Browsing by Author "Bardien, Soraya"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- ItemAltered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from parkinson’s disease patients(Hindawi Publishing Corporation, 2016) Haylett, William; Swart, Chrisna; Van der Westhuizen, Francois; Van Dyk, Hayley; Van der Merwe, Lize; Van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, SorayaMutations in the parkin gene are the most common cause of early-onset Parkinson’s disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.
- ItemAminoglycoside-induced hearing loss : South Africans at risk(Health and Medical Publishing Group (HMPG), 2009) Bardien, Soraya; De Jong, Greetje; Schaaf, H. Simon; Harris, Tashneem; Fagan, Johan; Petersen, Lucretia
- ItemAminoglycoside-induced hearing loss in HIV-positive and HIV-negtive multidrug-resistant tuberculosis patients(Health and Medical Publishing Group (HMPG), 2012-06) Harris, Tashneem; Bardien, Soraya; Schaaf, H. Simon; Petersen, Lucretia; De Jong, Greetje; Fagan, Johannes J.Background. Ototoxicity following aminoglycoside treatment for multidrug-resistant tuberculosis (MDR-TB), is a significant problem. This study documents the incidence of ototoxicity in HIVpositive and HIV-negative patients with MDR-TB and presents clinical guidelines relating to ototoxicity. Methods. A prospective cohort study of 153 MDR-TB patients with normal hearing and middle ear status at baseline controlling for 6 mitochondrial mutations associated with aminoglycosiderelated ototoxicity, at Brooklyn Chest Hospital in Cape Town. Pure tone audiometry was performed monthly for 3 months to determine hearing loss. HIV status was recorded, as was the presence of 6 mutations in the MT-RNR1 gene. Results. Fifty-seven per cent developed high-frequency hearing loss. HIV-positive patients (70%) were more likely to develop hearing loss than HIV-negative patients (42%). Of 115 patients who were genetically screened, none had MT-RNR1 mutations. Conclusion. Ototoxic hearing loss is common in MDR-TB patients treated with aminoglycosides. HIV-positive patients are at increased risk of ototoxicity. Auditory monitoring and auditory rehabilitation should be an integral part of the package of care of MDR-TB patients.
- ItemArrhythmogenic right ventricular cardiomyopathy type 6 (ARVC6) : support for the locus assignment, narrowing of the critical region and mutation screening of three candidate genes(BioMed Central, 2006-03) Matolweni, Luzuko O.; Bardien, Soraya; Rebello, George; Oppon, Ekow; Munclinger, Miroslav; Ramesar, Rajkumar; Watkins, Hugh; Mayosi, Bongani M.Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable disorder characterized by progressive degeneration of right ventricular myocardium, arrhythmias and an increased risk of sudden death at a young age. By linkage analysis, ARVC type 6 was previously mapped to a 10.6 cM region on chromosome 10p12-p14 in a large North American kindred. To date, the genetic defect that causes ARVC6 has not been identified. Methods: We identified a South African family of 13 members with ARVC segregating as an autosomal dominant disorder. The diagnosis of ARVC was based on international diagnostic criteria. All available family members were genotyped with microsatellite markers at six known ARVC loci, and positional candidate gene screening was performed. Results: Genetic linkage and haplotype analysis provided lod scores that are highly suggestive of linkage to the ARVC6 locus on chromosome 10p12-p14, and the narrowing of the critical region to ~2.9 Mb. Two positional candidate genes (ITG8 and FRMD4A) were screened in which defects could possibly disrupt cell-cell adhesion. A non-positional candidate gene with apoptosis inducing properties, LAMR1P6 (laminin receptor 1 pseudogene 6) was also screened. Direct sequencing of DNA from affected individuals failed to detect disease-causing mutations in the exonic sequences of the three genes investigated. Conclusion: The narrowing of the ARVC6 critical region may facilitate progress towards the identification of the gene that is involved in ARVC. Identification of the causative genes for ARVC will contribute to the understanding of the pathogenesis and management of this poorly understood condition.
