Doctoral Degrees (Genetics)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Genetics) by browse.metadata.advisor "Burger, J. T."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe development and characterisation of grapevine virus-based expression vectors(Stellenbosch : University of Stellenbosch, 2010-03) Du Preez, Jacques; Burger, J. T.; Goszczynski, D. E.; Stephan, D.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Genetics.ENGLISH ABSTRACT: Grapevine (Vitis vinifera L.) is a very important agricultural commodity that needs to be protected. To achieve this several in vivo tools are needed for the study of this crop and the pathogens that infect it. Recently the grapevine genome has been sequenced and the next important step will be gene annotation and function using these in vivo tools. In this study the use of Grapevine virus A (GVA), genus Vitivirus, family Flexiviridae, as transient expression and VIGS vector for heterologous protein expression and functional genomics in Nicotiana benthamiana and V. vinifera were evaluated. Full-length genomic sequences of three South African variants of the virus (GTR1-1, GTG11-1 and GTR1-2) were generated and used in a molecular sequence comparison study. Results confirmed the separation of GVA variants into three groups, with group III (mild variants) being the most distantly related. It showed the high molecular heterogeneity of the virus and that ORF 2 was the most diverse. The GVA variants GTG11-1, GTR1-2 and GTR1-1 were placed in molecular groups I, II and III respectively. A collaboration study investigating the molecular divergence of GVA variants linked to Shiraz disease (SD), described two interesting GVA variants of group II, namely GTR1-2 and P163-M5 (Goszczynski et al., 2008). The group II variants were found to be closely linked to the expression of SD. GTR1-2 was isolated from a susceptible grapevine plant that never showed SD symptoms (Goszczynski 2007). The P163-M5 variant that resulted in exceedingly severe symptoms in N. benthamiana and is that used as SD positive control by the grapevine industry, was found to contain a 119 nt insert within the native ORF2. Comparative analysis performed on the complete nt and aa sequences of group II GVA variants suggested that the components in the GVA genome that cause pathogenicity in V. vinifera are more complex (or different) to those that cause pathogenicity in N. benthamiana. The three South African variants (GTR1-1, GTG11-1 and GTR1-2) were assembled into fulllength cDNA clones under control of CaMV 35S promoters. After several strategies were attempted, including a population cloning strategy for GTR1-2, none of the clones generated were able to replicate in N. benthamiana plants. A single amino acid substitution at position 13 (Tyr/Y Cys/C) in ORF 5 of the GTR1-2 cDNA clone was shown to abolish or reduce replication of the virus to below a detectable level. Two infectious clones of Israeli variants of GVA (T7-GVA-GR5 and T7-GVA118, obtained from M. Mawassi) were brought under control of a CaMV 35S promoter (35S-GVA-GR5 and 35S-GVA118). Both clones were infectious, able to replicate, move systemically and induce typical GVA symptoms after agroinfiltration in N. benthamiana. These Israeli clones served as backbone for further experiments in characterisation of transient expression and VIGS vectors. The use of GVA as gene insertion vector (35S-GVA118) and gene exchange vector (35S-GVA-GR5- ORF2+sgMP) in N. benthamiana and V. vinifera was compared. The gene insertion vector, 35S-GVA118 was based on the full-length GVA genome. The gene exchange vector, 35SGVA- GR5- ORF2+sgMP, was constructed in this study by elimination of ORF 2 and insertion of a sgMP and unique restriction sites to facilitate transgene insertion. In N. benthamiana both vectors showed similar GUS expression levels and photobleaching symptoms upon virus-induced NbPDS silencing. In V. vinifera limited GUS expression levels and VIGS photobleaching symptoms were observed for the gene insertion vector, 35SGVA118. No GUS expression was observed for the gene exchange vector 35S-GVA-GR5- ORF2+sgMP in this host. As for silencing, one plant, agroinfiltrated with 35S-GVA-GR5- ORF2-VvPDS+sgMP, developed photobleaching symptoms in 3 systemic infected leaves after 4 months. This study showed that GVA can be used as gene insertion and gene exchange vector for expression and VIGS in N. benthamiana, but in grapevine its use is limited to expression and silencing of genes in the phloem tissue. It is also the first report that ORF 2 of GVA is not needed for long distance movement in grapevine. To investigate the possible role of the P163-M5 119 nt insertion and the GVA ORF 2 (of unknown function), in expression of symptoms in plants, ORF 2 of a 35S-GVA-GR5 cDNA clone was removed and subsequently substituted by the corresponding ORFs of four South African GVA variants. Upon agro-infiltration into N. benthamiana leaves, all chimaeric GVA constructs were able to move systemically through the plant. At this stage no correlation could be found between severity of symptoms, the presence of the P163-M5 insert and the specific GVA ORF 2 present in the chimaeras, indicating that other factors in the viral genome or the host plant probably play a crucial role. This study contributed to the pool of available in vivo tools for study and improvement of the valuable grapevine crop. It also opened several exciting research avenues to pursue in the near future.
- ItemMolecular characterisation of South African isolates of grapevine fanleaf virus and a new, associated satellite RNA(Stellenbosch : Stellenbosch University, 2013-12) Lamprecht, Renate Luise; Burger, J. T.; Stephan, D.; Stellenbosch University. Faculty of AgriSciences. Dept. of Genetics.ENGLISH ABSTRACT: Grapevine fanleaf virus (GFLV) is one of the oldest, most widespread and devastating viruses infecting grapevine, and occurs globally where Vitis vinifera is grown. In South Africa (SA) GFLV is predominant in the Breede River Valley, one of the highest wine producing regions in SA. To date, only three GFLV isolates have been completely sequenced internationally, and limited sequence information is available for SA GFLV isolates. In this study, the first full-length GFLV genome sequence from a South African isolate, GFLV-SAPCS3, was determined. Full-length sequences were used for phylogenetic analysis and revealed that the SA isolates are separate from other sequenced GFLV isolates. Full-length sequences were also used to investigate putative intra- and interspecies recombination events involving GFLV-SAPCS3 RNA1 and RNA2 between GFLV and Arabis mosaic virus (ArMV) isolates. Using two different recombination analysis software packages, the most notable of the putative recombination events involving GFLV-SAPCS3 indicated that the GFLV-SAPCS3 RNA2 5’ UTR might have evolved from an interspecies recombination event between GFLVF13- type and ArMV Ta-type isolates. The presence of satellite RNAs (satRNA) associated with South African GFLV isolates was also investigated. In a collaborative study (see Chapter 4 for details), more than a 100 GFLV- infected grapevine plants were screened for satRNAs. SatRNAs were present in only two plants, containing isolates GFLV-SACH44 and GFLV-SACH47. The full-length nucleotide sequences of the GFLV-SACH44 genomic RNAs 1 and 2, and the associated satRNA were determined. No significant sequence variation could be detected between the GFLV isolates that had the presence of a satRNA and those that had not. The GFLV-SACH44 RNA2 5’ UTR also had the same conserved sequence that was found in GFLVSAPCS3, which suggests that GFLV-SACH44, like GFLV-SAPCS3, may have arisen from a common ancestor, which may have originated from an interspecies recombination event. The GFLV-SACH44 satRNA was found to be more closely related to the ArMV large satRNA than to the satRNA associated with GFLV-F13. A full-length cDNA clone of GFLV-SACH44 satRNA was constructed and its replication and systemic spread in herbaceous hosts, when mechanically co-inoculated with two GFLV isolates as helper viruses, was demonstrated. Replication of the GFLV-SACH44 satRNA cDNA clone was however abolished when co-inoculated with an ArMV helper virus, even though it is phylogenetically more closely related to ArMV satRNAs. The full-length satRNA clones were modified to be used as vectors for expression and/or silencing of foreign genes, by inserting the green fluorescence protein (GFP) full-length or partial sequences downstream of the open reading frame of the satRNA. These constructs were cloned into a binary vector to allow for agro-infiltration into plants. Full-length cDNA clones of GFLV-SAPCS3 RNA1 and RNA2 were constructed to be used in conjunction with modified GFLV-SACH44 satRNA full-length clones. The full length GFLV-SAPCS3 RNA1 and RNA2 clones were however not infectious in Nicotiana benthamiana after agro-infiltration and therefore the evaluation of the modified satRNA expression and silencing constructs had to be aborted. Attempts to understand this failure revealed that, among other point mutations, four frameshifts had occurred in the RNA1 full-length clone, rendering the transcripts untranslatable, and hence noninfectious. Strategies to correct the mutations are discussed. Once these mutations have been corrected this study can continue in evaluating the use of the satRNA component for expression and silencing analysis.
- ItemSmall RNA profiling of grapevine leafroll-associated virus 3 infected grapevine plants(Stellenbosch : Stellenbosch University, 2016-12) Bester, Rachelle; Maree, H. J.; Burger, J. T.; Stellenbosch University. Faculty of AgriSciences. Dept. of Genetics.ENGLISH ABSTRACT: One of the most important viral diseases of grapevine worldwide is grapevine leafroll disease (GLD). A number of viruses from the family Closteroviridae have been associated with this disease, though Grapevine leafroll-associated virus 3 is considered the leading causative agent due to its consistent association with GLD. To better understand the disease and develop effective control strategies, it is necessary to characterise the molecular interactions between the virus and the plant. Small RNA (sRNA) molecules have been shown to play an important role in gene regulation of normal development and defence responses to biotic and abiotic stresses in plants. Therefore, the aim of this study was to characterise the sRNA species in healthy and infected grapevine to contribute to the growing database of sRNAs present in Vitis vinifera. Microarray analysis and next-generation sequencing was used to identify sRNA species in Chardonnay, Chenin blanc, Cabernet Sauvignon and own-rooted Cabernet Sauvignon plants. Differential expression of sRNAs was evaluated to identify sRNAs associated with GLRaV-3 infection. The modulation of the differentially expressed microRNAs (miRNAs) was validated with stemloop RT-qPCR assays. Transcriptome NGS was also performed to validate the differential expression of the predicted miRNA targets, and to identify metabolic pathways modulated in response to GLRaV-3 independently from sRNA regulation. The transcriptome NGS transcripts that were differentially expressed in all cultivar groups, and transcripts that anti-correlated with miRNA expression, were validated with RT-qPCR assays. These highthroughput approaches identified several differentially expressed sRNAs and (target) genes in infected plants. The anti-correlation of miRNA expression and putative target expression were shown for two miRNAs. Cultivar specificity was identified in the sRNA and gene expression analyses, and both approaches identified Chenin blanc-specific responses. This comparison of symptomatic and asymptomatic GLRaV-3-infected plants provides the first insight into the disease symptom inhibition observed in certain cultivars. The differentially expressed genes identified in all cultivar groups, using the NGS transcriptome data, provides a collection of genes displaying a potentially universal molecular response against GLRaV-3. These genes showed strong associations with cell wall biosynthesis and signalling during pathogen recognition. This study has contributed significantly to the knowledge of sRNAs produced in grapevine and significantly extended the existing sRNA reference database for grapevine. The knowledge generated in this study can be utilised as potential targets for grapevine functional studies, and be translated into potential management strategies to control the disease. A better understanding of both the host defence and viral counter-defence strategies can lead to the prevention of virus replication or the impaired ability of the virus to induce pathogenesis in plants.