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Abstract

Metabolic Control Analysis (MCA) provides a powerful quantitative framework for un-
derstanding and explaining the control and regulation within a cellular system. MCA
allows the global control of a steady-state system to be quantified in terms of control
coefficients, which we can express in terms of the local properties referred to as elasticity
coefficients. MCA relates elasticities to control coefficients through a matrix inversion,
thus allowing scientists to predict and quantify how the kinetics of the individual en-
zymes affect the systemic behaviour of cellular systems. Traditionally we solved this
problem numerically, while we used algebraic and symbolic control analysis techniques
less frequently. By using symbolic algebraic computation we present a general imple-
mentation of the symbolic matrix inversion of MCA, known as SymCA, which requires
only the description of any allosteric modifier interactions and the stoichiometry of a
cellular system. The algebraic expressions generated allow an in-depth analysis of the
distribution of the control within a system and also of the parameters which exhibit
the greatest effect on this control distribution. This also applies when the exact values
for the elasticities or control coefficients are unknown. We have demonstrated that by
quantifying the control patterns, referred to as ‘routes of regulation’, inherent in all con-
trol coefficient expressions, we can gain insight into how perturbations are propagated
through a cellular system and which regulatory pathways are favoured under changing
conditions.
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Opsomming

Metaboliese Kontrole-Analise (MKA) bied ’n kragtige kwantitatiewe raamwerk om die
beheer en regulering binne sellulêre sisteme te verstaan en te verduidelik. ’n Sleutelaspek
van MKA is dat die globale beheer van ’n sisteem met ’n bestendige toestand gekwan-
tifiseer kan word in terme van kontrole-koëffisiënte en dat hierdie koeffisiënte uitgedruk
kan word in terme van die sisteem se lokale eienskappe, genaamd elastisiteitskoëffisiënte.
Deur van matriksinversie gebruik te maak kan MKA die verband tussen elastisiteit-
skoëffisiënte en kontrole-koëffisiënte aflei wat mens in staat stel om te sien hoe die kinetika
van die individuele ensiemreaksies die sisteemgedrag op sellulêre vlak bëınvloed. Dié
probleem word tradisioneel hoofsaaklik op numeriese wyse bereken terwyl die gebruik
van algebräıese en simboliese kontrole-analise minder gereeld gebruik word. In hierdie
proefskrif verskaf ons, deur van simboliese algebräıese metodes gebruik te maak, ’n gener-
iese implementasie van die simboliese matriksinversie van MKA, genaamd SymCA, wat
slegs ’n beskrywing van ’n sellulêre sisteem se allosetriese interaksies en die stoichiome-
trie benodig. Die algebräıese uitdrukkings sodanig gegenereer stel mens in staat om
’n in-diepte analise te doen om vas te stel waar die beheer binne ’n sisteem lê, asook
watter parameters die grootste effek op die kontrole-verspreiding het. Dit geld selfs in
die geval waar die presiese waardes van die elastisiteitskoëffisiënte of kontrole-koëffisiënte
onbekend is. Hierdie proefskrif demonstreer hoe die kwantifisering van kontrole-patrone,
ook gesien as ’roetes van regulering’, wat inherent is aan kontrole-koëffisiënt vergelyk-
ings, mens in staat stel om te sien hoe perturbasies in ’n sellulêre sisteem voortplant en
watter regulatoriese paaie bevoordeel word onder veranderde kondisies.
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Chapter 1

Introduction

1.1 The emergence of Systems Biology

During the 20th century, biology developed into a major interdisciplinary field as a result
of numerous discoveries pushing it ahead. An in-depth look into the history of biology
is beyond the scope of this study, but there are a few key events which we will highlight.
One key event is the elucidation of the organisation of living cells with specific reference
to the discovery of enzymes, metabolic pathways, the structure of DNA [120] and the
determination of DNA sequences of the genomes of numerous organisms, including that
of humans [22, 117]. Several key scientists are associated with the discovery of enzymes.
In 1987 Eduard Buchner discovered that alcoholic fermentation could occur in cell-free
yeast extracts [24, 29, 31]. In 1926 James Sumner successfully isolated and crystallised
urease and proposed that all enzymes are proteins [108]. Leonor Michaelis and Maud
Menten established the basic concepts of enzyme inhibition [29], and J.B.S. Haldane
developed our current understanding of enzyme catalysis.

The enzyme research outlined above required the development of new techniques, in-
cluding chromatography, metabolic gas manometry, spectrophotometry, stable and ra-
dioactive isotopes for use as tracers for intermediary metabolites. The techniques for
purification of proteins and other macromolecules also developed and gave rise to the
basic outlines of cell biochemistry [43]. The past biological achievements continue to
have a tremendous impact on technology and our understanding of living organisms.
Presently, there is a vast amount of knowledge associated with our understanding of na-
ture, and this data increases daily. During the 21st century there has been an explosion
in the amount of organism wide data as a result of the ‘omics’ fields such as genomics,
proteomics and metabolomics. This data is stored in extensive databases such as the
NIH genetic sequence database GenBank [15], SWISSPROT housing annotated pro-
tein sequences [19], the KEGG (Kyoto Encyclopedia of Genes and Genomes) database
[69, 70, 71] and the protein data bank (PDB), which is a resource for studying biological
macromolecules [17].

1
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In addition to the aforementioned databases, the Human Genome Project has irre-
versibly altered the practice of biology for studying the elements of a system, either
one or a few at a time [11]. As outlined by Hood [59], these changes include the reali-
sation that biology is in essence an informational science requiring the use of computer
science, mathematics and statistics to uncover biological complexity. These changes have
led to a fresh approach to biology, which has been termed Systems Biology. Systems
Biology aims to study the interrelationships of all the elements in a system as opposed
to the traditional one-at-a-time approach [59]. Many scientists have suggested that the
integration of molecular biology, genetics and cell biology into the interdisciplinary field
of Systems Biology will enable biology to advance to the next level [11, 59, 62, 74, 125].

Specifically, metabolism is one field that we have studied traditionally as sets of chemical
reactions catalysed by separate enzymes. This approach is unsatisfactory in the study
of the nature of life, and to gain an understanding of metabolism, we must treat it as
a system. Some scientists have suggested that if metabolism is not studied as a whole,
the systemic aspects crucial for the optimal functioning of an organism may go unno-
ticed due to the fact that a living organism is responsible for making and maintaining
itself and its components [32]. Metabolic Control Analysis (MCA) illustrates that the
state of a cell is integral in determining the associated control distribution and that the
control properties of specific processes concerned with systemic properties are invariably
distributed over many processes [48, 65].

In its current form Systems Biology makes use of mathematical models of cellular path-
ways in an attempt to replicate their in vivo behaviour. The aim of these models is to
gain a quantitative understanding about how we can explain the properties of biological
systems in terms of the characteristics and interactions between their macromolecular
components. To aid this process, Systems Biology makes use of computer models to
integrate this information and that of molecular interactions. Scientists have proposed
that if we link the kinetic models of parts of metabolism together, it may be possible
to begin creating kinetic models of larger pieces of metabolism, with the ultimate goal
being the creation of a single kinetic model depicting the entire living cell. This single
kinetic model is referred to as the ‘Silicon Cell’ [111, 112, 121].

1.2 Metabolism – an introduction

For all organisms to maintain life, i.e. feed, grow and reproduce, a set of chemical re-
actions, commonly referred to as metabolism, is required. Metabolism constitutes the
flow of molecules and energy through pathways of chemical reactions [38]. Metabolism,
metabolic regulation and enzymology are some of the central areas of traditional bio-
chemistry that we have generally regarded as solved. These metabolic processes are
generally divided into two groups, anabolic and catabolic. The anabolic processes are
involved with the utilisation of energy to generate complex molecules, such as nucleic
acids and proteins, from simple ones. On the other hand, the catabolic processes break
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down these complex molecules into simple ones with the release of energy, such as gly-
colysis in which glucose is broken down into pyruvate with the release of high energy
compounds in the form of ATP and NADH.

Figure 1.1: A generic overview of metabolism, adapted from Fell [37]. Of importance
is that the complex molecules produced by anabolism are not necessarily the same ones
that are broken down by catabolism.

Metabolic reactions are organised into sequences known as metabolic pathways in which
the reactions are catalysed by enzymes and the product of one reaction serves as the
substrate of the next reaction. The full extent of all metabolic pathways forms a com-
plex network of patterns. Some patterns are linear pathways such as the synthesis of
tryptophan from chorismate, other patterns are branched pathways, whilst others, such
as the Krebs cycle, form closed cycles [78].

Recently problems concerning metabolic control and regulation were tackled either by
identifying the molecular details of the underlying mechanisms or by formulating quali-
tative descriptions of the system’s behaviour. Traditionally biochemists discovered path-
ways through isolating and characterising each step that aided the conversion of a defined
substrate to a given product [112]. These traditional approaches led to the notion that for
any given pathway there was a single controlling or ‘rate-limiting’ step; this assumption
is still the norm in many current biochemistry textbooks [16, 26, 81]. The assumption
gives rise to the implication that if a ‘rate-limiting’ step exists, then by varying that step
alone, a change in the pathway flux will occur, and that by varying any of the other steps
no change will occur. A prime example dispelling this notion is phosphofructokinase in
yeast, which was believed to be the ‘rate-limiting’ enzyme of glycolysis. Experiments
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have shown that a 3.5 fold increase in this enzyme activity had no significant effect on
the anaerobic glycolytic flux [39].

A few researchers remained unconvinced about the notion of a ‘rate-limiting’ step,
and believed that there were underlying flaws with the biological explanations given
for metabolic control and regulation. This led to two schools of thought in the early
1970s. Savageau developed Biochemical Systems Theory as a means of quantitatively
analysing metabolic behaviour [100]. At the same time two independent groups, Kacser
and Burns [65], and Heinrich and Rapoport [48, 47] developed metabolic control anal-
ysis, which showed that there is seldom one ‘rate-limiting’ step, but in fact that the
enzymes in a pathway tend to share the control of flux. These biochemists have since
been vindicated by the dramatic and rapid advances in biochemistry, which have led to
the emergence of fields such as genetic engineering and systems biology.

This thesis will focus on the framework of metabolic control analysis, and will use this
framework as the basis for developing a symbolic (or algebraic) analysis in the form of a
software package designed for use with PySCeS [84] to aid the investigation of metabolic
regulation. PySCeS is a software package developed by our group for the purposes of
performing metabolic control analysis on cellular systems.

1.3 Metabolic Control Analysis

Metabolic Control Analysis (MCA), is a powerful quantitative framework for analysing
and quantifying the control and regulation of cellular pathways [37, 38, 79]. MCA en-
ables the quantification of the steady-state properties of a system in terms of its global
properties (referred to as control coefficients) and the local properties (referred to as
elasticity coefficients). MCA equips biochemists with a robust mathematical and theo-
retical framework providing a means of quantifying the controls governing cellular pro-
cesses [126].

Since its inception, a select group of researchers have further advanced, refined and
expanded the theory and applications of MCA to formulate the present day theoretical
body [126]. A number of formulisms of MCA exist [27, 28, 44, 45, 51, 87]. The work in
this thesis stems directly from a dissertation by Hofmeyr [51], in which he presents the
algebra underlying MCA. MCA is not limited to the study of metabolic systems, and
a number of extensions have been presented to various types of systems, for example,
hierarchical or multi-level systems [58, 67], modular systems [23, 92, 106], oscillating sys-
tems [18, 36], signal transduction pathways [73] and generalised supply-demand analysis
[90].

In its most elementary form, MCA is concerned with the steady-state behaviour of
systems of enzymes that link a series of metabolites. For these systems to attain a
steady-state they require two or more reservoirs of metabolites with concentrations that
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are fixed independently of the enzymes within the system, and are thus referred to as
external. These reservoirs include a source from which metabolites flow and at least one
area to which they flow, the sink [30].

The underlying theory of MCA is essentially sensitivity analysis, which is integral to
a number of varied fields such as reaction kinetics, air pollution, weather forecasting and
economics. Like MCA, all these systems consist of sets of coupled, nonlinear equations
that can be in the form of differential, integral or algebraic equations. These systems
may contain hundreds of equations, a large number of parameters and an equally large
number of output and internal variables [33, 37]. Solutions for these large sets are only
possible with the aid of computer simulation for which a number of dedicated packages
exist, such as PySCeS [84], Jarnac [95] and Copasi [60]. Once a solution has been ob-
tained, we are still faced with the question of how sensitive the solution is to variations
of or inherent uncertainties in the parameters of the equation set.

This concept of sensitivity is central to our understanding of how systems behave. It
is critical to know how sensitive output variables (such as fluxes or metabolite concen-
trations) are either to changes in or uncertainties in the parameters (such as enzyme
concentration), and which variables are either sensitive or insensitive to which parame-
ters [33]. The concept of sensitivity relates the magnitude of the effect of small change
(perturbation) in a parameter on a metabolic system property and is mathematically
related to the properties of the individual components of the system [37].

Metabolic control analysis revolves around the use of ‘coefficients’ in order to describe
metabolic control. Traditionally these coefficients have been ratios of relative changes
or fractional changes, which have the advantage of being dimensionless. Two types of
coefficients were proposed; local, referring to the properties of the individual enzymes
within a system, and global, concerned with the response of the system as a whole, i.e.
the systemic effect.

These coefficients were defined with the aim of providing the quantitative means with
which to describe the global properties of systems of reactions in terms of the individual
catalytic steps [118]. This was achieved in the form of the control, elasticity and response
coefficients, and with connectivity and summation theorems. The control and response
coefficients describe the global properties of the system and the elasticity coefficients
describe the local properties.

1.3.1 Local properties

Elasticity coefficients

The elasticity coefficient (‘elasticity’) is a major concept of MCA, and is used to de-
scribe the response of the isolated rate of an enzyme or transporter to a perturbation
in the concentration of a substrate, product or effector. In other words, elasticities are
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used to quantify the effect of some form of an effector on the rate of an isolated enzyme
under locally specified conditions. The algebraic expression representing an elasticity
is normally obtained by differentiation of its rate law, which is then multiplied by the
effector concentration and divided by the rate law itself. This results in a dimensionless
expression, which is generally expressed in terms of a partial derivative [127]. Elasticities
are represented by an epsilon and can be demonstrated with a simple example.

S 1 // P

Figure 1.2: A schematic representation of a simple chemical reaction where a substrate
(S) is converted to a product (P) in the presence of an enzyme (1).

For the system in Figure 1.2 there are three distinct elasticity coefficients. Two coeffi-
cients are concerned with the effects of S and P on the rate of the enzyme reaction, and
the third coefficient is related to the effect of the enzyme concentration on the rate of
the enzyme reaction. For example, if the substrate and enzyme concentrations are kept
constant we can deduce the elasticity coefficient for the product in terms of the reaction
rate by varying the product concentration around its steady-state value. This example
is expressed by the equation below where p refers to the product and υ refers to the rate
of the reaction catalysed by the enzyme labelled 1 in Figure 1.2.

ευp =

(
∂υ/υ

∂p/p

)
s,e

(1.1)

In the same manner we can obtain the elasticity coefficients for the substrate s and
the enzyme concentration e and represent them by the following equations.

ευs =

(
∂υ/υ

∂s/s

)
p,e

(1.2)

ευe =

(
∂υ/υ

∂e/e

)
s,p

(1.3)

As mentioned earlier, once we know the rate of a reaction, it is possible to obtain an
explicit equation for an elasticity coefficient. We can demonstrate this using the simple
reaction in Figure 1.2. The rate can be expressed by the following equation, using re-
versible Michaelis-Menten kinetics.

υ =

V f
Ks(s−

p
Keq)

1 + s
Ks + p

Kp

(1.4)
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Partial differentiation with respect to s or p and subsequent scaling of the partial deriva-
tive with s/v and p/v respectively, results in the elasticity coefficients towards s and p:

ευs =
1

1− Γ
Keq

−
s
Ks

1 + s
Ks + p

Kp

(1.5)

ευP =

−Γ
Keq

1− Γ
Keq

−
p
Ks

1 + s
Ks + p

Kp

(1.6)

where Γ is defined as the mass action ratio, i.e. the ratio of the product concentra-
tions to substrate concentrations each raised to the exponent equal to the stoichiometry
of the species in the reaction, and Keq is the equilibrium constant which is equal to Γ
at equilibrium. The above example and equations are presented by Fell in [39].

1.3.2 Global properties

Control and response coefficients

Since all the parameters (such as enzyme concentrations) of a system are responsible
for setting the steady-state of a system, it is intuitive that a change in any parameter
will have a subsequent effect on the steady-state. However, the theory behind MCA
revolves around the idea that all the steps (reactions) within a system contribute to the
overall system behaviour. This presents the challenge on how a change in a parameter
that effects a specific step (e.g. perturbation of an enzyme rate), can best describe the
sensitivity of a steady-state variable towards this parameter change that effects the step
directly.

X0
1 // S1

2 // S2
3 // X2

X1

OO

Figure 1.3: A schematic representation of a simple linear pathway consisting of three
enzymes (1,2,3), a source (X0), a sink (X2), an external effector (X1) and two variables
(metabolites S1 and S2).

The global coefficients quantify these systemic responses in response to local perturba-
tions. Control coefficients quantify how a change in an enzyme activity affects either a
flux or a metabolite concentration, whereas response coefficients describe the effect of a
change of an external parameter, such as the concentration of an extracellular compo-
nent, on the fluxes and metabolite concentrations [118]. To fully understand the concepts
for both response and control coefficients it is best to describe them in terms of a simple
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thought experiment, as illustrated in [65].

Consider a steady-state flux J1, which is the rate of the Step 1 indicated by 1 at
steady-state in Figure 1.3. In Figure 1.3 we can clearly see that X1 only influences
Step 1, and for this explicit example we will consider it to be an external effector with
a concentration of x1. If a small change (δx1) is made to parameter X1, a whole se-
quence of events unfolds. The change in x1 results in an increase in the rate of Step 1,
which in turn has an effect on the concentrations of its substrates and products. These
changes affect the rates at which the metabolites interact, thus the small change made in
x1 spreads through the system by changing the metabolites linking the reaction network.

The change in Step 1 reverberates through the system, which proceeds through a tran-
sient state before the system once again reaches a steady-state. This steady-state will be
different from the original steady-state since one of the parameters has changed. Thus
the fractional change in X1 (∂x1/x1) results in a fractional change in the steady-state
flux J1 (∂J1/J1). We have defined the ratio of these changes as the response coefficient,
and it provides a quantitative means with which to describe how a parameter acting on
a local step results in a systemic response, in this case a change in steady-state flux. We
define a response coefficient mathematically as:

RJ1x1 =
∂J1/J1

∂x1/x1
(1.7)

We now have a means of describing the response of a steady-state variable (i.e. J1)
to a perturbation in a parameter, but need to address a quantitative means of describ-
ing the response of a steady-state variable (a flux or metabolite concentration) to a
change in the rate through a step. The elasticity coefficient provides a means of describ-
ing the effect of ∂x1 on the local rate vi:

εvix1 =
∂vi/vi
∂x1/x1

(1.8)

If we consider the ratio of the systemic effect of ∂x1/x1 on J1 and the local effect of
∂x1/x1 on vi we obtain the following expression:

(
∂J/J

∂x1/x1

)
/

(
∂vi/vi
∂x1/x1

)
=
RJ1x1
εvix1

(1.9)
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Since ∂x1/x1 is found in both the numerator and the denominator, we can cancel it
from the expression resulting in:

∂J1/J1

∂vi/vi
=
RJ1x1
εvix1

(1.10)

Now we can clearly see that the resultant expression is the ratio of the change in a
steady-state variable to the change in the local rate of Step i. We commonly refer to this
ratio as the control coefficient of Step i. The following expression represents the general
case which applies for concentration and flux-control coefficients, where y represents a
steady-state variable:

Cy
i =

∂y/y

∂vi/vi
(1.11)

Therefore there are both flux and concentration control coefficients. From Equations
1.10 and 1.11 we can see that:

Cy
i =

Ry
x

εvix
or Ry

x = Cy
i ε
vi
x (1.12)

In Equation 1.12, x can be any parameter that acts specifically on step i, and it is
apparent that the response coefficient is always the product of a control coefficient and
a elasticity coefficient. This relationship is known as the combined response relationship
[65].

1.4 Control properties of MCA

Now that the local and global (systemic) properties within MCA have been introduced,
it is important to highlight that the elasticity and control coefficient values are subject
to a variety of constraints and inter-relationships, which are collectively known as the
theorems of Metabolic Control Analysis [37]. The first theorem, the Summation Theo-
rem, demonstrates that the enzymes of a pathway can share the control of flux and is
independent of the individual kinetic properties of the enzymes. The second theorem,
the Connectivity Theorem, provides a means to relate the properties of the individual
enzymes to the systemic behaviour.
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1.4.1 Summation Theorem

On developing Metabolic Control Analysis, Kacser and Burns [65] found that if all the
enzymes affecting a particular metabolic flux are taken into account, and the values of
their control coefficients on that flux added up, then the sum is 1. Therefore, for a
system of n enzymes:

CJ1 + CJ2 ...+ CJn = 1 or
n∑

i = 1

CJi = 1 (1.13)

Heinrich and Rapoport [48] defined the second summation relationships, the sum of
concentration control coefficients. This property is concerned with the steady-state
concentrations of a linear system, and states that the sj-control coefficients for all steps
within a metabolic system sum to zero:

C
sj
1 + C

sj
2 ...+ C

sj
n = 0 or

n∑
i = 1

C
sj
i = 0 (1.14)

These two properties demonstrate how the global properties of a system are related. We
can see clearly that the summation property of flux-control coefficients is key in terms
of its role in dispelling the myths behind a single ‘rate-limiting’ step [39].

1.4.2 Connectivity Theorem

The Connectivity Theorem, derived by Kacser and Burns in 1973 [39, 65], provides the
key to answering the question of how the flux control coefficients of enzymes can be
related to the kinetic properties of the enzymes. This theorem is widely regarded as
being the most meaningful of the theorems, since it provides a means of understanding
how the kinetics of the enzymes affect the values of the flux control coefficients [37].

Within a metabolic system, if we isolated one pathway metabolite (S1) and found all
enzymes interacting with S1, e.g. a, b and c, the connectivity theorem then states that
for each of these enzymes, if one created a term of its flux control coefficient for a par-
ticular flux and multiplied it by its elasticity for S1, then the sum of these terms is 0
[126, 39, 30].

CJa ε
a
S1

+ CJb ε
b
S1

+ CJc ε
c
S1

= 0 (1.15)

Like the summation theorem, the connectivity theorem has two distinct general proper-
ties. The first property is the connectivity between flux-control coefficients and elastici-
ties:

n∑
i = 1

CJmi εvisj = 0 (1.16)

The second property is concerned with the connectivity between the concentration-
control coefficients and elasticities:

n∑
i=1

C
sj
i ε

vi
sk

= −δjk (1.17)
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where Jm refers to a specific system flux, Sj indicates the variable metabolite pool and
δjk refers to the Kronecker delta (= 1 if j = k; otherwise = 0).

The second connectivity property was defined by Westerhoff and Chen in [122]. Al-
though both theorems were originally defined for linear systems, they have since been
extended and developed for both branched and unbranched pathways as well as for
networks containing substrate cycles and moiety-conserved cycles [40, 56].

1.5 Equations of MCA

When combined, the summation and connectivity theorems allow the expression of con-
trol coefficients in terms of elasticity coefficients. According to Hofmeyr [51], this is
arguably the most powerful feature of metabolic control analysis. We refer to the result-
ing equation as the control-matrix equation:

1.5.1 The control-matrix equation

A matrix formulation exists within metabolic control analysis which infers that the elas-
ticity matrix for any system can be multiplied by the corresponding control matrix to
yield an identity matrix. This generalised matrix formulation, known as the control-
matrix equation, was initially derived by Reder in 1988, and emphasises that the struc-
tural characterisations and properties of a system are only dependent on the structure
of the network and not on the reaction kinetics [87]. This formalism serves as the first
concrete mathematical foundation of MCA. Numerous variations of this equation have
subsequently been proposed [27, 28, 40, 44, 66, 98, 99, 106, 123, 124]. We will present
the variation described in [53, 55] in more detail, as this variation forms the basis of this
thesis.

Reder’s formalism was developed in unscaled form whereas Hofmeyr et al. described
a derivation in scaled form [55]:

[
CJ

CS

] [
K −εsL

]
=

[
K 0
0 L

]
(1.18)

where CJ is an n × n matrix of scaled flux-control coefficients, Cs an m × n matrix
of scaled concentration-control coefficients, and εs an n ×m matrix of scaled elasticity
coefficients. n represents the number of reactions and m indicates the number of variable
metabolites in the pathway. As per Reder [87], the K matrix expresses the dependence
of the steady-state fluxes on the independent fluxes, and the L matrix expresses the
dependence of the differential equations on the independent differential equations. In
this case both the K and L matrices have been scaled. The use of the scaled forms of
the various matrices for control analysis is generally the preferred method; Hofmeyr and
colleagues [51, 52, 55] all provide sound examples of this scaling procedure.
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The control-matrix can be further partitioned in terms of independent and dependent
variables to produce: 

CJi

CJd

Csi

Csd

 [ K −εsL
]

=


In−r 0
K0 0
0 Ir
0 L0

 (1.19)

Hofmeyr [51, 53] has shown that by extracting the equations for the independent vari-
ables (Ji and Si) we can simplify the equation further. The steps involved are:[

CJi

Csi

] [
K −εsL

]
=

[
In−r 0

0 Ir

]
(1.20)

which, if Ci = [CJiCsi ]T and E = [K − εsL], can be written as:

CiE = In (1.21)

Ci is the matrix representing all independent systemic properties and E is the matrix
representing all structural and local properties for the system.

Both Ci and E are square invertible n × n matrices in the absence of moiety-conservation
(see Hofmeyr and Cornish-Bowden [53]), which implies that Equation 1.21 can also be
written as ECi = I. An important property is that Ci and E are inverses of each
other. The implication is that control coefficients can be calculated from the elasticity
coefficients:

Ci = E−1 (1.22)

and that the opposite is also true, so that elasticity coefficients can be calculated from
control coefficients [51]:

E = (Ci)−1 (1.23)

1.5.2 The inverse problem

Since Ci = E−1, the implication is that if the elasticity coefficients have been determined
experimentally or by calculation, we can calculate the control coefficients with respect
to the independent concentrations and fluxes by inversion of E. We can then calculate
the dependent control coefficients using the following relationships [51]:

CJd = K0C
Ji (1.24)

Csd = L0C
si (1.25)

When we consider the inverse problem, the calculation of elasticity coefficients from
experimentally determined control coefficients, we find that for the case where there are
no conservation constraints (i.e. moiety conserved cycles), this can be achieved through
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inversion of the control matrix Ci. This is because L = I. However, in the case where
these conservation constraints are present (L 6= I), some elements in the right-hand
columns within the resultant E matrix contain linear functions of elasticity coefficients.
To solve for the individual elasticities we require additional information stored in the T
matrix of conservation sums [51].

1.5.3 Control-matrix example using a simple model

1

2

X0 S1

X7

S2
S3

X4

X5

3

4

X6

Figure 1.4: A schematic representation of a simple metabolic pathway consisting of a
branched flux and a moiety-conserved cycle [51, 53].

Hofmeyr and co-workers [51, 53] provide a detailed explanation of the formulation of the
control-matrix equation by means of a simple model, consisting of a branched flux and
a moiety-conserved cycle. We will outline this process now as this equation forms the
basis of the work undertaken in this thesis.

The K and L-matrices are constructed from an analysis of the stoichiometric matrix
(N), both the K and the L matrices are ordered by independent flux or species followed
by the independents, i.e. J3, J4, J1, J2 and s1, s2, s3 for the examples in equations
1.26 and 1.27. The analysis of the N matrix can be performed by numerous software
packages, such as PySCeS and Copasi. We have incorporated PySCeS into this study for
the purpose of performing the stoichiometric analysis, and will not discuss the details.
We can see an example of the analysis of the N matrix in Hofmeyr [51]. Examples of K
(1.26) and L (1.27) matrices for the system illustrated in Figure 1.4 are:

K =


1 0
0 1
1 1
1 1

 (1.26)
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L =

 1 0
0 1
1 −1

 (1.27)

The K matrix is then scaled to K = (DJ)−1KDJi :


1
J3

0 0 0

0 1
J4

0 0

0 0 1
J1

0

0 0 0 1
J2




1 0
0 1
1 1
1 1

[ J3 0
0 J4

]
=


1 0
0 1
J3
J1

J4
J1

J3
J2

J4
J2

 (1.28)

L is scaled to L = (Ds)−1LDsi :

 1
s1

0 0

0 1
s2

0

0 0 1
s3

 1 0
0 1
0 −1

[ s1 0
0 s2

]
=

 1 0
0 1
0 − s2

s3

 (1.29)

The next step in the formulation of the control-matrix equation is to calculate the matrix
product −εsL where εs is the matrix of all variable elasticity coefficients. The −εsL for
the example system is formed as shown below:

−


εv3s1 0 0
εv4s1 0 0
εv1s1 εv1s2 εv1s3
0 εv2s2 εv2s3


 1 0

0 1
0 − s2

s3

 =


−εv3s1 0
−εv4s1 0
−εv1s1 (εv1s3

s2
s3
− εv1s2)

0 (εv2s3
s2
s3
− εv2s2)

 (1.30)

The K matrix is then augmented onto the matrix product giving rise to:

E = [K − εsL] =


1 0 −εv3s1 0
0 1 −εv4s1 0
J3
J1

J4
J1
−εv1s1 (εv1s3

s2
s3
− εv1s2)

J3
J1

J4
J1

0 (εv2s3
s2
s3
− εv2s2)

 (1.31)

This leads to the control-matrix equation, CiE = I, which for the system in question is:
CJ33 CJ34 CJ31 CJ32

CJ43 CJ44 CJ41 CJ42

Cs13 Cs14 Cs11 Cs12

Cs23 Cs24 Cs21 Cs22




1 0 −εv3s1 0
0 1 −εv4s1 0
J3
J1

J4
J1
−εv1s1 (εv1s3

s2
s3
− εv1s2)

J3
J1

J4
J1

0 (εv2s3
s2
s3
− εv2s2)

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(1.32)
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1.6 A brief introduction to metabolic regulation

Metabolic control analysis is an important tool for describing how the steady-state be-
haviour of a system is dependent on the individual enzyme-catalysed reactions within the
system. Metabolic regulation aims to take the quantitative data obtained from MCA to
another level. Hofmeyr and Cornish-Bowden [52] described metabolic regulation as ‘the
response of a metabolic steady-state to environmental changes seen as a combination of
external and internal regulation’.

External regulation describes the change in steady-state behaviour of a metabolic sys-
tem in response to a change in an external parameter. The co-control coefficient1 for
either a flux or a concentration was derived to describe this change [52, 55]. Co-control
coefficients arose as a means of relating the simultaneous change in two independent
steady-state variables on perturbation of a step. Hofmeyr and Cornish-Bowden [53] de-
fine a co-control coefficient for steady-state variables x1 and x2 with respect to a change
in the local activity of Step i as:

Ox1:x2
i =

Cx1i
Cx2i

=

∂ lnx1
∂ ln vi
∂ lnx2
∂ ln vi

=
∂ lnx1

∂ lnx2
(1.33)

Conversely, internal regulation is concerned with the co-ordinated steady-state response
of a metabolic system by sensing the various internal variables of the system. Wester-
hoff and Kahn [68] proposed the use of partial internal response coefficients, which are
in essence the terms of the connectivity equation, as a means of quantifying internal
response.

The concept of supply-demand analysis, demonstrated by Hofmeyr and Cornish-Bowden
[52, 54], allows us to quantify the behaviour, control and regulation of metabolism in
terms of elasticities of supply and demand. In its simplest form a metabolic network
consists of a catabolic block, a biosynthetic block, which produces the building block
for macromolecular synthesis, and a block responsible for creating and maintaining the
cellular structure and enzyme and gene structures. The producing block is referred to
as the supply and the consuming block the demand, with either a single common inter-
mediate or a pair of intermediates in the form of a moiety-conserved cycle linking the
supply and demand blocks.

Hofmeyr and colleagues [50, 52], suggested that the co-control coefficients used to quan-
tify external regulation are equivalent to the block elasticities under certain conditions.
We can use the co-control coefficients to quantify the response of reaction blocks due
to perturbations in a parameter, which are in turn brought about due to changes in an
intermediary regulatory metabolite. The regulatory metabolites concentration is solely
determined by the system parameters and links the supply and demand blocks.

1The two references cited [52, 55] use the term ‘co-response coefficient’, but a more recent document
by the same authors uses the term ‘co-control coefficient’ [53]
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The approaches of top-down [20, 21] and modular MCA [23, 102, 106] should not be
ignored when assessing regulatory analysis techniques. Both approaches are closely re-
lated in that reactions are grouped together into blocks connected via a small number of
intermediates. The grouping of reactions enables us to calculate the control coefficients
from the fluxes or from the overall elasticities of the blocks to explicit intermediates
using the connectivity property, as opposed to traditional MCA whereby we calculate
control coefficients using numerous methods such as the effects of specific inhibitors on
individual enzymes and enzyme overexpression [20].

Hofmeyr [49] introduced the concept of control-pattern analysis in which he developed
a non-algebraic diagrammatic technique that generates the mathematical expressions
for both flux and concentration control coefficients in terms of elasticity expressions.
Each control-pattern represents how a perturbation in an enzyme activity reverberates
through a metabolic pathway, which he refers to as a ‘chain of local effects’. Since flux
and concentration control coefficients provide a means with which to quantify the regula-
tory capability of an enzyme, these control-patterns can provide a deeper understanding
about how changes in a regulatory enzyme can be transmitted to the rest of the system
[49]. A regulatory enzyme would be any enzyme with which either an external or an
internal regulator interacts [52]. Control-patterns are best demonstrated by means of a
simple model:

32
S

1
SSX X

0 41 2 3 4

Figure 1.5: A four-enzyme linear pathway with both a feedforward and a feedback loop,
as illustrated by Hofmeyr [49].

The model above was taken from [49], and will be used to show the control coefficients
as generated through control-pattern analysis. We will not discuss the details of the
technique here and these are covered in depth in [49].

The flux-control coefficient expressions are:

CJ1 = (ε2
1ε

3
2ε

4
3 − ε3

1ε
2
2ε

4
3)/
∑

(1.34)

CJ2 = (−ε1
1ε

3
2ε

4
3)/
∑

(1.35)

CJ3 = (ε1
1ε

2
2ε

4
3)/
∑

(1.36)

CJ4 = (−ε1
1ε

2
2ε

3
3 + ε1

1ε
3
2ε

2
3)/
∑

(1.37)
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and the concentration-control coefficients with respect to S1, are:

CS1
1 = (ε3

2ε
4
3 − ε2

2ε
4
3 + ε2

2ε
3
3 − ε3

2ε
2
3)/
∑

(1.38)

CS1
2 = (−ε3

2ε
4
3)/
∑

(1.39)

CS1
3 = (ε2

2ε
4
3)/
∑

(1.40)

CS1
4 = (−ε2

2ε
3
3 + ε3

2ε
2
3)/
∑

(1.41)

where ∑
= (ε2

1ε
3
2ε

4
3 − ε1

1ε
3
2ε

4
3 + ε1

1ε
2
2ε

4
3 − ε1

1ε
2
2ε

3
3 − ε3

1ε
2
2ε

4
3 + ε1

1ε
3
2ε

2
3) (1.42)

Consider the control-pattern in the numerator term of the flux-control coefficient CJ2
(Equation 1.35), −ε1

1ε
3
2ε

4
3, where the elasticities towards the substrates are positive and

the elasticities towards the products are negative, and ignore the phenomena of substrate
inhibition and product activation. Then under these conditions, the flux J, is increased
by means of this pattern when the activity of Enzyme 2 (E2) is increased. This change
is brought about by the following.

Firstly, the increase in activity of E2 decreases S1 which results in the local rate of
v1 increasing. Secondly, the product of E2 (S2) increases which in turn increases the
local rate v3 which results in an increase of S3 and an increase in the local rate of v4.
This example illustrates how a perturbation in an enzyme activity is propagated through
a system, and demonstrates the insight provided by control-patterns when used within
the framework of MCA. The control coefficient used in this example presents the sim-
plest case consisting of a single control pattern. However, this is not always the case
as demonstrated in Equations 1.34, 1.37, 1.38 and 1.41. For a situation with multiple
control-patterns within a control coefficient, we can analyse each control-pattern sep-
arately as a chain of local events, where each pattern represents one way in which an
enzyme perturbation could be propagated through the pathway. The analysis leads to
an understanding of the positive or negative nature of the pattern. By combining the
knowledge gained we can begin to explain the mechanism of how an enzyme modulation
affects a cellular system.

1.7 Computational simulation and MCA

Computer simulation of metabolic pathways has developed since the early 1960s [82, 42,
88] into a key tool for understanding the transient and the steady-state behaviour as well
as the control of metabolic pathways. Generally speaking, there are two methods to ap-
proach steady-state modelling. The first method is the ‘mass action’ approach in which
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the desired pathway is described in terms of basic first or second order kinetics. How-
ever, this approach is compromised in that the values of the kinetic constants are seldom
available. The second approach, the ‘rate-law’ approach, requires the calculation of each
enzymatic rate from its associated rate equation. The advantage to the latter approach
is that the type of data required is obtained using conventional steady-state analysis [57].

The solutions to problems concerned with metabolic control are seldom intuitive and
thus computational simulation provides an important means of tackling these problems.
One of the first software packages is METAMOD, which was developed by Hofmeyr and van
der Merwe in the mid-1980s [57]. This package was initially designed for use on a BBC
microcomputer and was capable of calculating the steady-state solution and perform-
ing control analysis of a model pathway, as introduced by Kacser and Burns [65] and
Heinrich and Rapoport [47, 48]. This software led to the development of MetaModel

[52], which was designed for use on the IBM PC and compatible computers. MetaModel
provided a user-friendly framework for calculating steady-state fluxes and metabolite
concentrations of metabolic systems. For any steady-state found, we could calculate a
matrix of elasticity coefficients at that steady-state, or a matrix of control and response
coefficients. Its purpose was thus to offer a simple means of calculating the control
structure of a pathway.

In the 1990s and 2000s there was a significant increase in the number of simulation
tools available, such as SCAMP [96], a general-purpose metabolic and chemical network
simulator. SCAMP is portable to any operating system supported by an ANSI C compiler
and is now known as Jarnac [95]. Gepasi [80], like SCAMP, is a simulator for modelling
biochemical and chemical reaction networks consisting of a maximum of 45 metabolites
and 45 reactions. This software was only available for use within a Windows environ-
ment and was designed as an educational and a research tool. Gepasi has since been
superceded by COPASI [60], which is a stand-alone program that can be executed either
by a graphical interface or via command-line. COPASI is available for all major operating
systems such as Linux, Windows, Mac OS X and Solaris. The user is able to perform
operations such as steady-state analysis, control analysis and parameter optimisations.

Of particular importance to this thesis is the software package developed within our
research group, i.e. PySCeS [84]. PySCeS, which stands for Python Simulator for Cellu-
lar Systems, was designed as an extendable research tool for the purposes of numerical
analysis and investigation of cellular systems. PySCeS was designed for use on Windows
(2000/XP/Vista) and Linux operating systems, and it has been successfully ported to
Mac OS X. PySCeS is an extremely flexible and user-extensible software package. The
interface to PySCeS is via command-line, with numerous options available to the user,
such as time-course simulations, steady-state analysis, system stability analysis via cal-
culation of eigenvalues and plotting of results.

Due to the increasing importance of computer modelling and simulation in understand-
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ing and investigating chemical and biological systems, a number of diverse tools have
been developed. In the early 2000s a framework was developed to link a number of these
heterogeneous applications thus allowing them to communicate and take advantage of
each of their capabilities. Systems Biology Workbench (SBW, [97]) was designed and
developed with this specific task in mind.

With the growing number of biological and chemical systems being simulated, a need
arose for a central store of these models, and to serve this function a few reposito-
ries have been developed. Two repositories worth mentioning are BioModels (http:
//www.ebi.ac.uk/biomodels-main/) [77] and JWS online (http://jjj.biochem.sun.
ac.za/) [85]. BioModels is a database housing curated quantitative models of biochemi-
cal and cellular systems that have been published and peer-reviewed. JWS Online serves
as a Systems Biology tool to simulate kinetic models from a curated database. JWS On-
line allows users to view and manipulate curated models using a web browser by means
of an easy-to-use interface, and the user can perform steady-state and time-course anal-
ysis as well as perform control analysis.

A key question often asked by investigators is how the behaviour of a model is affected
by changes in a parameter over a range of values. An example of this would be changing
the demand for S1 in Figure 1.4, by varying the value for either Vf3 (enzyme 3) or Vf4

(enzyme 4) over a range such as 0.1–10. This approach involves a series of steady-state
calculations over the specified range, and is known as a parameter scan. It is possible
to perform single and multi-dimensional parameter scans with most currently available
simulation tools, such as PySCeS and Copasi.