- ItemClinical findings and genetic screening for copy number variation mutations in a cohort of South African patients with Parkinson’s disease(Health & Medical Publishing Group, 2016) Mahne, Anna Cecelia; Carr, Jonathan; Bardien, Soraya; Schutte, Clara MariaENGLISH ABSTRACT: Background. Parkinson’s disease (PD), with a prevalence of up to 4% in Western countries, appears to be less common in Africa, possibly in part because of genetic factors. African studies investigating the genetic causation of PD are limited. Objective. To describe the clinical and genetic findings in a group of black South African patients with PD. Methods. All black African patients with PD from a tertiary hospital neurology clinic were examined. Symptoms were scored according to the Unified Parkinson’s Disease Rating Scale (UPDRS), and patients were classified according to motor features. Genomic DNA was extracted and multiplex ligation-dependent probe amplification was used for detection of copy number variation (CNV) mutations in the known PD-causing genes. Results. Sixteen patients were identified (ages 56 - 82 years). Three had a family history of PD. Classification into motor subtypes showed 44% mixed, 31% akinetic-rigid, and 25% tremor-dominant subtypes. UPDRS scores ranged from 7 to 88, with dementia in 20%. No patient had G2019S LRRK2 and A30P SNCA mutations, and all except one had no CNV mutations in the known PD-causing genes. A female patient (age of onset 50 years, no family history) had a parkin gene heterozygous deletion of exon 4. She had hyperreflexia, bilateral Hoffmann’s reflexes, normal plantar responses and no dystonia. Conclusion. This group of black African patients showed similar characteristics to patients in Western studies, possibly with a higher proportion having tremor-dominant disease. Genetic analysis showed one parkin gene mutation. The limited knowledge on PD-causing genes and mutations in black populations warrants further studies involving next-generation sequencing approaches.
- ItemFactors influencing the development of early- or late-onset Parkinson's disease in a cohort of South African patients(Health & Medical Publishing Group, 2012-10-01) Van der Merwe, Celia; Haylett, William; Harvey, Justin; Lombard, Debbie; Bardien, Soraya; Carr, JonathanBackground. Neurodegenerative disorders such as Parkinson’s disease (PD) contribute significantly to global disease burden. PD can be categorised into early-onset PD (EOPD) with an age at onset (AAO) of ≤50 years and late-onset PD (LOPD) with an AAO of 50 years. Aims. To identify factors influencing EOPD and LOPD development in a group of patients in South Africa (SA). Methods. A total of 397 unrelated PD patients were recruited from the Movement Disorders Clinic at Tygerberg Hospital and via the Parkinson’s Association of SA. Patient demographic and environmental data were recorded and associations with PD onset (EOPD v. LOPD) were analysed with a Pearson’s Chi-squared test. The English- and Afrikaans-speaking (Afrikaner) white patients were analysed separately. Results. Logistic regression analysis showed that ethnicity (p<0.001) and family history (p=0.004) were independently associated with AAO of PD. Average AAO was younger in black, coloured and Afrikaner patients than English-speaking white patients. A positive family history of PD, seen in 31.1% of LOPD patients, was associated with a younger AAO in the study population. Conclusions. These associations may be attributed to specific genetic and/or environmental risk factors that increase PD susceptibility and influence the clinical course of the disorder. More studies on PD in the unique SA populations are required to provide novel insights into mechanisms underlying this debilitating condition.
- ItemGitelman syndrome in a South African family presenting with hypokalaemia and unusual food cravings(BioMed Central, 2017-01-26) Van der Merwe, Pieter Du Toit; Rensburg, Megan A.; Haylett, William L.; Bardien, Soraya; Davids, M. RazeenBackground Gitelman syndrome (GS) is an autosomal recessive renal tubular disorder characterised by renal salt wasting with hypokalaemia, metabolic alkalosis, hypomagnesaemia and hypocalciuria. It is caused by mutations in SLC12A3 encoding the sodium-chloride cotransporter on the apical membrane of the distal convoluted tubule. We report a South African family with five affected individuals presenting with hypokalaemia and unusual food cravings. Methods The affected individuals and two unaffected first degree relatives were enrolled into the study. Phenotypes were evaluated through history, physical examination and biochemical analysis of blood and urine. Mutation screening was performed by sequencing of SLC12A3, and determining the allele frequencies of the sequence variants found in this family in 117 ethnically matched controls. Results The index patient, her sister, father and two aunts had a history of severe salt cravings, fatigue and tetanic episodes, leading to consumption of large quantities of salt and vinegar. All affected individuals demonstrated hypokalaemia with renal potassium wasting. Genetic analysis revealed that the pseudo-dominant pattern of inheritance was due to compound heterozygosity with two novel mutations: a S546G substitution in exon 13, and insertion of AGCCCC at c.1930 in exon 16. These variants were present in the five affected individuals, but only one variant each in the unaffected family members. Neither variant was found in any of the controls. Conclusions The diagnosis of GS was established in five members of a South African family through clinical assessment, biochemical analysis and mutation screening of the SLC12A3 gene, which identified two novel putative pathogenic mutations.
