Department of Statistics and Actuarial Science
Permanent URI for this community
Browse
Browsing Department of Statistics and Actuarial Science by Author "Badenhorst, Dirk Jakobus Pretorius"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemImproving the accuracy of prediction using singular spectrum analysis by incorporating internet activity(Stellenbosch : Stellenbosch University, 2013-03) Badenhorst, Dirk Jakobus Pretorius; Steel, Sarel J.; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH ABSTRACT: Researchers and investors have been attempting to predict stock market activity for years. The possible financial gain that accurate predictions would offer lit a flame of greed and drive that would inspire all kinds of researchers. However, after many of these researchers have failed, they started to hypothesize that a goal such as this is not only improbable, but impossible. Previous predictions were based on historical data of the stock market activity itself and would often incorporate different types of auxiliary data. This auxiliary data ranged as far as imagination allowed in an attempt to find some correlation and some insight into the future, that could in turn lead to the figurative pot of gold. More often than not, the auxiliary data would not prove helpful. However, with the birth of the internet, endless amounts of new sources of auxiliary data presented itself. In this thesis I propose that the near in finite amount of data available on the internet could provide us with information that would improve stock market predictions. With this goal in mind, the different sources of information available on the internet are considered. Previous studies on similar topics presented possible ways in which we can measure internet activity, which might relate to stock market activity. These studies also gave some insights on the advantages and disadvantages of using some of these sources. These considerations are investigated in this thesis. Since a lot of this work is therefore based on the prediction of a time series, it was necessary to choose a prediction algorithm. Previously used linear methods seemed too simple for prediction of stock market activity and a new non-linear method, called Singular Spectrum Analysis, is therefore considered. A detailed study of this algorithm is done to ensure that it is an appropriate prediction methodology to use. Furthermore, since we will be including auxiliary information, multivariate extensions of this algorithm are considered as well. Some of the inaccuracies and inadequacies of these current multivariate extensions are studied and an alternative multivariate technique is proposed and tested. This alternative approach addresses the inadequacies of existing methods. With the appropriate methodology chosen and the appropriate sources of auxiliary information chosen, a concluding chapter is done on whether predictions that includes auxiliary information (obtained from the internet) improve on baseline predictions that are simply based on historical stock market data.