Browsing by Author "Blaauw, Sonja"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemSNP screening and validation in Haliotis midae(Stellenbosch : Stellenbosch University, 2012-03) Blaauw, Sonja; Roodt-Wilding, R.; Van der Merwe, A. E.; Stellenbosch University. Faculty of AgriSciences. Dept. of Genetics.ENGLISH ABSTRACT: Haliotis midae (commonly referred to as perlemoen) is the only one of five endemic species in South Africa that is commercially valued both locally and internationally. Unfortunately, natural perlemoen populations have become a dwindling resource due to commercial exploitation, poaching and the influx of natural threats, such as the West Coast rock lobster, Jasus lalandii. To preserve the natural diversity and sustainability of natural populations as well as commercial stocks, genetic management and improvement of perlemoen is critical. Genetic management requires the utilisation of molecular markers, which aid in the construction of linkage maps and the identification of quantitative trait loci (QTL) associated with economically significant traits. This will allow improvement of commercial stock management in terms of broodstock selection as well as provide valuable insight into natural population dynamics. Single Nucleotide Polymorphisms (SNPs) were selected as the marker of choice due to their successful employment as molecular markers and their wide distribution and abundance within the genomes of various marine species. This study focuses on the characterisation of novel SNPs from transcript sequences generated by Next Generation Sequencing technology. Approximately 40% of the transcripts facilitated the isolation of 105 putative markers, indicating a SNP frequency of ~1% within the H. midae genome. A subset of 24 markers, in addition to 24 previously developed markers, was characterised using the Illumina GoldenGate genotyping assay with the VeraCode technology, a medium to high-throughput genotyping technology. This is the first reported medium- to highthroughput characterisation of SNPs in H. midae. The selected markers were used to determine the efficiency and overall success rate of the GoldenGate platform. Marker characterisation was completed in both natural and commercial populations to determine the utility of these markers for genetic diversity and population structure inference. An 85% genotyping success rate was achieved with the platform. Statistical analysis indicated that the markers developed in this study are suitable for applications including population genetic structure inference, genetic diversity estimation and possibly other downstream applications such as linkage mapping. These markers are considered to be invaluable for future work regarding the genetic management and conservation of H. midae.
- ItemTranscriptome-wide single nucleotide polymorphisms (SNPs) for Abalone (Haliotis midae) : validation and application using GoldenGate medium-throughput genotyping assays(MDPI, 2013-09) Bester-Van der Merwe, Aletta; Blaauw, Sonja; Du Plessis, Jana; Roodt-Wilding, RouvayHaliotis midae is one of the most valuable commercial abalone species in the world, but is highly vulnerable, due to exploitation, habitat destruction and predation. In order to preserve wild and cultured stocks, genetic management and improvement of the species has become crucial. Fundamental to this is the availability and employment of molecular markers, such as microsatellites and single nucleotide (SNPs). Transcriptome sequences generated through sequencing-by-synthesis technology were utilized for the in vitro and in silico identification of 505 putative SNPs from a total of 316 selected contigs. A subset of 234 SNPs were further validated and characterized in wild and cultured abalone using two Illumina GoldenGate genotyping assays. Combined with VeraCode technology, this genotyping platform yielded a 65%−69% conversion rate (percentage polymorphic markers) with a global genotyping success rate of 76%−85% and provided a viable means for validating SNP markers in a non-model species. The utility of 31 of the validated SNPs in population structure analysis was confirmed, while a large number of SNPs (174) were shown to be informative and are, thus, good candidates for linkage map construction. The non-synonymous SNPs (50) located in coding regions of genes that showed similarities with known proteins will also be useful for genetic applications, such as the marker-assisted selection of genes of relevance to abalone aquaculture.