- ItemHuntington's disease-like 2 in South Africa(Health and Medical Publishing Group (HMPG), 2008) Greenberg, Jacquie; Bardien, Soraya; Carr, J.[No abstract available]
- ItemIdentification of a common founder couple for 40 South African Afrikaner families with Parkinson’s disease(Health & Medical Publishing Group, 2014-06) Geldenhuys, Gerhard; Glanzmann, Brigitte; Lombard, Debbie; Boolay, Sihaam; Carr, Jonathan; Bardien, SorayaBackground. Afrikaners are a unique ethnic group in South Africa (SA) with well-documented ancestral records spanning a period of over 350 years. They are mainly descended from Dutch, German and French settlers to SA in the 17th and 18th centuries. Today several disorders in this population occur at relatively high frequencies as a result of founder effects. Objective. To determine whether a founder effect for Parkinson’s disease (PD) is present in the Afrikaner population. Methods. Study participants were recruited from the Movement Disorders Clinic at Tygerberg Hospital in Cape Town, SA, and from support groups of the Parkinson’s Association of South Africa. Standard methods for genealogical research in SA on hereditary diseases were used including interviews and searches in sources such as state archives, the Huguenot Museum in Franschhoek, marriage and baptismal records, and tombstone inscriptions. Results. For 40 of the PD families, there was only a single most recent ancestral couple common to all of the families. On average there are between three and four ancestral lines to the founder couple per proband (range 1 -14). Conclusion. If genetic studies confirm the presence of a founder effect for PD in Afrikaners, this would imply that there is a large number of individuals from this ethnic group who may potentially be at risk of developing this debilitating condition. This study illustrates and reinforces the concept that genealogical analysis is a powerful tool for identification of founder effects for various disorders in the Afrikaner population.
- ItemIdentification of a novel functional deletion variant in the 5'-UTR of the DJ-1 gene(BioMed Central, 2009-10) Keyser, Rowena J.; Van der Merwe, Lize; Venter, Mauritz; Kinnear, Craig; Warnich, Louise; Carr, Jonathan; Bardien, SorayaBackground: DJ-1 forms part of the neuronal cellular defence mechanism against oxidative insults, due to its ability to undergo self-oxidation. Oxidative stress has been implicated in the pathogenesis of central nervous system damage in different neurodegenerative disorders including Alzheimer's disease and Parkinson's disease (PD). Various mutations in the DJ-1 (PARK7) gene have been shown to cause the autosomal recessive form of PD. In the present study South African PD patients were screened for mutations in DJ-1 and we aimed to investigate the functional significance of a novel 16 bp deletion variant identified in one patient. Methods: The possible effect of the deletion on promoter activity was investigated using a Dual- Luciferase Reporter assay. The DJ-1 5'-UTR region containing the sequence flanking the 16 bp deletion was cloned into a pGL4.10-Basic luciferase-reporter vector and transfected into HEK293 and BE(2)-M17 neuroblastoma cells. Promoter activity under hydrogen peroxide-induced oxidative stress conditions was also investigated. Computational (in silico) cis-regulatory analysis of DJ-1 promoter sequence was performed using the transcription factor-binding site database, TRANSFAC via the PATCH™ and rVISTA platforms. Results: A novel 16 bp deletion variant (g.-6_+10del) was identified in DJ-1 which spans the transcription start site and is situated 93 bp 3' from a Sp1 site. The deletion caused a reduction in luciferase activity of approximately 47% in HEK293 cells and 60% in BE(2)-M17 cells compared to the wild-type (P < 0.0001), indicating the importance of the 16 bp sequence in transcription regulation. The activity of both constructs was up-regulated during oxidative stress. Bioinformatic analysis revealed putative binding sites for three transcription factors AhR, ARNT, HIF-1 within the 16 bp sequence. The frequency of the g.-6_+10del variant was determined to be 0.7% in South African PD patients (2 heterozygotes in 148 individuals). Conclusion: This is the first report of a functional DJ-1 promoter variant, which has the potential to influence transcript stability or translation efficiency. Further work is necessary to determine the extent to which the g.-6_+10del variant affects the normal function of the DJ-1 promoter and whether this variant confers a risk for PD.
- ItemA new tool for prioritization of sequence variants from whole exome sequencing data(BioMed Central, 2016-07) Glanzmann, Brigitte; Herbst, Hendri; Kinnear, Craig J.; Moller, Marlo; Gamieldien, Junaid; Bardien, SorayaBackground: Whole exome sequencing (WES) has provided a means for researchers to gain access to a highly enriched subset of the human genome in which to search for variants that are likely to be pathogenic and possibly provide important insights into disease mechanisms. In developing countries, bioinformatics capacity and expertise is severely limited and wet bench scientists are required to take on the challenging task of understanding and implementing the barrage of bioinformatics tools that are available to them. Results: We designed a novel method for the filtration of WES data called TAPER™ (Tool for Automated selection and Prioritization for Efficient Retrieval of sequence variants). Conclusions: TAPER™ implements a set of logical steps by which to prioritize candidate variants that could be associated with disease and this is aimed for implementation in biomedical laboratories with limited bioinformatics capacity. TAPER™ is free, can be setup on a Windows operating system (from Windows 7 and above) and does not require any programming knowledge. In summary, we have developed a freely available tool that simplifies variant prioritization from WES data in order to facilitate discovery of disease-causing genes.
- ItemPrioritization of candidate genes for a South African family with Parkinson’s disease using in-silico tools(Public Library of Science, 2021) Sebate, Boiketlo; Cuttler, Katelyn; Cloete, Ruben; Britz, Marcell; Christoffels, Alan; Williams, Monique; Carr, Jonathan; Bardien, SorayaParkinson’s disease (PD) is a neurodegenerative disorder exhibiting Mendelian inheritance in some families. Next-generation sequencing approaches, including whole exome sequencing (WES), have revolutionized the field of Mendelian disorders and have identified a number of PD genes. We recruited a South African family with autosomal dominant PD and used WES to identify a possible pathogenic mutation. After filtration and prioritization, we found five potential causative variants in CFAP65, RTF1, NRXN2, TEP1 and CCNF. The variant in NRXN2 was selected for further analysis based on consistent prediction of deleteriousness across computational tools, not being present in unaffected family members, ethnic-matched controls or public databases, and its expression in the substantia nigra. A protein model for NRNX2 was created which provided a three-dimensional (3D) structure that satisfied qualitative mean and global model quality assessment scores. Trajectory analysis showed destabilizing effects of the variant on protein structure, indicated by high flexibility of the LNS-6 domain adopting an extended conformation. We also found that the known substrate N-acetyl-D-glucosamine (NAG) contributed to restoration of the structural stability of mutant NRXN2. If NRXN2 is indeed found to be the causal gene, this could reveal a new mechanism for the pathobiology of PD.
- ItemA rapid method for detection of five known mutations associated with aminoglycoside-induced deafness(BioMed Central, 2009-01) Bardien, Soraya; Human, Hannique; Harris, Tashneem; Hefke, Gwynneth; Veikondis, Rene; Schaaf, H. Simon; Van der Merwe, Lize; Greinwald, John H.; Fagan, Johan; De Jong, GreetjeBackground: South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB) in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population. Methods: A multiplex method using the SNaPshot technique was used to screen for five mutations in the MT-RNR1 gene: A1555G, C1494T, T1095C, 961delT+C(n) and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations. Results: A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n) variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants. Conclusion: The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n) variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will continue to be used routinely and are accompanied with very limited or no audiological monitoring.
