or replacement of a malformed or degenerated joint, better known as arthroplasty. Arthroplasty makes use of biomedical implants and replacements to restore functionality of the joints. Biomedical engineering in arthroplasty is an ever increasing field of interest as a result of its innovative improvements to surgical quality. Certain cases of partial osteoarthritis require less surgical action. Partial knee replacement surgery, also known as unicondylar (or unicompartmental) knee arthroplasty involves a covering which is placed over the affected area to resurface the affected bone and protect the patient from further degeneration. Advantages of partial replacement include faster recovery time and less post-operative pain. The biomedical implants used for these operations consist of a standardized implant that is fit onto the bone by modifying (cutting away) the outer structure of the bone. The result is known to cause post-operative discomfort among some patients. The problem with these standard designs includes the requirement of the removal of unaffected (healthy) bone matter, leading to induced trauma and pain for patients during the recovery phase of the operations. A preferred alternative to the standard design would be to create a custom implant for every patient, reducing the need to remove parts of unaffected bone matter. The implementation of this proposed method tends toward Minimally Invasive Surgery (MIS). MIS is normally preferred as it reduces the risk of various negative consequences of normal arthroplasty such as nerve or tendon damage during surgery. It could be argued that the proposed method may cause less damage to the fragile tendon, bloodflow, and nerve networks of the knee. Increasing material costs of metal products introduce great interest in more cost efficient forming processes to reduce the loss of redundant blank material. Incremental Sheet Forming (ISF), a relatively new class of forming process, has the potential to meet the need for this more efficient forming process. The ISF process is highly flexible, can be developed in normal milling machines, and can reduce production cost by up to 90% in comparison to processes such as stamping. The ISF process is a non-patented process, as the existing patents are referred to the designed machines and not the process. The availability of the ISF process contributes greatly to its attractiveness. ISF can be implemented in any facility that has access to a three- or more-axis CNC machine. The advantage of ISF implemented in CNC machines is that CNC technology has already reached a mature stage in development, contributing to the accuracy and methodology (such as feed rate or angular velocity of the tool) of the ISF process. The forming of valuable lightweight materials is well covered by ISF processes. A variety of studies contribute to research on the forming of titanium and titanium based alloys as part of ISF of lightweight materials. The ISF process utilizes the functionality of commercial CNC machines, improving the process availability of many manufacturing companies. The ISF process offers fast setup times and flexibility of the forming process. The purpose of this project is to define a process chain for creating a customized biomedical implant as well as determining the validity of the process chain by applying each step. The design and development procedure of a titanium based biomedical arthroplasty implant using innovative Incremental Sheet Forming (ISF) techniques will be documented, as well as an investigation of the financial cost and potential gain that this implant can offer.

DSpace software copyright © 2002-2023 LYRASIS | Supported by Stellenbosch University


  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback