Doctoral Degrees (Viticulture and Oenology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Viticulture and Oenology) by Author "Daniels, Andries Jerrick"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemNon-destructive evaluation of external and internal table grape quality(Stellenbosch : Stellenbosch University, 2021-03) Daniels, Andries Jerrick; Opara, Umezuruike Linus; Nieuwoudt, Hélène H; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology.ENGLISH ABSTRACT: Determining the correct harvest maturity parameters of table grapes is an essential step before harvesting. The chemical analysis of table grapes to determine harvest and quality parameters such as total soluble solids (TSS), titratable acidity (TA) and pH, is very time-consuming, expensive, and destructive. Developing faster and more cost-effective methods to obtain the information can benefit the table grape industry by reducing losses suffered at the postharvest stage. There are multitudes of factors that can influence table grape postharvest quality leading to huge losses. These losses are exacerbated even further by the long list of postharvest external and internal defects that can occur, including browning in all its various manifestations. The application of cutting-edge technologies such as Fourier Transform Near-Infrared (FT-NIR) spectroscopy that can accurately assess the external and internal quality of fruit is, therefore, essential. This particularly concerns the identification of defects or assessment of the risks of defects that are likely to develop during post storage. The aim of this application would thus be to evaluate these new technologies to monitor table grape quality non-destructively, before, during, and/or after harvest. This study, therefore, focussed on the development and optimisation of faster, cost- effective, and fit-for-purpose methods to monitor harvest maturity and quality of table grapes in the vineyard before harvesting and during packaging and cold storage. Harvest of three different cultivars, namely, Thompson Seedless, Regal Seedless and Prime, happened over two seasons (2016 and 2017) from six different commercial vineyards. Five of these vineyards were in the Western Cape (two in the Hex River Valley, three in Wellington) and one in the Northern Cape (Kakamas), South Africa. Harvest occurred twice at each vineyard, at optimum ripeness and two weeks later (after the optimum harvest date). The incidence and intensity of browning on each berry on a bunch were evaluated for different defects and browning phenotypes. Quantitative harvest maturity and indicative quality parameters such as TSS, TA and pH, as well as the sensory-related parameters – sugar:acid ratio (TSS:TA ratio) and BrimA, were investigated by scanning whole table grape bunches contactless with Bruker’s MATRIX-F spectrometer in the laboratory. Partial Least Squares (PLS) regression was used to build prediction models for each parameter. Two different infrared spectrometers, namely the Bruker Multipurpose Analyser Fourier Transform Near-Infrared (MPA FT-NIR) and MicroNIR Pro 1700 were also used to determine TSS on whole table grape berries. The MicroNIR Pro 1700 was utilised in the vineyard and the laboratory and the MPA only in the laboratory. The same spectral dataset used to build the quantitative models was used to build classification models for two browning phenotypes, namely chocolate browning and friction browning. Partial Least Squares Discriminant Analysis (PLS-DA) and Artificial Neural Networks (ANN) were used for the classification tasks. Key results showed that the incidence and intensity of different defects and browning phenotypes such as sulphur dioxide (SO2) damage were prevalent on all three white seedless table grape cultivars. The incidences of fungal infection, sunburn and abrasion damage were high on Regal Seedless and Thompson Seedless in 2016. Contact browning, mottled browning and friction browning and bruising damage had higher incidences in 2017 than in 2016. Overall, the intensity of defects was very high in 2016 except on Regal Seedless from Hex River Valley. Prime from Kakamas and Wellington had the highest intensity of defects in 2017, which appeared on the grapes after 7 weeks of cold storage. Prediction models were successfully developed for TSS, TA, TSS:TA, pH, and BrimA minus acids on intact table grape bunches using FT-NIR spectroscopy in a contactless measurement mode, and applying spectral pre-processing techniques for regression analysis with PLS. The combination of Savitzky-Golay first derivative coupled with multiplicative scatter correction on the original spectra delivered the best models. Statistical indicators used to evaluate the models were the number of latent variables (LV) used to build the model, the prediction correlation coefficient (R2p) and root mean square error of prediction (RMSE). For the respective parameters TSS, TA, TSS:TA ratio, pH, and BrimA, the number of LV used when the models were build according to a random split of the calibration and validation set were 6, 4, 5, 5 and 10, the R2p = 0.81, 0.43, 0.66, 0.27, and 0.71, and the RMSEP = 1.30 °Brix, 1.09 g/L, 7.08, 0.14, and 1.80. When 2016 was used as the calibration set and 2017 as the validation set in model building the number of LV used were 9, 5, 5, 4 and the R2p = 0.44, 0.06, 0.17, 0.05, and 0.05 and the RMSEP = 3.22 °Brix, 2.41 g/L, 14.53, 0.21, and 8.03 for for the respective parameters. Determining TSS of whole table grape berries in the vineyard before and after harvesting using handheld and benchtop spectrometers on intact table grape berries showed that spectra taken in the laboratory with the MicroNIR were more homogenous than those taken in the vineyard with the same spectrometer, over the two years investigated. The results obtained with the MPA were not as good as those obtained with the MicroNIR in the laboratory were. The model constructed with the combined data of 2016 and 2017 taken in the laboratory with the MicroNIR had the best statistics in terms of R2p (0.74) and RPDp (1.97). The model constructed with the 2017 data obtained in the laboratory with the MicroNIR had the lowest prediction error (RMSEP = 1.13°Brix). Good models were obtained using PLS-DA and ANN to classify bunches as either clear or as having chocolate browning and friction browning based on the spectra obtained from intact table grape bunches with the MATRIX-F spectrometer. The classification error rate (CER), specificity and sensitivity were used to evaluate the models constructed using PLS-DA and the kappa score was used for ANN. The CER for chocolate browning (25%) was better than that of friction browning (46%) after Weeks 3 and 4 in cold storage for both class 0 (absence of browning) and class 1 (presence of browning). Both the specificity and sensitivity of class 0 and class 1 of friction browning were not as good as for chocolate browning. With ANN, the testing kappa score to classify table grape bunches as clear or having chocolate browning or friction browning showed that chocolate browning could be classified with the strong agreement after Weeks 3 and 4 and Weeks 5 and 6 and that friction browning could be classified with moderate agreement after three and four weeks in cold storage. Classification of chocolate browning and friction browning phenotypes was done using PLS-DA and ANN and the result showed that both types of browning can be classified with moderate agreement. The implications of the results of this study for the table grape industry are that the industry can move beyond just assessing methods and techniques in the laboratory towards implementation in the vineyard and the packhouse. Much quicker decisions regarding grape quality and destination of export can now be made using a combination of the MicroNIR handheld and MATRIX-F instruments for onsite quality measurement and the models to predict internal (e.g. TSS) and external (browning) quality attributes.