Research Articles (Chemical Engineering)
Permanent URI for this collection
Browse
Browsing Research Articles (Chemical Engineering) by Author "Booysen, Marthinus J."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCanary in the coliform mine : exploring the industrial application limits of a microbial respiration alarm system(Public Library of Science, 2021-03-04) Stone, Wendy; Louw, Tobi M.; Booysen, Marthinus J.; Wolfaardt, Gideon M.; Zhang, DaweiFundamental ecological principles of ecosystem-level respiration are extensively applied in greenhouse gas and elemental cycle studies. A laboratory system termed CEMS (Carbon Dioxide Evolution Measurement System), developed to explore microbial biofilm growth and metabolic responses, was evaluated as an early-warning system for microbial disturbances in industrial settings: in (a) potable water system contamination, and (b) bioreactor inhibition. Respiration was detected as CO₂ production, rather than O₂ consumption, including aerobic and anaerobic metabolism. Design, thresholds, and benefits of the remote CO₂ monitoring technology were described. Headspace CO₂ correlated with contamination levels, as well as chemical (R² > 0.83–0.96) and microbiological water quality indicators (R² > 0.78–0.88). Detection thresholds were limiting factors in monitoring drinking water to national and inter- national standards (0 CFU/100 mL fecal coliforms) in both open- (>1500 CFU/mL) and closed-loop CO₂ measuring regimes (>100 CFU/100 mL). However, closed-loop detection thresholds allow for the detection of significant contamination events, and monitoring less stringent systems such as irrigation water (<100 CFU/mL). Whole-system respiration was effectively harnessed as an early-warning system in bioreactor performance monitoring. Models were used to deconvolute biological CO₂ fluctuations from chemical CO₂ dynamics, to optimize this real-time, sustainable, low-waste technology, facilitating timeous responses to biological disturbances in bioreactors.