Browsing by Author "Daher, Wajeeh"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEducating Grade 6 students for higher-order thinking and its influence on creativity(AOSIS Publishing, 2017) Daher, Wajeeh; Tabaja-Kidan, Amal; Gierdien, FaaizEducating students for higher-order thinking provides them with tools that turn them into more critical thinkers. This supports them in overcoming life problems that they encounter, as well as becoming an integral part of the society. This students’ education is attended to by educational organisations that emphasise the positive consequences of educating students for higher-order thinking, including creative thinking. One way to do that is through educational programmes that educate for higher-order thinking. One such programme is the Cognitive Research Trust (CoRT) thinking programme. The present research intended to examine the effect of the participation of Grade 6 students in a CoRT programme on their creative thinking. Fifty-three students participated in the research; 27 participated in a CoRT programme, while 26 did not participate in such programme. The ANCOVA test showed that the students who participated in the CoRT programme outperformed significantly, in creative thinking, the students who did not. Moreover, the students in the CoRT programme whose achievement scores were between 86 and 100 outperformed significantly the other achievement groups of students. Furthermore, students with reported high ability outperformed significantly the other ability groups of students. The results did not show statistically significant differences in students’ creativity attributed to gender.
- ItemSelf-efficacy in creativity and curiosity as predicting creative emotions(Universitas Muhammadiyah Surakarta, 2021) Daher, Wajeeh; Gierdien, Faaiz; Anabousy, AhlamSelf-efficacy constructs could predict students’ practices and affect in learning the sciences. Researchers have pointed at such constructs as predictors of students’ mathematics achievement and performance. Self-efficacy was also studied as predictor of emotions in learning mathematics, though little research has done so regarding self-efficacy as predictor of creative emotions. Another predictor of creative emotions could be curiosity. The present study has a regression-based modelling design, where it examined whether a set of constructs of self-efficacy in creativity or/and a set of constructs of curiosity predict significantly creative emotions in mathematical problem solving. Five hundred Grade 8-10 students participated in the study. Data were collected using three self-report questionnaires that measured the research constructs. Data analysis used SPSS 21. Results from multiple regression indicated that the set of constructs of self-efficacy in creativity explained significantly 29.6% of the variance in creative emotions. Moreover, the set of constructs of curiosity explained 17.8% of the variance in creative emotions. Furthermore, three of the five independent variables had best prediction of creative emotions, explaining 32.9% of the variance in creative emotions. The results of the stepwise regression showed that self-efficacy in originality and stretching curiosity were the first two variables in a set of three variables that best explained the variance in creative emotions. The research results lead to the recommendation of developing the previous two constructs in classroom setting to cultivate students’ creative emotions and thus their creative practices.
- ItemUse of Language By generative AI Tools in Mathematical Problem Solving: The Case of ChatGPT(Taylor & Francis, 2024-08-18) Daher, Wajeeh; Gierdien, FaaizTexts generated by artificial intelligence agents have been suggested as tools supporting students’ learning. The present research analyses the language of texts generated by ChatGPT when solving mathematical problems related to the quadratic equation. We use the functional grammar theoretical framework that includes three meta-functions: the ideational meta-function, the interpersonal meta-function and the textual meta-function. The results indicated that in at least one of six problem-solving tasks ChatGPT provided a mathematically incorrect answer. The processes appearing in ChatGPT texts, aiming at developing students’ understanding of mathematical concepts, included verbal, mental, existential, relational and behavioural processes but no material processes. Specifically, ChatGPT performed a mathematically incorrect existential process. ChatGPT generally used the first plural pronoun ‘we’ when describing the processes of solving mathematical problems, while it generally used the first-person singular pronoun when taking responsibility for a specific mistake or when expressing happiness for the actions of the user. Moreover, generally the text of the solution did not include direct imperatives but used ‘let us do’. The advancement of the ChatGPT textual solution was made usually through steps like ‘first’, ‘second’, etc. The research results indicated that the way ChatGPT responded to the mathematical problems would be useful in supporting learners’ understanding of ways to solve quadratic equations, but only if the teacher critically accompanies the student in the problem-solving process. Self-study with ChatGPT could lead to or confirm students’ mathematical misconceptions.