Doctoral Degrees (Medical Virology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Medical Virology) by Author "Mikasi, Sello Given"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemInvestigating the structural impact of hiv-1 integrase natural occurring polymorphisms and novel mutations identified among group m subtypes circulating in sub-Saharan Africa(Stellenbosch : Stellenbosch University, 2020-12) Mikasi, Sello Given; Jacobs, Graeme Brendon; Cloete, Ruben; Van Zyl, Gert Uves; Engelbrecht, Susan; Ikomey, George Mondinde; Kasang, Christa; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Pathology: Medical Virology.Introduction HIV/AIDS remains a major health concern worldwide, with sub-Saharan Africa (SSA) carrying the largest burden.HIV is characterised by extremely high genetic diversity, with all the major groups and subtypes circulating in SSA. Combination antiretroviral therapy (cART) have substantially reduced HIV related deaths, but this is counteracted by the development of HIVdrug resistance, caused by certain drug resistance-associated mutations (RAMS). Integrase (IN) strand transferase inhibitors (INSTIs), the newest class of antiretroviral drugs,has a high genetic barrier and can be used in individuals that previously exhibited resistance to other classes of drugs. The World Health Organisation (WHO) approved the use of Dolutegravir (DTG) as part of first-line cART. Methods This is a descriptive experimental design study, which aimed to identify IN natural occurring polymorphisms (NOP) among different HIV-1 group M subtypes and Drug resistance mutations within the HIV-1 pol gene fragment of INSTI naïve patients from South Africa (SA) and Cameroon (CR), using the Stanford University genotypic resistance interpretation algorithm. Structural computational methods that included; homology modelling, molecular docking, molecular dynamics simulations and interaction analysis was performed to understand the structural impact of mutations from diverse HIV-1 subtypes on DTG drug binding. ResultsWe observed low-level RAMs against INSTIs in SA (2.2%) and CR sequences (5.4%). Through Fisher’sexact test we noted that the two NOPs occurred: VI72I and R269K, with p-values ≤0. 05, were statistically enriched. The impact of having these mutations are yet to be fully understood. Through molecular modelling and stability predictions, we observed a destabilizing effect of the known G140S mutant on the HIV-1C IN protein structure and simulation analysis showed that it affected structural stability and flexibility of the protein structure. Interactions analysis of different drug binding conformations to different HIV-1 IN subtypes reported differences in the number of binding interactions to different HIV-1 IN subtypes, but we did not observe any significant differences in binding affinity for each INSTIs. This implies no significant alteration to the binding site in the wild type IN, which may not prevent INSTIs drug binding. In addition, all accessory mutations that resulted in a change in the number of interactions encompassing residues were found within the stable alpha-helix secondary structure element and not in close proximity to the drug active site.ConclusionThe study data indicate that RAMS against INSTIs remain low both in SA and in CR.Subtype C in SA and CRF02_AG in CR continues to be the driving force ofthe epidemic. We further reported on the impact of various NOPs on drug susceptibility. The analyses suggested that NOPs does not have an impact on IN protein structure and stability,and does not affect drug binding in the WT IN, but the known mutation G140S affect DTG binding. The study support recommendations made by the WHO to use DTG as part of salvage therapy in patients with RAM’s and accessory mutations. Data obtained from thisstudy can help to tailor effective treatment strategies in the African population, where diverse HIV subtypes circulate.