- ItemRutin as a potent antioxidant : implications for neurodegenerative disorders(Hindawi, 2018) Enogieru, Adaze Bijou; Haylett, William; Hiss, Donavon Charles; Bardien, Soraya; Ekpo, Okobi EkoA wide range of neurodegenerative diseases (NDs), including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and prion diseases, share common mechanisms such as neuronal loss, apoptosis, mitochondrial dysfunction, oxidative stress, and inflammation. Intervention strategies using plant-derived bioactive compounds have been offered as a form of treatment for these debilitating conditions, as there are currently no remedies to prevent, reverse, or halt the progression of neuronal loss. Rutin, a glycoside of the flavonoid quercetin, is found in many plants and fruits, especially buckwheat, apricots, cherries, grapes, grapefruit, plums, and oranges. Pharmacological studies have reported the beneficial effects of rutin in many disease conditions, and its therapeutic potential in several models of NDs has created considerable excitement. Here, we have summarized the current knowledge on the neuroprotective mechanisms of rutin in various experimental models of NDs. The mechanisms of action reviewed in this article include reduction of proinflammatory cytokines, improved antioxidant enzyme activities, activation of the mitogen-activated protein kinase cascade, downregulation of mRNA expression of PD-linked and proapoptotic genes, upregulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes. Taken together, these findings suggest that rutin may be a promising neuroprotective compound for the treatment of NDs.
- ItemTargeted next-generation sequencing identifies novel variants in candidate genes for Parkinson’s disease in Black South African and Nigerian patients(BioMed Central, 2020-02-04) Oluwole, Oluwafemi G.; Kuivaniemi, Helena; Abrahams, Shameemah; Haylett, William L.; Vorster, Alvera A.; Van Heerden, Carel J.; Kenyon, Colin P.; Tabb, David L.; Fawale, Michael B.; Sunmonu, Taofiki A.; Ajose, Abiodun; Olaogun, Matthew O.; Rossouw, Anastasia C.; Van Hillegondsberg, Ludo S.; Carr, Jonathan; Ross, Owen A.; Komolafe, Morenikeji A.; Tromp, Gerard; Bardien, SorayaBackground: The prevalence of Parkinson’s disease (PD) is increasing in sub-Saharan Africa, but little is known about the genetics of PD in these populations. Due to their unique ancestry and diversity, sub-Saharan African populations have the potential to reveal novel insights into the pathobiology of PD. In this study, we aimed to characterise the genetic variation in known and novel PD genes in a group of Black South African and Nigerian patients. Methods: We recruited 33 Black South African and 14 Nigerian PD patients, and screened them for sequence variants in 751 genes using an Ion AmpliSeq™ Neurological Research panel. We used bcftools to filter variants and annovar software for the annotation. Rare variants were prioritised using MetaLR and MetaSVM prediction scores. The effect of a variant on ATP13A2’s protein structure was investigated by molecular modelling. Results: We identified 14,655 rare variants with a minor allele frequency ≤ 0.01, which included 2448 missense variants. Notably, no common pathogenic mutations were identified in these patients. Also, none of the known PD-associated mutations were found highlighting the need for more studies in African populations. Altogether, 54 rare variants in 42 genes were considered deleterious and were prioritized, based on MetaLR and MetaSVM scores, for follow-up studies. Protein modelling showed that the S1004R variant in ATP13A2 possibly alters the conformation of the protein. Conclusions: We identified several rare variants predicted to be deleterious in sub-Saharan Africa PD patients; however, further studies are required to determine the biological effects of these variants and their possible role in PD. Studies such as these are important to elucidate the genetic aetiology of this disorder in patients of African ancestry.
- ItemWhole-genome sequencing for an enhanced understanding of genetic variation among South Africans(Nature Research (part of Springer Nature), 2017) Choudhury, Ananyo; Ramsay, Michele; Hazelhurst, Scott; Aron, Shaun; Bardien, Soraya; Botha, Gerrit; Chimusa, Emile R.; Christoffels, Alan; Gamieldien, Junaid; Sefid-Dashti, Mahjoubeh J.; Joubert, Fourie; Meintjes, Ayton; Mulder, Nicola; Ramesar, Raj; Rees, Jasper; Scholtz, Kathrine; Sengupta, Dhriti; Soodyall, Himla; Venter, Philip; Warnich, Louise; Pepper, Michael S.ENGLISH ABSTRACT: The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant (p < 10−6) differentiation, and FST analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease.