Masters Degrees (Statistics and Actuarial Science)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Statistics and Actuarial Science) by Author "Bhatti, Aeysha Aziz"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA study of fairness in machine learning in the presence of missing values(Stellenbosch : Stellenbosch University, 2023-03) Bhatti, Aeysha Aziz; Sandrock, Trudy; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH SUMMARY: Fairness of Machine Learning algorithms is a topic that is receiving increasing attention, as more and more algorithms permeate the day to day aspects of our lives. One way in which bias can manifest in a data source is through missing values. If data are missing, these data are often assumed to be missing completely randomly, but usually this is not the case. In reality, the propensity of data being missing is often tied to socio-economic status or demographic characteristics of individuals. There is very limited research into how missing values and missing value handling methods can impact the fairness of an algorithm. In this research, we conduct a systematic study starting from the foundational questions of how the data are missing, how the missing data are dealt with and how this impacts fairness, based on the outcome of a few different types of machine learning algorithms. Most researchers, when dealing with missing data, either apply listwise deletion or tend to use the simpler methods of imputation versus the more complex ones. We study the impact of these simpler methods on the fairness of algorithms. Our results show that the missing data mechanism and missing data handling procedure can impact the fairness of an algorithm, and that under certain conditions the simpler imputation methods can sometimes be beneficial in decreasing discrimination.
- ItemA study of fairness in machine learning in the presence of missing values(Stellenbosch : Stellenbosch University, 2023-03) Bhatti, Aeysha Aziz; Sandrock, Trudy; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH SUMMARY: Fairness of Machine Learning algorithms is a topic that is receiving increasing attention, as more and more algorithms permeate the day to day aspects of our lives. One way in which bias can manifest in a data source is through missing values. If data are missing, these data are often assumed to be missing completely randomly, but usually this is not the case. In reality, the propensity of data being missing is often tied to socio-economic status or demographic characteristics of individuals. There is very limited research into how missing values and missing value handling methods can impact the fairness of an algorithm. In this research, we conduct a systematic study starting from the foundational questions of how the data are missing, how the missing data are dealt with and how this impacts fairness, based on the outcome of a few different types of machine learning algorithms. Most researchers, when dealing with missing data, either apply listwise deletion or tend to use the simpler methods of imputation versus the more complex ones. We study the impact of these simpler methods on the fairness of algorithms. Our results show that the missing data mechanism and missing data handling procedure can impact the fairness of an algorithm, and that under certain conditions the simpler imputation methods can sometimes be beneficial in decreasing discrimination.