1.8 Symbolic computation

Symbolic computation (or computer-algebra) entails the use of machines such as comput-
ers, to manipulate mathematical equations and expressions in symbolic form as opposed
to the more common method of manipulating the approximations of specific numerical
quantities which are represented by those symbols. The beginnings of computer-algebra
date back to 1953 when two programs were written for the purposes of symbolic differ-
entiation [25, 86]. However, it appears that its subsequent use was restricted to the work
carried out by specialist research groups, due mainly to the fact that computer-algebra
was originally intended for use on large mainframe computers that were designed to
handle the extensive memory requirements associated with performing computer-algebra
[86].

Today we use computer-algebra more often, and it has applications in many areas of
science and technology such as Chemistry, Computational Biology, Computer Science,
Education, Engineering, Mathematics and Physics [63]. The increased use of computer-
algebra is a direct result of the increasing availability of relatively inexpensive, and ever
increasing, powerful personal computers, which can now perform these symbolic compu-

http://www.ebi.ac.uk/biomodels-main/
http://www.ebi.ac.uk/biomodels-main/
http://jjj.biochem.sun.ac.za/
http://jjj.biochem.sun.ac.za/
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tations [86].

To meet the ever-increasing need for computer-algebra in the domains previously men-
tioned are numerous Computer Algebra Systems (CAS). These systems began to appear
in the early 1970s, and are believed to have evolved from research into Artificial Intel-
ligence [2, 3]. The principle aim of any CAS is to automate tedious and often difficult
algebraic tasks, and the uses and capabilities of the various systems available vary greatly
from one system to another [129].

A few well-known general purpose computer algebra systems include Axiom [1], GiNaC
[119], Reduce [46], Macsyma [4], Maple [5], Mathematica [6] and Maxima [7]. Macsyma
was designed by Carl Engelman, William Martin and Joel Moses. Its development began
in 1968 at the MIT Artificial Intelligence laboratories, and it is regarded as the first gen-
eral purpose computer algebra program. Maple was designed to make computer-algebra
more widely accessible and to achieve this, portability and speed were the primary ob-
jectives in its design. Development began in 1980 at the University of Waterloo, Canada.
Present capabilities include numerical calculation, symbolic integration and differenti-
ation, symbolic equation solving, trigonometric and exponential/logarithm functions,
linear algebra, statistics, two- and three-dimensional plotting, animation and interfaces
with the C and Fortran programming language [64, 128].

Mathematica, which is arguably today’s world leading computer algebra tool, was de-
veloped by Stephen Wolfram. Mathematica provides users with a comprehensive en-
vironment for various mathematical applications such as elementary computations and
transformations as well as for large development projects building mathematical models
for use in complex engineering problems [64, 128]. Maxima is a direct descendant of the
Macsyma system, and unlike the commercially available Mathematica, is a freely avail-
able open source system. This system is used to manipulate symbolic and numerical
expressions, including differentiation, integration, Taylor series, Laplace transforms, or-
dinary differential equations, systems of linear equations, polynomials, as well as sets,
lists, vectors, matrices and tensors. Maxima can also yield high precision numeric results
computed by using exact fractions, arbitrary precision integers and variable precision
floating point numbers. Plotting of data and functions can also be performed in two and
three dimensions [7].

1.8.1 Symbolic computation and MCA

The majority of software packages developed for MCA has revolved around numerical
analyses. Computational and experimental MCA can be a time-consuming and error
prone process due to the number of and difficulty in determining the values for all the
variables within a system. This has led to the development and description of alterna-
tive strategies in an attempt to reduce the effort and the possibility of errors, which are
commonly associated with performing an analysis on biological systems.
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These approaches range from a diagrammatic one as introduced by Hofmeyr with his
control-pattern analysis technique, in which he describes a non-algebraic means of ex-
pressing control coefficients in terms of elasticity coefficients [49], to graph-theoretical
approaches [107], and finally to the numerous matrix-based methods, which can be found
in [27, 28, 40, 87, 99, 122, 124].

The use of computer-algebra (symbolic computation) in MCA was first tackled by Schultz
[101], in which he describes an algorithm to generate symbolic expressions for control
coefficients, and subsequently by Thomas and Fell [114], with their description of the
MetaCon software package. MetaCon was developed as an implementation of the matrix
method as illustrated in [40, 110, 99], where all calculations are performed using numeric
and symbolic processing such that numerical terms are collected and evaluated. The im-
plication was that in the event of the values of one or more variables being unknown, the
control-coefficient data outputted from MetaCon would be in the form of polynomials in
terms of the unknown or unknowns [114].

MetaCon had a number of shortcomings. Firstly, the implementation was based on a
variation of MCA in which a reference flux would need to be selected before compu-
tation. Secondly, the output generated was by default in text format, with the option
of LATEX expressions as well. The text would then need to be edited into functions for
other programs or Excel, thus requiring further post analysis manipulations and addi-
tional third party software.

We therefore saw the need for developing a generic symbolic implementation of MCA as
an important step in the development of Systems Biology. This is the primary objective
of this study, as once a suitable tool exists, it is the intention of this thesis to demon-
strate the usefulness of such a tool in further understanding the regulatory behaviour
inherent in biological systems. The technique of control-pattern analysis demonstrated
by Hofmeyr [49] has provided a solid foundation to understand regulation. However,
this technique is performed diagrammatically and does not lend itself to large systems.
The generation of control coefficient expressions mirroring these control-patterns would
provide these routes of regulation in an automated fashion, as well as for larger systems.
A common problem associated with systems modelling is knowing all parameter values
for the system under investigation, and the elucidation of the expressions can aid the
identification of the key parameters. The chapters that follow describe the tool that will
be developed to tackle these challenges.

1.9 Thesis outline

The central idea addressed in this thesis is how we can gain a greater understanding
of the mechanisms and chain of events that affect the regulatory aspects of cellular
systems. This thesis consists of two parts. The first part is concerned with the develop-
ment and implementation of the tools required to gain this insight, and the second part
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is concerned with demonstrating how we can use symbolic control analysis to describe
and gain a clearer understanding into the regulatory mechanisms within cellular systems.

The first part of the thesis consists of the general ideas, development and implementa-
tion of the tool required to tackle the problem. Chapter 2 is concerned with the initial
proof of concept of the software tool. An example model illustrates the fundamental
aims, and we highlight any shortcomings that we will address in the final development
and implementation of the proposed software tool. Chapter 3 provides an account
of the design, development and implementation of the software package, which is later
referred to as SymCA (Symbolic Control Analysis). We address the choices made and the
reasons why the software was implemented in the manner in which it was. Chapter 4
describes how SymCA is used, and introduces the functionality of the software that we use
in the remaining chapters of the thesis. For this chapter we created a theoretical model
which includes all the common features found in cellular systems, i.e. moiety-conserved
cycles, linear pathways and branched pathways.

The second part of the thesis involves the use of SymCA as a means of performing an
in-depth analysis of various ‘real-life’ biological systems, to gain a greater insight into
the regulatory mechanisms at work. It should be noted that this part of the thesis
is concerned with demonstrating the application of SymCA by using examples showing
how a symbolic analysis can lead to a deeper understanding. The aim of this thesis
is not to perform a detailed comprehensive analysis for each of the models mentioned
in Chapters 5-7. Chapter 5 demonstrates the combined strategy of control-pattern
quantification, supply-demand analysis and a parameter scan for understanding the reg-
ulatory behaviour of a cellular system. Chapter 6 highlights the role of control patterns,
and more importantly the data obtained using a quantified approach to control-patterns.
In this chapter, we extend work undertaken by Galazzo and Bailey [41] to demonstrate
how quantified control patterns can be used to explain observed experimental outcomes.
Chapter 7 focusses on applying the same techniques of control pattern quantification
using the work of Uys et al. [116], where they describe a kinetic model of sucrose ac-
cumulation in maturing sugar cane as a basis for the investigation. In this study the
control patterns are computed for each internode in an attempt to provide evidence of
the affects of internode maturity on sucrose accumulation.

The final section of this thesis discusses the findings of this work as well as provides
further points which could be considered for future work related to this study.



Chapter 2

SymCA: Proof of concept

2.1 Introduction

This chapter demonstrates the feasibility of an algebraic/symbolic approach to MCA. As
outlined in Chapter 1, the field of MCA provides an effective means with which we can
explain and quantify the workings of cellular systems. This technique has been applied
conventionally by means of numerical simulations, and a number of computational tools
are presently available, such as PySCeS [84] and Copasi [60]. The intention of this study
is to implement an equivalent algebraic or symbolic approach to solve this problem, with
the ultimate goal the generation of algebraic expressions representing the systemic prop-
erties (control coefficients) of cellular systems in terms of the local properties (elasticity
coefficients).

This chapter highlights the core algorithm used as well as various external softwares
that are required to reach a solution. A theoretical model demonstrates the proof of
concept; this model contains all the structural features commonly found in cellular sys-
tems, i.e., linear and branched segments and a moiety conserved cycle.

The solution to our problem required the choice of a programming language and a means
of performing symbolic computations. Since the desired outcome was to incorporate the
symbolic control analysis application into the existing software package developed within
our group, PySCeS, the logical choice of programming language was Python. At the
time of development Python lacked a comprehensive symbolic computing environment,
and so we needed external software. Sage has now been developed with a comprehen-
sive mathematics environment providing a Python-based interface which combines many
open-source mathematics software packages [10]. However, Sage requires a separate in-
stallation of Python, and thus we would have two separate Python installations on a
single machine, which was undesirable.

One of the mathematical packages which Sage had wrapped is Maxima. Maxima is a pow-
erful, open-source algebraic software which can be run on numerous platforms (Linux,

23
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Mac OS X and Windows), and so is an ideal option to use with Python. However, we
had to develop our own interface, which will be addressed shortly. The primary ob-
jective for the work described in this chapter is to provide a ‘proof of concept’ for the
implementation of the software workflow and the Python/PySCeS-Maxima interface, and
not to provide any form of mathematical proof in terms of rewriting the connectivity
and summation theorems.

2.2 Software requirements

2.2.1 Maxima

Maxima is a descendant of Macsyma, a computer algebra system that was initially devel-
oped at MIT in the 1960s as a component of Project MAC. By the mid-1980s, although
versions of current day commercial packages Mathematica and Maple were gaining mar-
ket share, Macsyma was by far the strongest system. We can trace the beginnings of
Maxima back to 1982 when William Schelter of the University of Texas at Austin acquired
the source code to a version of Macsyma (DOE Macsyma), which had been licensed to
the US Department of Energy. Schelter adapted the source code for common Lisp, and
in 1998 released it under the GPL renamed as GNU Maxima. Maxima is currently under
active development, and the team includes some of the original developers of Macsyma

[9]. There are several advantages for using Maxima in this study:

• It is licensed under GPL and thus will always be freely available.

• It is under active development.

• Maxima is being developed by its users, and is therefore in tune with its user
community.

• In its current form, Maxima has excellent calculus, linear algebra and general sym-
bolic capabilities.

2.2.2 PySCeS

PySCeS (Python Simulator for Cellular Systems) is an open source modelling tool devel-
oped by our group. As the name implies, PySCeS is written in the Python programming
language, runs on both Linux and Microsoft Windows (2000/XP/Vista), and is console-
based. This software application can perform stoichiometric analysis, time-course and
steady-state calculations as well as numerical MCA of models of a cellular system. How-
ever, PySCeS lacks symbolic capabilities which this study addresses [84].

2.2.3 Python

The Python programming language is best described as an object-oriented scripting lan-
guage in that its design merges the software engineering features of traditional languages
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(Java and C++) with the usability of scripting languages (Perl and Tcl). Numerous fea-
tures make Python an ideal language for scientific computing.

• Object-oriented language: Its class model supports advanced features such as poly-
morphism, operator overloading and multiple inheritance. At the same time we
can achieve much without having to use these features.

• Open-source: The entire system is freely available over the Internet whilst also
being actively maintained and supported.

• Portability: Since Python is written in ANSI C it compiles on virtually every major
platform in use today.

• Powerful: Python is a hybrid in terms of its features. The Python tool set places it
between traditional scripting languages and systems languages. The simplicity and
ease of use of scripting languages combined with more advanced programming tools
typically present in systems development languages, is ideally suited for substantial
development projects.

• Mixable: Python allows the user to easily ‘glue’ components written in other lan-
guages (e.g. SWIG (http://swig.org) [14] and ctypes (http://sourceforge.
net/projects/ctypes/).)

All the above features and many others made Python an obvious choice for this study,
combined with the fact that PySCeS is also written in Python. Our intention was for
SymCA to be an additional module for PySCeS, and thus all PySCeS typographical con-
ventions were used in SymCA. These included the prefix ‘J ’ for reactions to denote a
flux, the prefixes ‘cc’, ‘ec’ for all control and elasticity coefficients and a ‘ ’ to delimit the
perturbed step from the measured steady-state variable for both control and elasticity
coefficients.

2.3 The humble beginnings of SymCA

The control-matrix equation, as described in Section 1.5.1, is one of the most power-
ful features of MCA. The power of the equation lies in that we can compute control
coefficients from elasticity coefficients and vice versa, as shown in Equations 1.20, 1.21
and 1.22. Since this matrix method calculates only the independent control coefficients,
we required additional relationships to calculate the dependent control coefficients, as
shown in Equations 1.24 and 1.25. Although originally derived by Reder [87], numerous
variations of this equation have been proposed, with the method described by Hofmeyr
and colleagues [51, 53, 55] serving as the basis of the algorithm used to write the control
analysis program, SymCA.

We had successfully identified the core idea, an algebraic approach to MCA, and the
necessary tools required to prototype a symbolic implementation of MCA, and more

http://swig.org
http://sourceforge.net/projects/ctypes/
http://sourceforge.net/projects/ctypes/
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specifically an implementation of the control-matrix equation. But since Python lacks
symbolic capabilities and has the ability to act as a ‘glue’ for linking softwares written in
other languages, we needed to determine whether we could develop a Python interface
to Maxima1.

2.3.1 Maxima interface

There are two ways of testing the feasibility of writing a Python interface to Maxima,
that is using:

1. Pexpect: Python version of the Expect tool, which is a Unix automation and
testing tool

2. subprocess: a native Python module enabling us to spawn new processes and
connect to their input/output/error pipes, and thus obtain their return codes.

Pexpect requires the installation of additional libraries, but often encounters difficulties
when attempting to port Expect scripts between platforms, especially Windows operat-
ing systems2. Since we aimed to develop our software for multi-platform use, this was
not desirable. Fortunately, subprocess comes with all standard installations of Python
and is easily portable between platforms. This made the choice to use the subprocess

module simple, as the interface to Maxima would not require the installation of additional
libraries and our code would be portable between platforms.

The subprocess module defines one class called Popen, which requires a number of
arguments, the majority being optional. The only arguments required to connect and
communicate with Maxima were:

• args: a string, or a sequence of program arguments, with the program to execute
normally the first item in the args sequence or string

• stdin: executed program’s standard input file handle

• stdout : executed program’s standard output file handle

• stderr : executed program’s standard error file handle.

Since Maxima has a command line interface and a graphical user interface (GUI), it can
be launched from a console by typing maxima. This served as the args string argument,
resulting in the execution of Maxima from within a Python session. The block of Python
code we used to connect to Maxima in the initial stages of development follows:

import subprocess as sp

maxima = sp.Popen((‘maxima’), stdin=sp.PIPE, stdout=sp.PIPE,

stderr=sp.PIPE)

1Initial development was done on a Linux platform, with the objective being to port the code to
Windows platforms once the initial proof of concept had been successfully completed.

2This is not an impossible task, but one that requires the installation of additional external libraries.
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The subprocess module raises two errors. The first error occurs when the application
to be executed fails (OSError), and the second error occurs when invalid arguments are
passed to Popen (ValueError). Provided that these exceptions are not raised, a Maxima

process is spawned and we could begin using Maxima from within a Python session. To
provide the Maxima interface with arguments to execute, we wrote a method named
compute to take the execution statement as an argument. This argument is in string
format, equivalent to a command that we would provide if using the command-line
interface to Maxima. The input argument is passed to Maxima using the standard input
pipe, and all subsequent output is read from the standard output pipe.

2.3.2 Symbolic metabolic control analysis

This section describes the process of performing a symbolic equivalent of MCA. We used
the protocol described by Hofmeyr [51]. For the initial development we used a theo-
retical model designed to include all common biological features such as a branch, a
moiety-conserved cycle and a linear segment.

As mentioned previously, the objective was to develop a symbolic add-on module for
the PySCeS application, and thus PySCeS should be an integral part of SymCA. The only
requirements for this was that we install PySCeS and have a PySCeS input file for the
cellular system in question. We then loaded the model into PySCeS and computed the
steady-state. Since PySCeS routinely performs stoichiometric analyses in an efficient
and optimal manner, we decided to obtain the K and L matrix data from PySCeS, these
matrices being easily accessible as model attributes. We extracted the following data
from PySCeS, converted it into symbolic data equivalents and then used it as inputs for
Maxima:

• list of all model reaction equations

• list of all model reactions

• list of all model species

• K matrix, with columns as independent fluxes and rows consisting of all fluxes
ordered first as independents and then as dependents

• L matrix, with columns referring to independent species and rows to all species
ordered first by independents and then as dependents

• K0 matrix, describing all dependent flux relationships in terms of the independent
fluxes

• L0 matrix, describing the dependent species relationships expressed in terms of the
independent species.
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Figure 2.1: Theoretical system used as the initial test model for development of SymCA.

After we extracted the required data, the generation of symbolic equivalents to be sent
to Maxima entailed a number of steps, such as generation of lists for both fluxes and
species ordered in terms of independents followed by dependents, the scaling of both
the K and L matrices, and the generation of the E matrix as the final step. The E
matrix was then inverted giving rise to algebraic expressions for the control coefficients
expressed in terms of elasticity coefficients.

To scale the K and L matrices we required the order and the generation of the symbolic
flux and species data. We obtained the order of the flux and species from the respective
K and L matrix row model attributes in PySCeS where each element in the list extracted
represents an index for the corresponding reaction or species label found in the list of
reactions or species. For fluxes we prefixed a ‘J’ onto each reaction label to denote that
it is a flux, and the species retained the same nomenclature as entered in the PySCeS

input file. For the example model in question (Figure 2.1), the ordered lists for both
fluxes and species are:

• JR6*, JR4*, JR5, JR2, JR3, JR1 (where * denotes the independent fluxes)

• S3*, S2*, S1*, S5*, S4 (where * denotes the independent species)
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K is scaled to K = (DJ)−1KDJi as shown in the following method:



1/J6 0 0 0 0 0
0 1/J4 0 0 0 0
0 0 1/J5 0 0 0
0 0 0 1/J2 0 0
0 0 0 0 1/J3 0
0 0 0 0 0 1/J1

×


1 0
0 1
1 0
0 1
‘1 0
1 1

×
[
J6 0
0 J4

]

=



1 0
0 1
J6
J5

0

0 J4
J2

J6
J3

0
J6
J1

J4
J1



(2.1)

where (DJ)−1 is a diagonal matrix of all inverse fluxes and DJi represents the diag-
onal matrix of all independent fluxes.

L is scaled to L = (Ds)−1LDsi as shown in the following method:


1/S3 0 0 0 0

0 1/S2 0 0 0
0 0 1/S1 0 0
0 0 0 1/S5 0
0 0 0 0 1/S4

×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 −1

×

S3 0 0 0
0 S2 0 0
0 0 S1 0
0 0 0 S5



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 −S5
S4


(2.2)

where Ds−1
represents a diagonal matrices of all inverse species and Dsi represents the

diagonal matrices of all independent species.

We required a matrix consisting of all variable elasticities, referred to as εs, for gen-
eration of the final E matrix in the control-matrix equation. The arrangement of εs
shows the columns representing the free species and the rows indicating the reactions,
both of which are ordered independents followed by dependents.
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We created a dictionary with reaction labels as keys and their corresponding reaction
equations using the list of model reaction equations extracted from PySCeS. We used this
dictionary with the ordered lists of flux and species data to create the εs matrix. The
algorithm implemented was a nested for-loop. Firstly, the list of reactions was stepped
through, and secondly, for each step in the iteration, i.e. for each reaction, the list of
species was stepped through. For every iteration of the species list we checked to see if
the species was present in the reaction equation of the reaction being stepped through.
If the species was present in the reaction equation, an elasticity for that species towards
the reaction was inserted into the matrix. If the species was not present a zero was
inserted, with the final εs matrix for the system in Figure 2.1 as follows:



0 0 0 εR6
S5

εR6
S4

0 εR4
S2

0 0 0

εR5
S3

0 0 εR5
S5

εR5
S4

0 εR2
S2

εR2
S1

0 0

εR3
S3

0 εR3
S1

0 0

0 0 εR1
S1

0 0


(2.3)

The matrix product −εsL could now be computed,

−



0 0 0 εR6
S5

εR6
S4

0 εR4
S2

0 0 0

εR5
S3

0 0 εR5
S5

εR5
S4

0 εR2
S2

εR2
S1

0 0

εR3
S3

0 εR3
S1

0 0

0 0 εR1
S1

0 0


×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 −S5
S4



=



0 0 0 (εR6
S4

S5
S4
− εR6

S5
)

0 −εR4
S2

0 0

−εR5
S3

0 0 (εR5
S4

S5
S4
− εR5

S5
)

0 −εR2
S2
−εR2

S1
0

−εR3
S3

0 −εR3
S1

0

0 0 −εR1
S1

0



(2.4)
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Finally, the E matrix was created by augmenting the K matrix with the newly formed
matrix product, −εsL giving rise to the control-matrix equation:

CJ66 CJ64 CJ65 CJ62 CJ63 CJ61

CJ46 CJ44 CJ45 CJ42 CJ43 CJ41

CS3
6 CS3

4 CS3
5 CS3

2 CS3
3 CS3

1

CS2
6 CS2

4 CS2
5 CS2

2 CS2
3 CS2

1

CS1
6 CS1

4 CS1
5 CS1

2 CS1
3 CS1

1

CS5
6 CS5

4 CS5
5 CS5

2 CS5
3 CS5

1


×



1 0 0 0 0 (εR6
S4

S5
S4
− εR6

S5
)

0 1 0 −εR4
S2

0 0
J6
J5

0 −εR5
S3

0 0 (εR5
S4

S5
S4
− εR5

S5
)

0 J4
J2

0 −εR2
S2
−εR2

S1
0

J6
J3

0 −εR3
S3

0 −εR3
S1

0
J6
J1

J4
J1

0 0 −εR1
S1

0



=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(2.5)

We have generated all the matrices described above in string form to use as Maxima

input. The computations required to scale both the K and L matrices were using
Maxima. Since we had generated the symbolic variant of the E matrix, we were in a
position to compute the control-matrix equation, and thus generate symbolic control
coefficients for the system in question3.

Computation of symbolic control coefficients

To generate the symbolic control coefficients, we passed the newly formed E matrix, in
Maxima input form to the Maxima instance via the compute method mentioned previously.
We denoted all elasticity coefficients by ec in the input argument. We split the input
argument for the test model over multiple lines for display purposes as follows:

E:matrix([1,0,0,0,0,ecR6_S4*S5/S4-ecR6_S5],[0,1,0,-ecR4_S2,0,0],

[1.0,0,-ecR5_S3,0,0,ecR5_S4*S5/S4-ecR5_S5],[0,1.0,0,-ecR2_S2,

-ecR2_S1,0],[1.0,0,-ecR3_S3,0,-ecR3_S1,0],[JR6/JR1,JR4/JR1,0,0,

-ecR1_S1,0]);

We used the invert function, available in all standard installations of Maxima to in-
vert the E matrix. Once successfully inverted, we read the newly computed control
coefficients over the standard output file handle, and isolated and removed the common
denominator of all control coefficients from each expression in the matrix. To visualise
the control coefficients, we created a basic LATEX output method, and used this in order
to validate the initial output.

3At this developmental stage we were concerned only with computing the independent control coef-
ficients.
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The common denominator (
∑

) for all control coefficients shown in Tables 2.1 and 2.2
is:

∑
=
JR1 JR6 S5 εR3

S1 ε
R4
S2 ε

R5
S3 ε

R6
S4

JR1 S4
− JR1 JR6 S5 εR3

S1 ε
R2
S2 ε

R5
S3 ε

R6
S4

JR1 S4
+
JR1 JR4 S5 εR2

S1 ε
R4
S2 ε

R5
S3 ε

R6
S4

JR1 S4

− JR1 JR4 S5 εR2
S1 ε

R4
S2 ε

R3
S3 ε

R6
S4

JR1 S4
+
JR1 JR4 S5 εR2

S1 ε
R4
S2 ε

R3
S3 ε

R5
S4

JR1 S4
− S5 εR1

S1 ε
R4
S2 ε

R5
S3 ε

R6
S4

S4

+
S5 εR1

S1 ε
R2
S2 ε

R5
S3 ε

R6
S4

S4
+
S5 εR1

S1 ε
R4
S2 ε

R3
S3 ε

R6
S4

S4
− S5 εR1

S1 ε
R2
S2 ε

R3
S3 ε

R6
S4

S4
− S5 εR1

S1 ε
R4
S2 ε

R3
S3 ε

R5
S4

S4

+
S5 εR1

S1 ε
R2
S2 ε

R3
S3 ε

R5
S4

S4
− JR1 JR6 ε

R3
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

JR1
+
JR1 JR6 ε

R3
S1 ε

R2
S2 ε

R5
S3 ε

R6
S5

JR1

− JR1 JR4 ε
R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

JR1
+
JR1 JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R6
S5

JR1
− JR1 JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R5
S5

JR1

+ εR1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5 − εR1

S1 ε
R2
S2 ε

R5
S3 ε

R6
S5 − εR1

S1 ε
R4
S2 ε

R3
S3 ε

R6
S5 + εR1

S1 ε
R2
S2 ε

R3
S3 ε

R6
S5

+ εR1
S1 ε

R4
S2 ε

R3
S3 ε

R5
S5 − εR1

S1 ε
R2
S2 ε

R3
S3 ε

R5
S5

(2.6)

Table 2.1: Independent flux control coefficients generated by SymCA.
Control Expression

coefficient

CJ66

(
JR1 JR4 S5 εR2

S1 εR4
S2 εR3

S3 εR5
S4

JR1 S4 − S5 εR1
S1 εR4

S2 εR3
S3 εR5

S4
S4 +

S5 εR1
S1 εR2

S2 εR3
S3 εR5

S4
S4

−JR1 JR4 ε
R2
S1 εR4

S2 εR3
S3 εR5

S5
JR1

+ εR1
S1 ε

R4
S2 ε

R3
S3 ε

R5
S5 − εR1

S1 ε
R2
S2 ε

R3
S3 ε

R5
S5 )/

∑
CJ64 (

JR1 JR4 S5 εR3
S1 εR2

S2 εR5
S3 εR6

S4
JR1 S4 − JR1 JR4 ε

R3
S1 εR2

S2 εR5
S3 εR6

S5
JR1

)/
∑

CJ65

(−JR1 JR4 S5 εR2
S1 εR4

S2 εR3
S3 εR6

S4
JR1 S4 +

S5 εR1
S1 εR4

S2 εR3
S3 εR6

S4
S4 − S5 εR1

S1 εR2
S2 εR3

S3 εR6
S4

S4

+
JR1 JR4 ε

R2
S1 εR4

S2 εR3
S3 εR6

S5
JR1

− εR1
S1 ε

R4
S2 ε

R3
S3 ε

R6
S5 + εR1

S1 ε
R2
S2 ε

R3
S3 ε

R6
S5 )/

∑
CJ62 (

JR1 JR4 ε
R3
S1 εR4

S2 εR5
S3 εR6

S5
JR1

− JR1 JR4 S5 εR3
S1 εR4

S2 εR5
S3 εR6

S4
JR1 S4 )/

∑
CJ63

(
JR1 JR4 S5 εR2

S1 εR4
S2 εR5

S3 εR6
S4

JR1 S4 − S5 εR1
S1 εR4

S2 εR5
S3 εR6

S4
S4 +

S5 εR1
S1 εR2

S2 εR5
S3 εR6

S4
S4

−JR1 JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S5
JR1

+ εR1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5 − εR1

S1 ε
R2
S2 ε

R5
S3 ε

R6
S5 )/

∑
CJ61

(
S5 εR3

S1 εR4
S2 εR5

S3 εR6
S4

S4 − S5 εR3
S1 εR2

S2 εR5
S3 εR6

S4
S4 − εR3

S1 ε
R4
S2 ε

R5
S3 ε

R6
S5

+εR3
S1 ε

R2
S2 ε

R5
S3 ε

R6
S5 )/

∑
CJ46 (

JR1 JR6 ε
R2
S1 εR4

S2 εR3
S3 εR5

S5
JR1

− JR1 JR6 S5 εR2
S1 εR4

S2 εR3
S3 εR5

S4
JR1 S4 )/

∑
continued on next page
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continued from previous page

Control Expression
coefficient

CJ44

(−JR1 JR6 S5 εR3
S1 εR2

S2 εR5
S3 εR6

S4
JR1 S4 +

S5 εR1
S1 εR2

S2 εR5
S3 εR6

S4
S4 − S5 εR1

S1 εR2
S2 εR3

S3 εR6
S4

S4

+
S5 εR1

S1 εR2
S2 εR3

S3 εR5
S4

S4 +
JR1 JR6 ε

R3
S1 εR2

S2 εR5
S3 εR6

S5
JR1

− εR1
S1 ε

R2
S2 ε

R5
S3 ε

R6
S5

+εR1
S1 ε

R2
S2 ε

R3
S3 ε

R6
S5 − εR1

S1 ε
R2
S2 ε

R3
S3 ε

R5
S5 )/

∑
CJ45 (

JR1 JR6 S5 εR2
S1 εR4

S2 εR3
S3 εR6

S4
JR1 S4 − JR1 JR6 ε

R2
S1 εR4

S2 εR3
S3 εR6

S5
JR1

)/
∑

CJ42

(
JR1 JR6 S5 εR3

S1 εR4
S2 εR5

S3 εR6
S4

JR1 S4 − S5 εR1
S1 εR4

S2 εR5
S3 εR6

S4
S4 +

S5 εR1
S1 εR4

S2 εR3
S3 εR6

S4
S4

−S5 εR1
S1 εR4

S2 εR3
S3 εR5

S4
S4 − JR1 JR6 ε

R3
S1 εR4

S2 εR5
S3 εR6

S5
JR1

+ εR1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

−εR1
S1 ε

R4
S2 ε

R3
S3 ε

R6
S5 + εR1

S1 ε
R4
S2 ε

R3
S3 ε

R5
S5 )/

∑
CJ43 (

JR1 JR6 ε
R2
S1 εR4

S2 εR5
S3 εR6

S5
JR1

− JR1 JR6 S5 εR2
S1 εR4

S2 εR5
S3 εR6

S4
JR1 S4 )/

∑
CJ41

(
S5 εR2

S1 εR4
S2 εR5

S3 εR6
S4

S4 − S5 εR2
S1 εR4

S2 εR3
S3 εR6

S4
S4 +

S5 εR2
S1 εR4

S2 εR3
S3 εR5

S4
S4

−εR2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5 + εR2

S1 ε
R4
S2 ε

R3
S3 ε

R6
S5 − εR2

S1 ε
R4
S2 ε

R3
S3 ε

R5
S5 )/

∑

Table 2.2: Independent concentration control coefficients generated by SymCA.
Control Expression

coefficient

CS3
6

(
JR1 JR6 S5 εR3

S1 εR4
S2 εR5

S4
JR1 S4 − JR1 JR6 S5 εR3

S1 εR2
S2 εR5

S4
JR1 S4

+
JR1 JR4 S5 εR2

S1 εR4
S2 εR5

S4
JR1 S4 − S5 εR1

S1 εR4
S2 εR5

S4
S4 +

S5 εR1
S1 εR2

S2 εR5
S4

S4

−JR1 JR6 ε
R3
S1 εR4

S2 εR5
S5

JR1
+

JR1 JR6 ε
R3
S1 εR2

S2 εR5
S5

JR1

−JR1 JR4 ε
R2
S1 εR4

S2 εR5
S5

JR1
+ εR1

S1 ε
R4
S2 ε

R5
S5 − εR1

S1 ε
R2
S2 ε

R5
S5 )/

∑
CS3

4

(
JR1 JR4 S5 εR3

S1 εR2
S2 εR6

S4
JR1 S4 − JR1 JR4 S5 εR3

S1 εR2
S2 εR5

S4
JR1 S4

−JR1 JR4 ε
R3
S1 εR2

S2 εR6
S5

JR1
+

JR1 JR4 ε
R3
S1 εR2

S2 εR5
S5

JR1
)/
∑

continued on next page
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Control Expression
coefficient

CS3
5

(
JR1 JR4 S5 εR2

S1 εR4
S2 εR6

S4
JR1 S4 − JR1 JR4 S5 εR2

S1 εR4
S2 εR5

S4
JR1 S4 − S5 εR1

S1 εR4
S2 εR6

S4
S4

+
S5 εR1

S1 εR2
S2 εR6

S4
S4 +

S5 εR1
S1 εR4

S2 εR5
S4

S4 − S5 εR1
S1 εR2

S2 εR5
S4

S4 − JR1 JR4 ε
R2
S1 εR4

S2 εR6
S5

JR1

+
JR1 JR4 ε

R2
S1 εR4

S2 εR5
S5

JR1
+ εR1

S1 ε
R4
S2 ε

R6
S5 − εR1

S1 ε
R2
S2 ε

R6
S5

−εR1
S1 ε

R4
S2 ε

R5
S5 + εR1

S1 ε
R2
S2 ε

R5
S5 )/

∑
CS3

2

(−JR1 JR4 S5 εR3
S1 εR4

S2 εR6
S4

JR1 S4 +
JR1 JR4 S5 εR3

S1 εR4
S2 εR5

S4
JR1 S4 +

JR1 JR4 ε
R3
S1 εR4

S2 εR6
S5

JR1

−JR1 JR4 ε
R3
S1 εR4

S2 εR5
S5

JR1
)/
∑

CS3
3

(
JR1 JR4 S5 εR2

S1 εR4
S2 εR6

S4
JR1 S4 − JR1 JR4 S5 εR2

S1 εR4
S2 εR5

S4
JR1 S4 − S5 εR1

S1 εR4
S2 εR6

S4
S4

+
S5 εR1

S1 εR2
S2 εR6

S4
S4 +

S5 εR1
S1 εR4

S2 εR5
S4

S4 − S5 εR1
S1 εR2

S2 εR5
S4

S4 − JR1 JR4 ε
R2
S1 εR4

S2 εR6
S5

JR1

+
JR1 JR4 ε

R2
S1 εR4

S2 εR5
S5

JR1
+ εR1

S1 ε
R4
S2 ε

R6
S5 − εR1

S1 ε
R2
S2 ε

R6
S5

−εR1
S1 ε

R4
S2 ε

R5
S5 + εR1

S1 ε
R2
S2 ε

R5
S5 )/

∑
CS3

1

(
S5 εR3

S1 εR4
S2 εR6

S4
S4 − S5 εR3

S1 εR2
S2 εR6

S4
S4 − S5 εR3

S1 εR4
S2 εR5

S4
S4 +

S5 εR3
S1 εR2

S2 εR5
S4

S4
−εR3

S1 ε
R4
S2 ε

R6
S5 + εR3

S1 ε
R2
S2 ε

R6
S5 + εR3

S1 ε
R4
S2 ε

R5
S5 − εR3

S1 ε
R2
S2 ε

R5
S5 )/

∑
CS2

6 (
JR1 JR6 ε

R2
S1 εR3

S3 εR5
S5

JR1
− JR1 JR6 S5 εR2

S1 εR3
S3 εR5

S4
JR1 S4 )/

∑

CS2
4

(−JR1 JR6 S5 εR3
S1 εR5

S3 εR6
S4

JR1 S4 − JR1 JR4 S5 εR2
S1 εR5

S3 εR6
S4

JR1 S4 +
JR1 JR4 S5 εR2

S1 εR3
S3 εR6

S4
JR1 S4

−JR1 JR4 S5 εR2
S1 εR3

S3 εR5
S4

JR1 S4 +
S5 εR1

S1 εR5
S3 εR6

S4
S4 − S5 εR1

S1 εR3
S3 εR6

S4
S4 +

S5 εR1
S1 εR3

S3 εR5
S4

S4

+
JR1 JR6 ε

R3
S1 εR5

S3 εR6
S5

JR1
+

JR1 JR4 ε
R2
S1 εR5

S3 εR6
S5

JR1
− JR1 JR4 ε

R2
S1 εR3

S3 εR6
S5

JR1

+
JR1 JR4 ε

R2
S1 εR3

S3 εR5
S5

JR1
− εR1

S1 ε
R5
S3 ε

R6
S5 + εR1

S1 ε
R3
S3 ε

R6
S5 − εR1

S1 ε
R3
S3 ε

R5
S5 )/

∑
CS2

5 (
JR1 JR6 S5 εR2

S1 εR3
S3 εR6

S4
JR1 S4 − JR1 JR6 ε

R2
S1 εR3

S3 εR6
S5

JR1
)/
∑

CS2
2

(
JR1 JR6 S5 εR3

S1 εR5
S3 εR6

S4
JR1 S4 − S5 εR1

S1 εR5
S3 εR6

S4
S4 +

S5 εR1
S1 εR3

S3 εR6
S4

S4 − S5 εR1
S1 εR3

S3 εR5
S4

S4

−JR1 JR6 ε
R3
S1 εR5

S3 εR6
S5

JR1
+ εR1

S1 ε
R5
S3 ε

R6
S5 − εR1

S1 ε
R3
S3 ε

R6
S5 + εR1

S1 ε
R3
S3 ε

R5
S5 )/

∑
CS2

3 (
JR1 JR6 ε

R2
S1 εR5

S3 εR6
S5

JR1
− JR1 JR6 S5 εR2

S1 εR5
S3 εR6

S4
JR1 S4 )/

∑
CS2

1

(
S5 εR2

S1 εR5
S3 εR6

S4
S4 − S5 εR2

S1 εR3
S3 εR6

S4
S4 +

S5 εR2
S1 εR3

S3 εR5
S4

S4 − εR2
S1 ε

R5
S3 ε

R6
S5

+εR2
S1 ε

R3
S3 ε

R6
S5 − εR2

S1 ε
R3
S3 ε

R5
S5 )/

∑
continued on next page
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Control Expression
coefficient

CS1
6

(−JR1 JR6 S5 εR4
S2 εR3

S3 εR5
S4

JR1 S4 +
JR1 JR6 S5 εR2

S2 εR3
S3 εR5

S4
JR1 S4 +

JR1 JR6 ε
R4
S2 εR3

S3 εR5
S5

JR1

−JR1 JR6 ε
R2
S2 εR3

S3 εR5
S5

JR1
)/
∑

CS1
4

(
JR1 JR4 S5 εR2

S2 εR5
S3 εR6

S4
JR1 S4 − JR1 JR4 S5 εR2

S2 εR3
S3 εR6

S4
JR1 S4 +

JR1 JR4 S5 εR2
S2 εR3

S3 εR5
S4

JR1 S4

−JR1 JR4 ε
R2
S2 εR5

S3 εR6
S5

JR1
+

JR1 JR4 ε
R2
S2 εR3

S3 εR6
S5

JR1
− JR1 JR4 ε

R2
S2 εR3

S3 εR5
S5

JR1
)/
∑

CS1
5

(
JR1 JR6 S5 εR4

S2 εR3
S3 εR6

S4
JR1 S4 − JR1 JR6 S5 εR2

S2 εR3
S3 εR6

S4
JR1 S4 − JR1 JR6 ε

R4
S2 εR3

S3 εR6
S5

JR1

+
JR1 JR6 ε

R2
S2 εR3

S3 εR6
S5

JR1
)/
∑

CS1
2

(−JR1 JR4 S5 εR4
S2 εR5

S3 εR6
S4

JR1 S4 +
JR1 JR4 S5 εR4

S2 εR3
S3 εR6

S4
JR1 S4 − JR1 JR4 S5 εR4

S2 εR3
S3 εR5

S4
JR1 S4

+
JR1 JR4 ε

R4
S2 εR5

S3 εR6
S5

JR1
− JR1 JR4 ε

R4
S2 εR3

S3 εR6
S5

JR1
+

JR1 JR4 ε
R4
S2 εR3

S3 εR5
S5

JR1
)/
∑

CS1
3

(−JR1 JR6 S5 εR4
S2 εR5

S3 εR6
S4

JR1 S4 +
JR1 JR6 S5 εR2

S2 εR5
S3 εR6

S4
JR1 S4 +

JR1 JR6 ε
R4
S2 εR5

S3 εR6
S5

JR1

−JR1 JR6 ε
R2
S2 εR5

S3 εR6
S5

JR1
)/
∑

CS1
1

(
S5 εR4

S2 εR5
S3 εR6

S4
S4 − S5 εR2

S2 εR5
S3 εR6

S4
S4 − S5 εR4

S2 εR3
S3 εR6

S4
S4 +

S5 εR2
S2 εR3

S3 εR6
S4

S4

+
S5 εR4

S2 εR3
S3 εR5

S4
S4 − S5 εR2

S2 εR3
S3 εR5

S4
S4 − εR4

S2 ε
R5
S3 ε

R6
S5 + εR2

S2 ε
R5
S3 ε

R6
S5

+εR4
S2 ε

R3
S3 ε

R6
S5 − εR2

S2 ε
R3
S3 ε

R6
S5 − εR4

S2 ε
R3
S3 ε

R5
S5 + εR2

S2 ε
R3
S3 ε

R5
S5 )/

∑

CS5
6

(
JR1 JR6 ε

R3
S1 εR4

S2 εR5
S3

JR1
− JR1 JR6 ε

R3
S1 εR2

S2 εR5
S3

JR1
+

JR1 JR4 ε
R2
S1 εR4

S2 εR5
S3

JR1

−JR1 JR4 ε
R2
S1 εR4

S2 εR3
S3

JR1
− εR1

S1 ε
R4
S2 ε

R5
S3 + εR1

S1 ε
R2
S2 ε

R5
S3 + εR1

S1 ε
R4
S2 ε

R3
S3

−εR1
S1 ε

R2
S2 ε

R3
S3 )/

∑
CS5

4 (−JR1 JR4 ε
R3
S1 εR2

S2 εR5
S3

JR1
)/
∑

CS5
5 (

JR1 JR4 ε
R2
S1 εR4

S2 εR3
S3

JR1
− εR1

S1 ε
R4
S2 ε

R3
S3 + εR1

S1 ε
R2
S2 ε

R3
S3 )/

∑
CS5

2 (
JR1 JR4 ε

R3
S1 εR4

S2 εR5
S3

JR1
)/
∑

CS5
3 (−JR1 JR4 ε

R2
S1 εR4

S2 εR5
S3

JR1
+ εR1

S1 ε
R4
S2 ε

R5
S3 − εR1

S1 ε
R2
S2 ε

R5
S3 )/

∑
CS5

1 (εR3
S1 ε

R2
S2 ε

R5
S3 − εR3

S1 ε
R4
S2 ε

R5
S3 )/

∑
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Comparison of PySCeS and SymCA control coefficients values

We obtained the numerical values by substituting the steady-state fluxes, concentrations

and elasticities computed with PySCeS, and compared these results with those ob-
tained by performing numerical MCA with PySCeS. We found all control coefficient
values were identical (see Table 2.3).

Table 2.3: Numerical values for independent control coefficients generated numerically
with PySCeS and via substitution of expressions from SymCA.

Control coefficient PySCeS SymCA

CJR4
R1 1.01148218028 1.01148218028

CJR4
R2 0.429192201278 0.429192201278

CJR4
R3 -0.344819448484 -0.344819448484

CJR4
R4 0.0429192201276 0.0429192201276

CJR4
R5 -0.0691701231971 -0.0691701231971

CJR4
R6 -0.069604030007 -0.069604030007

CJR6
R1 0.866011875368 0.866011875368

CJR6
R2 -0.410880179643 -0.410880179643

CJR6
R3 0.417807711196 0.417807711196

CJR6
R4 -0.0410880179641 -0.0410880179641

CJR6
R5 0.0838114293819 0.0838114293819

CJR6
R6 0.0843371816615 0.0843371816615
CS1
R1 0.993170655818 0.993170655818

CS1
R2 -0.471210787156 -0.471210787156

CS1
R3 -0.33857695614 -0.33857695614

CS1
R4 -0.0471210787153 -0.0471210787153

CS1
R5 -0.0679178911481 -0.0679178911481

CS1
R6 -0.0683439426588 -0.0683439426588

CS2
R1 0.840931345899 0.840931345899

CS2
R2 0.356824057315 0.356824057315

CS2
R3 -0.286677796761 -0.286677796761

CS2
R4 -0.795702825064 -0.795702825064

CS2
R5 -0.0575070188384 -0.0575070188384

CS2
R6 -0.0578677625516 -0.0578677625516

CS3
R1 1.5636609581 1.5636609581

CS3
R2 -0.741880467969 -0.741880467969

CS3
R3 0.754388738274 0.754388738274

CS3
R4 -0.0741880467965 -0.0741880467965

CS3
R5 -0.748642459513 -0.748642459513

continued on next page
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continued from previous page

Control coefficient PySCeS SymCA

CS3
R6 -0.753338722095 -0.753338722095

CS5
R1 -0.713421772307 -0.713421772307

CS5
R2 0.338483656292 0.338483656292

CS5
R3 -0.344190566299 -0.344190566299

CS5
R4 0.033848365629 0.033848365629

CS5
R5 -0.0690439706312 -0.0690439706312

CS5
R6 0.754324287316 0.754324287316

2.4 Discussion

This chapter has illustrated the initial stages of developing a symbolic control analysis
tool, in which the process outlined in [51] was used as a basis. Since the software was
implemented for use with PySCeS [84], Python was used as the programming language.
This posed a problem because at the time of development, Python lacked a suitable
symbolic computing component required to develop the tool. Therefore we needed an
external application to fill this void. We tested a number of options, namely GiNaC [119]
via the Swiginac Python interface, and the only available Python library, SymPy. On
the surface GiNaC seemed a desirable candidate but the Swiginac interface was a major
bottleneck. Whilst the SymPy library had limited capabilities, it lacked robustness and
was inefficient.

Both GiNaC and SymPy proved to be extremely ineffective in terms of the time taken
to perform symbolic inversions of small matrices, and we decided that the best option
would be to develop a Python interface to Maxima, since the SAGE project had suc-
cessfully done this [10]. Fortunately, Python is a useful language when linking disparate
tools, and comes with options as part of a standard installation to serve this purpose.

After initially testing both the Pexpect and the subprocess modules, we used subprocess

to interact with Maxima from within a Python session. On developing the interface to
Maxima, it became apparent that the extraction of data from Maxima after computations
was problematic. Initially, we read all data via the standard output pipe of subprocess.
However, as the size of the systems investigated increased, this proved to present prob-
lems. The result was a change in implementation to extract data by using the Maxima

stringout method which writes the data directly to disk. Even with the improvements
in analysis time as a result of this change, the magnitude of data generated could still
be a bottleneck in the process.

Symbolic control analysis had been successful for our test model. At this stage, and
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before moving onto the next stage of development, we tested numerous other test mod-
els consisting of a variety of linear pathways of various length, a collection of branched
pathways with varying numbers of branches, a series of moiety-conserved pathways with
varying numbers of species making up the moieties and a number of biological models.

Here a number of key biological and computational issues came to the fore. The bi-
ological issue involves the sign preceding each product of elasticities in the symbolic
expressions for control coefficients. Since these symbolic expressions are ratios, it is pos-
sible to change the sign preceding any term, as long as the signs preceding all other terms
are also changed throughout both numerator and denominator. However, as discussed
by Hofmeyr [49], a stable steady-state requires a positive denominator. This implies that
the signs preceding each product of elasticities must be such that the overall value of
the denominator is positive, taking into account ‘normal’ values of elasticities (‘normal’
values for substrate elasticities are positive and for product elasticities are negative). We
found that the values of the denominator expressions provided by this initial version of
SymCA violated this requirement in certain cases. As an example, consider the first two
terms in Equation 2.6:

JR1 JR6 S5 εR3
S1 ε

R4
S2 ε

R5
S3 ε

R6
S4

JR1 S4
(2.7)

−
JR1 JR6 S5 εR3

S1 ε
R2
S2 ε

R5
S3 ε

R6
S4

JR1 S4
(2.8)

The first term (2.7) is positive because it contains only fluxes (which are positive by
definition), substrate elasticities and is preceded by a plus sign (note that in our usage
the value of a term takes its preceding sign into account). The term in 2.8 is preceded
by a minus sign, but its overall value is also positive since it contains one (negative)
product elasticity and three substrate elasticities. This would not have been the case
had Term 2.7 been preceded by a minus sign and Term 2.8 by a plus sign, which could
have resulted from a different ordering of rows and columns in the C and E matrices.
It therefore became clear that we needed to include a step in our algorithm to check
whether matrix inversion produces the correct signs preceding the denominator terms
and to apply a correction when these signs were incorrect. The expressions in Equations
2.7 and 2.8 also illustrate the need for recognising the possibility for simplifying indi-
vidual numerator and denominator terms by cancelling entities such as JR1. If our tool
were to be generic, we had to resolve these issues in the next stage.

The second major issue was purely computational. For larger systems it was impos-
sible to read the entire matrix of symbolic control coefficients over the standard output
file handle native to subprocess. This was critical in that we needed to extract ex-
pressions from within Maxima to perform further in-depth analyses on them at a later
stage. We had successfully shown that the development of a symbolic control analy-
sis tool was viable, and so began the development of a piece of generic software with
additional functionality to increase our understanding of the regulatory behaviour of
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cellular systems. The ultimate aim was to develop a truly generic application that was
portable to different operating systems. We will cover the solutions to these problems
as well as their significance in the next chapter, which encompasses the development of
the symbolic control analysis module into a generic application.



Chapter 3

SymCA: Development of generic
symbolic control analysis software
application

3.1 Introduction

The previous chapter provided a proof of concept of symbolic control analysis, (SCA), in

terms of developing a software package to perform the computation. This initial study

also highlighted a number of key problems which we needed to solve to develop a truly

generic piece of software, which was the ultimate goal of this study. We showed that a

Python interface with Maxima is possible, and that Maxima is a suitable external
application to use to equip Python with previously lacking symbolic computing
power1. In Chapter 3 we will address and optimise the time taken to perform SCA
as far as possible, considering the inherent constraints associated with performing
symbolic computations.

Since Python is inherently object-oriented, the natural progression was to con-
vert the previously developed script into an object-oriented software application.
Chapter 3 provides an in-depth view of this process, and also addresses the known
issues that arose in the proof of concept phase. This chapter gives an overview of
the processes involved in symbolic control analysis as well as an in-depth look at
each of the classes making up the SymCA application.

1Since the development of SymCA, there have been significant advances in the development of an exter-
nal Python library (SymPyCore) that addresses this deficiency, which will be addressed in the Discussion

40
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3.2 SymCA overview

In its current form SymCA consists of 12 classes, each of which plays an integral role.
Each class performs specific functions required during the computations, and we will
discuss these roles in the following sections. The figure below provides an overview of
the relationships between these classes.

Figure 3.1: Overview of SymCA classes

SymCA creates a dedicated directory for the model in a symca directory which is located
in the designated PySCeS output directory. We loaded a correctly formatted input file
into a PySCeS session creating a PySCeS model instance, and performed a stoichiometric
analysis. A PySCeS input file is required as SymCA was designed to be an additional
module for PySCeS. Of critical importance here is that the input file need not contain
any kinetics and that numerical simulation is not required. However, the capability of
doing both numerical and symbolic simulations provides a useful cross-checking tool and
importantly allows control pattern quantification for a specific steady-state. We then
extracted data from the model instance, processed it, and converted it into its symbolic
equivalents. We inverted the E matrix using Maxima, factorised, extracted and processed
all control coefficients, and then saved to disk in the form of a Python pickle object.

Once the symbolic control coefficients have been computed and returned by Maxima,
the user can manipulate and perform various operations with them. There is also an
option to write LATEX output files for the different operations, to allow for a closer in-
spection of the expressions. The option to display various of the operations in graphical
views of the system in question, is also available. In the following sections we will de-
scribe these methods as well as others. We will also give an account of the roles and
algorithms used in the various classes.
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Figure 3.2: SymCA workflow

3.3 Basic requirements

As discussed in Chapter 2, the basic requirements for SymCA are a symbolic computing
environment, i.e. Maxima, a solid programming language, Python, and a tool which al-
lows us to perform a stoichiometric analysis of any arbitrary system, whilst also giving
access to the data associated with such an analysis, PySCeS.

In the previous chapter we have shown that it is possible to incorporate Maxima from
within a Python session, hence the development of a generic implementation of the
control-matrix equation was well within our grasp. We had successfully developed a
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basic Python interface to Maxima using the subprocess module, and expanded this to
provide additional functionality as well as the ability for use on Windows platforms. The
initial script we developed (Chapter 2) provided a solid foundation for the development
of the generic symbolic control analysis software application, which we refer to as SymCA.

3.4 SymCA classes

SymCA consists of 12 classes with the symca class being the main class (Figure 3.1). This
section covers all methods for the symca class, as well as a brief overview of the remaining
classes. Appendix A includes a detailed account of all methods for the remaining classes.

3.4.1 symca

Since it is the main class SymCA serves as the ‘controller’, and has key operations which
must be carried out for the successful performance of symbolic control analysis.The
symca class can take three arguments on instantiation, of which the first is required and
the other two optional. The required argument is the name of the PySCeS input file to
be loaded. The first optional argument is the name of the directory in which the PySCeS

input file is located in the event that it is not present in the default PySCeS model di-
rectory. The second optional argument is set by default to False and governs the LATEX
output generated after all operations have been completed. This argument removes all
common substrings found in the labels of reaction names in the input file when set to
True, i.e. if each reaction label begins with ‘R’ or ‘rxn’, this common substring will be
removed from the LATEX output generated.

Once symca is instantiated, it checks for the presence of the input file in either the
default PySCeS model directory or in the directory provided. If the file is absent, a list
of files present in the selected directory is displayed and the user is prompted to enter a
file from the list. When the file is present a number of directories are created within the
PySCeS output directory. The first occurrence SymCA is run will create a symca direc-
tory within the PySCeS model output directory; this directory will house all subsequent
directories created by SymCA.

For each model run, we created the following directories:

• latex: stores all LATEX output

• maxima output: stores all output generated from Maxima

• pickle objects: stores all pickled data.

Once SymCA had created all the directories, we loaded the model into PySCeS and ex-
tracted all the relevant data by means of the Data class. The Data class is responsible for
extracting, processing and creating the symbolic data equivalents, and we will discuss
this in more detail in Section 3.4.2.
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After successfully creating all symbolic data, we began the process of symbolic control
analysis. The SCA class is primarily responsible for this operation, and we will address
it in Section 3.4.7. Below is a detailed description of the methods associated with the
symca class:

• getDir() - The PySCeS model and output directories are obtained. The Python

os.path module is then used to check if a ‘symca’ subdirectory exists within the
PySCeS output directory. In the event of the symca directory existing no further
action is required, but if absent, it is created.

• checkModelStatus() - This method checks to see if the PySCeS input file is lo-
cated either in the native PySCeS model directory or in the directory provided on
instantiation of the symca class. True or False is returned, depending on whether
or not the file is located.

• createAllDir() - SymCA creates a directory for each model within the symca

subdirectory, which is itself located in the PySCeS output directory. A layout

directory is also created within the PySCeS output directory to house all svg and
xml model layouts generated via SBW. Once a model directory, which uses the
model name as its name, has been created within the symca directory, a number
of subdirectories are created to store the various data generated by SymCA. The
names of the subdirectories are passed to the method responsible for their creation.

• createSub() - This method creates the three subdirectories required per model,
i.e. latex, maxima output and pickle objects. A list of the directory names
serves as the argument for this method, the list is then stepped through and each
directory is created if it is not already present.

• loadModel() - Since PySCeS is required to perform the stoichiometric analysis
as well as computing all steady-state values, the model must be loaded into a
PySCeS instance. Once loaded, a check is done to detect if any zero fluxes exist at
steady-state.

• checkZeroFlux() - This method is called by loadModel() to check if any steady-
state fluxes are equal to zero. In the event of this occurring the PySCeS elas zero-

flux fix variable is set to True.

• loadData() - Once a model has been loaded into PySCeS all data required must
be extracted, processed and the required symbolic data generated. These tasks
are handled by the Data, PyscesData, ProcessedData and SymbolicData classes,
with the Data class being the controlling class throughout all data extractions and
manipulations. The data is then returned from the Data class.

• doSca() - This is the main method governing the symbolic control analysis proce-
dure, and has a number of optional arguments:
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– dep: This argument controls whether or not dependent control coefficients
will be computed and by default is set to True.

– load: If symbolic control analysis has been performed previously on a model,
there is an option to reload all previously stored data. This argument is set
by default to False.

– subE: This option performs elasticity substitutions prior to computation of
control coefficients. This argument is set by default to False.

– subDict: In the event of ‘subE’ being True, a dictionary of all substitutions
to be performed must be provided. The default value is None.

The first argument checked is load. When load is False, the method directly
responsible for symbolic control analysis is called symbolicControlAnalysis().
This then pickles all resulting data for future use. However, if load is set to
True, the pickled data from a previous session is loaded via loadSymcaData(),
which returns a tuple of data if the pickled data is found. If the pickled data
is not found, False is returned. In the first case when the data is successfully
unpickled, the dimensions of the pickled E matrix and those of the newly computed
E matrix are compared via compareMatrices(). If True, all the data is reloaded
into Maxima so that further operations may be performed. However, if False is
returned, symbolicControlAnalysis() is called as happens when no pickled data
is found for the model in question.

• symbolicControlAnalysis() - This method performs symbolic control analy-
sis by creating an SCA instance and then calling the SCA instances computeCon-
trolCoefficients() method. There are three arguments required by this method
dep, subE and subDict (the descriptions for each method appear in the doSca sec-
tion).

• pickleSymcaData() - Data must be stored efficiently for future evaluation. This
method saves both the symcaModelMap and symcaModelOut dictionaries in the
form of a Python pickle. The dictionaries are stored in the $PSCOUT/symca/model

name /pickle objects directory, model name ModelMap and model name ModelOut,
respectively.

• loadSymcaData() - This method unpickles the data pickled from a previous session
to enable access to the data. The unpickled symcaModelMap and symcaModelOut

are then returned as a two-membered pickle.

• loadMaximaData() - When a session of SymCA is ended, the Maxima session is also
closed and all associated data is lost. This method addresses this shortcoming by
recreating the Maxima session by inputting all unpickled denominator and control
coefficient expressions, so that the user can perform further operations.

• setElasticityPost() - This method enables the user to perform elasticity substi-
tutions after all control coefficients have been computed. There are two arguments
for this method:
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– subDict: This is an elasticity substitution dictionary wherein key value pairs
consist of elasticity labels and substitution values.

– subType: Two types of post elasticity substitution exist:

∗ 0 - performs all substitutions simultaneously

∗ 1 - performs each substitution individually as well simultaneously.

This method calls the method of the same name in the SCA instance which takes
the same arguments.

• symca2Pysces() - This method performs numeric substitution with steady-state
values from PySCeS and computes the control coefficient values for all coefficients,
and compares them with those computed numerically via PySCeS. This method
calls the SymcaToPysces() method from the SCA instance.

• computeResponse() - PySCeS is used to compute all response coefficients. This
methods calls the method of the same name in the SCA class.

• getResponse() - This method also calls a method by the same name in the SCA

class which will select response coefficients based on the arguments supplied when
the method is called. These options include the arguments cutoff, flux and
param. The cutoff argument controls the value used to select the response coeffi-
cients, flux is a list of fluxes or species for which the user would like the response
coefficients. If provided, param selects all response coefficients for the list of pa-
rameters.

• computeCoControl() - This method computes symbolic co-control coefficients. It
requires a single argument, a list of tuples where each tuple consists of a numer-
ator control coefficient label, denominator control coefficient label and reaction in
question.

• computeSummations() - The summation theorem is computed by calling an iden-
tically named method as found in the SCA class.

• controlPatterns() - This method takes two optional arguments, both of which
are None by default:

– ccList: This list of fluxes or species is used to generate a list of all control
coefficients for which quantified control patterns are desired. If no list is
provided, the control patterns for all control coefficients are quantified,

– tol: This value selects which control coefficients will be evaluated, i.e. 0.3
indicates that all control coefficients with a value above 0.3 will evaluated. If
no value is provided, the default is 0.1.

This method calls the SCA instance getControlPatterns() method.

• patternScan() - In this method control pattern quantification is performed at
every step of a parameter scan. There are four arguments:
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– cc: This is a list of control coefficients to be scanned.

– param: This is a list of parameters.

– range: The range of scan is in the region of 0–1 where 1 indicates 100%. The
steady-state parameter value is scanned within this range in both directions.

– steps: This is the number of values to be scanned in the designated range.

• simplify() - This method simplifies the control coefficient numerators and the
common denominator so that all common terms are removed. The simplify

method of the SCA instance is called which performs this function.

• writePickle() - This method pickles the data into the desired location provided
as the arguments. The reference to the pickled location is then returned.

• loadPickle() - This method takes a pickled object as its only argument and
attempts to load the pickled object. Once loaded the unpickled data is returned.

• getControlCoefficients() - This method returns the dictionary of all Control-
Coefficient objects.

• getCommonDenominator() - This method returns the Denominator object.

• getImageCoords() - In this method the x, y co-ordinates of all fluxes and species
are extracted from the layouts generated via SBW and returned as a dictionary.

• SBMLData() - The generation of model layouts is handled via SBW, and all data
associated with the fluxes and species is then extracted from the file containing
the layout information. This data is then returned as a tuple.

• viewElas() - Once SBW has successfully generated the layouts required by SymCA,
the steady-state values can be mapped onto these images. This is achieved via the
Visualise class, which is an SVG editor. This method has several arguments:

– par: Default is False and if set to True includes the parameter elasticities in
the image.

– colours: A default list of ten colours is included. However, if the user prefers
custom colours they can provide them via this argument.

– colour codes: If a list of custom colours is provided a corresponding dic-
tionary with key value pairs, i.e. colour and hexadecimal colour code, is
required.

– range max: This is the maximum value to be used for the elasticity value
range.

– image type: Default is None, otherwise it can be set to ‘eps’, ‘ps’, ‘pdf’ or
‘png’.
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• viewControlPatterns() - In the same way as elasticity values can be visualised
so can the quantified control patterns for any given control coefficient. This allows
for the visualisation of regulatory pathways within a control coefficient. A number
of options exist for this method, all of which are governed by the following options:

– below: Default is False, and if set to True images for all control patterns
falling beneath the pattern cutoff value will be generated.

– cc: This is a list of control coefficients for which control pattern images are
desired.

– flux species: This is a list of fluxes, or species, used to generate a list of
control coefficients for which control pattern images are desired.

– colours: This is a custom list of colours.

– colour codes: This dictionary corresponds to the custom list and key value
pairs are colour and hexadecimal colour code.

– pattern cutoff: This value determines which control patterns are selected,
i.e. 0.4 indicates that all control patterns contributing more than 40% will be
displayed.

– range max: This is the maximum value to be used for the colour range.

– image type: Default is None, otherwise it can be set to ‘eps’, ‘ps’, ‘pdf’ or
‘png’.

• writeData() - This method handles the output of all data types in LATEX format,
and calls the SCA class method of the same name to perform the actual task.
This method takes two arguments. The first argument is the type of data to be
written and can be one of the following, ‘cc’, ’sym2psc’, ‘patterns’, ‘summation’,
‘coc’ or ‘scan’. The second argument, ‘file’ is optional and when given indicates
the directory to which the data must be written. If emitted the data is written
to the latex subdirectory for the model in question, i.e. $PSCOUT/symca/model

name /latex/.

3.4.2 Data

Before performing SCA, we required the extraction, processing and generation of the
symbolic data from the PySCeS data, and so will discuss this first. The Data class is
the master class controlling all processes involved with the extraction and processing of
all forms of data. To achieve this there are four separate classes, each dealing with a
different aspect of the data manipulation:

• PyscesData - Handles all data extraction from PySCeS

• ProcessedData - Responsible for processing of PySCeS data before the creation of
the symbolic data required by the SCA class
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• SymbolicData - Generates all symbolic data from the processed PySCeS data

• Utilities - Contains all methods used by multiple classes

Figure 3.3: Data classes

The Data class takes five arguments when instantiated:

• psc mod - The PySCeS model name

• Maxima - Maxima instance

• pysces - PySCeS instance

• allDir - Tuple consisting of the maxima output directory and the maxima stringout
directory

• format - True to remove common reaction label substring for LATEX output and
False to keep substring; default is False

3.4.3 PyscesData

This class is responsible for extracting the various data objects from PySCeS which will
be used by the ProcessedData class. PyscesData requires three arguments on instan-
tiation, i.e. the PySCeS model in question, and the Maxima and the PySCeS instances.
There are eight main methods in this class each tasked with extracting specific data
from within PySCeS. Some of these methods have nested methods which perform spe-
cific tasks. PyscesData relies on two further classes: SymcaObjects and Utilities

(Figure 3.4).
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Figure 3.4: PyscesData classes

3.4.4 ProcessedData

The ProcessedData class is responsible for taking the newly extracted PySCeS data and
manipulating it so that it is in the correct format for the generation of the required sym-
bolic data for use in Maxima. Four arguments are required on instantiation – the Maxima

instance, the dictionary of initial PySCeS data, the PySCeS model output directory and
the Maxima stringout directory. When instantiated, an instance of the Utilities class
is created, which contains a number of methods commonly used by many classes. We
will discuss these methods in Section 3.4.11. There are five main methods which perform
this task, some of which contain varying degrees of nested methods which appear in Ap-
pendix A. Like the PyscesData class, both SymcaObjects and Utilities are required
to process and store the initial PySCeS data.

Figure 3.5: ProcessedData classes
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3.4.5 SymbolicData

Figure 3.6: SymbolicData classes

To perform symbolic control analysis, we need symbolic equivalents of the initial PySCeS
data. This class is responsible for the final stage in this process in that it takes the
processed PySCeS data and generates the symbolic data. To achieve this there are
five main methods, some of which have nested methods. SymbolicData takes three
arguments when instantiated – the Maxima instance, the processed data dictionary and
True or False depending on whether or not LATEX formatting is required. Figure 3.6
outlines the classes involved in this process.

3.4.6 SymcaObjects

A number of custom objects were created, many of which are responsible for storing
the information required during the initial generation of symbolic data. A few custom
objects are used to store the final output generated via SymCA. The following section
highlights attributes for each of the final output objects, and details any methods which
the object may have. The details for all other objects appear in Appendix A.

• ControlCoefficient - ControlCoefficient objects contain all information associ-
ated with the symbolically generated control coefficients. The numerical value for
each control coefficient is computed on instantiation of a ControlCoefficient object.
These objects have several methods and attributes (Table 3.1) which are accessible
to the end-user.

– clear() - This method resets the following object attributes to None: terms,
expression, latex, control patterns.

– controlPatterns() - This method computes the quantified control patterns
for the control coefficients in terms of their value and percentage contribution.
All patterns are stored in a dictionary which is then pickled, after which the
control patterns ref attribute is initialised.
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Table 3.1: Description of ControlCoefficient object attributes
Attribute Description

cc type either flux or concentration
name label of the control coefficient
maxima the Maxima label for the control coefficient
mx pos index of the coefficient in its respective matrix
pickle ref path of pickled control coefficient expression
denom maxima Maxima label for the control coefficient denominator
elasticities list of all elasticities found in control coefficient expressions
pysces values dictionary of all PySCeS steady-state values
latex equivalents dictionary of all LATEX labels
expression symbolic expression for the control coefficient
terms a tuple containing a list of control patterns, a list of signs

for each control pattern, a list of absolute control patterns
and finally the total number of control patterns found

latex LATEX representation of expression
ss value steady-state control coefficient value
control pattern ref pickle path for pickled control pattern data
control patterns dictionary of all quantified control pattern data
substituted True or False depending on whether or not elasticity substi-

tutions have been performed
substitution arg elasticity substitution argument if substituted is True, oth-

erwise None
substituted cc dictionary of all resultant ControlCoefficient objects in the

event of elasticity substitutions

– get() - This loads the pickled control coefficient expression and initialises the
expression attribute with the symbolic expression.

– getControlPatterns() - This checks to see if the control pattern ref is present,
and if so the control pattern data is loaded and assigned to the control patterns
attribute.

– getElas() - This generates a list of all elasticities present in the expression,
and assigns the list to the elasticities attribute.

– getLatex() - This method generates the LATEX form of the symbolic expres-
sion for the various output options available.

– getSubCC() - The substituted control coefficient values are obtained by calling
this method. A dictionary is created in which the keys are the substitution
arguments and the values correspond to the substituted coefficient values.
The dictionary is returned.

– getTerms() - This method takes the control coefficient expression and gen-
erates a list of all control patterns. The getTerms() method in the Utilities
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class is called, which returns the following data: a list of control patterns, a
list of signs for each control pattern, a list of absolute control patterns and
finally the total number of control patterns found. This data is then assigned
to the terms attribute.

– getValue() - The numerical value of the control coefficient is calculated from
the symbolic expression and the result is assigned to the ss value attribute.

– pickleExpression() - This method pickles the control coefficient expression.

• CoControlCoefficient - These objects were developed to store all data relating
to the algebraically generated co-control coefficients. Like the ControlCoefficient
objects, these objects have numerous attributes as well as methods:

Table 3.2: Description of CoControlCoefficient object attributes
Attribute Description

name co-control coefficient label
maxima Maxima input label

numerator cc label for numerator control coefficient
denominator cc label for denominator control coefficient

reaction the reaction common to both numerator and denominator
control coefficients

pickle ref the pickle directory for the expression
ss value value of the co-control coefficient at steady-state

pysces values PySCeS dictionary of all steady-state value
latex equivalents LATEX equivalents dictionary

substituted True or False depending on whether or not the co-control
coefficient has been computed with substituted numerator
and denominator control coefficients

substitution arg the substitution argument in the event that substituted is
True

expression symbolic co-control coefficient expression
elasticities list of all elasticities found in the expression

terms list of all terms in the expression
latex the LATEX form of the expression

– clear() - This method sets the following attributes to None: expression,
terms and latex.

– get() - This method unpickles the co-control expression and initialises the
expression attribute with the unpickled expression.

– getElas() - This method determines all elasticities found in the expression
and initialises elasticities attribute with the list of all elasticities.

– getLatex() - This method generates the LATEX form of the expression and
initialises the latex attribute with the LATEX string.
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– getTerms() - This method determines all terms present in the expression and
initialises the terms attribute with this data.

– getValue() - This method computes the value of the co-control coefficient,
whereby the ss value attribute is initialised. This method is called on instan-
tiation of the object.

– pickleExpression() - This method pickles the expression.

• Denominator - The denominator represents the common denominator for all con-
trol coefficients generated by SymCA. Since this expression can sometimes be large,
we decided to handle it separately. The denominator is essentially the determinant
of the E matrix and is computed at the same time as the matrix inversion. Like
the ControlCoefficient object, the Denominator has a number of methods and user
accessible attributes (Table 3.3):

Table 3.3: Denominator object attributes
Attribute Description

name denominator label
maxima Maxima denominator label
pickle ref path referring to pickle expression location
pysces values dictionary of all PySCeS steady-state values
latex equivalents dictionary of all flux, species, elasticity and control coeffi-

cient labels
elasticities list of all elasticities found in the denominator expression
expression symbolic common denominator expression
terms four-membered tuple containing list of control patterns, list

of control pattern signs, list of absolute control patterns and
the number of control patterns

latex LATEX representation of denominator expression
ss value steady-state value of denominator
value label Maxima label for the denominator steady-state value
substituted True or False, depending on whether or not elasticity sub-

stitutions have occurred
substitution arg elasticity substitution argument in the event of elasticity

substitutions
substituted denom dictionary containing denominator objects arising from elas-

ticity substitutions

– clear() - This method resets the following attributes to None: terms, ex-
pressions and latex.

– get() - This method attempts to load the pickled denominator expression,
and if successful the expression attribute is initialised.
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– getElas() - This method uses the Utilities class getCCElas() method which
returns a list of all elasticities in the expression. The list is then assigned to
the elasticities attribute.

– getLatex() - This method uses the getLatex() method from the Utilities
class to generate the LATEX representation of the denominator expression.

– getTerms() - This method takes the denominator expression and generates
a list of all control patterns, a list of signs for each control pattern, a list
of absolute control patterns and finally the total number of control patterns
found. The getTerms() method in the Utilities class generates the data which
is assigned to the terms attribute.

– getValue() - The value of the denominator is computed on instantiation of
the Denominator object, and the value is assigned to the ss value attribute.

– pickleExpression - The denominator expression is stored as a Python pickle,
and this method is responsible for pickling the expression.

3.4.7 SCA

The SCA class performs the symbolic control analysis routine introduced earlier, and
drives further operations involving the symbolic control coefficients. This class requires
the Python interface with Maxima as a means of connecting to and performing the sub-
sequent analysis. We will address the Maxima interface in Section (3.4.8).
SCA requires the following arguments on instantiation:

• maxima - Maxima instance

• pysces - PySCeS model instance

• model - Current PySCeS input file name for model being analysed

• dep - True to compute dependents and False to compute only the independents

• format - True to remove a common reaction substring (if present), otherwise False

• modelMap - A dictionary containing all required data

• modelOut - A dictionary to store all data resulting from SCA and its various
operations

• allDir - A five-membered tuple containing the following directory paths: 0 - main
model output directory, 1 - directory storing all Maxima generated output, 2 -
Maxima output directory in the format required by the Maxima stringout method,
3 - directory housing all pickled Python objects and 4 - directory to store all LATEX
output
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Figure 3.7: SCA classes

The SCA class relies on the Parser, Output and Utilities classes (Figure 3.7) to perform
the various processing tasks that are required after all symbolic control coefficients have
been generated. We will discuss these classes in the following sections. To perform
symbolic control analysis we require several methods, each with a specific role. The
details of these methods appear in Appendix A.

3.4.8 Maxima

Figure 3.8: Maxima classes

The ability to communicate with the Maxima computing environment was crucial to the
viability of this study. As we demonstrated in Chapter 2, we were able to use the native
Python subprocess module to communicate with Maxima from within a Python session.
This section describes how the Maxima interface was developed and how it is used to
perform all symbolic computations.
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The sole purpose of the Maxima class is to perform the symbolic computations, and
we have written a number of methods to aid this process. This class consists of 17 meth-
ods, some of which wrap native Maxima methods and others establish the connection and
subsequent communication with Maxima. An instance of the Maxima class is established
requiring the Maxima stringout directory as the only argument. This is important, as the
directory separators for the directory argument, which the Maxima stringout function
requires, are in standard Linux format where each directory is separated by a ‘/’. This
applies to Maxima being run on both Windows and Linux platforms. The additional
classes required by this class are shown in Figure 3.8.

3.4.9 Parser

All data generated by Maxima and the various operations associated with symbolic con-
trol analysis require varying degrees of processing. Parser, which is used by the Maxima,
Output and SCA classes, contains five methods each of which is responsible for handling
a specific data set. The details of these methods appear in Appendix A. This class uses
a number of methods from Utilities to fulfill all parsing needs.

3.4.10 Output

All LATEX output generated by SymCA is written via this class, which contains 17 methods
to generate LATEX for the various types of data available. Instantiation of the Output
class requires nine arguments:

• max - Maxima subprocess instance

• data - A dictionary of all SymCA output

• model dir - Main model output directory

• model - Name of the model

• dep: True to compute both dependent and independent control coefficients, False
for only independent control coefficients

• all dir: A tuple containing the paths for the maxima and LATEX output directories

• modelMap: A dictionary of all initial data

• latex equivalents: A dictionary of all variable names and their corresponding
LATEX representation

• format: True if one wants any common reaction name substrings to be removed
from all LATEX output, else False to leave in

All LATEX output is written to the latex subdirectory, $PSCOUT/symca/model name/

latex/. This class makes use of Parser and Utilities classes. The details for all these
methods appear in Appendix A.
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3.4.11 Utilities

This class contains all the methods which are used by a number of the other classes,
and is instantiated with three optional arguments – the Maxima subprocess instance, a
dictionary of all initial data, and a boolean influencing reaction labelling in LATEX. All
arguments are initialised to None when they are not provided. Because of the nature of
Utilities and essentially being the ‘Jack of all trades’, it has numerous methods each
performing a specific function. There are 48 methods, some used by more than one class,
others used by one class only, and a few called internally by Utilities; these details
appear in Appendix A. A key method in this class is checkSign(), which was designed
to ensure that the signs associated with the control coefficient equations generated by
Maxima were correct.

3.4.12 Visualise

We developed the Visualise class to generate graphical representations to complement
some of the methods and additional features that have been incorporated into SymCA.
Generating layouts for biochemical networks can be a demanding and challenging exer-
cise, and for this reason we used external tools. The systems biology workbench, (SBW),
is one tool which we selected for use in this research [35]. Two modules within the SBW

framework enabled us to draw a network, DrawNetwork, which we then rendered into
SVG (Scalable Vector Graphics) using the SBWLayoutModule module. We then extracted
the SVG layout from SBW and used it as a starting point for the graphics developed in
this thesis.

Since the network layout is exported in the SVG format, it is possible to edit and
customise the underlying SVG code, and what we describe here is in essence an SVG
editor. The following methods we discuss were required to form our desired end-product,
which are intuitive graphics used to display some of the data generated via SymCA. At
that time, this required an installation of the SBW workbench to generate the initial lay-
out, and this could be achieved in the following ways.

Firstly, we could load the SBML [61] file for a specified model manually into the DrawNet-
work module where the initial XML layout was generated, and then load the XML layout
into the SBWLayout module whereby it is converted and outputted as a SVG file. Sec-
ondly, we could perform the above automatically, whereby the layout generated by SBW

was our choice for all future visualisations. If we used the first option, we could ‘tweak’
the initial SBW generated layout. Once saved, this layout would serve as the basis for all
future visualisations, and all that the user would need to do is store both the .xml and
.svg files for each model in the desired location within the PySCeS output directory, i.e
$PSCOUT/layout/model name /.

To achieve the level of customisation required for displaying the SymCA data, we devel-
oped a number of methods within the visualise class. Two additional classes within
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this class are required to save key data in the form of objects, SBMLelasticity and
SBMLreaction. The attributes for these two classes are summarised in the following
tables, and a detailed description of the methods appear in Appendix A.

Table 3.4: SBMLelasticity object attributes
Attribute Description

name elasticity label in format as used by SymCA

species elasticity species
glpyh id SVG species identifier
text glyph id SVG species label identifier
curve id curve identifier for elasticity
role product, substrate or modifier
reaction elasticity reaction

Table 3.5: SBMLreaction object attributes
Attribute Description

name reaction label in format as used by SymCA

glpyh id SVG reaction identifier
text glyph id SVG reaction label identifier
substrates list of all associated substrates
products list of all associated products
modifiers list of all associated modifiers

3.5 Discussion

Chapter 3 gave an overview of the design and workings of SymCA as well as a brief
introduction to all the classes that make up SymCA. This phase of the thesis involved
addressing numerous issues which arose during the proof of concept, such as ensuring
that the computed expressions had the correct signs (+ or −), incorporating steps which
ensured that any redundancies were removed from the expressions and solving the prob-
lem of data extraction from Maxima.

During this stage we developed the additional functionality, including methods for con-
trol pattern quantification, co-response coefficient calculation, the generation of LATEX
output and the generation and mapping of data onto graphical representations of the
system under investigation. Chapter 4 shows example graphics, which will illustrate how
SymCA works by means of an example system. This chapter will also cover all the fea-
tures and options mentioned throughout Chapter 3, whilst demonstrating the usability
of SymCA.



Chapter 4

SymCA at work

4.1 Introduction

The previous chapter revolved around the development and implementation of SymCA.
This chapter focusses on the use of SymCA by means of an example model. We designed
the model to incorporate all features common to biological features, i.e. linear segments,
branches and moiety conserved cycles.

X0 S1

S2

S3 X7

X6

1

2

3 5

4

S5 S4

6X9 X8

Figure 4.1: Theoretical system to demonstrate SymCA, as previously used to describe the
control-matrix equation in Section 1.5.3.

4.2 Beginning a SymCA session

SymCA can be used in one of two ways, either by command-line interaction or via a
Python script. We have used the former to describe how SymCA works, and included a
simple Python script to demonstrate certain features. An interactive Python or IPython

60
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shell is required for command-line interaction and then the SymCA module is loaded. The
text below shows what to expect on successfully importing SymCA:

[tim@unknown-00-13-d3-f0-92-59 ~]$ ipython

Python 2.5.2 (r252:60911, Jan 8 2009, 15:49:56)

Type "copyright", "credits" or "license" for more information.

IPython 0.8.4 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.

%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ’object’. ?object also works, ?? prints more.

In [1]: import symca

Using matplotlib for plotting.

pitcon routines available

nleq2 routines available

You are using NumPy with SciPy version: 0.6.0

PySCeS environment

******************

pysces.model_dir = /home/tim/mypysces/pscmodels

pysces.output_dir = /home/tim/mypysces/pscout

***********************************************************************

* Welcome to PySCeS (0.6.8) - Python Simulator for Cellular Systems *

* http://pysces.sourceforge.net *

* A Brave New World edition *

* Copyright(C) B.G. Olivier, J.M. Rohwer, J.-H.S. Hofmeyr, 2004-2008 *

* Triple-J Group for Molecular Cell Physiology *

* Stellenbosch University, South Africa *

* PySCeS is distributed under the GNU General Public Licence *

* See README.txt for licence details *

***********************************************************************

*************************************************************************

* Welcome to SymCA (0.2.8.1) - Symbolic Control Analysis PySCeS Module *

* Copyright(C) T.J. Akhurst, J.M. Rohwer, J.-H.S. Hofmeyr, 2008 *

* Triple-J Group for Molecular Cell Physiology *

* Stellenbosch University, South Africa *

* SymCA is distributed under the GNU General Public Licence *

* See README.txt for licence details *

*************************************************************************
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SymCA and PySCeS, which is loaded by SymCA since it is used to read the input file
and perform the initial stoichiometric analysis of the model, are now loaded into the
Python/IPython session and are ready for use. Then all required data is extracted and
incorporated into SymCA.

4.3 Instantiating a model object

To perform symbolic control analysis a symca object must be instantiated. This is
achieved by typing the following on the command-line, where sym is the SymCA instance
and the model to be analysed is ‘conceptA.psc’:

In [2]: sym = symca.symca(’conceptA’)

Using model directory: /home/tim/mypysces/pscmodels

/home/tim/mypysces/pscmodels/conceptA.psc loading .....

Parsing file: /home/tim/mypysces/pscmodels/conceptA.psc

Calculating L matrix . . . . . . . done.

Calculating K matrix . . . . . . . done.

(hybrd) The solution converged.

On instantiation, the user can provide two additional arguments as well as the required
model name:

• psc file - PySCeS input file for model to be analysed.

• model dir - The first optional argument is provided in the event of the PySCeS

input file being located in an alternative directory to the default PySCeS model
directory. A string representation of the designated location is thus provided.

• format - The second optional argument governs any LATEX output that may be
generated after analysis. The default value is False, but when designated True,
any common substrings found in the reaction labels provided in the PySCeS input
file (e.g. ‘v’, ‘r’, ‘R’ or ‘rxn’) are removed from the final LATEX output.

The model has been successfully loaded into PySCeS, the structural analysis performed
and all symbolic data generated.

4.3.1 Symbolic control analysis

Now that all symbolic data has been generated, the next step is to perform symbolic
control analysis (SCA), which is achieved by calling the doSca() command.



CHAPTER 4. SYMCA AT WORK 63

In [3]: sym.doSca()

=======================================================================

= Beginning Symbolic Control Analysis for conceptA. =

=======================================================================

Maxima matrix inversion complete....

Writing maxima data to file......

=======================================================================

= SCA data successfully computed for conceptA. =

=======================================================================

This method has four optional arguments:

• dep - This argument determines whether or not dependent control coefficients will
be computed because the control-matrix equation computes only the independent
control coefficients. There are two relationships which enable the calculation of
the dependent control coefficients, Equations 1.24 & 1.25. The argument is set by
default to True, implying that dependent control coefficients will be computed. If
the argument is set to False, i.e. dep=False, only independent control coefficients
will be computed.

• load - This argument is set by default to False, and can only be used after an
initial analysis has been performed on the model. After a model has been analysed
this argument can be set to True, which will load data from a previous analysis as
opposed to performing the analysis from start.

• subE - An option is available to perform elasticity ‘knock-out’ experiments whereby
elasticity coefficients can be assigned pre-determined numerical values, such as 0
or 1. These values are then substituted into the E matrix before the inversion and
subsequent computation of control coefficients. By setting subE to True, the user
indicates that this substitution will take place, as the argument is set by default
to False.

• subDict - This argument is required only when subE has been set to True, and is a
dictionary of all desired elasticity coefficient substitutions. The dictionary contains
key value pairs which include the elasticity coefficient labels in the form ecR1 s1,
where R1 and s1 refer to the reaction and the specie respectively, and the desired
value.

4.4 Post-symbolic control analysis features

The user has a number of options ranging from setting the elasticity coefficients after
generation of control coefficients in a similar way to that achieved before an analysis, to
output of data in LATEX. We have outlined all these features in the following sections:
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4.4.1 Symbolic to PySCeS comparison

The values of symbolic control coefficient expressions can be calculated via substitu-
tion of the PySCeS steady-state values for species, fluxes and elasticities into the SymCA

expressions. These values are then compared with those obtained numerically using
PySCeS. This method can be used as a test for the integrity of the control coefficient
expressions as follows:

In [4]: sym.symca2Pysces()

(hybrd) The solution converged.

INFO: Steady State evaluation complete.

4.4.2 Summation theorems

The user can compute the summation theorems for all control coefficients generated by
SymCA. Symbolic expressions are substituted with the steady-state values obtained from
PySCeS and the resultant numerical values are used to compute the summations for both
flux and concentration control coefficients. This method is accessed as follows:

In [5]: sym.computeSummations()

4.4.3 Elasticity substitution

This method enables elasticity coefficient substitutions after the initial analysis, which
allows the user to assess the effects of the substitutions on the resulting control coefficient
expressions. This method has two arguments:

In [6]: sym.setElasticityPost(subDict)

The only required argument is a dictionary, subDict. The available arguments are de-
scribed below:

• subDict - This dictionary has all desired elasticity coefficient substitutions. The
dictionary is the same as that given as an argument when calling doSca(),

• elas type - This is an optional argument and can be 0 or 1. When 0 is supplied,
all elasticity substitutions are performed simultaneously, whereas if the user sets
type to 1 the dictionary is stepped through and each elasticity is substituted in
isolation with a final substitution of all elasticities.

4.4.4 Co-control coefficients

This method computes all co-control coefficients for the data provided by the user, where
a co-control coefficient represents the ratio between control coefficients describing the
response of two system variables to a common perturbation [34] (see Section 1.6 for
further details). A list of tuples/lists is required as the argument for this method, where
each tuple/list (element in the list) represents the data for a single co-control coefficient
in the form: (flux,species/metabolite,reaction/enzyme). This method is used as follows:
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In [7]: coc_data = [(’JR2’,’S2’,’R1’),(’JR4’,’S3’,’R3’)]

In [8]: sym.computeCoControl(coc_data)

where coc data is the list of tuples, hence represents data for two co-control coefficients.

4.4.5 Response coefficients

There are two methods for computing response coefficients with respect to external
parameters, which must be used together. The first method, computeResponse(), com-
putes the numerical values of all response coefficients using PySCeS. The second method,
getResponse(), enables the user to select various response coefficients based on specific
criteria. After response coefficients have been computed and selected, their correspond-
ing control and elasticity coefficients are identified so that the user can perform symbolic
operations with them. The data from both methods is stored in the symcaModelOut
dictionary with Response as the key and a dictionary as its values. The PySCeS data is
stored under the pysces key and the SymCA under symca. The following arguments are
available for use with the getResponse() method:

• cutoff - The default is 0.5, which implies that all response coefficients that are
numerically equal to or greater than 0.5 will be extracted.

• flux - This lists all flux or species, i.e. all response coefficients for specified fluxes
or species.

• param - This lists the parameters in response coefficients, i.e. all response coeffi-
cients for specific parameters.

4.4.6 Control pattern quantification

The value and percentage contribution of all control patterns making up each control co-
efficient expression can be computed. The control pattern data for each control coefficient
is pickled and the pickle reference is stored in the ControlCoefficient control pattern ref
attribute. The method is called as follows:

In [9]: sym.controlPatterns()

Quantifying control coefficient control patterns....

There are three optional arguments which can be set when calling this method:

• ccList - This is a list of all fluxes or species whose control coefficients you wish to
analyse.

• tol - The default is 0.1, which is the cutoff value to be used to select coefficients
with an absolute value greater than the cutoff.

• type - The default is None, otherwise set to ‘coc’ to quantify co-control coefficient
control patterns.
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4.4.7 Post-analysis simplification

This method gives the user the option to perform a further simplification of the gener-
ated control coefficients. This is achieved by removing all terms common to both the
numerator for each control coefficient and the common denominator.

In [10]: sym.simplify()

4.4.8 Pattern scan

This allows the user to investigate the effects of perturbing a parameter on the control
pattern contributions for each control coefficient. A parameter value is perturbed and
the control patterns are quantified for the new parameter value. This gives an insight
into how these changes affect the routes of regulation, which are described by the control
patterns.

In [11]: sym.patternScan()

This method has four optional arguments:

• cc - The user can specify which control coefficients are to be scanned by providing a
list of desired control coefficient labels. If no list is provided all control coefficients
are used.

• param - Specific parameters can be scanned by providing a list of parameters,
otherwise all system parameters are used for the scan.

• range - This argument determines the range to be scanned, and is set to 0.1 (10%)
if no range is provided. The range scanned represents a relative change around the
steady-state value for the parameter in question. For example, if the parameter
value is 0.5 and the default range applies, the range to be scanned is between 0.45
and 0.55.

• steps - The number of steps within the determined range can be set by assigning
a value for this argument. If no value is supplied, a default of 11 steps is used.

4.4.9 Graphical representation of elasticity coefficient distribution

The user has the option to visualise the elasticity coefficient value distribution for a
desired network. The user can view either the variable elasticities in isolation, or both
variable and parameter elasticities.

In [12]: sym.viewSSElas()

The user can call this elasticities viewing method with the following optional arguments:

• par - This is by default False, which displays only variable elasticities. However,
by setting this to True the user can view both variable and parameter elasticities.
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• colours - By default the visualise class has a set of ten colours in the colour range.
The user can provide their own list of colours with this method.

• colour codes - If the user supplies their own colours for the previous argument,
they must then supply a dictionary of colours and corresponding hexadecimal
colour codes as the key value pairs.

• range max - The user can set maximum value when creating the colour range,
otherwise the value is set to 10 by default.

4.4.10 Graphical representation of control patterns

After the user has performed the control pattern quantification, they can visualise the
quantified control patterns on a network.

In [13]: sym.viewControlPatterns()

In [14]:

This method has seven optional arguments:

• below - This determines whether all control patterns will be visualised, based on
the pattern cutoff value. The default is False implying that only those patterns
above the pattern cutoff value will be displayed. When the default is set to True,
all patterns are displayed.

• cc - This allows the user to provide a list of control coefficients which they wish
to visualise, otherwise the control pattern images for all control coefficients are
generated.

• flux species - The user can supply a list of fluxes and species. All control coeffi-
cients for each entry are determined and the control pattern images for the desired
control coefficients are generated.

• colours - The user can supply a custom set of 10 colours for the colour range.

• colour codes - If the user supplies a custom set of colours, they must also provide
a dictionary of the colours and their hexadecimal representations.

• pattern cutoff - The value set for this argument is used to determine which
control pattern images will be generated. If no value is given, the value is set to 0
and all control pattern images are generated.

• range max - This value is used as the maximum for the colour range, and the
intervals will be computed based on this value. If no values are given the maximum
used is 10.
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4.4.11 Data output

A method exists that allows the user to output data in LATEX format. Each type of
data supported has its own specific argument, and all data is written to the latex sub-
directory which is found in the following path:

$PSCOUT/symca/model name /latex/

where $PSCOUT is the PySCeS output directory. See Pages 43 & 43 for more details
regarding the directory structure associated with SymCA.

In [14]: sym.writeData(argument)

where

argument

can be one of the following:

• ‘cc’ - All computed control coefficients; three files are written, one containing
the common denominator, one for all flux control coefficients and another for all
concentration control coefficients. Additional information found in the output
includes whether or not elasticity coefficient substitutions have been performed, in
which case the details of the substitutions are included.

• ‘sym2psc’ - This table summarises the numerical values for all control coefficients
including PySCeS and SymCA computed values.

• ‘patterns’ - The data outputted for control patterns is a table summarising the
quantified control pattern data for all control coefficients.

• ‘coc’ - This data is outputted in a similar form to that of the native control
coefficient, with the major difference that only two files are written, one for flux
co-control coefficients and the other for concentration co-control coefficients.

• ‘summations’ - This table represents the summation theorem results for the model
in question.

• ‘scan’ - Two plots are generated, one showing the control pattern quantification
% contribution and the other showing the control coefficient value over the param-
eter range scanned. Since the control pattern expressions can be large, a key in
the form of a table describes the annotations used for the former plot. The gener-
ation of these plots uses the PySCeS plt.plot2D method, which in turn requires
the installation of Matplotlib. The .eps format is used for the plots, which are
incorporated into a LATEX output file.

A header is written for all files and includes the time and date when the file was written,
the name of the file and the model for which the data applies.
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4.5 LATEX output as generated by SymCA

As previously discussed, numerous data generated by SymCA can be written to file as
LATEX. In this section we will illustrate an example for the control coefficient and control
pattern output.

4.5.1 Control coefficient output

Data generated for the control coefficients is spread over three files, one each for the flux
control coefficients, the concentration control coefficients and the common denominator
for all control coefficients. In each file, the information is displayed if any elasticity
substitutions have been performed.

There is a separate file for the denominator before (
∑

) and after (
∑∗) elasticity substi-

tutions, because the denominator is common to all control coefficients in both situations.
If the simplification step is performed, the denominator (

∑∗∗) is included with the con-
trol coefficient as the denominator which is now unique to the control coefficient, as
shown in the example:

Output Generated using SymCA On: Sun, 20 Sep 2009 19:40:00

Output File: conceptA_CommonDenom.tex

Pysces Model: conceptA

Common denominator

∑
= −JR6 ε

R3
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
+
JR6 ε

R3
S1 ε

R2
S2 ε

R5
S3 ε

R6
S5

S5
− JR4 ε

R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
+
JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R6
S5

S5

− JR4 ε
R2
S1 ε

R4
S2 ε

R3
S3 ε

R5
S5

S5
+
JR1 ε

R1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
− JR1 ε

R1
S1 ε

R2
S2 ε

R5
S3 ε

R6
S5

S5
− JR1 ε

R1
S1 ε

R4
S2 ε

R3
S3 ε

R6
S5

S5

+
JR1 ε

R1
S1 ε

R2
S2 ε

R3
S3 ε

R6
S5

S5
+
JR1 ε

R1
S1 ε

R4
S2 ε

R3
S3 ε

R5
S5

S5
− JR1 ε

R1
S1 ε

R2
S2 ε

R3
S3 ε

R5
S5

S5
+
JR6 ε

R3
S1 ε

R4
S2 ε

R5
S3 ε

R6
S4

S4

− JR6 ε
R3
S1 ε

R2
S2 ε

R5
S3 ε

R6
S4

S4
+
JR4 ε

R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S4

S4
− JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R6
S4

S4
+
JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R5
S4

S4

− JR1 ε
R1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S4

S4
+
JR1 ε

R1
S1 ε

R2
S2 ε

R5
S3 ε

R6
S4

S4
+
JR1 ε

R1
S1 ε

R4
S2 ε

R3
S3 ε

R6
S4

S4
− JR1 ε

R1
S1 ε

R2
S2 ε

R3
S3 ε

R6
S4

S4

− JR1 ε
R1
S1 ε

R4
S2 ε

R3
S3 ε

R5
S4

S4
+
JR1 ε

R1
S1 ε

R2
S2 ε

R3
S3 ε

R5
S4

S4

After elasticity substitution: εR1
S1 , εR6

S4 , εR2
S2 = 0

∗∑
= −JR6 ε

R3
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
− JR4 ε

R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
+
JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R6
S5

S5

− JR4 ε
R2
S1 ε

R4
S2 ε

R3
S3 ε

R5
S5

S5
+
JR4 ε

R2
S1 ε

R4
S2 ε

R3
S3 ε

R5
S4

S4
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The control coefficient output below illustrates the additional data included when elas-
ticity substitutions are performed after initial generation of the control coefficients. The
simplification step shown can be called at any stage to factorise the numerator and
denominator terms to ensure that all common terms are removed.

Control coefficient:CJR6
R3

Original coefficient

CJR6
R3 = (−JR4 ε

R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
+
JR1 ε

R1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
− JR1 ε

R1
S1 ε

R2
S2 ε

R5
S3 ε

R6
S5

S5

+
JR4 ε

R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S4

S4
− JR1 ε

R1
S1 ε

R4
S2 ε

R5
S3 ε

R6
S4

S4
+
JR1 ε

R1
S1 ε

R2
S2 ε

R5
S3 ε

R6
S4

S4
)/
∑

Cannot be simplified further

After elasticity substitution: εR1
S1 , εR6

S4 , εR2
S2 = 0

CJR6
R3 = (−JR4 ε

R2
S1 ε

R4
S2 ε

R5
S3 ε

R6
S5

S5
)/

∗∑

Simplified coefficient

CJR6
R3 = (−JR4 S4 εR2

S1 ε
R5
S3 ε

R6
S5 )/

∗∗∑
Where

∗∗∑
= JR4 S5 εR2

S1 ε
R3
S3 ε

R5
S4 − JR6 S4 εR3

S1 ε
R5
S3 ε

R6
S5 − JR4 S4 εR2

S1 ε
R5
S3 ε

R6
S5 + JR4 S4 εR2

S1 ε
R3
S3 ε

R6
S5

− JR4 S4 εR2
S1 ε

R3
S3 ε

R5
S5
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4.5.2 Co-control coefficient output

The data below corresponds with co-control coefficients associated with the model in
Figure 4.1. As described in Section 1.6, a co-control coefficient represents the ratio
between two control coefficients describing the response of two system variables to a
common perturbation. In the first example below the two control coefficients are CJR2

R1

and CS1
R1 with a perturbation in the rate of reaction R1. In the second example the

control coefficients are CJR5
R3 and CS3

R3, and the perturbed reaction rate is R3. The output
generated includes the expression for the co-control coefficient as well as its numerical
value.

Output Generated using SymCA On: Sun, 20 Sep 2009 19:40:03

Output File: conceptA_CoControlCoefficients.tex

Pysces Model: conceptA

Co-control coefficient: OJR2:S1
R1

Elasticity substitutions: None

OJR2:S1
R1 =

1

εR2
S1

−
εR2
S2

εR2
S1 ε

R4
S2

value = 9.8190e− 01

Co-control coefficient: OJR5:S3
R3

Elasticity substitutions: None

OJR5:S3
R3 =

S5 εR6
S4

S5 εR5
S3 ε

R6
S4

− S4 εR5
S3 ε

R6
S5 −

S5 εR5
S4

S5 εR5
S3 ε

R6
S4

− S4 εR5
S3 ε

R6
S5 −

S4 εR6
S5

S5 εR5
S3 ε

R6
S4

− S4 εR5
S3 ε

R6
S5 +

S4 εR5
S5

S5 εR5
S3 ε

R6
S4

− S4 εR5
S3 ε

R6
S5

value = 1.8056e+ 00
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4.5.3 SymCA vs PySCeS output

The data used to compare the control coefficients as determined by substitution of the
steady-state values into the SymCA expressions as well as the data obtained via numerical
computations by PySCeS are written to file in the following format:

Output Generated using SymCA On: Sun, 20 Sep 2009 19:40:03

Output File: conceptA_symca2pysces.tex

Pysces Model: conceptA

SCA v PySCeS

Control coefficient PySCeS SymCA

CJR1
R1 0.941932256355 0.941932256355

CJR1
R2 0.0275502976562 0.0275502976562

CJR1
R3 0.0197955907959 0.0197955907959

CJR1
R4 0.0027550297656 0.0027550297656

CJR1
R5 0.00397095772914 0.00397095772914

CJR1
R6 0.00399586769779 0.00399586769779

CJR2
R1 1.01148218028 1.01148218028

CJR2
R2 0.429192201278 0.429192201278

CJR2
R3 -0.344819448484 -0.344819448484

CJR2
R4 0.0429192201276 0.0429192201276

CJR2
R5 -0.0691701231971 -0.0691701231971

CJR2
R6 -0.069604030007 -0.069604030007

CJR3
R1 0.866011875368 0.866011875368

CJR3
R2 -0.410880179643 -0.410880179643

CJR3
R3 0.417807711196 0.417807711196

CJR3
R4 -0.0410880179641 -0.0410880179641

CJR3
R5 0.0838114293819 0.0838114293819

CJR3
R6 0.0843371816615 0.0843371816615

CJR4
R1 1.01148218028 1.01148218028

CJR4
R2 0.429192201278 0.429192201278

CJR4
R3 -0.344819448484 -0.344819448484

CJR4
R4 0.0429192201276 0.0429192201276

CJR4
R5 -0.0691701231971 -0.0691701231971

CJR4
R6 -0.069604030007 -0.069604030007

CJR5
R1 0.866011875368 0.866011875368

CJR5
R2 -0.410880179643 -0.410880179643

CJR5
R3 0.417807711196 0.417807711196

CJR5
R4 -0.0410880179641 -0.0410880179641

CJR5
R5 0.0838114293819 0.0838114293819

CJR5
R6 0.0843371816615 0.0843371816615

continued on next page
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continued from previous page

Control coefficient PySCeS SymCA

CJR6
R1 0.866011875368 0.866011875368

CJR6
R2 -0.410880179643 -0.410880179643

CJR6
R3 0.417807711196 0.417807711196

CJR6
R4 -0.0410880179641 -0.0410880179641

CJR6
R5 0.0838114293819 0.0838114293819

CJR6
R6 0.0843371816615 0.0843371816615
CS1
R1 0.993170655818 0.993170655818

CS1
R2 -0.471210787156 -0.471210787156

CS1
R3 -0.33857695614 -0.33857695614

CS1
R4 -0.0471210787153 -0.0471210787153

CS1
R5 -0.0679178911481 -0.0679178911481

CS1
R6 -0.0683439426588 -0.0683439426588

CS2
R1 0.840931345899 0.840931345899

CS2
R2 0.356824057315 0.356824057315

CS2
R3 -0.286677796761 -0.286677796761

CS2
R4 -0.795702825064 -0.795702825064

CS2
R5 -0.0575070188384 -0.0575070188384

CS2
R6 -0.0578677625516 -0.0578677625516

CS3
R1 1.5636609581 1.5636609581

CS3
R2 -0.741880467969 -0.741880467969

CS3
R3 0.754388738274 0.754388738274

CS3
R4 -0.0741880467965 -0.0741880467965

CS3
R5 -0.748642459513 -0.748642459513

CS3
R6 -0.753338722095 -0.753338722095

CS4
R1 0.709038841096 0.709038841096

CS4
R2 -0.3364041703 -0.3364041703

CS4
R3 0.342076019709 0.342076019709

CS4
R4 -0.0336404170298 -0.0336404170298

CS4
R5 0.0686197966214 0.0686197966214

CS4
R6 -0.749690070097 -0.749690070097

CS5
R1 -0.713421772307 -0.713421772307

CS5
R2 0.338483656292 0.338483656292

CS5
R3 -0.344190566299 -0.344190566299

CS5
R4 0.033848365629 0.033848365629

CS5
R5 -0.0690439706312 -0.0690439706312

CS5
R6 0.754324287316 0.754324287316
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4.5.4 Summation output

The summation theorem data is summarised in two separate tables, one for all fluxes
and the other for all species found in the system. The actual and the theoretical values
obtained are shown below.

Output Generated using SymCA On: Sun, 20 Sep 2009 19:40:03

Output File: conceptA_summations.tex

Pysces Model: conceptA

Summation Theorem data for all flux

Flux Theoretical SymCA

JR1 1 1.0
JR2 1 1.0
JR3 1 1.0
JR4 1 1.0
JR5 1 1.0
JR6 1 1.0

Summation Theorem data for all species

Species Theoretical SymCA

S1 0 0.0
S2 0 0.0
S3 0 -0.0
S4 0 -0.0
S5 0 -0.0

4.5.5 Quantified control pattern output

The data obtained when one performs the control pattern quantification includes the
percentage contribution of a control pattern for a particular control coefficient, as well
as the value of the control pattern. The following data was obtained by performing the
control pattern quantification for control coefficient CJR6

R3 :

(−JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S5
S5 +

JR1 ε
R1
S1 εR4

S2 εR5
S3 εR6

S5
S5 − JR1 ε

R1
S1 εR2

S2 εR5
S3 εR6

S5
S5 +

JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S4
S4

−JR1 ε
R1
S1 εR4

S2 εR5
S3 εR6

S4
S4 +

JR1 ε
R1
S1 εR2

S2 εR5
S3 εR6

S4
S4 )/

∑
which is found in the model depicted in Figure 4.1.
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Control pattern data for: CJR6
R3 CC value: 4.1781e− 01

Control pattern Value % Contribution

+JR1 ε
R1
S1 εR4

S2 εR5
S3 εR6

S5
S5 3.4218e-03 0.82

+JR1 ε
R1
S1 εR2

S2 εR5
S3 εR6

S4
S4 3.4218e-03 0.82

−JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S5
S5 3.4218e-02 8.19

+JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S4
S4 3.4218e-01 81.90

−JR1 ε
R1
S1 εR2

S2 εR5
S3 εR6

S5
S5 3.4218e-04 0.08

−JR1 ε
R1
S1 εR4

S2 εR5
S3 εR6

S4
S4 3.4218e-02 8.19

Elasticity Substituted Control Coefficient: CJR6
R3 CC Value: 3.9961e− 01

Elasticity Substitutions: εR1
S1 = 0

Control Pattern Value % Contribution

JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S4
S4 3.6328e-01 90.91

−JR4 ε
R2
S1 εR4

S2 εR5
S3 εR6

S5
S5 3.6328e-02 9.09

The above example is purely for demonstrating the functionality of performing elas-
ticity substitutions, and it is important to note the selection of the elasticities being
substituted is not determined by SymCA. The user determines which, if any, elasticities
will be substituted. With regards to the example, εR1

S1 was selected on the basis that
it was the smallest elasticity in the system with a value of -0.0585. Presently, SymCA
does not cater for using a cut-off value and performing these substitutions at analysis
time. However, this may be something to consider. If a system were to be implemented
whereby a cut-off value would be used and the substitutions performed at analysis time,
the user would need to provide the cut-off value, as ignoring one or more elasticities can
have a profound effect on the resultant expressions, thus the value selected is subjective.

4.5.6 Control pattern parameter scan output

The data generated by a control pattern parameter scan is saved to the $PSCOUT/symca/
model name /latex/ subdirectory in two files, one for the flux control coefficients and
the other for the concentration control coefficients. The data is represented by a plot
(Figure 4.2) illustrating the changes in the control pattern contributions over a range of
parameter values. A second plot (Figure 4.3) corresponds to the change in the control
coefficient values over the range of parameter values. Table 4.1 describes the annotations
used as labels for the control patterns. The output is generated only for those control
coefficients with more than one control pattern.
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Table 4.1: Control patterns index

Control pattern ID Control pattern

C.P.1
−JR4 ε

R2
S1 εR4

S2 εR3
S3 εR5

S5
S5

C.P.2
+JR1 ε

R1
S1 εR4

S2 εR3
S3 εR5

S5
S5

C.P.3
−JR1 ε

R1
S1 εR2

S2 εR3
S3 εR5

S5
S5

C.P.4
+JR4 ε

R2
S1 εR4

S2 εR3
S3 εR5

S4
S4

C.P.5
−JR1 ε

R1
S1 εR4

S2 εR3
S3 εR5

S4
S4

C.P.6
+JR1 ε

R1
S1 εR2

S2 εR3
S3 εR5

S4
S4
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Figure 4.2: Control pattern parameter scan output.
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Figure 4.3: Control coefficient parameter scan output.

4.5.7 Graphical representations

As described in Section 3.4.12, the user can generate graphics for the biochemical network
under investigation. These graphics contain information which complements numerous
methods and additional features of SymCA, primarily focussing on illustrating the control
patterns within the system.

This section includes examples of the following images, base (Figure 4.4), which is used
for all subsequent graphics, two depicting the elasticity distributions (Figures 4.5 & 4.6)
and a representation of a control pattern (Figure 4.7). We will use the model from Figure
4.1 for continuity.

In the control pattern figure (Figure 4.7), the modulated enzyme is identified by the
square reaction node, whereas all others remain as the standard circle. The colour asso-
ciated with the pattern gives an indication of the percentage contribution of the control
pattern being visualised. In the case of a concentration control coefficient control pat-
tern, the affected species is identified by underlining it. All fluxes found in a control
pattern are also identified by the colour of the reaction number corresponding to the
colour of the pattern.
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Figure 4.4: The base model generated by SymCA

Steady−state elasticity distribution: conceptA

Variable Elasticities Only

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 4.5: Variable elasticity distribution image
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Steady−state elasticity distribution: conceptA

Parameter and Variable Elasticities

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008

S3

S2

S1

S5 S4

X8X9

X0

X6

X7

+ −

+

−

+

−

+ −

+

+

−

−

+

+

−

−

1

2

3

4

5

6

0.00 − 0.12

0.12 − 0.24

0.24 − 0.37

0.37 − 0.49

0.49 − 0.61

0.61 − 0.73

0.73 − 0.86

0.86 − 0.98

0.98 − 1.1

1.1 − 1.22

Figure 4.6: Variable and parameter distribution image

Control Pattern Data for ccJR6_R3_cp4 from model: conceptA

Control Coefficient: ccJR6_R3 Value: 0.418

Control Pattern Value: 0.342 Contribution: 81.9000819001

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 4.7: A control pattern image for a pattern found in CJR6
R3
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We have now demonstrated the operability and functionality of SymCA by command-line
interaction. We have also demonstrated all variations of output. Below is the script
which was used to generate all output:

import symca

sym = symca.symca(’conceptA’)

sym.doSca()

sym.setElasticityPost(subDict={’ecR1_S1’:0,’ecR2_S2’:0,’ecR6_S4’:0})

sym.simplify()

sym.symca2Pysces()

sym.computeSummations()

sym.controlPatterns()

sym.computeCoControl([(’S1’,’JR2’,’R1’),(’S3’,’JR5’,’R3’)])

sym.patternScan(cc=[’ccJR3_R6’],param=[’kf1’],range=0.5,steps=15)

sym.viewElas(image_type=’eps’)

sym.viewElas(par=True,image_type=’eps’)

sym.viewControlPatterns(cc=[’ccJR6_R3’],image_type=’eps’)

sym.writeData(’cc’)

sym.writeData(’sym2psc’)

sym.writeData(’summation’)

sym.writeData(’patterns’)

sym.writeData(’coc’)

sym.writeData(’scan’)

In the script a model named ‘conceptA.psc’ is loaded into SymCA, and then symbolic
control analysis is performed and additional methods are called. The LATEX for all
control coefficients as well as the data generated by the various other methods is then
written to file.

4.6 Discussion

This chapter described in detail all the methods associated with SymCA. The explana-
tions include the options for each method as well as excerpts of code demonstrating the
commands the user would use to carry out the various methods. We gave examples of
the types of output generated and discussed a number of the methods that were de-
signed for later use in investigating the regulatory behaviour of cellular systems. We
placed particular emphasis on control-patterns, which were introduced by Hofmeyr [49],
as these highlight the ‘chain of local effects’ that exist within cellular systems as a result
of enzyme perturbations.

We presented the generation and subsequent manipulations of the control coefficient
expressions so that each expression consists of a varying numbers of control patterns.
We implemented several additional methods to maximise this feature. Of particular
mention is the technique of quantifying the contribution of the control patterns found
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within each control coefficient expression, whose results show exactly how a perturbation
is manifested within the system. Adding to the knowledge gained via this technique is
the ability to combine this approach with that of a parameter scan, where a parameter
value is varied over a range and the control patterns are quantified for each steady-state
arising from the change in parameter values. This enables us to understand how the
regulatory pathways may vary under different conditions.

To fully appreciate these quantified control patterns, we included the ability to gen-
erate images of the underlying system within SymCA. Since the process of developing the
software to generate these images is extremely complex, we used a tool included in the
Systems Biology Workbench, (SBW) [97] to perform this function. After we had gener-
ated the structure of the system via SBW, the image was customised and data generated
from SymCA mapped onto it. This allowed us to visualise exactly how the effects of a
perturbation are propagated through the system.

In Section 4.5.5 we gave an example of the data generated by performing quantified
control pattern analysis for a control coefficient (CJR3

R6 ) before and after elasticity sub-
stitutions had been performed. With respect to the elasticity substitution made, the
specific elasticity was selected as it was the smallest in the system, thus resulting in a
negligible change of the control coefficient value in question. The substitution was made
as a means to illustrate the functionality of elasticity substitutions with SymCA. The
substitution of numerical values for selected elasticities, needs specific attention as any
substitution represents a simplification of the system, resulting in reduced complexity of
the expressions. The implication is that one has to make assumptions about the elastic-
ity values. Importantly, elasticity substitutions can be made even without kinetic data
for a model, e.g. if it is known that a reaction is saturated with substrate or that it is
an irreversible reaction the elasticity can be set to 0; similarly if a reaction is first-order
in substrate the elasticity can be set to 1.

We are now in a position to apply SymCA to biological models, which leads to the second
part of this thesis, the application of SymCA to investigate the regulatory behaviour of bi-
ological systems in greater detail. The work in the following chapter demonstrates what
we can achieve with SymCA when using a combined strategy of supply-demand analysis
and control pattern quantification.



Chapter 5

Applications of SymCA: Part I –
Control pattern quantification &
supply-demand analysis

5.1 General introduction

We briefly introduced the theory of supply-demand analysis and control pattern analysis
in Section 1.6. The work which follows uses both types of analysis together with the
control pattern quantification method developed as part of SymCA. Before focussing on
the example system and the demonstration of this approach, we will re-introduce the
techniques used in this study.

5.1.1 Supply-demand analysis

Our knowledge of the organisation of metabolic networks is central to understanding
metabolic function. Intermediary metabolism consists of a catabolic block, a synthetic
block making the building blocks for macromolecular synthesis, and a ‘growth’ block
which makes and maintains the gene and enzyme machinery and the cellular struc-
ture. A common intermediate or pair of common intermediates provides the coupling
mechanism for these blocks. Figure 5.1, on the following page, provides a graphical
representation for the organisation of metabolism.

Metabolic pathways, which constitute the living process, are essentially a molecular
economy in which the producing block is referred to as the supply and the consuming
block, the demand [54]. The technique of supply-demand analysis provides a clear and
quantitative description of metabolic regulation and function. The technique relies on
both rate characteristics [50] and metabolic control analysis as its main tools [54]. In its
simplest form, supply-demand analysis provides a quantitative description of the regu-
latory nature of a cellular system and also identifies parameter values which correlate to
optimal homeostatic maintenance.

82
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Figure 5.1: A simple representation of the functional organisation of metabolism.

In this chapter we examine the biological question about how the control distribution
in a simple supply-demand system with a feedback loop changes when the demand load
is varied. We use SymCA to generate quantified control patterns in order to understand
the cause of this shift in control distribution and how the routes of regulation in the
pathway change under different conditions.

5.1.2 Control pattern quantification

As introduced earlier, control pattern analysis is a non-algebraic technique developed by
Hofmeyr [49], which enables the expression of control coefficients in terms of elasticity
coefficients. The resultant control coefficient expression consists of numerous products of
elasticity coefficients, each of which is a control pattern. Hofmeyr described these control
patterns as a ‘chain of local effects’ in which each control pattern demonstrates how a
small perturbation in an enzyme activity affects either a flux or metabolite pool. The
control patterns give insight into the behavioural patterns inherent in metabolic path-
ways, and subsequently lead to a greater understanding of the relationships between the
local and systemic properties of metabolic pathways.

SymCA has been implemented so that all control coefficients are generated in a form
reminiscent of the control patterns that Hofmeyr [49] described. To quantify the in-
dividual control patterns which are present in the control coefficient expressions, we
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developed a method within SymCA that isolates all control patterns within an expression
and calculates the percentage contribution of the control pattern to the overall control
coefficient and the value of the control pattern (see Section 4.4.6 for further details).

We developed a method within SymCA to evaluate the effects of varying a parameter
value over a defined range. This method uses the parameter scanning functionality of
PySCeS and computes the quantified control pattern data for each parameter value in
the scan. We generated a plot of all control patterns in a control coefficient expression
to illustrate the changing roles of the patterns over the parameter space. The section
below investigates the effectiveness of this combined strategy.

5.2 Control pattern quantification and supply-demand anal-
ysis, a combined strategy

S XBA Dem1 2 43

Figure 5.2: Linear pathway with a feedback loop where X serves as the linking metabolite
between the supply block, which consists of three steps, and the demand block, which
has one step.

The following work focusses on a simple theoretical model (Figure 5.2) in which there is
a feedback mechanism between the metabolite linking both the supply and the demand,
and the first reaction in the chain. Olivier used this model in 2005 [83]. Reaction 1 uses
the reversible Hill equation which allows for the effects of cooperative enzymes and the
effects of allosteric feedback inhibition. Reactions 2 and 3 use the reversible Michaelis-
Menten equation and Reaction 4 uses the irreversible Michaelis-Menten equation. Table
5.1 summarises the kinetic parameters for each reaction.

The first step in this analysis is the generation of rate characteristic plots which illus-
trate the effects of different rates associated with the demand step. For this system the
linking metabolite is labelled ‘X’; for the purposes of supply-demand analysis, ‘X’ must
be fixed. When ‘X’ is fixed it becomes a parameter. To assess the effects of varying
degrees of demand on the steady-state, we set V4 for the demand step (Reaction 4 in
Figure 5.2) to values corresponding to the following levels of demand: low, medium-low,
medium-high and high. For each level of demand we varied the value for ‘X’ over a range
of 0.001 to 30 000, and calculate the steady-state fluxes of the supply and the demand
blocks at every step in this range. The results are shown in the Figure 5.3.
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Table 5.1: Kinetic parameters for all reactions for the model as shown in Figure 5.2.

Reaction Parameter Description Value

1: S ↔ A Keq1 Equilibrium constant 400.0
V1 Vmax 200.0
S0.5 Half-saturation constant 1.0
A0.5 Half-saturation constant 10000.0
X0.5 Half-saturation constant 1.0
h Hill coefficient 4.0
α Inhibition constant 0.01

2: A ↔ B V2 Vmax 100.0
Keq2 Equilibrium constant 10.0
K2A Km 1.0
K2B Km 1.0

3: B ↔ X V3 Vmax 100.0
Keq3 Equilibrium constant 10.0
K3B Km 1.0
K3X Km 1.0

4: X → Dem V4 Vmax 100.0
K4X Km 0.1

We deduced from this plot that the area between V4 values of 2.5 (red) and 75 (turquoise),
corresponds to the area when the concentration of ‘X’ can be maintained at a relatively
constant level, which implies that V4 values within this range coincide with the area
of optimal homeostatic control with regard to metabolite ‘X’. When V4 is between 1.5
(green) and 2.5 (red) the range for ‘X’ is near equilibirum, which indicates a lack of ki-
netic regulation with a corresponding increase in role of the thermodynamic term, which
now dominates the supply elasticity1. When the Vmax rises above 75 (turquoise), the
supply block is unable to meet the varying demand for ‘X’ and we can also see large
variations in the concentration of ‘X’. For values below 1.5 (green) there is another area
of homeostasis regarding the concentration of ‘X’, and this represents homeostatic con-
trol at near equilibrium conditions.

This is undesirable as a supply pathway must fulfill two key functions: to cope with
low demand conditions so that its products and intermediate metabolites do not tend
towards their equilibrium concentrations, and to meet increasing demand for its product
[54].

1Generally each elasticity coefficient represents the sum of a kinetic term determined by the enzymes
binding properties and a thermodynamic term dependent only on Γ/Keq. In a supply elasticity the
thermodynamic term nears 0 far from equilibrium and −∞ near equilibrium, where it totally dominates
the kinetic term [54].
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Figure 5.3: Supply-demand rate characteristic plot for the model shown in Figure 5.2.
The values found in the figure legend correspond to the Vmax values for the demand
step (Reaction 4).

For a system lacking a feedback mechanism, an area of homeostasis near equilibrium
would be more likely than homeostasis far from equilibrium. The implication is that
the feedback mechanism is responsible for homeostatic maintenance of ‘X’ at a concen-
tration far from equilibrium. We can demonstrate this influence on the system using a
combined control pattern analysis and parameter scan approach. For this investigation,
the metabolite ‘X’ must be freed as opposed to performing the initial supply-demand
analysis. The next stage in this investigation is to identify the control patterns involved
over a range of Vmax values for Reaction 4.

We can use numerical MCA to identify a step with a substantial flux-control coeffi-
cient. At this stage we set the Vmax to 100, which represents the area midway between
1 and 2 to the left of Figure 5.3. In this case CJR4

R4 has a value of 0.302, and we continue
using this as an example. We can now use SymCA to analyse this control coefficient in
more depth. We calculated the following algebraic equation for CJR4

R4 :

(−εR1
A εR2

B εR3
X − εR2

A εR3
B εR1

X )/
∑

.
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By performing a symbolic analysis of the system using SymCA, we can investigate the
mechanisms involved with the control coefficient on the flux for a step with a substantial
flux-control coefficient. The results of numerical MCA show that the greatest control for
this step is found in CJR4

R4 , which has a value of ≈ 0.302. CJR4
R4 contains two control pat-

terns, the first concerns the effects via the main chain, and the second the effects due to
the feedback of ‘X’ on the first step. By quantifying these control patterns with respect
to the control coefficient, we can determine the distribution of the control between the
two control patterns (Table 5.2).

Table 5.2: Quantified control pattern data for flux control coefficient CJR4
R4

ID Control Pattern Value % Contribution

C.P.1 −εR1
A εR2

B εR3
X 7.8761e-02 26.10

C.P.2 −εR2
A εR3

B εR1
X 2.2297e-01 73.90

The data in Table 5.2 represents the quantified control pattern at steady-state where
the Vmax for Reaction 4 was set to 100, which is in an area of relatively high demand.
The images, Figures 5.4 and 5.5, represent the two control patterns found in CJR4

R4 .

Control Pattern Data for ccJR4_R4_cp1 from model: isola2a

Control Coefficient: ccJR4_R4 Value: 0.302

Control Pattern Value: 0.079 Contribution: 26.103326

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 5.4: C. P. 1 found in CJR4
R4 at steady-state
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Control Pattern Data for ccJR4_R4_cp2 from model: isola2a

Control Coefficient: ccJR4_R4 Value: 0.302

Control Pattern Value: 0.223 Contribution: 73.896674

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 5.5: C. P. 2 found in CJR4
R4 at steady-state

By combining the technique of control pattern quantification with a parameter scan,
we can gain an insight into the role and influence of each control pattern over a range
of Vmax values for Reaction 4, which in this case will correspond to varying levels of
demand. We set the Vmax for Reaction 4 to 100 in the PySCeS input file, performed
symbolic control analysis and scanned the parameters over a range of values from 0.01
to 199; the control patterns were quantified at every step of the scan. We used the
patternScan() method included in SymCA for this procedure (see Page 46 for more de-
tails regarding this method).

We can clearly see the effects of the parameter scan on the contributions of the two
control patterns in Figure 5.6 where C.P. 1 represents the regulatory pathway along
the main chain (Figure 5.4) and C.P. 2 represents the regulatory pathway involving the
feedback mechanism (Figure 5.5). At very low demand, we can briefly see C.P. 1 as the
dominant control pattern, which links with the area of the supply-demand figure where
the homeostatic maintenance of ‘X’ occurs close to equilibrium. We can then see C.P
1 decline dramatically to 0% contribution which corresponds with the sharp increase in
the contribution of C.P. 2 to 100% (Figure 5.7).
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Figure 5.6: Control pattern contributions for parameter scan V4 on CJR4
R4

The contribution of C.P. 2 is maintained at 100% between V4 values of ≈ 2 to ≈ 80,
which corresponds to the region of optimal homeostasis of ‘X’. This shows that the feed-
back mechanism is responsible for this homeostatic maintenance far from equilibrium.
As the value of V4 increases beyond this point, the contribution of C.P. 2 decreases
sharply with a subsequent increase in the contribution of C.P. 1. At a value of about
110, both control patterns share control over the demand flux. As the value continues to
rise indicating an increase in the rate of demand, all control shifts to C.P. 1, with C.P.
2 decreasing to 0%. This coincides with the value for CJR4

R4 approaching zero after the
value of V4 increasing above 110, indicative of the control shifting to the supply block.
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Figure 5.7: Control pattern contributions for parameter scan V4 on CJR4
R4 over a range

from ≈ 1.8 to ≈ 2.2 showing the dramatic flipping of control between the two control
patterns.

If we plot all flux-control coefficient values (Figure 5.8), we can see that at low V4-values
all control lies in CJR4

R4 , which is the demand flux. As found for the control patterns
(Figures 5.6 and 5.7), when V4 ≈ 2 we see a sharp decrease in the the demand flux
control coupled with a sharp increase in the supply flux control. As V4 increases above
2 the demand flux control dramatically increases again and the supply flux control de-
creases sharply. This phenomena can be attributed to the demand rate characteristic
dropping down to such an extent that it crosses the supply rate characteristic. At this
stage both the demand and the supply slopes are very flat, resulting in a small V4-range
where both supply and demand will have flux control. The shape of the curve for CJR4

R4

follows the same trends as the contribution curve for control pattern C.P. 2, which sug-
gests that the feedback mechanism is essential for maintaining the control of the flux in
the demand block. At high V4 values, which coincide with a rise in the contribution of
control pattern C.P. 1 to 100%, we can see that the flux control coefficients in the supply
block rise with a decrease in the demand flux control coefficient to near 0.
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Figure 5.8: Flux-control coefficient values for a V4-parameter scan.

5.3 Discussion

The combined technique of control pattern quantification and of a parameter scan gave
us a clearer picture of the role of the feedback mechanism in the homeostatic mainte-
nance of the metabolite linking the supply and demand blocks. From the plots generated
by this approach, it was clear that the feedback plays an active role in the homeostasis of
the linking metabolite only under conditions which are far from equilibrium. This was
deduced by inspection of the supply-demand and the control pattern parameter scan
data.

Control pattern quantification identified two control patterns present in the system,
one acting via the feedback loop and the other acting exclusively via the main chain.
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This analysis aids in the understanding of the role of the feedback loop, by illustrating
the conditions under which it is active and when it is inactive. This study has shown
that under very low and very high demand conditions the feedback loop is inactive,
whereas it is active under all other conditions tested. It is also apparent that when
the feedback loop is active flux control lies with demand. This is due to the demand
becoming saturated with X, resulting in the demand elasticity decreasing to zero. As
a stand-alone technique, supply-demand analysis identifies parameter values which cor-
relate to optimal homeostatic maintenance, thus providing a quantitative description
of the regulatory nature of a cellular system. However, when used in combination with
control pattern quantification we began to visualise and substantiate how this regulation
is achieved to maintain optimal homeostasis within a system. By following a few steps
we gained this insight quickly:

• We identified a control coefficient which in turn is determined by the biological
question being investigated. In this example the demand flux CJR4

R4 was selected
to describe the changing nature of the demand flux control as the rate of the
demand step is increased.

• We identified a parameter to scan, and in this example the rate of the demand
step was varied to simulate conditions of low to high demand.

• Since we were interested in describing the regulatory pathways associated with the
demand flux, we plotted all control patterns found to play a role for this control
coefficient. We based our selection of the control patterns to be plotted on a certain
value as this allowed for a control pattern to play little or no role under certain
conditions, but be important under different conditions. It also removed those
control patterns which did not contribute under any of the conditions investigated.

Importantly, this chapter demonstrates one of the key features of SymCA, that is, the
generation of Figures 5.4 and 5.5. SBW is used to generate the initial system layout
which is then optimised by SymCA and the control pattern data is then mapped on the
images. The initial system layout can be generated ‘on the fly’ by SBW or be manually
created using SBW. This is a once off operation as the base layout is stored within a
layout directory for each model analysed. By executing a few simple commands the
images referred to previously can be generated:

import symca

sym = symca.symca(’isola2a’)

sym.doSca()

sym.controlPatterns()

sym.viewControlPatterns(cc=[’ccJR4_R4’],image_type=’eps’)

The method responsible for the generation of the images is viewControlPatterns, which
we discuss in more detail in Section 4.4.10. However, a requirement is that we quantify
the control patterns before generating the control pattern images.
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This combined strategy has quantified the role of the feedback loop in homeostatic
maintenance under conditions which are far from equilibrium. The next chapter illus-
trates how we can apply the technique of control pattern analysis to explain changes in
regulatory behaviour due to environmental manipulations.



Chapter 6

Applications of SymCA: Part II –
Control pattern quantification for
regulatory behaviour analysis

6.1 Introduction

In 1990, Galazzo and Bailey published work investigating the effects of suspended and
alginate-entrapped Saccharomyces cerevisiae cells at pH 4.5 and pH 5.5 [41]. Their pri-
mary focus was the rate of production of a cell metabolite, which they stated as ‘often
being the most important property of a bioprocess’. This production rate is determined
by the intracellular reaction rates of the pathway, in which the rates are dependent on
the levels of participating enzymes and the concentrations of the metabolites. These in
turn are directly influenced by a cell’s environment and its genetic composition.

Galazzo and Bailey believed that to maximise metabolite production by changing the
expression of certain genes and the environment, they needed to understand firstly, the
flux control within the system, and secondly, how this control was affected in response to
genetic and environmental changes. To achieve this, they built kinetic models describing
the fermentation pathway in Saccharomyces cerevisiae for the following environments:

• Suspended Saccharomyces cerevisiae cells at pH 4.5

• Suspended Saccharomyces cerevisiae cells at pH 5.5

• Alginate-entrapped Saccharomyces cerevisiae cells at pH 4.5

• Alginate-entrapped Saccharomyces cerevisiae cells at pH 5.5

94
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x

Figure 6.1: Reaction scheme of the kinetic model of fermentation pathways in Sac-
charomyces cerevisiae. Reactions are numbered 1 to 8 and are denoted by squares,
metabolites are denoted by circles and any feedback loops are shown as dashed lines. A
number enclosed in a box next to a line indicates a stoichiometric coefficient.

Galazzo and Bailey obtained the data required to build their models by measuring
the rates of glucose uptake and of ethanol and glycerol formation in combination with
a priori knowledge of Saccharomyces cerevisiae metabolic pathways for all four condi-
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tions. They obtained the intracellular concentrations of substrates and effectors for most
key pathway enzymes by means of in vivo phosphorus-31 nuclear magnetic resonance
(NMR) measurements. They used MCA, which they refer as to Metabolic Control The-
ory (MCT), to identify the control structures for the different environments investigated.

Galazzo and Bailey found that when Saccharomyces cerevisiae cells are entrapped in
alginate, the glucose uptake rate increased and the step with the most influence over
ethanol production shifted from glucose uptake, Reaction 1, to phosphofructokinase,
Reaction 4. They also showed that the rate of ATP utilisation limits ethanol production
at pH 5.5 but is relatively insignificant at pH 4.5. The work described in this chapter
shows how we use SymCA to perform control pattern quantification for the four different
environments. By identifying the control pattern profiles for these environments, this
study gives a quantified explanation for the reasons why the observed changes occur.

The work described in this chapter shows how we use SymCA to perform control pat-
tern quantification for the four different environments. The biological questions we are
addressing is what causes the shift in control distribution, and why the regulatory routes
are changing under the different conditions. To answer these questions we identify and
quantify the control pattern profiles for each of these environments.

6.2 Regulatory analysis and SymCA

When we compute the value and percentage contributions of all control patterns con-
tained within a control coefficient, the technique of control pattern quantification en-
ables us to understand the different underlying regulatory behaviour that arises in the
situations investigated. Since the focus is on ethanol production, this investigation is
concerned only with the flux-control coefficients on Reaction 6, the step catalysed by
pyruvate kinase.

The data in Table 6.1 summarises the control distribution for the control coefficients
associated with Reaction 6 for the different conditions and pH values investigated. We
can see from this data that for most conditions there are three reactions sharing most
of the control for Jv6, except for the immobilised cells at pH 5.5 where there are only
two control coefficients. The control distribution fluctuates between the various condi-
tions investigated, and this study gives additional insight into the changes in regulatory
behaviour associated with the conditions tested.

Table 6.2 summarises all control patterns found in the three control coefficients for
Reaction 6. In order to derive the number of control patterns found in each control
coefficient a cut-off of 5% was used. If a control pattern was found to contribute more
than 5% for any of the conditions investigated then it was included in the study.
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Table 6.1: Flux control coefficients for Reaction 6 computed by PySCeS.

Control Suspended Suspended Immobilised Immobilised

coefficient cells cells cells cells

pHex5.5 pHex4.5 pHex5.5 pHex4.5

CJv6
v1 0.662 0.867 0.463 0.353

CJv6
v2 0.000 0.000 0.000 0.000

CJv6
v3 0.000 0.000 -0.018 -0.031

CJv6
v4 0.136 0.121 0.272 0.517

CJv6
v5 0.000 0.000 0.000 0.000

CJv6
v6 0.032 0.005 0.010 0.033

CJv6
v7 -0.032 -0.005 -0.010 -0.033

CJv6
v8 0.202 0.014 0.284 0.161

Table 6.2: Control patterns per control coefficients, only those with a contribution of
over 5% were considered for this study.

Number of contributing control patterns

Control Suspended Suspended Immobilised Immobilised

coefficient pH 5.5 pH 4.5 pH 5.5 pH 4.5

CJv6
v1 1 1 2 2

CJv6
v4 2 1 2 2

CJv6
v8 1 − 2 2

At pH 4.5 and pH 5.5 for the suspended cells, all responses caused by external pertur-
bations are propagated via a single path for each control coefficient. However, when the
cells are immobilised we can see that there are two pathways along which perturbations
are propagated for both pH 4.5 and pH 5.5. This suggests a change in the regulatory be-
haviour and nature as a result of the immobilisation process. By analysing the underlying
control patterns involved, we can gain a clearer understanding about ethanol production.

For the suspended cells at pH 4.5, control of the main pathway flux lies with Reac-
tion 1. If we consider flux control coefficient CJv6

v1 , we find a single control pattern which



CHAPTER 6. APPLICATIONS OF SYMCA: PART II 98

propagates the effects of changes in Reaction 1 along the main chain. We also see that
Reaction 4 is a minor controlling step for the flux through Reaction 6, and again a single
control pattern is dominant. The effects of perturbations in Reaction 4 are also mani-
fested along the main chain. However, we can see that the feedback of G6P on Reaction
1 is also involved. The control coefficients expressions as generated by SymCA for the
three key flux-control coefficients are as follows:

CJv6
v1 =

(−4 Jv1 Jv4 Jv5 Jv8 ε
v8
ATP εv5FDP εv4G6P εv2Glci ε

v6
PEP + 4 Jv1 Jv4 Jv5 Jv8 ε

v8
ATP εv6FDP εv4G6P εv2Glci ε

v5
PEP

− 4 Jv1 Jv4 Jv5 Jv7 ε
v5
ATP εv6FDP εv4G6P εv2Glci ε

v7
PEP − 4 Jv1 Jv3 Jv5 Jv7 ε

v5
ATP εv6FDP εv3G6P εv2Glci ε

v7
PEP

+ 4 Jv1 Jv4 Jv5 Jv7 ε
v6
ATP εv5FDP εv4G6P εv2Glci ε

v7
PEP + 4 Jv1 Jv3 Jv5 Jv7 ε

v6
ATP εv5FDP εv3G6P εv2Glci ε

v7
PEP

+ 4 Jv1 Jv4 Jv5 Jv7 ε
v5
ATP εv7FDP εv4G6P εv2Glci ε

v6
PEP + 4 Jv1 Jv3 Jv5 Jv7 ε

v5
ATP εv7FDP εv3G6P εv2Glci ε

v6
PEP

− 4 Jv1 Jv4 Jv5 Jv7 ε
v6
ATP εv7FDP εv4G6P εv2Glci ε

v5
PEP − 4 Jv1 Jv3 Jv5 Jv7 ε

v6
ATP εv7FDP εv3G6P εv2Glci ε

v5
PEP

− 4 Jv1 Jv4 Jv5 Jv7 ε
v7
ATP εv5FDP εv4G6P εv2Glci ε

v6
PEP − 4 Jv1 Jv3 Jv5 Jv7 ε

v7
ATP εv5FDP εv3G6P εv2Glci ε

v6
PEP

+ 4 Jv1 Jv4 Jv5 Jv7 ε
v7
ATP εv6FDP εv4G6P εv2Glci ε

v5
PEP + 4 Jv1 Jv3 Jv5 Jv7 ε

v7
ATP εv6FDP εv3G6P εv2Glci ε

v5
PEP

− 8 Jv1 Jv3 Jv4 Jv5 ε
v3
ATP εv5FDP εv4G6P εv2Glci ε

v6
PEP + 8 Jv1 Jv3 Jv4 Jv5 ε

v4
ATP εv5FDP εv3G6P εv2Glci ε

v6
PEP

− 8 Jv1 Jv3 Jv4 Jv5 ε
v5
ATP εv4FDP εv3G6P εv2Glci ε

v6
PEP + 8 Jv1 Jv3 Jv4 Jv5 ε

v3
ATP εv6FDP εv4G6P εv2Glci ε

v5
PEP

− 8 Jv1 Jv3 Jv4 Jv5 ε
v4
ATP εv6FDP εv3G6P εv2Glci ε

v5
PEP + 8 Jv1 Jv3 Jv4 Jv5 ε

v6
ATP εv4FDP εv3G6P εv2Glci ε

v5
PEP )/

∑

CJv6
v4 =

(−4 Jv3 Jv4 Jv5 Jv8 ε
v8
ATP εv5FDP εv3G6P εv2Glci ε

v6
PEP + 4 Jv3 Jv4 Jv5 Jv8 ε

v8
ATP εv5FDP εv3G6P εv1Glci ε

v6
PEP

+ 4 Jv1 Jv4 Jv5 Jv8 ε
v8
ATP εv5FDP εv1G6P εv2Glci ε

v6
PEP − 4 Jv1 Jv4 Jv5 Jv8 ε

v8
ATP εv5FDP εv2G6P εv1Glci ε

v6
PEP

+ 4 Jv3 Jv4 Jv5 Jv8 ε
v8
ATP εv6FDP εv3G6P εv2Glci ε

v5
PEP − 4 Jv3 Jv4 Jv5 Jv8 ε

v8
ATP εv6FDP εv3G6P εv1Glci ε

v5
PEP

− 4 Jv1 Jv4 Jv5 Jv8 ε
v8
ATP εv6FDP εv1G6P εv2Glci ε

v5
PEP + 4 Jv1 Jv4 Jv5 Jv8 ε

v8
ATP εv6FDP εv2G6P εv1Glci ε

v5
PEP

+ 4 Jv1 Jv4 Jv5 Jv7 ε
v5
ATP εv6FDP εv1G6P εv2Glci ε

v7
PEP − 4 Jv1 Jv4 Jv5 Jv7 ε

v5
ATP εv6FDP εv2G6P εv1Glci ε

v7
PEP

− 4 Jv1 Jv4 Jv5 Jv7 ε
v6
ATP εv5FDP εv1G6P εv2Glci ε

v7
PEP + 4 Jv1 Jv4 Jv5 Jv7 ε

v6
ATP εv5FDP εv2G6P εv1Glci ε

v7
PEP

− 4 Jv1 Jv4 Jv5 Jv7 ε
v5
ATP εv7FDP εv1G6P εv2Glci ε

v6
PEP + 4 Jv1 Jv4 Jv5 Jv7 ε

v5
ATP εv7FDP εv2G6P εv1Glci ε

v6
PEP

+ 4 Jv1 Jv4 Jv5 Jv7 ε
v6
ATP εv7FDP εv1G6P εv2Glci ε

v5
PEP − 4 Jv1 Jv4 Jv5 Jv7 ε

v6
ATP εv7FDP εv2G6P εv1Glci ε

v5
PEP

+ 4 Jv1 Jv4 Jv5 Jv7 ε
v7
ATP εv5FDP εv1G6P εv2Glci ε

v6
PEP − 4 Jv1 Jv4 Jv5 Jv7 ε

v7
ATP εv5FDP εv2G6P εv1Glci ε

v6
PEP

− 4 Jv1 Jv4 Jv5 Jv7 ε
v7
ATP εv6FDP εv1G6P εv2Glci ε

v5
PEP + 4 Jv1 Jv4 Jv5 Jv7 ε

v7
ATP εv6FDP εv2G6P εv1Glci ε

v5
PEP

+ 8 Jv1 Jv3 Jv4 Jv5 ε
v2
ATP εv5FDP εv3G6P εv1Glci ε

v6
PEP + 8 Jv1 Jv3 Jv4 Jv5 ε

v3
ATP εv5FDP εv1G6P εv2Glci ε

v6
PEP

− 8 Jv1 Jv3 Jv4 Jv5 ε
v3
ATP εv5FDP εv2G6P εv1Glci ε

v6
PEP − 8 Jv1 Jv3 Jv4 Jv5 ε

v2
ATP εv6FDP εv3G6P εv1Glci ε

v5
PEP

− 8 Jv1 Jv3 Jv4 Jv5 ε
v3
ATP εv6FDP εv1G6P εv2Glci ε

v5
PEP + 8 Jv1 Jv3 Jv4 Jv5 ε

v3
ATP εv6FDP εv2G6P εv1Glci ε

v5
PEP )/

∑
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CJv6
v8 =

(−2 Jv4 Jv5 Jv7 Jv8 ε
v5
ATP εv6FDP εv4G6P εv2Glci ε

v7
PEP + 2 Jv4 Jv5 Jv7 Jv8 ε

v5
ATP εv6FDP εv4G6P εv1Glci ε

v7
PEP

− 2 Jv3 Jv5 Jv7 Jv8 ε
v5
ATP εv6FDP εv3G6P εv2Glci ε

v7
PEP + 2 Jv3 Jv5 Jv7 Jv8 ε

v5
ATP εv6FDP εv3G6P εv1Glci ε

v7
PEP

+ 2 Jv1 Jv5 Jv7 Jv8 ε
v5
ATP εv6FDP εv1G6P εv2Glci ε

v7
PEP − 2 Jv1 Jv5 Jv7 Jv8 ε

v5
ATP εv6FDP εv2G6P εv1Glci ε

v7
PEP

+ 2 Jv4 Jv5 Jv7 Jv8 ε
v6
ATP εv5FDP εv4G6P εv2Glci ε

v7
PEP − 2 Jv4 Jv5 Jv7 Jv8 ε

v6
ATP εv5FDP εv4G6P εv1Glci ε

v7
PEP

+ 2 Jv3 Jv5 Jv7 Jv8 ε
v6
ATP εv5FDP εv3G6P εv2Glci ε

v7
PEP − 2 Jv3 Jv5 Jv7 Jv8 ε

v6
ATP εv5FDP εv3G6P εv1Glci ε

v7
PEP

− 2 Jv1 Jv5 Jv7 Jv8 ε
v6
ATP εv5FDP εv1G6P εv2Glci ε

v7
PEP + 2 Jv1 Jv5 Jv7 Jv8 ε

v6
ATP εv5FDP εv2G6P εv1Glci ε

v7
PEP

+ 2 Jv4 Jv5 Jv7 Jv8 ε
v5
ATP εv7FDP εv4G6P εv2Glci ε

v6
PEP − 2 Jv4 Jv5 Jv7 Jv8 ε

v5
ATP εv7FDP εv4G6P εv1Glci ε

v6
PEP

+ 2 Jv3 Jv5 Jv7 Jv8 ε
v5
ATP εv7FDP εv3G6P εv2Glci ε

v6
PEP − 2 Jv3 Jv5 Jv7 Jv8 ε

v5
ATP εv7FDP εv3G6P εv1Glci ε

v6
PEP

− 2 Jv1 Jv5 Jv7 Jv8 ε
v5
ATP εv7FDP εv1G6P εv2Glci ε

v6
PEP + 2 Jv1 Jv5 Jv7 Jv8 ε

v5
ATP εv7FDP εv2G6P εv1Glci ε

v6
PEP

− 2 Jv4 Jv5 Jv7 Jv8 ε
v6
ATP εv7FDP εv4G6P εv2Glci ε

v5
PEP + 2 Jv4 Jv5 Jv7 Jv8 ε

v6
ATP εv7FDP εv4G6P εv1Glci ε

v5
PEP

− 2 Jv3 Jv5 Jv7 Jv8 ε
v6
ATP εv7FDP εv3G6P εv2Glci ε

v5
PEP + 2 Jv3 Jv5 Jv7 Jv8 ε

v6
ATP εv7FDP εv3G6P εv1Glci ε

v5
PEP

+ 2 Jv1 Jv5 Jv7 Jv8 ε
v6
ATP εv7FDP εv1G6P εv2Glci ε

v5
PEP − 2 Jv1 Jv5 Jv7 Jv8 ε

v6
ATP εv7FDP εv2G6P εv1Glci ε

v5
PEP

− 2 Jv4 Jv5 Jv7 Jv8 ε
v7
ATP εv5FDP εv4G6P εv2Glci ε

v6
PEP + 2 Jv4 Jv5 Jv7 Jv8 ε

v7
ATP εv5FDP εv4G6P εv1Glci ε

v6
PEP

− 2 Jv3 Jv5 Jv7 Jv8 ε
v7
ATP εv5FDP εv3G6P εv2Glci ε

v6
PEP + 2 Jv3 Jv5 Jv7 Jv8 ε

v7
ATP εv5FDP εv3G6P εv1Glci ε

v6
PEP

+ 2 Jv1 Jv5 Jv7 Jv8 ε
v7
ATP εv5FDP εv1G6P εv2Glci ε

v6
PEP − 2 Jv1 Jv5 Jv7 Jv8 ε

v7
ATP εv5FDP εv2G6P εv1Glci ε

v6
PEP

+ 2 Jv4 Jv5 Jv7 Jv8 ε
v7
ATP εv6FDP εv4G6P εv2Glci ε

v5
PEP − 2 Jv4 Jv5 Jv7 Jv8 ε

v7
ATP εv6FDP εv4G6P εv1Glci ε

v5
PEP

+ 2 Jv3 Jv5 Jv7 Jv8 ε
v7
ATP εv6FDP εv3G6P εv2Glci ε

v5
PEP − 2 Jv3 Jv5 Jv7 Jv8 ε

v7
ATP εv6FDP εv3G6P εv1Glci ε

v5
PEP

− 2 Jv1 Jv5 Jv7 Jv8 ε
v7
ATP εv6FDP εv1G6P εv2Glci ε

v5
PEP + 2 Jv1 Jv5 Jv7 Jv8 ε

v7
ATP εv6FDP εv2G6P εv1Glci ε

v5
PEP

− 4 Jv3 Jv4 Jv5 Jv8 ε
v3
ATP εv5FDP εv4G6P εv2Glci ε

v6
PEP + 4 Jv3 Jv4 Jv5 Jv8 ε

v3
ATP εv5FDP εv4G6P εv1Glci ε

v6
PEP

− 4 Jv1 Jv4 Jv5 Jv8 ε
v2
ATP εv5FDP εv4G6P εv1Glci ε

v6
PEP + 4 Jv3 Jv4 Jv5 Jv8 ε

v4
ATP εv5FDP εv3G6P εv2Glci ε

v6
PEP

− 4 Jv3 Jv4 Jv5 Jv8 ε
v4
ATP εv5FDP εv3G6P εv1Glci ε

v6
PEP − 4 Jv1 Jv4 Jv5 Jv8 ε

v4
ATP εv5FDP εv1G6P εv2Glci ε

v6
PEP

+ 4 Jv1 Jv4 Jv5 Jv8 ε
v4
ATP εv5FDP εv2G6P εv1Glci ε

v6
PEP − 4 Jv3 Jv4 Jv5 Jv8 ε

v5
ATP εv4FDP εv3G6P εv2Glci ε

v6
PEP

+ 4 Jv3 Jv4 Jv5 Jv8 ε
v5
ATP εv4FDP εv3G6P εv1Glci ε

v6
PEP + 4 Jv1 Jv4 Jv5 Jv8 ε

v5
ATP εv4FDP εv1G6P εv2Glci ε

v6
PEP

− 4 Jv1 Jv4 Jv5 Jv8 ε
v5
ATP εv4FDP εv2G6P εv1Glci ε

v6
PEP + 4 Jv3 Jv4 Jv5 Jv8 ε

v3
ATP εv6FDP εv4G6P εv2Glci ε

v5
PEP

− 4 Jv3 Jv4 Jv5 Jv8 ε
v3
ATP εv6FDP εv4G6P εv1Glci ε

v5
PEP + 4 Jv1 Jv4 Jv5 Jv8 ε

v2
ATP εv6FDP εv4G6P εv1Glci ε

v5
PEP

− 4 Jv3 Jv4 Jv5 Jv8 ε
v4
ATP εv6FDP εv3G6P εv2Glci ε

v5
PEP + 4 Jv3 Jv4 Jv5 Jv8 ε

v4
ATP εv6FDP εv3G6P εv1Glci ε

v5
PEP

+ 4 Jv1 Jv4 Jv5 Jv8 ε
v4
ATP εv6FDP εv1G6P εv2Glci ε

v5
PEP − 4 Jv1 Jv4 Jv5 Jv8 ε

v4
ATP εv6FDP εv2G6P εv1Glci ε

v5
PEP

+ 4 Jv3 Jv4 Jv5 Jv8 ε
v6
ATP εv4FDP εv3G6P εv2Glci ε

v5
PEP − 4 Jv3 Jv4 Jv5 Jv8 ε

v6
ATP εv4FDP εv3G6P εv1Glci ε

v5
PEP

− 4 Jv1 Jv4 Jv5 Jv8 ε
v6
ATP εv4FDP εv1G6P εv2Glci ε

v5
PEP + 4 Jv1 Jv4 Jv5 Jv8 ε

v6
ATP εv4FDP εv2G6P εv1Glci ε

v5
PEP )/

∑
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Table 6.3: Quantified control patterns for all control coefficients in suspended cells.

% Contribution

Control Control Suspended Suspended

coefficient pattern pH 5.5 pH 4.5

CJv6
v1 -4.0 J1 J4 J8 ε

8
ATP ε5

FDP ε4
G6P ε2

Glci ε
6
PEP 98.69 99.99

CJv6
v4

4.0 J1 J4 J8 ε
8
ATP ε5

FDP ε1
G6P ε2

Glci ε
6
PEP 94.28 99.71

-18.0 J3 J4 J8 ε
8
ATP ε5

FDP ε3
G6P ε2

Glci ε
6
PEP 5.72 0.00

CJv6
v8

-4.0 J1 J4 J8 ε
4
ATP ε5

FDP ε1
G6P ε2

Glci ε
6
PEP 94.28 −

18.0 J3 J4 J8 ε
4
ATP ε5

FDP ε3
G6P ε2

Glci ε
6
PEP 5.72 −

With an increase in external pH from 4.5 to 5.5, we can see that the control distribution
with respect to Jv6 is shared between Reactions 1, 4 and 8, with Reaction 1 having most
control. The control pattern profile for these flux control coefficients is similar to that at
pH 4.5 in that a single control pattern is dominant for each control coefficient. CJv6

v1 and
CJv6
v4 have the same control pattern as at pH 4.5, and the effects of changes at Reaction

8 are also propagated via the main chain for CJv6
v8 . The net change in the external pH

for suspended cells is thus a shift in the control distribution, with control over the flux
for Reaction 6 involving CJv6

v1 and CJv6
v4 at pH 4.5, and CJv6

v1 , CJv6
v4 and CJv6

v8 at pH
5.5. Table 6.3 shows the data describing the control pattern contribution profiles for all
relevant flux control coefficients for the suspended cells.

When Saccharomyces cerevisiae is immobilised in alginate beads, the appearance of
the control coefficient distribution changes. This changing profile coincides with a differ-
ence in the control pattern distribution associated with the various control coefficients
involved. Although the distribution still involves the same three flux control coefficients
as found for suspended cells at pH 5.5, there are now two contributing control patterns
for each flux control coefficient at pH 4.5 and pH 5.5 and the balance in distribution has
shifted. This is seen in Table 6.4.

At pH 4.5, the control is distributed between CJv6
v4 , CJv6

v1 and CJv6
v8 with control co-

efficient values of 0.517, 0.35 and 0.16 respectively. All three flux control coefficients
now contain two contributing control patterns as opposed to the single control pattern
present in the suspended cells at pH 4.5. For CJv6

v4 , we now find that the dominant
control pattern no longer takes into account the feedback of G6P, but acts via the main
chain and the branch point at Reaction 3.
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Control Pattern Data for ccJv6_v1_cp6 from model: gal_sus4.5
Control Coefficient: ccJv6_v1 Value: 0.866

Control Pattern Value: 0.866 Contribution: 99.9978484023

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 6.2: Dominant control pattern for CJv6
v1 for suspended cells at pH 4.5 & pH 5.5.

The perturbed reaction is denoted by a blue square, the elasticities found in the pattern
are shown in red with a grey bubble surrounding them and the reaction they affect. All
fluxes present in the control pattern are shown as red reaction numbers and the dashed
lines indicate feedback loops.
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We would thus expect an increase in the rates of Reactions 3 and 6 on a perturbation of
Reaction 4. CJv6

v1 has the second highest degree of control, and like CJv6
v4 , there are now

two contributing control patterns, one affecting only the main chain and the other affect-
ing the main chain and the branch point at Reaction 3, with contributions of 58.56% and
41.44% respectively. The situation is similar for CJv6

v8 in that there are two contributing
control patterns. One effects only the main chain and contributes 85.47%, while the
other control pattern and contribution affects the feedback of G6P on Reaction 1 and
the main chain.

Table 6.4: Quantified control patterns for all control coefficients in immobilised cells.

% Contribution

Control Control Immobilised Immobilised

coefficients patterns pH 5.5 pH 4.5

CJv6
v1

-4.0 J1 J4 J8 ε
8
ATP ε5

FDP ε4
G6P ε2

Glci ε
6
PEP 26.89 58.56

16.0 J1 J3 J8 ε
4
ATP ε5

FDP ε3
G6P ε2

Glci ε
6
PEP 73.11 41.44

CJv6
v4

4.0 J1 J4 J8 ε
8
ATP ε5

FDP ε1
G6P ε2

Glci ε
6
PEP 13.27 14.53

-18.0 J3 J4 J8 ε
8
ATP ε5

FDP ε3
G6P ε2

Glci ε
6
PEP 86.73 85.47

CJv6
v8

-4.0 J1 J4 J8 ε
4
ATP ε5

FDP ε1
G6P ε2

Glci ε
6
PEP 94.28 14.53

18.0 J3 J4 J8 ε
4
ATP ε5

FDP ε3
G6P ε2

Glci ε
6
PEP 5.72 85.47

When the pH is increased to 5.5 for the immobilised cells, CJv6
v1 , CJv6

v4 and CJv6
v8 again

share the control, and each control coefficient has two associated control patterns. CJv6
v1

has the highest degree of control, 0.46, with the remainder of the control shared between
CJv6
v4 and CJv6

v8 . The control patterns which contribute to the control of CJv6
v1 are the

same two that are active at pH 4.5. However, unlike the patterns at pH 4.5, the pattern
affecting both the main chain flux and the flux through Reaction 3 is now the dominant
control pattern and contributes 73.11%. The control pattern affecting only the main
chain flux now contributes 26.89%.

With regard to CJv6
v4 , the contributions of the control patterns remain relatively un-

changed when compared with the data from pH 4.5. The balance of control lies within
the control pattern affecting the branch point at Reaction 3 as well as the main chain,
and the remaining pattern affecting the main chain via the feedback of G6P. However,
for CJv6

v8 the control pattern acting via the main chain and the feedback of G6P can now
be seen to be dominant.
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Control Pattern Data for ccJv6_v4_cp38 from model: gal_imm4.5
Control Coefficient: ccJv6_v4 Value: 0.517

Control Pattern Value: 0.442 Contribution: 85.4667655917

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 6.3: Dominant control pattern for CJv6
v4 for immobilised cells at pH 4.5. The

perturbed reaction is denoted by a blue square, the elasticities found in the pattern are
shown in orange with a grey bubble surrounding them and the reaction they affect. All
fluxes present in the control pattern are represented by an orange reaction number and
the dashed lines show feedback loops.
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Control Pattern Data for ccJv6_v1_cp10 from model: gal_imm5.5
Control Coefficient: ccJv6_v1 Value: 0.463

Control Pattern Value: 0.338 Contribution: 73.1092485881

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 6.4: Dominant control pattern for CJv6
v1 for immobilised cells at pH 5.5. The

perturbed reaction is denoted by a blue square, the elasticities found in the pattern are
shown in yellow with a grey bubble surrounding them and the reaction they affect. All
fluxes present in the control pattern are represented by an yellow reaction number and
the dashed lines show feedback loops.
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6.3 Discussion

The technique of control pattern quantification gave us a means to have a deeper look
into the workings of a cellular system by identifying the key regulatory routes. When
applied to the kinetic models described by Galazzo and Bailey [41], we could identify
the key regulatory routes under different environmental conditions and thus provide
quantified descriptions for their biological observations. From the analysis, it became
clear that when the cells are in suspension the bulk of the effects are mediated along the
main chain, with a lesser contribution arising from the feedback of G6P on Reaction 1,
coupled with the affects via the main chain. This was so for pH 4.5 and pH 5.5.

The immobilisation of the cells in alginate beads resulted in changes in the control
distribution profile at pH 4.5 and pH 5.5. At pH 4.5 the control of the main pathway
flux shifted from Reaction 1 to Reaction 4 when compared with the suspended cells at
pH 4.5. As mentioned previously, all control exerted via Reaction 1 was mediated via
the main chain for suspended cells at pH 4.5. However, the decrease in control by this
step coincided with an increase in contribution of the control pattern influencing both
the main chain and the branch point at Reaction 3, from 0% to 41.44%. CJv6

v4 followed a
similar trend in that the dominant control pattern for the immobilised cells also affected
the system via the main chain and the branch point, with a minor contribution via the
G6P feedback and the main chain. CJv6

v8 had far less control than both CJv6
v1 and CJv6

v4 ,
but we observed the same control pattern behaviour as CJv6

v4 .

The increase in pH to 5.5 resulted in a further shift of the control distribution. However,
the same general trends as found at pH 4.5 were present with the dominant control
pattern for each control coefficient affecting both the branch point at Reaction 3 and the
main chain. The major change as a result of the change in pH was that of the flux control
distribution between the flux control coefficients. The different nature of the control pat-
tern contributions gave an insight into why polysaccharide storages increase due to the
immobilisation process. We saw that the dominant control pattern affected the branch
point at Reaction 3, which resulted in an increase in polysaccharides. We observed this
for the dominant control coefficient at pH 4.5 and pH 5.5, where CJv6

v4 had a control
coefficient value of 0.57 and this pattern accounts for 85.47% at pH 4.5 and 86.73%
at pH 5.5. CJv6

v1 had a control coefficient value of 0.46, with the pattern contributing
73.11% at pH 5.5. Of further interest was the change in control pattern contributions
for CJv6

v1 at pH 4.5 and pH 5.5, where the dominant pattern affected the main chain at
pH 4.5 and the dominant pattern at pH 5.5 affected the main chain and the branch point.

The observed increase of polysaccharides, which was noticed when Saccharomyces cere-
visiae cells were immobilised, clearly coincided with the emergence of the control pattern
affecting the flux for the branch leading to polysaccharide accumulation as the dominant
pattern. Control pattern quantification therefore explained observed outcomes from the
conditions under which this system was analysed.
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As observed by Galazzo and Bailey, the glucose uptake step (Reaction 1) contained
most of the flux control at pH 4.5 and pH 5.5. At pH 5.5 ATPase (Reaction 8) also ex-
erted control over the pathway flux, and this was possibly due to the decrease in Vmax
values. At pH 4.5 the Vmax was 35 whereas at pH 5.5 it decreases to 12.1, implying
that less substrate could be converted to product which may explain why this step con-
tributed to the flux control at that stage. The immobilised cells demonstrated that PFK
(Reaction 4) exhibited a higher degree of flux control within the system, which may
be partly responsible for the observed increase in the flux through the branch leading
to polysaccharide formation. The observed increase in polysaccharide storage for the
immobilised cells was mainly due to the increase in glucose uptake which increases from
≈17 for suspended cells to ≈38. This change resulted in an increase in the flow into
glycolysis, which in turn led to an increase in the flux in all the branch points further
down the pathway (ethanol, glycerol and polysaccharide production). This was con-
firmed by the emergence of the control patterns leading to polysaccharide production on
cell immobilisation at pH 4.5 and pH 5.5.

While the quantified control patterns provide tangible evidence that the pathway leading
to an increase in polysaccharide formation becomes activated under immobilised con-
ditions, it is equally important to look at the underlying system properties that give
rise to this behaviour. Here we will focus on the control patterns for CJv6

v1 , which we
will discuss in detail by way of an example to illustrate the possibilities when using the
symbolic approach. CJv6

v1 is the dominant control coefficient at both pH 4.5 and 5.5 for
the suspended cells, as well as for the immobilised cells at pH 4.5. For the suspended
cells there is a single control pattern for CJv6

v1 : -4.0J1J4J8ε
8
ATP ε

5
FDP ε

4
G6P ε

2
Glciε

6
PEP . This

pattern contains the following main chain elasticities ε2
Glci, ε

4
G6P , ε5

FDP and ε6
PEP with

values of 0.80006, 0.86348, 0.71156 and 0.65464, respectively. Also present in the control
pattern are three fluxes, J1, J4 and J8, with values of 17.59, 11.727 and 20.839 for pH
4.5 and 16.37, 10.898 and 19.346 for pH 5.5, respectively.

If we now look at the control patterns associated with CJv6
v1 for the immobilised cells, we

find that there are two contributing control patterns. The first is the same as the one
illustrated previously and the second, 16.0J1J3J8ε

4
ATP ε

5
FDP ε

3
G6P ε

2
Glciε

6
PEP , includes the

elasticity for the branch point reaction leading to polysaccharide formation, ε3
G6P . If we

focus on the main chain elasticities, ε2
Glci, ε

4
G6P , ε5

FDP and ε6
PEP , we can see that they

have all decreased on immobilisation of the cells, with values of 0.59225, 0.47376, 0.57433
and 0.39170, respectively. We can see the same trend for the branch point elasticity,
ε3
G6P , which decreases from 8.7813 to 5.985 when one compares the suspended with the

immobilised cells. Of equal importance are the fluxes present in the control patterns as
these can have a profound effect on the contribution of a control pattern. We can see
that the second control pattern that emerges for the immobilised cells includes the flux
J3, increases from 9.6842e-05 at pH 4.5 and 5.1811e-03 at pH 5.5 for the suspended cells
to 1.4635 at pH 4.5 and 2.2093 at pH 5.5 for the immobilised cells. This increase in flux
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provides sound evidence as to why this second control pattern is now emerging, and thus
why an increase in polysaccharide formation is observed.

Additionally, immobilisation of the cells results in the Vmax for the glucose uptake
step increasing from 19.7 to 45.6, resulting in a increased rate of glucose uptake, which
in turn leads to an increase in the concentration of G6P from 5.7021e-01 at pH 4.5 and
8.999e-01 at pH 5.5 for the suspended cells to 1.8115 at pH 4.5 and 1.9554 at pH 5.5 for
the immobilised cells. The decrease in the main chain elasticities may suggest that they
are becoming increasingly saturated with substrate, thus leading to an increase in the
concentration of G6P. Coupled with this, the increase in the flux for the branch point
reaction provide evidence as to why the increase in polysaccharide formation occurs,
which is confirmed by the emergence of the control pattern leading to this phenomenon.

This investigation has demonstrated how we can use control pattern quantification to
give additional insight and to quantify observed outcomes when a system is subjected
to changing genetic and environmental conditions. These changes resulted in changes
to metabolite production, which then focussed on ethanol formation. By using control
patterns we could quantify how these different conditions affected the regulation within
the system. In particular we could explain the observed glucose uptake rate on im-
mobilisation of the cells by ‘turning on’ part of the system which led to an increase in
carbohydrate formation. This has implications in biotechnology where the production of
certain metabolites within a system is desirable. By determining the key control patterns
we can find out which parts of the system are active under the conditions tested. We can
optimise the conditions accordingly to maximise the activity of the pathways leading to
desired metabolite formation and minimising the activity of the pathways that are un-
desirable. The control patterns can then be used to quantify the experimental outcomes.

Control pattern quantification proved to be a useful tool to explain the outcomes of
a system subjected to environmental and genetic changes. In the following chapter this
technique is used to expand on work done by Uys et al. [116], in which they extended a
previous model of sucrose accumulation in sugar cane developed by Rohwer and Botha
[89]. This work focusses on the final step leading to sucrose accumulation, and explains
the observed changes for all internodes within the sugar cane plant.



Chapter 7

Applications of SymCA: Part III
– Symbolic control analysis of
sucrose accumulation

7.1 Introduction

Insufficient knowledge surrounding factors affecting sugar accumulation in sugar cane
(Saccharum officinarum) and no clear pattern detailing which enzyme activities were
important controlling steps led Rohwer and Botha [89] to develop a kinetic model of
sugar accumulation in developing sugar cane. They based their approach on pathway
analysis [103, 104] and kinetic modelling [13, 91] to investigate the control of futile cy-
cling (synthesis and breakdown) and sucrose accumulation in sugar cane.

Rohwer and Botha enumerated all possible routes of futile cycling in the system by
using the concept of elementary flux modes [105]. They then built a kinetic model of
sucrose accumulation in sugar cane culm tissue by collecting available kinetic data for
the pathway enzymes. They found that the model was in agreement with independent
experimental data, thus validating it. They then used the model to establish various
enhancement strategies for increasing sugar accumulation.

Rohwer and Botha calculated the control coefficient of each enzyme in the system on
futile cycling of sucrose. They then identified the numerically largest control coefficients
and varied the activities of those enzymes over a five-fold range to investigate the affect
on the degree of futile cycling, the net sucrose accumulation and the net conversion
efficiency from hexoses into sucrose. Their findings suggested that the most promising
targets for genetic manipulation are overexpression of the fructose or glucose transporter
or the vacuolar sucrose import protein, as well as reduction of cytosolic neutral invertase
levels.

108
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Figure 7.1: Extended model of sucrose accumulation as illustrated in Uys et al. [116].
Variable metabolites are shown in light grey shaded rectangular boxes and fixed in light
grey shaded circles. Enzymes are shown in unshaded rectangular boxes. A number 2
next to a line indicates a stoichiometric coefficient. Abbreviations for enzymes and trans-
port steps: ALD, Aldolase; FRK, Fructokinase; HK, Hexokinase; NI, Neutral Invertase;
PFK, Phosphofructokinase; PFP, Pyrophosphate-dependent PFK; SPase, Sucrose phos-
phatase; SPS, Sucrose phosphate synthetase; SuSy, Sucrose synthase ; UDPGDH, UDP-
Glucose dehydrogenase; VAC, vacuolar sucrose import. Metabolites: FbP, Fructose-1,6-
bisphosphate; Fru, Fructose; Glc, Glucose; HexP, Hexose phosphate; S6P, Sucrose-6-
phosphate; Suc, Sucrose; Trp, triose phosphate; UDPGA, UDP-Glucuronic acid.
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Uys and colleagues [116] were interested in understanding more about why or how com-
mercial varieties of sugar cane are able to accumulate sucrose in high concentrations.
They proposed that kinetic modelling may aid determination of the factors controlling
sucrose accumulation or lead the design of experimental optimisation strategies. Their
work focussed on extending the model assembled by Rohwer and Botha, by accounting
for isoforms of sucrose synthase (SuSy A, SuSy B & SuSy C) and fructokinase (FRK A &
FRK B), the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent
PFK and aldolase, and carbon partitioning towards fibre formation. In addition, they
included maximal activity data of the enzymes measured in the different Internodes, thus
creating a growth model describing the metabolic behaviour as sugar cane parenchymal
tissue matures from Internodes 3-10.

Uys et al. [116] found that the extended model supported a hypothesis of vacuolar
sucrose accumulation against a concentration gradient. Futile cycling of sucrose ap-
peared to decrease as the maturity of the sugar cane internodes increased, coinciding
with an increase in sucrose accumulation. Metabolic control analysis revealed that each
isoform of sucrose synthase had a unique control profile, and they suggested that the
synthesis and storage of sucrose is mostly dependent on SuSy C.

This section details further analysis based on the extended model of sucrose accumula-
tion shown in Figure 7.1. The focus is on the final step leading to sucrose accumulation
in the vacuole using symbolic control analysis and control pattern quantification for all
internodes as described by Uys et al.. The aim of this investigation is to explain the
observations of Uys et al. using control pattern quantification.

The following work describes how SymCA was used to perform control pattern quantifi-
cation for the maturing sugar cane internodes, with the objective to provide additional
understanding how or why the maturity of sugar cane nodes impacts on its ability to
accumulate sucrose, and what regulatory routes are responsible for this phenomenon. In
order to answer this question we identify and quantify the control pattern profiles for
each internode as described by Uys et al.

7.2 Regulatory analysis and SymCA

We computed the values for all control coefficients on the flux to sucrose accumulation
to determine the distribution of control for this step (Table 7.1). The data in Table 7.1
shows that the control for reaction VAC is distributed between three control coefficients
for all internodes, CJV ACFRKa , CJV ACFRU uptake and CJV ACHK GLC . The quantified control patterns
for these control coefficients are illustrated and discussed for each internode.
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Table 7.1: Flux control coefficients, with a value greater than 0.1 for a single internode,
on JVAC computed by PySCeS, bold values indicate the key control coefficients for each
internode.

Control Internode

coefficient 3 4 5 6 7 8 9 10

CJV ACFRKa -0.285 -0.117 0.279 0.287 0.294 0.224 0.121 0.088

CJV ACFRU uptake 0.989 0.820 0.151 0.224 0.124 0.249 0.268 0.362

CJV ACHK GLC 0.153 0.166 0.487 0.379 0.502 0.382 0.417 0.279

CJV ACGLC uptake 0.097 0.099 0.112 0.093 0.071 0.095 0.118 0.119

CJV ACSuSyc 0.025 0.034 0.021 0.037 0.037 0.056 0.068 0.111

CJV ACV AC 0.074 0.081 0.085 0.081 0.065 0.087 0.099 0.112

7.2.1 Internode 3

We can see that the control for Internode 3 lies predominantly with CJV ACFRU uptake with
a value of 0.989. The control pattern quantification data in Table 7.2 shows that there
are eight control patterns responsible for ≈75% of the control. Of these eight, three
(3c−3e) affect both the pathway resulting in sucrose accumulation in the vacuole and
the production of Glc via the step NI, which forms part of the futile cycling. These three
patterns account for 22.92% of the control.

Table 7.2: Internode 3 control patterns for CJV ACFRU uptake

ID Control pattern % Contribution

3a +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyc 8.93

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

3b +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSya 19.90

εALD
FBP εSuSya

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

3c +2.0 JALD JFRU uptake JNI JPFK JSuSya 11.38

εALD
FBP εSuSya

FRUcyt ε
NI
GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

continued on next page



CHAPTER 7. APPLICATIONS OF SYMCA: PART III 112

continued from previous page

ID Control Pattern % Contribution

3d +2.0 JALD JFRU uptake JNI JPFK JSuSyc 5.11

εALDFBP ε
SuSyc
FRUcyt ε

NI
GLCcyt ε

PFK
HEXP ε

SPase
S6P εV ACSUC

3e +2.0 JALD JFRU uptake JNI JSPS JSuSya 6.43

εALDFBP ε
SuSya
FRUcyt ε

NI
GLCcyt ε

SPS
HEXP ε

SPase
S6P εV ACSUC

3f +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyc 5.05

εALDFBP ε
SuSyc
FRUcyt ε

GLC
uptake GLCcyt ε

SPS
HEXP ε

SPase
S6P εV ACSUC

3g +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSya 11.25

εALDFBP ε
SuSya
FRUcyt ε

GLC
uptake GLCcyt ε

SPS
HEXP ε

SPase
S6P εV ACSUC

3h +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyb 5.57

εALDFBP ε
SuSyb
FRUcyt ε

GLC
uptake GLCcyt ε

PFK
HEXP ε

SPase
S6P εV ACSUC

The remaining five control patterns (3a, 3b & 3f-3h) all manifest their control via the
Fru→ SuSy (A,B,C)→ Suc→ VAC→ Suc VAC pathway, with the smallest percentage
via SuSy C (3a & 3f), which has been suggested to be the isozyme responsible for the
greatest accumulation of sucrose in the vacuole, and the largest contribution via SuSy A
(3b & 3f). The presence of futile cycling can be seen by the negative control of CJV ACFRKa

with a value of −0.285. The patterns associated with CJV ACFRKa include the pathway via
NI (3c, 3d & 3e) and accounted for 36.85% of the total contribution (data not shown).

Figure 7.2 represents the major control pattern found for CJV ACFRU uptake: +2.0 JALD

JFRU uptake JGLC uptake JPFK JSuSya ε
ALD
FBP ε

SuSya
FRUcyt ε

GLC
uptake GLCcyt ε

PFK
HEXP ε

SPase
S6P εV ACSUC , which

is bold in Table 7.2 and accounts for 19.90% of the control for CJV ACFRU uptake.
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Control Pattern Data for ccJVAC_FRU_uptake_cp383 from mode
Control Coefficient: ccJVAC_FRU_uptake Value: 0.99

Control Pattern Value: 0.197 Contribution: 19.8989891147

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.2: Dominant control pattern for CJV ACFRU uptake in Internode 3. Enzymes are num-
bered in circles, with the modulated enzyme enclosed in a square. Number associations:
1, GLC uptake; 2, FRKa; 3, FRKb; 4, VAC; 5, FRU uptake; 6, Spase; 7, NI; 8, PFK;
9, SPS; 10, SuSya; 11, PFP; 12, SuSyc; 13, SuSyb; 14, UDPGDH; 15, HK FRU; 16,
HK GLC; 17, ADL. Elasticities and fluxes in the control pattern are coloured, based on
percentage contribution, and are enclosed in a grey balloon, feedback loops are repre-
sented by dashed lines.
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7.2.2 Internode 4

The data for Internode 4 shows FRU uptake as the controlling reaction, since CJV ACFRU uptake

has a value of 0.82. The quantified control patterns in Table 7.3 show that there is no
dominant pattern, and that all patterns involved show an almost equal contribution.

Table 7.3: Internode 4 control patterns for CJV ACFRU uptake

ID Control pattern % Contribution

4a +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyc 9.65

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

4b +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSya 10.45

εALD
FBP εSuSya

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

4c +2.0 JALD JFRU uptake JNI JSPS JSuSyc 5.75

εALD
FBP εSuSyc

FRUcyt ε
NI
GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

4d +2.0 JALD JFRU uptake JNI JPFK JSuSya 6.90

εALD
FBP εSuSya

FRUcyt ε
NI
GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

4e +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyb 5.69

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

4f +2.0 JALD JFRU uptake JNI JPFK JSuSyc 6.37

εALD
FBP εSuSyc

FRUcyt ε
NI
GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

4g +2.0 JALD JFRU uptake JNI JSPS JSuSya 6.23

εALD
FBP εSuSya

FRUcyt ε
NI
GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

4h +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyc 8.71

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

4i +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSya 9.43

εALD
FBP εSuSya

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

4j +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyb 6.30

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC
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As for Internode 3, there are several control patterns which affect the pathway via
NI (4c, 4d, 4f & 4g) and account for 25.25% of the contributions, whereas the remaining
contribution acts via the SuSy (A,B,C) isozyme. The pathway acting via SuSy C (4a
& 4h) accounts for about 17% of the control, whereas the pathway acting via SuSy B
(4e & 4j) accounts for about 20%. Figure 7.3 represents control pattern 4d in Table 7.3,
which shows the futile cycling present.

Control Pattern Data for ccJVAC_FRU_uptake_cp435 from mode
Control Coefficient: ccJVAC_FRU_uptake Value: 0.82

Control Pattern Value: 0.057 Contribution: 6.89837135389

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.3: Control pattern illustrating pathway via NI for CJV ACFRU uptake in Internode
4. Enzymes are numbered in circles, with the modulated enzyme enclosed in a square.
Number associations are as in Figure 7.2. Elasticities and fluxes in the control pattern
are coloured, based on percentage contribution, and are enclosed in a grey balloon,
feedback loops are represented by dashed lines.
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7.2.3 Internode 5

The situation changes slightly for Internode 5 in that there are now two control coeffi-
cients involved in controlling JVAC. These are CJV ACHK GLC and CJV ACFRKa with values of 0.472
and 0.279 respectively. Tables 7.4 and 7.5 show this control pattern data.

Table 7.4: Internode 5 control patterns for CJV ACHK GLC

ID Control pattern % Contribution

5.1a −2.0 JALD JGLC uptake JGLC uptake JHK GLC JSuSyb 29.53

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

5.1b −2.0 JALD JGLC uptake JGLC uptake JHK GLC JSuSya 24.33

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

5.1c −2.0 JALD JGLC uptake JGLC uptake JHK GLC JSuSyc 37.33

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

Table 7.5: Internode 5 control patterns for CJV ACFRKa

ID Control pattern % Contribution

5.2a −2.0 JALD JFRKa JGLC uptake JGLC uptake JSuSya 22.04

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

5.2b −2.0 JALD JFRKa JGLC uptake JNI JSuSyc 8.86

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

5.2c −2.0 JALD JFRKa JGLC uptake JNI JSuSya 5.78

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

5.2d −2.0 JALD JFRKa JGLC uptake JGLC uptake JSuSyc 33.83

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

5.2e −2.0 JALD JFRKa JGLC uptake JGLC uptake JSuSyb 26.76

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

5.2f −2.0 JALD JFRKa JGLC uptake JNI JSuSyb 7.01

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC
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For CJV ACHK GLC we find three dominant control patterns all manifesting their control via
the SuSy (A,B,C) isozyme, with the highest contribution via the SuSy C enzyme (5.1c)
This pattern is in bold and is shown in Figure 7.4. In contrast there are six key control
patterns for CJV ACFRKa , three of which influence the pathway via NI (5.2b, 5.2c & 5.2f).
The remaining three control patterns (5.2a, 5.2d & 5.2e) all affect the pathway via SuSy
(A,B,C) and are by far the largest contributors to the control of this step with a combined
contribution of 82.63% as opposed to the contribution of the patterns including step NI,
which is 21.65. Thus, for Internode 5 the preference is for the pathways leading to
vacuolar sucrose accumulation.

Control Pattern Data for ccJVAC_HK_GLC_cp210 from mode
Control Coefficient: ccJVAC_HK_GLC Value: 0.487

Control Pattern Value: 0.182 Contribution: 37.3298094907

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.4: Major contributing control pattern for CJV ACHK GLC in Internode 5. Enzymes
are numbered in circles, with the modulated enzyme enclosed in a square. Number
associations are as in Figure 7.2. Elasticities and fluxes in the control pattern are
coloured, based on percentage contribution, and are enclosed in a grey balloon, feedback
loops are represented by dashed lines.



CHAPTER 7. APPLICATIONS OF SYMCA: PART III 118

7.2.4 Internode 6

There are three control coefficients involved for Internode 6, CJV ACHK GLC , CJV ACFRKa and
CJV ACFRU uptake with values of 0.379, 0.287 and 0.224 respectively. These control coefficients

demonstrate an almost even distribution between all three control coefficients. CJV ACHK GLC

is the largest control coefficient and contains four major contributing control patterns.
We can see that three of these control patterns manifest their control via the SuSy
isozymes, with the major contributing pattern via SuSy C (6.1d), which is in bold text
in Table 7.6 and is shown in Figure 7.5.

Control Pattern Data for ccJVAC_HK_GLC_cp210 from mode
Control Coefficient: ccJVAC_HK_GLC Value: 0.379

Control Pattern Value: 0.141 Contribution: 37.2864104452

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.5: Dominant control pattern for CJV ACHK GLC in Internode 6. Enzymes are num-
bered in circles, with the modulated enzyme enclosed in a square. Number associations
are as in Figure 7.2. Elasticities and fluxes in the control pattern are coloured, based
on percentage contribution, and are enclosed in a grey balloon, feedback loops are rep-
resented by dashed lines.
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Table 7.6: Internode 6 control patterns for CJV ACHK GLC

ID Control pattern % Contribution

6.1a −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSPS 7.34

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

6.1b −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyb 27.13

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

6.1c −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSya 17.69

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

6.1d −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyc 37.29

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

For CJV ACFRKa we find six major contributing control patterns with the majority mediating
their control via the same patterns as seen for CJV ACHK GLC , and again the pattern includes
SuSy C as the major contributor (6.2d). Here we find that there are two patterns which
act via NI (6.2b & 6.2f), resulting in diversion from sucrose accumulation and accounting
for 16.52% of the control (see Table 7.7).

Table 7.7: Internode 6 control patterns for CJV ACFRKa

ID Control pattern % Contribution

6.2a −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSya 17.38

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

6.2b −2.0 JALD JFRKa JFRU uptake JNI JSuSyc 9.56

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

6.2c −2.0 JALD JFRKa JFRU uptake JGLC uptake JSPS 7.21

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

6.2d −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSyc 36.63

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

continued on next page
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continued from previous page

ID Control pattern % Contribution

6.2e −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSyb 26.66

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

6.2f −2.0 JALD JFRKa JFRU uptake JNI JSuSyb 6.96

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

The final contributing control coefficient contains four major control patterns acting via
the SuSy isozyme and SPS pathway (6.3a, 6.3d, 6.3e & 6.3f), and the two via the NI
pathway (6.3b & 6.3c). As per CJV ACFRKa , the control patterns acting via the NI are the
minor contributors with a combined control of 15.72%.

Table 7.8: Internode 6 control patterns for CJV ACFRU uptake

ID Control pattern % Contribution

6.3a +2.0 JALD JFRU uptake JGLC uptake JPFP JSuSyb 5.45

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFP
HEXP εSPase

S6P εV AC
SUC

6.3b −2.0 JALD JFRU uptake JGLC uptake JNI JSuSyc 9.10

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

6.3c −2.0 JALD JFRU uptake JGLC uptake JNI JSuSyb 6.62

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

6.3d +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyb 16.88

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

6.3e +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyc 15.26

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

6.3f +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSya 7.90

εALD
FBP εSuSya

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC
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7.2.5 Internode 7

The data for Internode 7 shows that there are two control coefficients to consider,
CJV ACHK GLC and CJV ACFRKa with values of 0.502 and 0.294 respectively. For CJV ACHK GLC , there
are four contributing control patterns, with the three largest patterns acting via the
SuSy isozyme (7.1b, 7.1c & 7.1d). SuSy B and SuSy C are found to account for most
of the control, with the greatest control via SuSy C (7.1d). This pattern can be seen in
Figure 7.6 and is in bold text in the Table 7.9.

Control Pattern Data for ccJVAC_HK_GLC_cp210 from mode
Control Coefficient: ccJVAC_HK_GLC Value: 0.502

Control Pattern Value: 0.212 Contribution: 42.2997999283

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.6: Dominant control pattern for CJV ACHK GLC in Internode 7. Enzymes are num-
bered in circles, with the modulated enzyme enclosed in a square. Number associations
are as in Figure 7.2. Elasticities and fluxes in the control pattern are coloured, based
on percentage contribution, and are enclosed in a grey balloon, feedback loops are rep-
resented by dashed lines.



CHAPTER 7. APPLICATIONS OF SYMCA: PART III 122

Table 7.9: Internode 7 control patterns for CJV ACHK GLC

ID Control pattern % Contribution

7.1a −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSPS 5.37

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

7.1b −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyb 34.72

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

7.1c −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSya 11.73

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

7.1d −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyc 42.30

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

The control pattern data for CJV ACFRKa is similar to that of CJV ACHK GLC with the highest
contribution via SuSy C (7.2d). We can also see that a small percentage of the control
involves the pathway via NI (7.2b), thus leading to futile cycling.

Table 7.10: Internode 7 control patterns for CJV ACFRKa

ID Control pattern % Contribution

7.2a −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSya 11.42

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

7.2b −2.0 JALD JFRKa JFRU uptake JNI JSuSyc 5.89

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

7.2c −2.0 JALD JFRKa JFRU uptake JGLC uptake JSPS 5.23

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

7.2d −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSyc 41.18

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

7.2e −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSyb 33.80

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC
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7.2.6 Internode 8

The data for Internode 8 shows three control coefficients involved in the control of
JVAC, namely CJV ACHK GLC , CJV ACFRU uptake and CJV ACFRKa . For CJV ACHK GLC we find two major
contributing control patterns which affect the pathway leading to sucrose accumulation
by the SuSy isozyme, in particular isozymes B and C, with the control pattern via
SuSy C (8.1f, highlighted bold text in Table 7.11) accounting for 40.84% and the other
control pattern via SuSy B (8.1c) accounting for 30.63%. The remainder of the control is
distributed between the pathways involving HEXP→ SuSy A, S6P→ SPase and HEXP
→ SPase.

Control Pattern Data for ccJVAC_HK_GLC_cp210 from mode
Control Coefficient: ccJVAC_HK_GLC Value: 0.383

Control Pattern Value: 0.156 Contribution: 40.842055507

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.7: Dominant control pattern for CJV ACHK GLC in Internode 8. Enzymes are num-
bered in circles, with the modulated enzyme enclosed in a square. Number associations
are as in Figure 7.2. Elasticities and fluxes in the control pattern are coloured, based
on percentage contribution, and are enclosed in a grey balloon, feedback loops are rep-
resented by dashed lines.
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Table 7.11: Internode 8 control patterns for CJV ACHK GLC

ID Control pattern % Contribution

8.1a −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSPS 9.37

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

8.1b +2.0 JALD JGLC uptake JHK GLC JSPS JSuSyb 6.32

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

8.1c −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyb 30.63

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

8.1d −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSya 7.89

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

8.1e +2.0 JALD JGLC uptake JHK GLC JSPS JSuSyc 5.30

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

8.1f −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyc 40.84

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

When we consider CJV ACFRU uptake the major control patterns involve the pathways via SuSy
B (8.2a, 8.2f & 8.2h) and SuSy C (8.2c, 8.2d & 8.2g). However, here the major patterns
are those concerned with SuSy B. The remaining control patterns include the same
pathways as for CJV ACHK GLC with the addition of two patterns involving step NI (8.2b &
8.2e), and contribute 14.85%. This is shown in Table 7.12.

Table 7.12: Internode 8 control patterns for CJV ACFRU uptake

ID Control pattern % Contribution

8.2a +2.0 JALD JFRU uptake JGLC uptake JPFP JSuSyb 6.36

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFP
HEXP εSPase

S6P εV AC
SUC

8.2b −2.0 JALD JFRU uptake JGLC uptake JNI JSuSyc 8.49

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

continued on next page
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continued from previous page

ID Control pattern % Contribution

8.2c +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyc 5.24

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

8.2d +2.0 JALD JFRU uptake JGLC uptake JPFP JSuSyc 5.34

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

PFP
HEXP εSPase

S6P εV AC
SUC

8.2e −2.0 JALD JFRU uptake JGLC uptake JNI JSuSyb 6.36

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

8.2f +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyb 17.70

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

8.2g +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyc 14.85

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

8.2h +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyb 6.25

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

The third control coefficient for Internode 8 in Table 7.13, CJV ACFRKa for Internode 8 presents
a similar mix of control patterns as demonstrated for CJV ACFRU uptake. However, we can see
that the contribution for the control patterns affecting the pathway via step NI (8.3b
& 8.3f) increases to a combined total of 18.62%. Of the major contributing control
patterns, the two patterns involved in mediating their response by SuSy B (8.3a) and
SuSy C (8.3d), are again the dominant ones with 43.25% contributed via SuSy C and
32.44% contributed via SuSy B.

Table 7.13: Internode 8 control patterns for CJV ACFRKa

ID Control pattern % Contribution

8.3a −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSya 8.36

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSya
HEXP εSPase

S6P εV AC
SUC

8.3b −2.0 JALD JFRKa JFRU uptake JNI JSuSyc 10.64

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

continued on next page
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ID Control pattern % Contribution

8.3c −2.0 JALD JFRKa JFRU uptake JGLC uptake JSPS 9.93

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

8.3d −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSyc 43.25

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

8.3e −2.0 JALD JFRKa JFRU uptake JGLC uptake JSuSyb 32.44

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

8.3f −2.0 JALD JFRKa JFRU uptake JNI JSuSyb 7.98

εALD
FBP εFRU

uptake FRUcyt ε
NI
GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

7.2.7 Internode 9

There are two dominant control coefficients in Internode 9, CJV ACHK GLC and CJV ACFRU uptake

with values of 0.417 and 0.266 respectively. The quantified control patterns for CJV ACHK GLC

contain only those control patterns which result in sucrose accumulation, with the two
dominant patterns acting via SuSy B (9.1c) and SuSy C (9.1e, shown in Figure 7.8 and
highlighted in bold text in Table 7.14). Again SuSy C can be seen to be the greatest
contributor with 39.28% compared with 30.21% via SuSyb.

Table 7.14: Internode 9 control patterns for CJV ACHK GLC

ID Control pattern % Contribution

9.1a −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSPS 11.99

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

9.1b +2.0 JALD JGLC uptake JHK GLC JSPS JSuSyb 9.00

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

9.1c −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyb 30.21

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

continued on next page
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ID Control pattern % Contribution

9.1d +2.0 JALD JGLC uptake JHK GLC JSPS JSuSyc 6.83

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

9.1e −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyc 39.28

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

Table 7.15: Internode 9 control patterns for CJV ACFRU uptake

ID Control pattern % Contribution

9.2a +2.0 JALD JFRU uptake JGLC uptake JPFP JSuSyb 5.84

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFP
HEXP εSPase

S6P εV AC
SUC

9.2b −2.0 JALD JFRU uptake JGLC uptake JNI JSuSyc 7.82

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SuSyc
HEXP εSPase

S6P εV AC
SUC

9.2c +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyc 6.26

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

9.2d −2.0 JALD JFRU uptake JGLC uptake JNI JSuSyb 6.01

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

9.2e +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyb 18.16

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

9.2f +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyc 13.78

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

9.2g +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyb 8.25

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

The data for CJV ACFRU uptake contains the same patterns as found for CJV ACHK GLC with the
addition of two patterns affecting step NI (9.2b & 9.2d), which represent a combined
total of 13.85%. We can also see from Table 7.15 that out of the two dominant control
patterns the one acting via SuSy B (9.2e) is now the major contributor with 18.16%,
whereas the second highest contributor acts via SuSy C (9.2f) with 13.78%.
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Control Pattern Data for ccJVAC_HK_GLC_cp210 from mode
Control Coefficient: ccJVAC_HK_GLC Value: 0.418

Control Pattern Value: 0.164 Contribution: 39.2771835275

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.8: Dominant control pattern for CJV ACHK GLC in Internode 9. Enzymes are num-
bered in circles, with the modulated enzyme enclosed in a square. Number associations
are as in Figure 7.2. Elasticities and fluxes in the control pattern are coloured, based
on percentage contribution, and are enclosed in a grey balloon, feedback loops are rep-
resented by dashed lines.

7.2.8 Internode 10

For Internode 10 the largest control coefficient is CJV ACFRU uptake with a value of 0.362. This
control coefficient contains three dominant control patterns, with the highest contribu-
tions from the two patterns acting via SuSy B (10.1d & 10.1e), 16.85% and 12.58%. The
third pattern involves SuSy C (10.1g) with 12.58%. There are also two control patterns
which include the affects on the pathway via step NI (10.1c & 10.1f), with contributions
of 6.07% and 5.26% respectively. Control pattern 10.1d exhibits the highest control and
is highlighted in bold text in Table 7.16 and shown in Figure 7.9.
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Control Pattern Data for ccJVAC_FRU_uptake_cp450 from mode
Control Coefficient: ccJVAC_FRU_uptake Value: 0.362

Control Pattern Value: 0.061 Contribution: 16.8537019115

Image generated by SymCA and PySCeS

Tim Akhurst and Brett Olivier, 2008
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Figure 7.9: Dominant control pattern for CJV ACHK GLC in Internode 10. Enzymes are num-
bered in circles, with the modulated enzyme enclosed in a square. Number associations
are as in Figure 7.2. Elasticities and fluxes in the control pattern are coloured, based
on percentage contribution, and are enclosed in a grey balloon, feedback loops are rep-
resented by dashed lines.

The remaining dominant control pattern (10.2a) acts via the HEXP → S6P → SPase
pathway with a contribution of 24.69%. All three patterns ultimately result in sucrose
accumulation. Again we find a small percentage of the contribution acting via step NI
(10.2d & 10.2g), and diverting from sucrose accumulation as shown in Table 7.17.

CJV ACHK GLC has the second-largest value (0.279) for Internode 10, and this control co-
efficient contains seven major contributing control patterns. Unlike CJV ACFRU uptake, the
major contributing control pattern (10.2f) acts via SuSy C (32.95%) whereas the second
highest (10.2c) acts via SuSy B (25.49%).
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Table 7.16: Internode 10 control patterns for CJV ACFRU uptake

ID Control pattern % Contribution

10.1a +2.0 JALD JFRU uptake JGLC uptake JPFP JSuSyb 5.48

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFP
HEXP εSPase

S6P εV AC
SUC

10.1b +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyc 9.39

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

10.1c +2.0 JALD JFRU uptake JNI JSPS JSuSyb 5.26

εALD
FBP εSuSyb

FRUcyt ε
NI
GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

10.1d +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyb 16.85

εALDFBP εSuSyb
FRUcyt ε

GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

10.1e +2.0 JALD JFRU uptake JGLC uptake JSPS JSuSyc 12.58

εALD
FBP εSuSyc

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

10.1f −4.0 JALD JFRU uptake JGLC uptake JNI JSPS 6.07

εALD
FBP εNI

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

10.1g +2.0 JALD JFRU uptake JGLC uptake JPFK JSuSyb 12.58

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

PFK
HEXP εSPase

S6P εV AC
SUC

Table 7.17: Internode 10 control patterns for CJV ACHK GLC

ID Control pattern % Contribution

10.2a −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSPS 24.69

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

10.2b +2.0 JALD JGLC uptake JHK GLC JSPS JSuSyb 15.85

εALD
FBP εSuSyb

FRUcyt ε
GLC
uptake GLCcyt ε

SPS
HEXP εSPase

S6P εV AC
SUC

10.2c −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyb 25.49

εALD
FBP εFRU

uptake FRUcyt ε
GLC
uptake GLCcyt ε

SuSyb
HEXP εSPase

S6P εV AC
SUC

continued on next page
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ID Control pattern % Contribution

10.2d +2.0 JALD JFRU uptake JHK GLC JNI JPFK -5.75

εALDFBP ε
FRU
uptake FRUcyt ε

NI
GLCcyt ε

PFK
HEXP ε

SPase
S6P εV ACSUC

10.2e +2.0 JALD JGLC uptake JHK GLC JSPS JSuSyc 11.83

εALDFBP ε
SuSyc
FRUcyt ε

GLC
uptake GLCcyt ε

SPS
HEXP ε

SPase
S6P εV ACSUC

10.2f −2.0 JALD JFRU uptake JGLC uptake JHK GLC JSuSyc 32.95

εALDFBP ε
FRU
uptake FRUcyt ε

GLC
uptake GLCcyt ε

SuSyc
HEXP ε

SPase
S6P εV ACSUC

10.2g +2.0 JALD JFRU uptake JHK GLC JNI JSPS -7.71

εALDFBP ε
FRU
uptake FRUcyt ε

NI
GLCcyt ε

SPS
HEXP ε

SPase
S6P εV ACSUC

7.3 Discussion

The analysis provides quantitative evidence to support the observations of Uys et al.
[116] that there is a decrease in futile cycling as the internodes mature, which corre-
sponds to an increase in vacuolar sucrose accumulation. We could see this by the dimin-
ishing control observed for control patterns acting via NI as the internodes mature. Of
further interest is that we observed the suggested role of SuSy C in the accumulation of
sucrose, although the quantified control pattern data suggests that SuSy B also plays a
role in this phenomenon.

One of the conditions known to influence the accumulation of sucrose is futile cycling,
which results in sucrose being broken down by NI to form fructose and glucose. By
analysing the control patterns and the underlying kinetics for all the models represent-
ing the differing levels of sugar cane internode maturity we can begin to understand why
this phenomenon diminishes as the maturity of the internodes increases. For Internodes
3 and 4 we found CJV ACFRU uptake to be the dominant control coefficient. The resultant
control patterns contained a proportion including NI, namely control patterns 3c, 3d
and 3e for Internode 3 contributing a combined 22.92% to the control coefficient and 4c,
4d, 4f and 4g for Internode 4 with a combined contribution of 25.25%. As the internodes
mature from 5 to 9, we find that the dominant control coefficient CJV ACHK GLC , contains no
patterns acting via NI, thereby reducing the effects of futile cycling. What is apparent
for these internodes is that the additional control coefficients do contain control patterns
affecting NI. However, when we calculate the actual contribution of these terms it be-
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comes clear that the overall percentage of control acting via NI is in fact decreasing as
the internodes mature. This was calculated by summing the percentages of each control
pattern acting via NI for the concerned control coefficient and then multiplying this total
by the value of the control coefficient to get an actual percentage of control. The details
of this can be seen in Table 7.18 below:

Table 7.18: Control pattern contributions for patterns acting via NI.

Control Combined % Control Control Actual %

Pattern Contribution Coefficient Coefficient Value Contribution

5.2b, c, f 21.65 CJV ACFRKa 0.279 6.04

6.2b, f 16.52 CJV ACFRKa 0.287 4.74

6.3b, c 15.72 CJV ACFRU uptake 0.224 3.52

7.2b 5.89 CJV ACFRKa 0.294 1.73

8.2b, e 14.85 CJV ACFRU uptake 0.249 3.70

8.3b, f 18.62 CJV ACFRKa 0.224 4.17

9.2b, d 13.83 CJV ACFRKa 0.268 3.71

If we now look at the steady-state data for each internode, we can see that the flux for NI
decreases (0.052, 0.050, 0.019, 0.017, 0.009, 0.018, 0.024 and 0.027) and that elasticity
εNIFRUcyt increases (-0.062, -0.070, -0.308, -0.233, -0.356, -0.248, -0.249 and -0.262) as the
internodes mature. Note that the elasticity is in itself negative, indicative of a product
elasticity, which suggests that with internode maturity increasing so too is the product
inhibition of FRUcyt on NI. This may explain why we can observe a decrease in futile
cycling as the internodes mature, which also explains why there are still control patterns
present including this step, but with a decreased level of control over the step leading to
sucrose accumulation.

It is equally important to analyse further the role of the SuSy enzymes in sucrose accu-
mulation. Note that there are three isoforms of SuSy (SuSya, SuSyb and SuSyc) within
the system and that Uys et al. found that SuSyc was more significant regarding su-
crose accumulation. For Internodes 3 and 4, we find that the major control patterns,
3b and 3g for Internode 3 and 4b and 4i for Internode 4, all act via SuSya contributing
a combined 31.15% and 19.88%, respectively. The control patterns acting via SuSyb
contribute 5.57% (3h) and 11.99% (4e and 4j) for Internodes 3 and 4, and those acting
via SuSyc contribute 13.98% (3a and 3f) for Internode 3 and 18.36% (4a and 4h) for
Internode 4. The data for the remaining internodes are slightly more complicated due
to the control of sucrose accumulation being shared between two or three control co-
efficients. The data for each isoform is summarised in the following Tables, where the
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control pattern identifier refers to the control pattern IDs as illustrated in the quantified
control pattern tables for each internode.

Table 7.19: SuSya control pattern contributions for patterns leading to sucrose accumu-
lation.

Control Combined % Control Control Actual %

Pattern Contribution Coefficient Coefficient Value Contribution

5.1b 24.33 CJV ACHK GLC 0.487 11.85

5.2a 22.04 CJV ACFRKa 0.279 6.15

6.1a 17.69 CJV ACHK GLC 0.379 6.70

6.2a 17.38 CJV ACFRU uptake 0.287 4.99

6.3f 7.90 CJV ACFRKa 0.224 1.77

7.1c 11.73 CJV ACHK GLC 0.502 5.89

7.2a 11.42 CJV ACFRKa 0.294 3.36

8.1d 7.89 CJV ACHK GLC 0.382 3.01

8.3a 8.36 CJV ACFRKa 0.224 1.87

Table 7.20: SuSyb control pattern contributions for patterns leading to sucrose accumu-
lation.

Control Combined % Control Control Actual %

Pattern Contribution Coefficient Coefficient Value Contribution

5.1a 29.53 CJV ACHK GLC 0.487 14.38

5.2e 26.76 CJV ACFRKa 0.279 7.47

6.1b 27.13 CJV ACHK GLC 0.379 10.28

6.2e 26.66 CJV ACFRU uptake 0.287 7.65

6.3a, d 22.33 CJV ACFRKa 0.224 5.00

7.1b 34.72 CJV ACHK GLC 0.502 17.43

7.2b 33.80 CJV ACFRKa 0.294 9.94

continued on next page
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continued from previous page

Control Combined % Control Control Actual %

Pattern Contribution Coefficient Coefficient Value Contribution

8.1b, c 36.95 CJV ACHK GLC 0.382 14.11

8.2a, f, h 30.31 CJV ACFRU uptake 0.249 7.55

8.3e 32.44 CJV ACFRKa 0.224 7.27

9.1b, c 39.21 CJV ACHK GLC 0.417 16.35

9.2a, e, g 32.25 CJV ACFRU uptake 0.268 8.64

10.1a, d, g 34.91 CJV ACFRU uptake 0.362 12.64

10.2b, c 41.34 CJV ACHK GLC 0.279 11.53

Table 7.21: SuSyc control pattern contributions for patterns leading to sucrose accumu-
lation.

Control Combined % Control Control Actual %

Pattern Contribution Coefficient Coefficient Value Contribution

5.1c 37.33 CJV ACHK GLC 0.487 18.18

5.2d 33.83 CJV ACFRKa 0.279 9.44

6.1d 37.29 CJV ACHK GLC 0.379 14.13

6.2d 36.63 CJV ACFRKa 0.287 10.51

6.3e, d 15.26 CJV ACFRU uptake 0.224 3.42

7.1d 42.30 CJV ACHK GLC 0.502 21.23

7.2d 41.18 CJV ACFRKa 0.294 12.11

8.1e, f 46.14 CJV ACHK GLC 0.382 17.63

8.2c, d, g 25.43 CJV ACFRU uptake 0.249 6.33

8.3d 43.25 CJV ACFRkA 0.224 9.69

9.1d, e 46.11 CJV ACHK GLC 0.417 19.23

9.2c, f 20.04 CJV ACFRKa 0.268 5.37

continued on next page
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continued from previous page

Control Combined % Control Control Actual %

Pattern Contribution Coefficient Coefficient Value Contribution

10.1b, e 21.97 CJV ACFRKa 0.362 7.95

10.2e, f 44.78 CJV ACHK GLC 0.279 12.50

By summing all the actual control pattern % contributions for each SuSy isoform and for
each internode (see Table 7.22), we can see that as the internodes increase in maturity so
does the contribution of the control patterns acting via SuSya. By contrast, the control
patterns acting via both SuSyb and SuSyc, are fairly consistent in their contributions
to the overall control of sucrose accumulation. The contributions via SuSyc are gener-
ally greater than those of SuSyb, although both appear to be important with regards
to sucrose accumulation. The main cause of this observation lies in the flux through
each isoform. The flux though SuSya decreases with an increase in internode maturity
(0.088, 0.063, 0.031, 0.023, 0.013, 0.010, 0.005 and 0.000), whereas the flux for both
SuSyb and SuSyc increases as the internodes mature, with values of 0.024, 0.038, 0.046,
0.049, 0.047, 0.056, 0.066 and 0.060 for JSuSyb, and 0.049, 0.072, 0.060, 0.068, 0.060,
0.075, 0.086 and 0.078 for JSuSyc. This would explain why the control involving SuSya
disappears at more mature internodes and why SuSyb and SuSyc are always present,
possibly aiding the accumulation of sucrose as the internodes mature.

Table 7.22: Combined actual % contributions for all control patterns including the SuSy
isoforms.

Internode SuSya Combined % SuSyb Combined % SuSyc Combined %

Contribution Contribution Contribution

3 30.81 5.51 13.92

4 16.3 9.83 15.10

5 18.00 21.85 27.62

6 13.46 22.93 28.06

7 9.25 27.37 33.34

8 4.88 28.93 33.65

9 - 24.99 24.60

10 - 24.17 20.45
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It would be beneficial to perform additional theoretical and laboratory experiments to
further elucidate the role played by the SuSy isozymes. This would provide further in-
formation regarding sucrose accumulation as this study has highlighted the roles of both
SuSyb and SuSyc, whereas Uys et al. found that SuSyc was more significant regarding
sucrose accumulation.

In addition, it would be advantageous to perform theoretical ‘knock out’ experiments
with substrate elasticity εNISuc and thereby eliminate futile cycling. This should result in
an increase in sucrose accumulation, but may lead to further implications which could
be illustrated by means of control pattern quantification. Rossouw et al. [93], have
described similar experiments which may give additional insight when combined with
symbolic control analysis.

The final chapter gives an overview on what we have achieved in this study, whilst
presenting its merits in terms of contribution to the field of Systems Biology.



Chapter 8

Discussion

8.1 Synopsis

The central focus of this thesis addressed a perceived shortcoming in conventional MCA
techniques because all available softwares offer only the numerical solution for any given
system. The primary objective of this study was therefore to provide an algebraic solu-
tion for systems, with an emphasis on its uses in understanding the regulatory behaviour
of cellular systems. This thesis describes the development of SymCA, a software imple-
mentation of the symbolic matrix inversion of MCA, in a generalised way and leads to
the generation of analytical expressions for the control coefficients of a pathway in terms
of the elasticities. From a systems biological perspective this provides a number of uses:

• The ever-increasing use of computational analysis of biochemical pathways in
the expanding field of Computational Systems Biology has led to the number
of available models growing monthly. This is evident on an inspection of on-line
model repositories such as JWS Online ([85], http://jjj.biochem.sun.ac.za)
or BioModels ([77], http://www.ebi.ac.uk/biomodels), which show an increase
in the number of models, and also in the size and complexity of the models. Thus,
MCA is becoming increasingly important in elucidating where the control in a
pathway lies and in identifying the factors determining this control. With partic-
ular reference to SymCA, we can use the expressions generated to determine key
elasticities responsible for a large or small control coefficient value. We can also
evaluate which parameters have the largest effect on an observed behaviour, and
more importantly how this effect is transmitted in the system.

• The analysis of the three test cases, i.e. a theoretical model with a feedback
mechanism, the fermentation pathways in Saccharomyces cerevisiae [41] and sugar
accumulation in sugar cane [116]), show how we can use the generated expressions
to explain and quantify observed behaviours.

• MCA expressions can become unwieldy as the model size increases beyond a few
reactions as demonstrated in the control coefficients generated for the fermenta-
tion pathways in Saccharomyces cerevisiae (see Chapter 6). In these cases we
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can introduce biological assumptions resulting in simplified expressions. Common
substitutions include situations where we know that a particular reaction is either
insensitive to a product or saturated with substrate under cellular conditions, so
here we may set the elasticity to zero. Alternatively, if a reaction is operating in
the first-order range because the Km is higher than the substrate concentration,
we can set the elasticity to one. We may also investigate how the control distribu-
tion within a network is affected by setting the value of certain elasticities to vary
within bounds. The use of symbolic MCA is integral to these types of analysis.

• A common hindrance in the development of kinetic models is not knowing all the
kinetic parameters. An important and significant aspect of symbolic MCA is that
it is valid in general, thus it is not dependent on the availability of particular
parameter values. The only requirement is the description of allosteric modifier
interactions and the stoichiometry. Thus even if we do not know all the kinetic
parameter details, we can infer general conclusions about the control structure of
a pathway.

• The technique of control pattern analysis, as demonstrated by Hofmeyr in 1989 [49]
whereby the individual terms of a control coefficient expression can be visualised
on a network, can be achieved by symbolic control analysis. The importance of
this is due to these ‘control patterns’ essentially describing a ‘chain of local events’
which corresponds to a particular route of regulation. Symbolic control analysis
can aid the identification of these routes of regulation in complex networks and
quantify their relative importance.

• As highlighted previously the usefulness of symbolic MCA when applied to systems
with little or no kinetic data, can still allow us to gain insights into the control
structures present in a system. When we know the full kinetic data and parame-
ter values, we can cross-check the generated symbolic expressions by substituting
steady-state data into the expressions and evaluating them for comparison against
data generated from a purely numeric analysis, as provided by PySCeS. The com-
bination of both numeric and symbolic analysis also provides the useful technique
of quantifying control pattern contributions for a specific steady-state.

8.2 Critical appraisal

MCA has proved to be a key technique for the quantification of biological systems, and
has helped to displace the notion that for every system there is a single ‘rate-limiting’
step. MCA has led to our current understanding of control within cellular systems that
the control can be shared between multiple steps. A number of key concepts within
MCA have enabled the development of a generic symbolic approach to MCA, in particu-
lar the control-matrix equation, Ci = E−1, described by Hofmeyr in [51]. This equation
arose from a combination of the Summation and Connectivity Theorems, and Hofmeyr
[51] regards it as the most powerful feature of MCA. The equation provides a means
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of expressing the control coefficients for a system in terms of the elasticity coefficients.
In essence, all that we require to solve this equation is a symbolic matrix of all local
and structural system properties, E. Once this matrix has been formed, we need only
invert the matrix to generate the control coefficients expressed in terms of the elasticity
coefficients.

It is important to note that this study was not the first symbolic MCA implementa-
tion. This was first pioneered by Schulz in 1991 [101] and then by Thomas and Fell in
1993 [114]. Thomas and Fell developed MetaCon which represents an automation of the
matrix method described in [40, 99, 110]. Application of this matrix method resulted in
the following matrix method:

EC = M (8.1)

where E represents the elasticity matrix, C the control-matrix (the control coefficients
to be evaluated), and M the matrix describing the relationships between the elements
of E and C. The aim of MetaCon was to solve the elements of C, which was achieved
by inverting the elasticity matrix:

C = E−1M (8.2)

A key step in this method for generating control coefficients is the selection of a reference
flux from the pathway. Thus they calculated only the flux control coefficients for the
selected flux (although MetaCon provided the option to calculate the control coefficients
of all steps on request by the user). The method described in [53, 55] represents a more
generic solution to this problem in that there is no requirement to select a reference flux.
Hofmeyr [51] presented a variation of the control-matrix, Ci = E−1, which relies on
the description of the stoichiometry and any allosteric modifier interactions. Thus this
method is generic for all cellular systems. At the time of MetaCon’s development this
method had not been presented, whereas the method described in this thesis and in [51]
provides a generic solution to this problem. These perceived shortcomings of the matrix
method [40, 99, 110] used by Thomas and Fell in their development of Metacon [114], has
led to the implementation of SymCA in presenting a generic symbolic control analysis tool.

A further limitation to previous attempts of symbolic MCA implementations was in-
sufficient computing power which is necessary for solving symbolic computations. From
the beginning symbolic computing was designed for use on supercomputers. The com-
puting landscape has changed significantly in the past decade and we are now in the
fortunate position in which the power available in ‘off-the-shelf’ computers allows us to
perform these tasks.

There are known common issues inherent in symbolic computations, and the most per-
tinent to this study is the inefficiency in computing the inverse of higher order symbolic
matrices. It would therefore be a useful exercise to try to find more efficient methods
and softwares which can alleviate this shortcoming as this would allow the analysis of
even larger systems. The computer algebra system used in this study, Maxima, presents
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its own unique set of challenges in that it is a third party software which requires a
Python interface for its incorporation into SymCA. Data generated by Maxima must be
extracted for further computations, and this can be extremely inefficient as the size of
the system under investigation increases.

Of key importance is the size of the model under investigation. In this study the largest
system symbolically analysed consisted of 17 reactions (See Chapter 7). This system is
fast approaching the size limitations for symbolic analysis, mainly due to inefficiencies
in current symbolic matrix inversion routines for high order matrices [8]. As the size of
the matrix exceeds ≈25 × 25, this becomes more apparent. Additionally, the complex-
ity of the system in terms of ‘interlinkedness’, by way of moieties such ATP/ADP and
NADH/NAD which can act on numerous places, adds to the complexity of resultant
expressions. We can possibly simplify such systems by clamping the moieties, but this
results in the loss of the contribution of the moieties to the control structure of the sys-
tem. If we know a priori, that certain reactions are saturated with substrate, first-order
in substrate or irreversible, we can make elasticity substitutions before analysis thereby
reducing the complexity of the expressions. These considerations are particularly im-
portant for larger systems, but smaller systems are handled efficiently without the need
for any simplifications. Although we can analyse smaller systems either by hand or via
graphical means [49], the efficiency and additional post-analysis routines provided by
SymCA, suggests that SymCA is well suited for both small and larger models when the
symbolic analysis of a system is desired.

The work covered in Chapters 5, 6 & 7 would not have been possible before the de-
velopment of SymCA. These studies have shown how concepts such as control pattern
identification introduced by Hofmeyr [49] can be extended to quantify the contribution
of each control pattern found within a control coefficient expression. We can then use
this data to isolate the key routes of regulation under the experimental conditions in
question. This technique provided additional insight into Galazzo and Bailey’s work [41]
in which they saw pathways activated under cell immobilisation to result in an increase
in polysaccharide formation.

This technique was applied again to extend the work of Uys et al. [116]. Hence the
control patterns were quantified for Internodes 3-10 to provide additional information
about the reason for an increase in sucrose accumulation in sugar cane as the plant
matures. When used in combination with supply-demand analysis [50] and parameter
scans, we can understand how the regulatory pathways vary under changing conditions.
Coupled with this are the additional features which have been developed that allow the
generation of symbolic control coefficients as well as the visualisations of data generated
by SymCA by way of SVG images. These features enable us to see which pathways are
key for a given control coefficient. There are naturally further possible improvements to
SymCA and its functionality and we will now discuss future work which can follow this
study.
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8.3 Future work and perspectives

Since the development of SymCA, there have been advances in pure Python symbolic
libraries which may provide the solution to this problem. SympyCore was developed to
address the shortcomings of the SymPy library, with the specific objective to provide an
efficient means of computing symbolic calculations. Thus it would be logical to inves-
tigate the use of SympyCore as a potential replacement of Maxima within SymCA. This
could be advantageous in a number of ways, such as providing a more efficient matrix
inversion algorithm and negating the need to write large volumes of data to disk to make
it accessible to SymCA.

There are many additional features which should be addressed, such as the ability to
perform multi-dimensional parameter scanning with control pattern quantification as
opposed to the currently handled combination of single dimension parameter scans and
control pattern quantification. Singh and Ghosh [109] demonstrated this in their research
which focussed on targeting persistent tubercule bacilli to develop anti-tuberculous drugs.
They found that the inactivation of isocitrate dehydrogenase 1 and isocitrate dehydro-
genase 2 is a potential target for drugs against persistent mycobacteria. If we could use
SymCA in these studies it may lead to a greater understanding of the regulation within
the system, and potentially improve the success rates for identifying novel drug targets.

Since it is often difficult to determine all parameter values for a system, a technique
of determining the key parameters would be advantageous. As it stands, the only re-
quirements of SymCA are knowledge of the local and structural features of a system to
generate the symbolic control coefficient. By developing methods using the response
coefficients [52] which are currently calculated, we could determine the importance of
the parameters within the system. If we were to link this data with quantified control
coefficient data, we could identify exactly how the affect of a parameter is expressed
within the system. In addition we have the knowledge that the elasticity coefficients
of an enzyme-catalysed reaction are the sum of a regulatory kinetic and a mass-action
term [50]. It would be beneficial if these two terms could be distinguished as part of a
symbolic analysis as this would prove to be a key feature to aid the quantification of
regulation.

Additional work using theoretical models such as showing how control, response and
co-response depends on specific elasticities, i.e. positive feedbacks, negative feedbacks
and product insensitivities, would also help to further illustrate the power of symbolic
computation.

Using experimentally determined steady-state concentrations and rate equations for en-
zymes in potato tuber glycolysis, Thomas et al. [115] were able to calculate most of
the elasticity coefficients for this particular state of the metabolic system. They sub-
stituted these calculated values for elasticities into the symbolic expressions for control
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coefficients obtained with MetaCon [114], and replaced the remaining elasticity coeffi-
cients with estimated values. They were then able to calculate how sensitive the control
coefficients were to variation in the value of a particular elasticity, so allowing them to
investigate the variation of important flux-control coefficients with critical elasticities.
Although it is already possible to write a Python script that would perform such cal-
culations using the SymCA routines, it would be highly desirable to add in future this
functionality to SymCA as an automated procedure.

Thomas et al. also utilised a technique of sensitivity analysis in conjunction with the
expressions from their software package, MetaCon. By incorporating a similar technique,
whereby the sensitivity of the control pattern contributions against parameter uncertain-
ties could be deduced, this may provide a summary of which elasticities are important
and which are not. This could be achieved by sampling the elasticities and then calcu-
lating the control coefficients and the underlying control patterns. This type of analysis
could prove to be extremely insightful when used with SymCA.

Historically many attempts to increase the yield of biotechnological processes have been
at best semi-empirical [72]. In these processes, metabolic or protein engineering is often
used to improve biological systems for industrial applications. A key aspect in effectively
altering a biological system is understanding the inner workings of the system in ques-
tion [76]. In the case of fermentation the microorganisms exhibit regulatory mechanisms
controlling the production of metabolites. This protects them against overproduction
and excretion of primary and secondary metabolites into the environment.

The quest for microbiologists in the field of industrial fermentation is to find a rare
overproducing strain in nature. The microorganism is then deregulated so that it over-
produces huge quantities of a desired commercially important product such as a metabo-
lite or an enzyme [94]. This has also been highlighted in [113], where Stephanopoulos
describes the construction of novel pathways. These metabolic engineering approaches
examine biochemical reactions as a system, with the goal being the construction of
strains with both a superior productivity and yield.

By using SymCA we gain a better understanding into the underlying mechanisms which
are producing observed experimental outcomes. By harnessing the power inherent in
the control patterns present in all control coefficients, we can begin to design systems
to use desirable pathways in a system, and in so doing aid these metabolic or pro-
tein engineering approaches. By performing theoretical experiments where the values of
elasticity coefficients are varied over a range, we can also design systems to behave in a
desirable fashion. Both these features are presently available in SymCA. This insight may
have significant implications in biotechnological applications as well as in devising ratio-
nal strategies for target selection in the design of gene therapies or screening candidate
drugs [75].
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8.4 Conclusion

In this thesis we have presented SymCA, a general implementation of the control-matrix
equation enabling the generation of control coefficients expressed in terms of elasticities.
We achieved this by combining the symbolic computing capabilities of Maxima and the
programming language of Python. We developed a Python interface to Maxima which
allowed access to its symbolic power within PySCeS [84]. The end-result is an additional
module to use with PySCeS, which allowed us to perform symbolic control analysis for
cellular systems of any size and complexity, subject to computational constraints. The
algebraic expressions generated have been factorised for easy interpretation, and allow
an in-depth analysis of where the control lies within the system.

As the field of computational systems grows, so do the number and complexity of mod-
els. The net result is that there is an increasing reliance on analysis tools for making
sense of the vast amount of model data. The tool of symbolic control analysis provided
by SymCA contributes to this analysis.

I would like to conclude this discussion with the following quote by R. W. Hammings,
which I believe succinctly summarises the motivation behind SymCA:

“The purpose of computing is insight, not numbers.”
R. W. Hamming (1915–1988)
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Appendix A

Detailed description of SymCA
classes

A.1 Data

This class consists of six methods, the first being initData(), which creates a dictio-
nary to store all forms of data, i.e. the pysces, processed and symbolic data. The second
method getPyscesData instantiates the PyscesData class which extracts and returns
all required data from PySCeS and stores it in the data dictionary. The next two meth-
ods, getProcessedData and getSymbolicData, instantiate the ProcessedData and the
SymbolicData classes respectively. The former takes the newly extracted PySCeS data
and processes it ready for generation of the symbolic data by the latter class.

Once all data has been extracted, processed and generated a model map for all the
data associated with the model in question is in a dictionary. The model map referred
to as symcaModelMap, is created and populated from within the populateModelMap

method. The structure of the symcaModelMap is as follows with all keys marked by
quote marks and their corresponding values following the -:

• ‘Coefficients’ - dictionary of all elasticity and control coefficient data.

– ‘Parameter Elasticities’ - dictionary of parameter elasticity data where keys
are elasticity labels and values are corresponding Coefficient objects.

– ‘Variable Elasticities’ - as per data structure above, except for variable elas-
ticities.

– ‘Independent control’ - with a list of all independent control coefficient data
as the value. The list contains the following data:

∗ 0 - dictionary of all independent control coefficients with their labels as
keys and their corresponding values being Coefficient objects.

∗ 1 - dictionary of coefficient matrix positions, with the keys being a two-
membered tuple with elements representing the PySCeS and Maxima con-
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trol coefficient matrix co-ordinates and the values being the control coef-
ficient label.

∗ 2 - 2D array of all independent control coefficients.

∗ 3 - two-membered tuple with elements as follows:

· 0 - list of all independent flux control coefficients.

· 1 - list of all independent concentration coefficients.

· 2 - list of all independent control coefficients.

– ‘Dependent control’ - as per the data structure described above, except for
dependent control coefficients.

• ‘Conserved Sums’ - list of all conserved sums where each element in the list is a
list of species found in each moiety-conserved cycle in the model.

• ‘Elasticity Expressions’ - dictionary of all elasticities with keys being the elasticity
labels and the values being their corresponding symbolic expressions, as computed
with Maxima by way of partial differentiation.

• ‘Fixed Species’ - PyscesRecord object for all fixed species.

• ‘Flux’ - ProcessedRecord object for all fluxes.

• ‘Flux Relations’ - dictionary of all flux relations where each flux is a key with its
independent flux relations being the values.

• ‘Flux Substitutions’ - two-membered tuple with the following elements:

– 0 - True or False, depending on whether or not a flux substitution has been
performed.

– 1 - A list of fluxes substituted into the K matrix, else None.

• ‘Latex’ - dictionary of LATEX representations for all control coefficients, elasticities,
fluxes and species, where the normal labels are the keys and the value is the LATEX
equivalent.

• ‘Matrices’ - dictionary of all symbolic matrices required by SymCA, where each
matrix label is the key and the value is the corresponding Matrix object. The
following matrices are present:

– ‘ccD’ - dependent control coefficients Matrix object.

– ‘ccI’ - independent control coefficients Matrix object.

– ‘E’ - E Matrix object.

– ’parElas’ -parameter elasticities Matrix object.

– ‘varElas’ - variable elasticities Matrix object.

– ‘k’ - unscaled K Matrix object.
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– ‘kdj’ - Matrix object for diagonal matrix of inverse fluxes.

– ‘kdji’ - Matrix object for diagonal matrix of independent fluxes.

– ‘ks’ - scaled K Matrix object.

– ‘l’ - unscaled L Matrix object.

– ‘lds’ - Matrix object for diagonal matrix of inverse species.

– ‘ldsi’ - Matrix object for diagonal matrix of independent species.

– ‘ls’ - scaled L Matrix object.

• ‘Parameters’ - List of all model parameters.

• ‘Parameter Elasticities’ - Elasticity object for all parameter elasticities.

• ‘Reactions’ - ProcessedRecord object for all reactions.

• ‘Rxn Format’ - Common substring for all reaction labels, if one is present.

• ‘Species’ - ProcessedRecord object for all species.

• ‘Values’ - Dictionary of all steady-state values for fluxes and species, as well as
initial parameter values:

– ‘steady state’ - dictionary of flux and species steady-state values, with the
flux or species labels as keys and their numerical value as the corresponding
value,

– ‘parameter’ - dictionary of all initial parameter values, where parameter labels
are keys with their initial value as the values.

• ‘Variable Elasticities’ - Elasticity object for all variable elasticities.

It should be noted that the various objects referred to above are all custom created for
SymCA and will be covered in the section on SymcaObjects, which will follow immediately
after the sections covering the various data classes used by the Data class.

A.2 PyscesData

The methods below are involved in extracting and storing all required PySCeS data:

• initObjects() - This method requires two arguments when called, a dictionary
containing the data to be stored and either 0 or 1 as the second argument. 1
indicates that the data to be stored is either the K or the L, and 0 indicates
all other PySCeS data to be stored. For each key value pair in the dictionary, a
PyscesRecord object is created and appended onto a list which is then returned
once all dictionary entries have been processed.
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• getConservedSums() - Conservation data corresponding to moiety-conserved cy-
cles is extracted from PySCeS, in the event that no conservation is present None

is returned. When conservation is present a 2D list is returned where each entry
consists of a list of species per conservation sum.

• getAll() - All PySCeS model data is extracted via this method which uses a
number of nested methods.

– getModelData() - All reaction, species, fixed species, parameters, conserved
sums, equations as well as the PySCeS model data are extracted by this
method. The conserved data is extracted via calling the getConservedSums()
method and all equations are extracted via the getEquations(), all other
data types mentioned are obtained directly from the PySCeS model instance
attributes. PyscesRecord objects are created for all data by the initObjects()
method and then loaded into the pyscesData dictionary, with the following
key: ‘model data’.

– getModelMatrices() - All data required for the K, L and N matrices are
extracted by this method and each matrix has its own method responsible
for obtaining the desired data. Once all matrix data has been obtained it is
stored in the pyscesData dictionary with the following key, ‘model mx’.

∗ getK() - The data highlighted in the following list is extracted from
PySCeS, after which PyscesRecord objects are created and then stored
in a list.

· 2D numpy array of the K matrix.

· tuple representing the reactions making up the columns of the K
matrix.

· tuple representing the reactions making up the rows of the K matrix.

· 2D numpy array of the K0 matrix.

· tuple representing the reactions making up the columns of the K0

matrix.

· tuple representing the reactions making up the rows of the K0 matrix.

∗ getL() - This method extracts the same data as the getK() method, but
for the L matrix PyscesRecord objects are created and appended onto
the list containing the K matrix data.

· 2D numpy array of the L matrix.

· tuple representing the reactions making up the columns of the L
matrix.

· tuple representing the reactions making up the rows of the L matrix.

· 2D numpy array of the L0 matrix.

· tuple representing the reactions making up the columns of the L0

matrix.

· tuple representing the reactions making up the rows of the L0 matrix.
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∗ getN() - Data pertaining to the stoichiometric N matrix is obtained
from PySCeS, turned into PyscesRecord objects and appended onto the
list containing the previously extracted K and L matrix PyscesRecord

objects.

· 2D numpy array of the N matrix.

· tuple representing the reactions making up the columns of the N
matrix.

· tuple representing the reactions making up the rows of the N matrix.

• getParameterValues() - The initial parameter values for all parameters are ob-
tained and stored in a dictionary with parameter names as keys and their corre-
sponding initial values as the values. This dictionary is stored in the pyscesData
dictionary under the key, ‘parameter values’.

• getSteadyState() - The steady-state values for all flux and species are extracted
and stored in two dictionaries, one containing all flux data and the other all species
data. Each dictionary contains the flux or species labels as the keys and their
corresponding steady-state values as the values. These dictionaries are stored in
a dictionary, using keys ‘flux’ and ‘species’, which are then stored in the
pyscesData dictionary under the following key, ‘steady state’.

• getEquations() - This method is responsible for extracting the rate equation for
each reaction and storing this information in a dictionary where the reaction name
serves as the key and its rate equation as the value. Once all reaction rate equations
have been processed the dictionary is returned.

• getData() - The dictionary populated by all methods in this class is returned.

• getDataKeys() - This method returns all the keys associated with the dictionary
containing all extracted PySCeS data.

A.3 ProcessedData

Below are the methods involved in processing all initial PySCeS data:

• processData() - The main method processing all PySCeS data contains the fol-
lowing nested methods:

– K() - Method which processes all symbolic data concerning the K matrix. The
data from the PyscesData dictionary is extracted and reformatted to create a
K Matrix object which is incorporated into a ProcessedRecord object. This
object is then stored in the processed data dictionary with ‘K’ as the key.

– L() - In a similar way to the method above, this method reformats the
PyscesData object for the L matrix into a Matrix object which is incor-
porated into a ProcessedRecord object and stored in the processed data
dictionary with ‘L’ as the key.
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– equations() - This method is called by reactions() and extracts the dic-
tionary of all reactions and their rate equations returning a list of all reactions
and a corresponding list of all rate equations.

– rxn() - Two arguments are required for this method, the reaction name
and a three-membered list containing the following data: a list of reaction
substrates, a list of reaction products and a list of all reaction modifiers. The
process() method is then called with the same arguments.

∗ process() This method requires the same arguments as the rxn(). The
data is then used to generate a list of all free species associated with the
reaction, a list of all fixed species and a list of all variable elasticities.
This is done for substrates, products and modifiers involved in the given
reaction. The data pertaining to the substrates, products and modifiers is
then returned to the rxn() method which in turn returns it to its calling
method, i.e. reactions().

– reactions() - This is the main method used to process the initial PySCeS re-
action data. The equations() method is called, returning a list of all reaction
names and a corresponding list of all rate equations. The list of reactions is
then stepped through and for each reaction the rxn() method is called return-
ing a list containing data for the substrates, products and modifiers associated
with the reaction. The deindex() method is also called which returns a list
of all dependent and independent variables for the reaction in question. A list
of parameter elasticities is also generated using the rate equations specific to
each reaction and a Reaction object is created utilising all newly processed
data; this is appended onto a list to store all Reaction objects. Once all
reactions have been processed and an ordered list of all reactions is gener-
ated (independents followed by dependents), a ProcessedRecord object is
created incorporating the list of Reaction objects. This is then stored in the
processed data dictionary with ‘reaction’ as the key.

– Species() - The initial PySCeS data is extracted and processed such that
a Species object is created for each species and then stored in a list. An
ordered list of independent followed by dependent species is created, and all
data is then stored as a ProcessedRecord which is stored in the processed
data dictionary under the ‘species’ key.

– speciesRelations() - This method generates a ProcessedRecord for any
conserved sums present in the model; this object is stored in the processed
data dictionary with the ‘conserved’ key.

– parameters() - A list of all parameters associated with the model is generated
and stored in the processed data dictionary with ‘parameters’ as the key.

– Flux() - This method uses the reactions data to generate flux data, which
includes an ordered list of fluxes expressed in terms of independents followed
by dependents, as well as Flux objects for each individual flux. The Flux
objects are stored in a list which is incorporated into a ProcessedRecord
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object for all fluxes and then stored with the key ‘flux’ in the processed
data dictionary.

– fluxRelations() - The flux relations are important, since, if any common
relationships exist, substitutions may be performed in the K matrix before
building the E matrix, and this method is responsible for generating symbolic
dictionaries of these relations. For each flux in the system, its relation in
terms of independent fluxes is generated. This data is then stored in three
dictionaries: one for all independent flux relations, one for all dependent
relations and one containing all flux relations. This data is then used to
create and store a ProcessedRecord object with ‘flux relations’ as its
key.

• depIndep() - Three methods, Flux(), reactions() and Species(), utilise this
method during the processing of PySCeS data. This method has two arguments,
the data to be sorted (lists of flux, reactions or species data) and the type of
data being sorted, i.e ‘flux’, ‘rxn’ or ‘species’. A list of dependent and a list of
independent data is then returned.

• getElasticityExpressions() - Since elasticity coefficients are partial derivatives
of rate equations with respect to a given species, they can be computed from the
rate equations. This method computes the symbolic elasticity expressions for all
elasticities per reaction using Maxima and its in-built differentiate method. A
list of reactions is stepped through and all associated elasticity expressions are
computed by Maxima and then written to a file. Once all have been computed and
written, the readElasticityFile() method is called which returns a list of all
elasticity expressions. An ElasticityExpression object is created for each elasticity
and these are stored in a list which is then incorporated into a ProcessedRecord

object and stored in the processed data dictionary with the key ‘elasticities’.

• readElasticityFile() - This method takes the name of the file to which the
symbolic elasticity expressions have been written by Maxima. The expressions are
then extracted into a list and returned.

• getData() - This method returns the dictionary containing all processed data for
use by the SymbolicData class.

A.4 SymbolicData

The following methods are required to generate all symbolic data required to perform
symbolic control analysis:

• buildSymbolics() - In order to generate the symbolic E matrix the user needs to
symbolically scale both the K and L matrices to form K and L, respectively. The
K matrix requires the formation of a diagonal matrix of inverse fluxes ((DJ)−1)
and a diagonal matrix of independent fluxes (DJi), and the L matrix requires
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the formation of a diagonal matrix of inverse species ((DS)−1) and a diagonal
matrix of independent species (DSi). This method generates these additional four
matrices by calling the buildSymbolicMx() method from the Utilities class,
which returns the symbolic form of the matrix, its Maxima input argument and
the dimensions of the newly formed matrix. Matrix objects are created for each
matrix generated and these are then used to form SymbolicRecord objects, which
are stored in a symbolic data dictionary under the following keys: ‘kdj’, ‘kdji’,
‘ls’ and ‘lsi’.

– scaleMatrices() - The K and L matrices are scaled according to the algo-
rithm as described by Hofmeyr [51]. K is first scaled by Maxima and once
returned substitutions are performed based on the flux relations. This step
is performed by a method housed in the Utilities class, which searches for
identical relationships amongst the dependent fluxes. The reasoning behind
this step is that if any common relations exist, the number of dependent fluxes
found in the K matrix can be reduced, which in turn aids the efficiency in
the inversion of the E matrix. If any fluxes are substituted into the K matrix
they are stored in a list as they will be required for future factorising of the
resultant control coefficients. The L matrix is then scaled, and before the
creation of Matrix objects for both the K and L matrices, the dimensions of
both are compared with the dimensions of their unscaled counterparts. The
Matrix objects are only initialised after a successful comparison. The K and
the L Matrix objects are then stored in the symbolic data dictionary with
the following keys, ‘ks’ and ‘ls’, respectively.

– buildElasticityMatrix() - Both symbolic parameter and variable elasticity
matrices must be generated and this method in combination with its nested
buildMx() method was developed to fulfill this role. Elasticity objects repre-
senting all parameter and variable elasticities are first created, both of which
are then incorporated into SymbolicRecord objects which are in turn stored in
the symbolic data dictionary as a two-membered tuple with ‘elasticities’

as the key. The buildMx() method is called twice, once for variable elasticities
and once for the parameter elasticities.

∗ buildMx() - This method is directly responsible for the generation of the
desired elasticity matrices, and requires three arguments when called.
These arguments are an ordered list of all species or list of parameters
depending on which matrix is being built, the Elasticity object for the
elasticities in question and finally the label to be used for the resultant
matrix. The matrices are arranged with the species or parameters as
the columns and the ordered list of reactions as the rows. In order to
build the matrices, the list of reactions is stepped through, and for each
step the list of species/parameters is stepped through and a check is per-
formed identifying whether or not the species/parameter is involved in
the reaction. If present, an elasticity is present and the symbol repre-
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senting that particular elasticity can be entered into the matrix, when
absent a zero is inserted into the matrix. For every elasticity found a
Coefficient object is created and stored in a list. The symbolic data
dictionary is finally populated with the Elasticity object list, as well as
a Matrix object for both parameter and variable elasticities, under the
following keys: ‘parameter elasticity coefficients’, ‘parameter

elasticity matrix’, ‘variable elasticity coefficients’ and ‘var-

iable elasticity matrix’.

– buildCCMatrix() - Symbolic representations of both the independent and
dependent matrices of control coefficients are generated via this method. For
both matrices the ordered list of reactions serve as the columns and the
rows are represented by a list of fluxes followed by species. A Matrix ob-
ject is created for each matrix generated, as well as Coefficient objects
for all control coefficients. SymbolicRecord objects are created for indepen-
dent and dependent control coefficients and stored in the symbolic data dic-
tionary with keys ‘independent control coefficients’ and ‘dependent

control coefficients’, respectively. A SymbolicRecord is created for all
control coefficients and this is stored in the symbolic data dictionary with the
key, ‘control coefficients’.

– buildE() - The final symbolic matrix required by SymCA is the E matrix which
is generated by multiplying the variable elasticity matrix by -1, and then by
the L matrix. The K matrix is then augmented onto the newly computed
matrix product. These computations are performed by Maxima, after which a
Matrix object is created for the E matrix which is also stored in the symbolic
data dictionary.

• mergeCC() - This method takes a tuple with independent and dependent control
coefficient data as elements, and combines them so that independent control coeffi-
cients are followed by dependent control coefficients. A tuple with all Coefficient
objects, a full coefficient dictionary and a list of all coefficients is then returned.

• checkScaledK() - This method serves as a check to see if the symbolic scaling of
the K matrix has been performed correctly. The dimensions of the symbolic K
matrix are compared with the PySCeS equivalent, and the contents of the matrices
checked to ensure that entries are in the correct positions.

• getLatexEquivalents() - In order for SymCA to generate LATEX output the LATEX
equivalents of all control coefficient, elasticity coefficient, flux and species labels
need to be generated. Any common reaction substring is removed from any labels
and this option is controlled by the user. A dictionary is created with the keys
being the control coefficient, elasticity coefficient, flux and species labels with their
corresponding LATEX equivalents as the values. This dictionary is then stored in
the symbolic data dictionary with ‘latex equivalents’ as its key. The common
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reaction substring, if present, is also stored in this dictionary under the key, ‘rxn
format’.

• getData() - This method returns the dictionary containing all symbolic data.

A.5 SymcaObjects

The details for all custom objects involved in storing the initial data before symbolic
control analysis can be found below:

• Coefficient - These objects were created to store all symbolic control and elas-
ticity coefficients, they possess no methods and the table below summarises the
attributes associated with the Coefficient objects.

Table A.1: Description of coefficient object attributes

Attribute Description

name label of the coefficient

mx pos index of the coefficient in its respective matrix

type the type of the coefficient e.g. elasticity, control, response

dependency independent or dependent

• Elasticity - The Elasticity object was created to store parameter and variable
elasticity data. The following attributes are accessible:

Table A.2: Elasticity class attributes

Attribute Description

name either ‘variable elasticity’ or ‘parameter elasticity’

elasticities list of all elasticities

substrate list of all substrate elasticities

product list of all product elasticties

modifier list of all modifier elasticities
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• ElasticityExpression - Since the symbolic elasticity expressions are computed
by Maxima, this class was created to store this information. There are a number
of attributes, and no methods in this class.

Table A.3: ElasticityExpression class attributes

Attribute Description

name elasticity label

equation rate equation associated with the elasticity

reaction reaction in question

species species or parameter affecting the reaction

expression symbolic elasticity expression

parameters list of all parameters in the expression

• Flux - This object stores data for each individual flux, such as its steady-state value
and whether it is an independent or dependent flux. There are four attributes for
this object.

Table A.4: Flux object attributes

Attribute Description

name the flux label

dependents True or False

independents True or False

steadyState steady-state flux value

• Species - Much like the Flux object, the Species object stores data pertaining to
each species.

Table A.5: Species object attributes

Attribute Description

name label assigned to the species in the PySCeS input file

dependents True or False

independents True of False

steadyState the value of the species at steady-state
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• Matrix - All matrices generated by SymCA are stored as Matrix objects, these
methods contain no methods and have the following attributes:

Table A.6: Matrix object attributes

Attribute Description

name name of the matrix

data 2D Python list representation of the matrix

maxima matrix in Maxima input format

pysces matrix in PySCeS output format

label the Maxima matrix label

size matrix dimensions

elements list of all elements in the matrix

• ProcessedRecord - Once the initial PySCeS data has been processed it is stored
as a ProcessedRecord object, which has the following attributes:

Table A.7: ProcessedRecord object attributes

Attribute Description

name title assigned to the data being stored

data the data or data object which is being stored

dependents list of dependents or None

independents list of independents or None

ordered ordered list - independents followed by dependents

network labels list of PySCeS labels for data else None

fixed default is None, else list of all fixed items

• SymbolicRecord - Once all data was extracted, processed and symbolic data
generated, the resultant objects representing this symbolic data are stored as
SymbolicRecords each possessing the following attributes:
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Table A.8: SymbolicRecord object attributes

Attribute Description

name name assigned to the symbolic data

data symbolic data object

• Reaction - Each reaction contains a large amount of data, i.e. products, substrates
and parameters associated with it. This object was created to store all data related
to a reaction, and has a number of attributes:

Table A.9: Reaction object attributes

Attribute Description

name the reaction label as provided in the PySCeS input file

equation rate equation for the reaction

substrates list of reaction substrates

products list of reaction products

modifiers list of reaction modifiers

parameters list of parameters in the reaction

fixed substrates list of all fixed substrates

fixed products list of all fixed products

fixed modifiers list of all fixed modifiers

variable substrate elasticities list of reaction variable substrate elasticities

variable product elasticities list of reaction variable product elasticities

variable modifier elasticities list of reaction variable modifier elasticities

variable elasticities dictionary of all variable elasticities

parameter elasticities dictionary of all parameter elasticities

• PyscesRecord - As per the processed data, all initial PySCeS data was extracted
and then stored as a PyscesRecord object. Below are the attributes associated
with these objects:
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Table A.10: PyscesRecord object attributes

Attribute Description

name PySCeS data label

data data extracted from PySCeS

maxima Maxima input argument for PySCeS data

pysces the PySCeS model instance

A.6 SCA

All methods associated with the SCA class are outlined below:

• getData() - This method serves to return the dictionary of all data generated by
SCA, which has been dubbed the ‘ symcaModelOut’.

• computeControlCoefficients() - The main method controlling the computation
of all symbolic control coefficients, and all processes directly related to it. This
method is called with four arguments, two of which are optional and are denoted
with a ∗:

– dep - True to compute dependent control coefficients and False for only inde-
pendent control coefficients.

– subE - True to perform elasticity substitutions in the E before inversion, and
False to proceed as normal.

– subDict∗ - Default is None, but when subE is True a dictionary of elasticity
substitutions is required.

– factor∗ - Default is None, else True if numerator and denominator can be
further simplified.

Once this method has been called the status of the subE argument is checked,
if True then the setElasticityPre() method is called to perform the desired
elasticity substitutions in the E matrix. If subE is False the process proceeds
as usual where the invertMatrix() method is called. On completion, True or
False is returned to indicate the success or failure of the inversion process. If
True the common denominator and control coefficient numerators can be gener-
ated, and is achieved by calling the following methods computeDenominator() and
computeNumerators(), respectively. Both methods return a boolean as to their
execution status.

When both the common denominator and all control coefficient numerators have
been successfully computed a method (applyRelations()) is called to perform
further computations based on any moiety-conserved cycles found in the system,
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as well as any flux substitutions in the K matrix. The data for both common
denominator and numerators is then extracted from Maxima and written to file by
calling outputControlCoefficients(). Initially all output generated by Maxima

was returned by the standard output pipe, however this proved to be inefficient
and in fact impossible in certain instances when the buffering capacity of the out-
put pipe was exceeded. Fortunately Maxima has several methods for writing data
directly to disk, which is now the method used to return large data sets.

Once all data has been extracted from the Maxima environment, the data is then
processed and stored as ControlCoefficient objects, by the processControlCo-
efficient() method. The data is now ready for output as well performing addi-
tional operations which will be addressed in the chapter regarding the SymCA user
interface.

• invertMatrix() - Maxima has a predefined function for performing matrix inver-
sions for both numerical and symbolic matrices. This method uses this function to
generate the desired symbolic control coefficients. The invertMatrix() method
requires two arguments, the first being the label of the matrix to invert, which in
this case is ‘E’, the second argument is optional and is used only in the event that
one would like to invert a different matrix. The matrix in Maxima input format
would then be provided for this argument referred to as mx. Before the inversion
a number of flags are set in the Maxima environment, these enable the inversion
process to factor out the determinant of the matrix. Once all has been successfully
completed True is returned, whereas if an error occurs False is returned.

• computeCommonDenominator() - The common denominator for all control coef-
ficients is the determinant of the E matrix, and Maxima has a method named
determinant, which returns the determinant of a specified matrix. The method
requires two arguments, with the first being the name of matrix from which the
determinant is to be computed, and the second being the label to assign to the ex-
tracted determinant. Once the denominator has been computed, True is returned.

• computeNumerators() - Since the determinant (denominator) is factored during
the inversion routine, the resulting product is a matrix containing all control coeffi-
cients divided by the common denominator. Two arguments are required, the label
of the matrix from which the control coefficient numerators are to be obtained, and
the label for the subsequent matrix of control coefficient numerators. The control
coefficient matrix is then obtained by accessing the numerator, using the Maxima

num method. At this stage the dependent control coefficients are computed, if
desired, and this computation is handled by calling the computeDependents()

method.

• computeDependents() - Two arguments are required to call this method, a two-
membered tuple with the label for the independent flux control coefficient matrix
and the label for the independent concentration control coefficient. The second
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argument is the label of the matrix of all independent control coefficients. The
dependent flux control coefficients are computed as follows, CJd = K0.C

Ji , and the
dependent concentration control coefficients in a similar manner, CSd = L0.C

Si

[51]. Once computed the matrices are augmented onto Ci, with CJd added first
followed by CSd . All control coefficients are now computed.

• applyRelations() - This method requires two arguments, the Maxima denomi-
nator label and the Maxima label representing the matrix of all control coefficient
numerators. The result of this method is that the expressions are rearranged
so that elasticity terms are only multiplied (i.e not divided) by fluxes, and the
elasticities towards species in conserved moieties are divided by the same species
concentrations. This is done by multiplying both the denominator and control
coefficient matrix by all fluxes that where substituted into the K matrix, and sec-
ondly by dividing the resultant products by each independent species occurring in
the conservation moieties.

• outputControlCoefficients() - In order to extract the control coefficient numer-
ators and the common denominator the initial strategy was to use the standard
output pipe native to the subprocess module, which is used to communicate with
Maxima. This was found to be efficient for small data sets. However it was not
viable for the data sets generated when large systems were analysed. The strat-
egy thus employed uses of a native method to Maxima that writes data directly to
a file. This process is controlled by the outputControlCoefficients() method
and uses the stringout function from Maxima. The denominator is first extracted
and its sign checked, as the signs (+ or −) of the expression must be biologically
correct (see Equations 2.7 & 2.8 in Section 2.4, Chapter 2 for an example), which
will be discussed in checkDenom(), the method governing this process. The sign is
either right or wrong, and in the case of it being wrong both the denominator and
the control coefficient numerators must be corrected by multiplying each by −1.
Once the denominator has been extracted, checked and possibly corrected, all nu-
merators are outputted by the outputNumerators() method. A tuple containing
the following information is returned:

– 0 - string representation of the denominator.

– 1 - a dictionary of all control coefficient expression with control coefficient
labels as keys and their string representations as the values.

– 2 - path for denominator Maxima output file.

– 3 - path for control coefficient Maxima output file.

• outputDenom() - This method takes the Maxima denominator label as an argument
and uses the Maxima stringout function to write the denominator expression
to file. The file is stored in the maxima output subdirectory within the model
directory, using the Maxima label as its title, e.g ‘den.txt’. A tuple containing the
file path, the denominator label and the stringout status is returned.
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• extractDenom() - Once the denominator has been written to file, it needs to be
extracted. This method has one argument, which is the tuple returned by the
outputDenom(). The denominator expression is read from the output file, parsed
by the Parser class and then returned in string form.

• checkDenom() - This method is integral for ensuring that the expressions computed
have the correct sign (+ or −). Since the denominator is the determinant of the
E and thus contains all elasticities for the cellular system in question, it is used as
the check expression. The expression is broken up into terms, which are separated
by either a + or −. A term is then isolated and checked by checkSign(). Since
product elasticities are assumed to have a negative sign and substrate elasticities
a positive one, the overall theoretical sign for a term can be determined. If this
theoretical sign correlates to the sign computed by Maxima, it can be assumed that
all the signs for the control coefficients are correct, if the opposite is true, then all
signs need to corrected. This is achieved by multiplying the denominator as well
as all control coefficient numerators by −1. This method sets the values for two
global variables, term sign and sign change, to either True or False.

• outputNumerators() - Once the denominator has been successfully outputted,
extracted and checked, the control coefficient numerators can be extracted. The
type of data to be outputted is provided as the only required argument, after which
each numerator is individually written to file via Maxima’s stringout function. At
this stage the numerator signs are changed if required. All numerator expressions
are written to a file within the maxima output directory, with the same naming
convention used for the denominator, which in the case of the control coefficients is
‘cc.txt’. Once all expressions have been written to file, the extractNumerators()

method is called which returns a dictionary of all control coefficients expressions
computed. This dictionary along with the file path is returned as a tuple.

• extractNumerators() - The extraction method takes two arguments, the first of
which is the path for the file containing all Maxima numerator output, and the
second is a tuple containing a list of all control coefficient labels and a list of cor-
responding matrix positions for the control coefficients. The data from the file is
read by the read cc eqns() method in the Utilities class, which returns a list
of all expressions. The list is then stepped through and for each expression, the
control coefficient label as well as matrix position is extracted from the lists pro-
vided as arguments. A dictionary is then created for each control coefficient with
keys, ‘eqn’ and ‘mx pos’, and their corresponding values, the symbolic expression
and the matrix position, respectively. This dictionary is then stored in a further
dictionary with the control coefficient label as its key. Once all control coefficients
have been added to the dictionary it is returned.

• processControlCoefficients() - The final processing of the denominator and
control coefficients, which creates custom Python objects for them, is controlled
by this method. A tuple of denominator and control coefficient as returned by the
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outputControlCoefficients method, as well as the Maxima denominator label as
arguments. This method calls the processDenominator and processNumerators

methods, with the data from each being used to populate the symcaModelOut
dictionary with keys ‘Denom’ and ‘Control’ respectively.

• processDenominator() - In order to minimise the memory requirements of SymCA
the denominator expression is stored in the pickle objects directory as a Python

pickle. A Denominator object is then created for the common denominator, which
is returned to be stored in the main SymCA output dictionary.

• processNumerators() - Using the same rationale as above, all control coefficient
numerators are pickled and then a ControlCoefficient object is created for each
control coefficient. The ControlCoefficient objects are stored in a dictionary,
where keys are control coefficient labels and the values are their corresponding
ControlCoefficient objects. This dictionary is then returned to be stored in the
main SymCA output dictionary.

• setElasticityPre() - The possibility exists to pre-set elasticity values (e.g. 0,
1, −1, 0.5, 2). This method requires a dictionary of elasticity substitutions to be
performed, where the elasticities to be substituted are the keys and the values to be
substituted are the values. The substitution takes place before the inversion of the
E matrix and is performed by Maxima. The substitution is done in the εs matrix
using a Maxima method, sublis, which makes multiple parallel substitutions into
an expression, after which the E matrix is regenerated.

• setElasticityPost() - This method allows for the substitution of elasticities in
much the same manner as the setElasticityPre() method. However, these sub-
stitutions are performed after the computation of the control coefficients, and has
a number of variations as to how the user would like to perform the substitutions.
There are four arguments for this method, of which only the first is required:

– elas dict - dictionary of all desired elasticity substitutions; keys are elasticity
labels and values are their corresponding values to be substituted in.

– sub type - two variations of substitution can be performed with the default
being type 0:

∗ 0 - performs all substitutions simultaneously.

∗ 1 - performs each substitution individually as well simultaneously.

– number - this number determines the number of elasticities to be used in the
generation of elasticity substitution combinations.

– subList - a list of species or fluxes used to generate a list of control coefficients
to be substituted, else all control coefficients are used.

Type 0 and 1, rely on the subElas() method which performs the elasticity substi-
tutions as well as extracts the resultant data from Maxima, then processes it and
finally stores it for later use.
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• subElas() - The subElas() method is used by setElasticityPost, to perform
elasticity substitutions after the control coefficients have been computed. It is im-
portant to note that any substitutions performed in the numerators also need to
take place in the denominator. The dictionary of desired elasticity substitutions
are converted into the required Maxima input for the sublis function; if only one
substitution is desired the labels for the resulting substituted denominator and
control coefficients all have the elasticity name with the addition of ’ sub ’ as their
prefix. When multiple substitutions are performed the ‘multiple sub ’ is used as the
prefix, the prefix used is then added to a global dictionary with the corresponding
Maxima substitution argument as its value. After the substitution has been per-
formed the outputControlCoefficients() method is called which returns the
newly substituted control coefficient data. The denominator is then substituted,
outputted and extracted, the latter two tasks being handled by the outputDenom

and extractDenom methods respectively. The processSubstituted() method is
then called to process the newly computed substituted denominator and control
coefficient data.

• processSubstituted() - All substituted denominator and control coefficient data
is stored in the same manner as the original coefficient data generated before the
substitution. Four arguments are required by this method, the substituted numer-
ator data, substituted denominator data, the elasticity substitution dictionary and
the substitution label used as a prefix for all coefficients. The substituted denomi-
nator is first pickled and stored in the pickle objects subdirectory, after which a new
Denominator object is created, this object is then added to the substituted denom
dictionary attribute of the original Denominator object using the substituted de-
nominator label as its key and the newly created Denominator object as the value.
All substituted coefficients are then processed in the same manner, with the end
result being the creation of a substituted ControlCoefficient object. This ob-
ject is then added to the substituted cc dictionary attribute of its corresponding
original ControlCoefficient object, with the substituted control coefficient label
as the key and the substituted ControlCoefficient object the value.

• simplify() - Since numerators and denominators are separated, there may be
common terms in both which could be factored out. This method serves to fulfill
this task, and if called will factorise each control coefficient numerator divided by
the common denominator on an individual basis. For each factorisation performed,
the resultant numerator and denominator is extracted and the label assigned stored
in a list for use in the method governing the output of these numerator and denom-
inator terms from Maxima. In the event of the user previously performing elasticity
substitutions on the control coefficients after the inversion routine, all substituted
control coefficients are also factorised, via the simplifySubstituted() method.

• outputSimpCC() - The output of all factorised data resulting from the simplify()
method is handled via this method, which requires the list of all control coefficients
factorised, as well as the list of resulting Maxima labels for the numerator and
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denominator expressions for each factorised control coefficient as its arguments.
All expressions are written to a file named, ‘simpCC.txt’, which is located in the
maxima output subdirectory, in the order in which they appear in the list of all
Maxima labels. The path for the file containing all outputted data is then used
as the argument for the extraction method, extractSimpSubCC(), which simply
reads in the file and returns a list of all expressions.

• processSimpCC() - The newly extracted expressions are then processed by this
method, where the list of expressions, a list of all control coefficients and a list of
Maxima labels are required as arguments. The list of all Maxima labels is stepped
through, with a step size of 2 starting at position 0. The reason for this is that
each factorised control coefficient consists of two parts, a numerator and a de-
nominator, where the denominator label follows immediately after the numerator
label. Each expression is parsed via the Parser class, the ControlCoefficient

objects simplified attribute for each control coefficient factorised is set to True,
and a Denominator and ControlCoefficient object created for the factorised
denominator and numerator term. The objects are then assigned to the original
ControlCoefficient objects simp denom and simp numer attributes respectively.

• simplifySubstituted() - The simplifySubstituted() method performs the
same task as simplify(), except that it factorises all substituted control coeffi-
cients with their corresponding substituted denominator. The substituted control
coefficients for all control coefficients in the list provided, which serves as the only
argument, are factorised. The numerators and denominators from the resultant
expression are extracted and all resulting denominator and numerator labels stored
in a list.

• outputSimpSubCC() - The factorised substituted control coefficients are written to
a file named ‘simpSubCC.txt’, which is located in the maxima output subdirectory,
after which they are extracted by the extractSimpSubCC() method which returns
a list of all expressions. The processing of the newly generated expressions is then
handled by calling processSimpSubCC.

• processSimpSubCC() - This method requires a list of expressions, a list of all con-
trol coefficients, a list of all substitution arguments corresponding to the control co-
efficients list and a list of the Maxima labels for the expressions list as its arguments.
The data is processed with the method described for the processSubCC() method,
with the only difference being the location of the Denominator and ControlCo-
efficient objects created for each substituted control coefficient factorised. These
objects are stored in the corresponding ControlCoefficient objects substituted cc
dictionary attribute. This dictionary has substitution arguments as keys, and as
such the list of substitution arguments provides a means of locating the correct
ControlCoefficient object within this dictionary. The newly created Denomi-
nator and ControlCoefficient objects are then assigned to the simp denom and
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simp numer attributes of the substituted ControlCoefficient within the substitu-
tion cc dictionary.

• writeData() - There are numerous types of LATEX output options available, each
depending on the preceding methods used. The method requires a label relating
to the data to be written, and an optional file name in which to write the data as
arguments. The types of options available are:

– ‘cc’: all computed control coefficient data.

– ‘sym2psc’: data generated by comparing numerical data computed via PySCeS

with data obtained by numerically substituting the symbolic expressions for
all control coefficients.

– ‘patterns’: data computed by quantifying the contribution and value for each
control pattern within a control coefficient expression.

– ‘summation’: data generated from computing the summation theorem.

– ‘coc’: co-control coefficient data generated.

– ‘scan’: data generated by the quantification of control patterns whilst per-
forming a parameter scan.

For each type of data selected, the Output class generates and writes the LATEX
output which is then saved to files which are located in the latex subdirectory.

• symcaToPysces() - This method was built as a check that the symbolic control co-
efficient expressions are correct. The values for all Denominator and ControlCoeff-

icient objects are computed at instantiation and assigned in both cases to the
ss value attribute. The values for the symbolically generated control coefficients
are obtained from the ControlCoefficient objects and stored in a dictionary
with the value obtained from PySCeS. This method has already proved useful with
respect to the signs associated with the symbolic expressions, and when all signs
are correct the values obtained via both means are identical. However, in the
event of the expressions having the wrong signs, the absolute values are identical
but the results have opposite signs. This has led to the inclusion of this step in
the Unittesting routine, which is included in every installation of SymCA.

– scaCCValues() - This method obtains all control coefficient values from
PySCeS and from the values computed from the symbolic expressions. This
data is then stored in the SymCA output dictionary with the key, ‘SymcaToPy-
sces’. As mentioned previously this data is also used as part of the Unittest

routine, and is stored with the key ‘sym2psc’, in the Unittest dictionary
which in turn is stored in the SymCA output dictionary with ‘Unittest Data’,
as its key.

• pyscesValues() - The steady-state values as computed by PySCeS are required
for a number of operations within SymCA. This method obtains these values for all
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data sets required, i.e. flux, species, control coefficient, elasticities and parameters.
All values obtained are stored in a dictionary with the following keys:

– ‘flux’: all steady-state flux values.

– ‘species’: all steady-state species concentration values.

– ‘parameters’: all parameter values.

– ‘cc’: all steady-state control coefficient values.

– ‘var ec’: all steady-state variable elasticity values.

– ‘par ec’: all steady-state parameter elasticity values.

A list of each of the above mentioned data sets is obtained, after which the
getPyscesValues() method is called with the list as the only argument. A dictio-
nary is then returned where the labels of the variables are keys and their steady-
state values the dictionary values. Once all steady-state value dictionaries have
been obtained and placed into a single dictionary, this dictionary is stored under
the key, ‘Pysces Values’, in the SymCA output dictionary.

• getPyscesValues() - This method requires a list of items for which the steady-
state values are required as its only argument. The list is stepped through and
each value obtained from PySCeS via the getattr() method, is then added to
a dictionary with the item label and steady-state value as the key value pair.
After the values for all items have been obtained and added to the dictionary it is
returned.

• computeSummations() - The summation theorems [65] are computed via this
method. All control coefficient values obtained via substitution of the steady-
state flux, species and elasticity values are computed. The summations are then
calculated and compared to the theoretical values for both flux and concentration
control coefficients.

• computeResponse() - When computing symbolic response coefficients, the numer-
ical PySCeS equivalents must first be computed. This is achieved by calling this
method. The resultant response coefficients are then stored in a dictionary.

• getResponse() - This method computes symbolic response coefficients and is used
after computeResponse() has been called. The user is able to obtain a selection
of symbolic response coefficients by providing the necessary data for the three
optional arguments, which are as follows:

– cutoff - A value used to select response coefficients on the basis of absolute
value.

– flux - A list of flux or species labels, to be used as response coefficient selec-
tion criteria.
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– param - A list of parameters for which the associated response coefficients are
desired.

When no arguments are provided, a default value of 0.5 is used as the cutoff, and
all response coefficients are computed that have an absolute value greater than 0.5.
Two further methods are required to compute the symbolic response coefficients,
both of which are called within this method. The list of flux and species is stepped
through and for each entry all associated response coefficients are extracted from
PySCeS in the form of a dictionary. This dictionary along with the cutoff value
are passed to selectCoefficient, which selects the response coefficients based
on the value provided, after which a dictionary is returned containing only those
response coefficients selected. A dictionary is created with the following key value
pairs, flux or species label and dictionary of all selected response coefficients. Once
all flux or species elements in the list have been processed and their associated
response coefficients computed and added to the dictionary, it is then passed to
the getResponseElasticity() method.

– selectCoefficient() - This method takes a cutoff value and dictionary of
response coefficients as arguments. The dictionary is stepped through and in
the event of the absolute response coefficient value being less than the cutoff
value, the item is removed from the dictionary. Once all entries have been
processed the dictionary is returned.

– getResponseElasticity() - A dictionary with the following key value pairs,
reaction or species label and dictionary of all associated response coefficients,
is the only argument. The control coefficient and the elasticity coefficient
which when multiplied give the desired response coefficient, are then deter-
mined and the data pertaining to a response coefficient is then stored in
dictionary. Once all response coefficients have been processed, the dictionary
containing all data is stored in a global dictionary.

• computeCoControl() - Symbolic co-control coefficients can also be computed, and
this is achieved by providing a list of data describing the co-control coefficient as
an argument. The data in the list is a three-membered tuple with the following el-
ements: a flux label, a species label and the reaction concerned. This data encodes
the two control coefficients involved in the generation of the co-control coefficient.
The algebraic co-control coefficient is then obtained by dividing the two control
coefficient expressions. The data is then stored as a CoControlCoefficient ob-
ject and each object is stored in a dictionary with the co-control coefficient label
as the key. This dictionary is a global attribute.
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A.7 Maxima

The details of the methods developed for the Maxima interface follow below:

• call () - On instantiation of the Maxima class, this method is called to establish
a connection with Maxima using the subprocess module, which is native to all
Python distributions. The getMaxima() method is tasked with establishing this
connection, and once established the subprocess Maxima instance is returned. The
‘linearalgebra’ package is then loaded into Maxima, and symbolic computations can
now be performed.

• getMaxima() - This method is called by call () on instantiation of the Maxima

class, and is responsible for the creation the Maxima subprocess instance. The
first step in this process is to determine which platform is being used, where the
platform is either Windows or Linux. This is achieved with the native Python os

module, once determined the Maxima argument is created (in the case of Windows
the argument is ‘maxima.bat’, and for Linux it is ‘maxima’). This argument
is then used by subprocess to connect to Maxima from within Python. If the
connection is successful the Python subprocess Maxima instance is returned, but
in the event of it failing a RuntimeError, is raised. The RuntimeError can arise
from two situations, the first being that Maxima has not been installed, and the
second that the system path has not been updated to include the Maxima path.

• loadPackage() - This method takes a Maxima package to be loaded in string format
as its only argument and loads the provided package, by using the Maxima load

function.

• input() - In order to send executable arguments to Maxima, the input method
was developed. This method requires the Maxima input argument as an argument,
and firstly checks the integrity of the provided argument by calling the maxima()

method. If the argument is correctly formed the compute() method is called which
inputs the argument into Maxima, and extracts any resulting data.

• maxima() - The integrity of provided Maxima input arguments are checked by this
method, which requires the input argument when called. The argument is then
passed to checkInput(), which ensures the correct format of the input argument.
Once the input has been checked a MaximaInput object is created and returned.
The input is then ready to be evaluated by Maxima.

• compute() - The compute method sends the input argument, provided as an ar-
gument, to Maxima for computation via the standard input pipe provided by the
Maxima subprocess instance. Any output generated by the computation is then
obtained via the getMaximaOutput() method. It should be noted that not all
input arguments result in output, since the sign ending the argument determines
whether or not the output is suppressed or not. ‘$’ indicates that output is sup-
pressed (None is returned), whereas ‘;’ indicates that any output is accessible via
the standard output pipe.
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• getMaximaOutput() - This method reads any output generated via the standard
output pipe, and the data is then passed to checkOutput, which checks to see if an
error has occurred during any matrix manipulations due to incompatible matrix
dimensions. Once checked the output is returned.

• invert() - The computation of Ci = E−1, is performed by this method, which
requires an optional argument representing the label of matrix to be inverted. If
no argument is provided, the label for the last data entered into Maxima is used.
The Maxima input argument is then created which is passed to compute in order
to perform the computation. Since the data arising from this inversion can be
extremely large the input argument is ended by the ‘$’ symbol, which suppresses
the Maxima output. The native Maxima invert function is used, which computes
the inverse by the adjoint method [8].

• determinant() - Maxima computes the determinant of any given matrix. This
method has two optional arguments, the label of the matrix from which the deter-
minant is required and the label to be assigned to the determinant. The Maxima

input argument is generated and passed to compute(), which returns the output.

• matrixSize() - This method uses a native Maxima function to determine the
dimensions of any matrix entered into Maxima. An optional argument representing
a matrix label is required, and when not entered, the label of the data last entered
into Maxima is used. A MaximaOutput object is returned containing the matrix
dimension data.

• differentiate() - Since all elasticities are partial derivatives, they can be com-
puted symbolically. Maxima has a differentiation function, diff, which returns the
derivative or differential of an expression with respect to some or all variables in
the expression. The label assigned to the elasticity being computed is returned.

• expand() - This method wraps the Maxima expand function, which expands a given
expression in the following manner. Products of sums and exponentiated sums are
multiplied out, numerators of rational expressions which are sums are split into
their respective terms, and multiplication (commutative and non-commutative) is
distributed over addition at all levels of the expression. This method takes the
label of the expression to be expanded as an optional argument, otherwise the
label of the last entered data is used.

• fileAppend() - Maxima has the ability to append any data written to a file, this is
governed by the value of an internal Maxima variable. This method sets the value
of this variable to either True of False. The desired status is passed as the only
argument required by this method. The setFlag() is called to affect the change
in the variable value.

• setFlag() - There are numerous flags which can be customised within a Maxima

session. This method takes the maxima flag variable label and desired status as
arguments and resets the flags value.
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• string() - The string form of a Maxima expression is computed by calling this
method, which in turn calls the Maxima string function. The label of the expres-
sion, a label to be assigned to the string form and the boolean determining whether
or not the output is to be suppressed are provided as arguments. Once Maxima

has generated the string form of a desired expression, a MaximaOutput object is
returned.

• stringout() - Because the size of the control coefficient expressions often prevents
their extraction from Maxima via the standard output pipe associated with the
subprocess instance, all data is written directly to file. Maxima contains a method,
stringout, which writes expressions to a file in the same form the expressions
would be typed for input. The name of the file is required as well the label of
the data to be written. The full path indicating the written files location is then
returned if the data has been successfully written to file.

• substitute() - This method wraps the Maxima subst function to perform one off
substitutions. Four arguments are required with the last two being optional.

– in sub: item to be substituted into the expression.

– out sub: item to be substituted out of the expression.

– label: label of the expression to be substituted, if no label is provided the
label for the last data entered into Maxima is used.

– var label: label for resulting substituted expression, if none is provided this
label is the same as the expression to be substituted.

The Maxima substitution argument is generated and the substitution is performed.

A.8 Parser

The methods within the Parser class are outlined below:

• parseOut() - The Maxima expressions as outputted by the string function are
handled via this method, which takes the raw data as its only argument. All
newline characters are removed, such that the expression is a single continuous
string. The mathematical symbols (*, /, +, -, (, )), found in the expressions are
all found and padded with white space, this is an important step as these padded
‘markers’ are necessary in a number of later steps. The parsed string is then
returned.

• parseStringOut() - The output associated with the Maxima stringout function
is parsed by this method. The Maxima stringout output is the only argument for
this method. The Maxima output contains an output identifier (e.g. %o3) followed
by the path to where the data has been written when stringout is successful. The
identifier is then stripped off the returned output so that it may be compared with
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the directory specified. This match determines whether or not the data has been
written to disk.

• parseMaximaStr() - When a string is extracted from Maxima via the subprocess

standard output pipe it can contain numerous Maxima input and output identifiers,
which need to be removed from the string. The identifiers as well as newline and
tab delimiter characters are stripped from the string, which is then returned.

• parseMatrixStr() - In certain instances the data pertaining to the various matri-
ces involved in SymCA are accessed in string form. This method takes the matrix
string form as obtained via the standard output pipe, the Maxima input and out-
put identifiers are stripped as well as any newline characters. The string is then
returned.

• parseSize() - When Maxima computes the dimensions of a matrix the output is
read over the subprocess standard output pipe and then passed to this method,
whereby the Maxima identifiers are stripped and the and the row and column indices
isolated. A tuple is then returned, which contains a list where the first element is
the number of rows and the second the number of columns.

A.9 Output

Methods involved in the output of data are as follows:

• getFile() - This method takes two arguments, a file name or file path, and a type
which indicates whether or not the first argument is a filename or a file path. A
file handle is then opened to which the LATEX output is written. True is returned
once the file is open and the file handle is assigned to a global variable _ out file,
in the event of an error occurring on opening the file False is returned.

• latexHead() - A standard LATEX header is required by all files generated, this
header contains all the packages required by the LATEX compiler as well as any
custom commands to be used. This method returns this header when called.

• writeHeader() - This method takes an optional argument, ‘name’, which is the
label for the output file. The LATEX header from latexHead() is obtained and
written to the open file, after which the details of the file being written as well as
a timestamp are written to the file.

• writeData() - All forms of data output are handled via this method, which requires
six arguments when called. The first four arguments are mandatory whereas the
last two are optional:

– data type: substring denoting which type of data is to be written:

∗ ‘cc’: symbolic control coefficient expressions.
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∗ ‘sym2psc’: SymCA derived control coefficient values compared to those
obtained with PySCeS in a table.

∗ ‘patterns’: quantified control pattern data in table form.

∗ ‘summation’: summation theorem data in table form.

∗ ‘coc’: symbolic co-control coefficient expressions.

∗ ’scan’: parameter scan quantified control pattern data.

– sub data: tuple containing all elasticity substitutions performed if necessary
else None.

– cc objects: SymcaObjects containing relevant data objects corresponding
with data to be written.

– all cc: list of all control coefficient names.

– cc list: list of specific control coefficients to be outputted, argument only
works for ‘cc’ and ‘controlPatterns’ data types.

– file: file to which data is to be written, else data is written to the latex
subdirectory.

This method controls the LATEX output for all types of data, and calls the respective
methods involved based on the type of data output required.

• writeCCData() - This method is called for type ‘cc’ data and is responsible for gen-
erating and writing to file all control coefficient expression data. Five arguments
are required; elasticity substitution data, common denominator object, control co-
efficient objects, a list of all control coefficient names and finally a tuple with file
names for the common denominator, flux control and concentration control coef-
ficient LATEX files. The prepDenom() and prepCC() methods handle the common
denominator and control coefficient LATEX respectively.

– prepDenom - This method takes the Denominator object as its only method
and generates the LATEX for the common denominator expression. If any
elasticity substitutions have been performed, all substituted denominator ex-
pressions are also converted into LATEX and included in the output. Once the
LATEX denominator string has been created it is returned.

– newPrepCC - The LATEX output for all control coefficient is handled via this
method which takes a dictionary of all control coefficient objects, a 2D list
of all control coefficient names and the type of control coefficients being pro-
cessed, either ‘Flux’ or ‘Concentration’, as arguments. The control coefficients
are divided into two sections, one for the independent control coefficients and
the other for the dependent control coefficients. As per the common denomi-
nator, if any elasticity substitutions have been performed the resultant data is
also converted into LATEX and included in the output file. In the same light, if
numerator and denominator terms have been factorised together, the result-
ing simplified expressions are converted into LATEX via prepSimplified().
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Once all LATEX control coefficient data has been generated it is returned as a
string.

∗ prepSimplified() - This method is only called if numerator and denomi-
nator terms have been factorised together, and the ControlCoefficient

object is the only argument required. The LATEX associated with the
simplified control coefficient is created and returned as a string.

• prepSym2Psc() - Once a comparison between the numerically substituted symbolic
control coefficients and the values obtained by numerical analysis with PySCeS

has been performed, the resulting dictionary of data is turned into a LATEX table
summarising this data. The dictionary of comparison data is the only argument,
with the resulting LATEX string being returned once generated.

• writeControlPatternData() - This method is responsible for generating the
LATEX data displaying all quantified control pattern. Four arguments are required,
with the fourth being optional. These are a dictionary of control coefficient objects,
a 2D list of all control coefficients, a tuple containing file names for the flux and
the concentration control coefficient control patterns and finally the optional list
of desired control coefficients. If no list of control coefficients is provided the quan-
tified control pattern data for all computed control coefficients is generated. This
method utilises the prepControlPatterns() method to generate the LATEX, which
is then returned. The returned LATEX is then written to file via the writeFile()

method. This process is repeated twice, once for all flux control coefficient control
patterns and once for all concentration control coefficients.

– prepControlPatterns() - This method is called by writeControlPatterns(),
and requires four arguments. A 2D list of all control coefficient labels, a
dictionary of all control coefficient objects, a list of control coefficients to be
processed and the type of control coefficient being processed, ‘Flux’ or ‘Conc’.
Each control coefficient is processed in turn, and where control patterns have
been quantified, prepObjectPatterns() is called which returns the LATEX.
Once all control coefficients have been processed the string containing all
LATEX is returned.

∗ prepObjectPatterns() - A ControlCoefficient object is passed, when
called the LATEX table summarising the quantified control pattern data is
created and returned.

• prepSummations() - All summation data is converted into a LATEX table for dis-
play by this method, which requires a tuple containing the flux control coefficient
summation and the concentration control coefficient summation data as its argu-
ment. The LATEX output generated is split over two sections, one for all flux and
the other for all concentration control coefficient summation data. The final LATEX
string for all summation data is then returned.
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• prepCoControl() - This method requires a dictionary of all computed co-control
coefficient data and generates the LATEX for all co-control coefficients, which is
returned as a string.

• prepScanPatterns() - A dictionary of all control coefficient objects, a 2D array
of all control coefficient labels, a tuple with file names for both flux and concen-
tration control coefficients, as well as a list of desired control coefficients for which
the output is desired, are the arguments required by this method. If the latter ar-
gument is set to None, all control coefficients are handled. The control coefficients
are then split into independent and dependent for both flux and concentration
control coefficients. The coefficients are then processed one group at a time by
the prepParamPatterns() method which in turn calls the prepPatternTable()

method. All desired LATEX is created and returned as a string, whereby it is written
to the designated files.

– prepParamPatterns - This method is called by prepScanPatterns() and
takes the parameter scan data generated for a single control coefficient, the
coefficient name and the ControlCoefficient object as its arguments. Two
plots are then generated, one for the control pattern quantification data
over the parameter range and another for the control coefficient value over
this range. These plots are saved to disk and then included in a LATEX
file. A table which serves as a key for the first plot is generated via the
prepPatternsTable() method, after which the LATEX string is returned and
written to file.

∗ prepPatternsTable() - This method requires the ControlCoefficient

object as its only argument and generates the LATEX for a table depicting
the control pattern labels and the actual control pattern expression. The
LATEX string is returned.

• writeFile() - This method takes a LATEX output string and a file name as ar-
guments. The file is opened and the LATEX header written, after which the LATEX
output is written and the file closed.

A.10 Utilities

This class houses many of the common methods used by a number of the classes in
SymCA, and its details follow:

• Methods used by more than one class:

– loadPickle() - Takes a pickle file as an argument and loads and returns the
data from the pickle.

– writePickle() - Pickles a Python data object to a specified file. Three
arguments are required, the data to be pickled, the file path for the pickled
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data with third (type) being optional and determines whether or not the data
is pickled in binary format. If type=‘binary’, a binary pickled is created, but
when no argument is provided the standard ASCII protocol is used.

– getCCElas() - Takes a control coefficient expression as an argument and
returns a list containing all elasticities found in the expression.

– getCCList() - This method takes two arguments, a list of all control coef-
ficient names and a list of flux or species names. The list of flux or species
names is stepped through and all control coefficients for the particular flux
or species are found and stored in a list. Once the control coefficients have
been isolated for flux or species in the list provided, a list is returned.

– getTerms() - This method takes a control coefficient expression as an argu-
ment and returns a tuple of data pertaining to all control patterns in the
expression. The first step is to isolate all control patterns within an expres-
sion, this is achieved by using either the + or − to separate individual control
patterns. The following data is generated: a list of all control patterns, a list
of all control pattern signs (+ or −) and finally a list of corresponding absolute
control patterns. This data is passed to orderTerms(), which will rearrange
each control pattern. Once all control patterns have been rearranged the
rearranged lists described earlier are returned.

∗ orderTerms() - The initial lists of control pattern data are required as
the three arguments required by this method. Elasticities are first ordered
alphanumerically by species, and second by reaction. All fluxes are placed
at the beginning of each control pattern and species are rearranged in
ascending alphanumeric order. orderFlux() is called when ordering the
fluxes present in a control pattern and this method takes a control pattern
as its argument. Fluxes are isolated and then rearranged in ascending
alphanumeric order, this list is then returned.

– getLatex() - The tuple containing the list of all control pattern terms, the
corresponding list of all term signs, and the list of all absolute terms is passed
to this method. The list of absolute terms is then stepped through and all
elasticity, flux or species labels are replaced with their LATEX equivalents, after
which the sign associated with the term is added to the beginning of the term.
The LATEX term is then stored in a list. Once all LATEX control pattern terms
have been generated the list is passed to buildLatexEqn(), which builds and
returns the LATEX expression.

∗ buildLatexEqn() - A list of LATEX control pattern terms serves as the
argument for this method. The full LATEX expression is generated ensur-
ing that there are no more than 300 characters on any given line. If the
number of characters on a line were greater than 300, then part of the
expression would run off the page. The LATEX expression is then returned.

– getAllElements() - This method takes a control pattern term as an ar-
gument and isolates all elasticities, flux and species found in the term. A
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three-membered tuple is then returned containing this data.

– getRxnCCDict() - A list of all control coefficient names is given as the argu-
ment, and a dictionary containing reaction names as keys and a corresponding
list of control coefficients affecting the reaction as its value. This dictionary
is returned after all control coefficients have been processed.

– Array2List() - This method takes a 2D array of all control coefficient labels,
and generates a list of flux control coefficients, a list of concentration control
coefficients and a list of all control coefficients, which are returned as a tuple.

– latexSubArg() - This method is used to create a LATEX string representing
all elasticity substitutions performed. The dictionary of all elasticity sub-
stitutions is the only argument required, and the resulting LATEX string is
returned.

• Methods specific to the Data class:

– list2Dict() - Takes a list of SymcaObjects as an argument and generates
a dictionary where the objects names are the keys and their corresponding
objects are the values. A tuple containing a list of all the dictionary keys and
the dictionary, is returned.

• Methods specific to the PyscesData class:

– pysces2Maxima() - This method takes a PySCeS numpy data array and a data
title as arguments and generates and returns the Maxima input argument using
the data title as the assigned variable name.

• Methods specific to the ProcessedData class:

– getObject() - This method requires a list of objects and the name of the
object. The object with the name provided is then extracted from the list
and returned.

– getIndex() - This method takes an entry in a list and a list as arguments,
and first checks if the entry is found in the list in which case its index in the
list is returned.

– getElasParams() - All parameters for a given elasticity expression are re-
turned by searching for parameters present in the expression. The parameters
found are stored in list and returned once the search is complete.

– pysces2List() - A 2D numpy array is passed as an argument, and is converted
into 2D list where each entry is a string as opposed to an integer. The 2D list
is then returned.

• Methods specific to the SymbolicData class:



APPENDIX A. DETAILED DESCRIPTION OF SYMCA CLASSES 186

– buildSymbolicMx() - Three arguments are required when calling this method,
type of matrix being built (‘J’, ‘1/J’, ‘S’, ‘1/S’), list of data for the diagonal
and finally a label for the matrix. An initial identity matrix of size number
of data entries is created, and populated by calling populateDiagonal().
The string form of the matrix, the Maxima input argument and the matrix
dimensions are returned.

∗ populateDiagonal() - This method populates the diagonal of a square
matrix with data provided. The data is entered in the order that it is
found in the list.

– fluxRelations() - This method performs substitutions in the K matrix
based on the flux relations present in the system. A dictionary of all flux rela-
tions as well as the label for the matrix to be substituted are the arguments.
All fluxes with common relations arising from both linear and branched seg-
ments of the system, can be substituted out. All dependent fluxes substituted
in are stored, as are all fluxes arising from branches. Once all substitutions
have been performed the status (True or False), newly substituted string form
of the matrix, the list of dependent fluxes substituted in and a dictionary of
all branch fluxes are returned.

– compareMxDim() - This method compares the dimensions of two matrices,
which are provided as arguments. True is returned when the dimensions
match and False when they do not.

– maxima2List() - Takes a Maxima input argument as the only argument, and
converts it into a 2D list which is returned.

– getElasticities() - This method takes a list of all Reaction objects and
generates a tuple containing all variable elasticity data, which contains a list
of all variable elasticities, a list of all variable substrate elasticities, a list of all
variable product elasticities and a list of variable modifier elasticities, as well
as a tuple containing a list of parameter elasticities. The tuples of variable
and parameter elasticity data are then returned.

• Methods specific to the SymcaObjects class:

– subArg2Dict() - This method takes a Maxima argument for multiple sub-
stitutions as an argument and returns a dictionary where the keys are the
elasticities to be substituted and the values are the numerical values to be
substituted in.

– getTermValue() - This method computes the value and percentage contribu-
tion for a control pattern with respect to its control coefficient. The control
pattern term, Maxima substitution argument, control coefficient and denom-
inator labels are required as arguments. The percentage contribution to the
overall control coefficient is computed as well as the value for the control
pattern. The contribution and control pattern value are returned as floats.
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– values2Maxima() - This method generates the Maxima substitution argument
for all PySCeS steady-state values. This data is stored in a dictionary which
is passed to this method as an argument. The Maxima input is generated and
the resulting string is returned.

• Methods specific to the SCA class:

– addSubCC() - The two arguments required for this method are a dictionary of
all ControlCoefficient objects and a dictionary of all Coefficient objects
resulting from elasticity substitutions. The key value pairs of the substituted
dictionary are iterated over, and if the key is present in the first dictionaries
keys, the value representing the substituted ControlCoefficient object is
initialised to the ControlCoefficient objects ‘substituted’ attribute in the
main control coefficient dictionary. The main dictionary of all coefficients is
returned.

– dict2SubArg() - A dictionary of variable names and their values is provided
as an argument, which is used to create the Maxima substitution input argu-
ment. This string is returned.

– getCombinations() - This method accesses the global variable containing a
list of all unique combinations of elasticities, and creates a dictionary where
each key value pair represents a list of the elasticities in the combination and
the Maxima substitution argument for the combination. Once populated this
dictionary is returned.

– splitCCArgs() - In order to compute both the dependent flux and concen-
tration control coefficients, the CJi and CSi matrices must be extracted from
Ci, the I and K0 matrices from the K matrix and the I and L0 matrices
from the L matrix. This method is responsible for this process and takes the
maxima input argument for the matrix to be split as well as the label for the
matrix, e.g. cc for the Ci, ks for the K matrix and ls for the L matrix. The
submatrices are then extracted and returned in a tuple with the following
element pairs: CJi & CSi , I & K0, and I & L0 for the Ci, K and L matrices
respectively.

– getSpecies() - This method isolates all species/metabolites found in any
conserved sums present in the model. The conserved sum data generated by
PySCeS is extracted and passed as the only argument, with the resulting list
of all species found in the conserved sums being returned.

– checkSign() - This is a key method, in that, as the name suggests it is
responsible for checking the signs associated with the generated control coef-
ficients. A list of all terms found in a control coefficient is required as its only
argument. This list is stepped through until a term is found containing elas-
ticities, once found the computed sign as generated by SymCA is extracted for
the term. The theoretical sign is then determined on the basis that product
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elasticities are negative and substrate elasticities are positive. If the com-
puted and theoretical signs are identical, True is returned, whereas False is
returned in the event of these being different.

– assignEntry() - Since each individual control coefficient is to be extracted
from the computed C matrix, this method was developed to handle this
process. The maxima label for the C matrix and a 2D list of all control
coefficient labels associated to the C matrix are the required arguments. The
2D array is processed element by element, where each element is in turn
extracted from the C matrix. Once extracted the control coefficient label is
appended onto a list and its corresponding index in the C is also appended
to a list. These lists are then returned in a tuple.

– dataToArray() - All control coefficient data in terms of the PySCeS numerical
value and the value computed from the expressions generated by SymCA are
stored in a dictionary, which is the only argument for this method. This data
is extracted for all control coefficients into three lists: the first being a list
of control coefficient labels, the second a list of corresponding PySCeS values
and the third a list of corresponding SymCA values. These lists are returned
as a three-membered tuple.

• Methods specific to the Parser class:

– matchSub() - This method takes two arguments, the first being a list of all
characters or terms to be removed from a string and the second the string
from which these items are to be removed. The list of all characters or terms
is stepped through and at each iteration the desired element is removed from
the string by replacing it with an empty string. The newly edited string is
returned once all undesired elements have been removed.

• Methods specific to the Output class:

– str2Latex() - In order to generate the LATEX output, all control coefficient
and elasticity coefficient labels need to be in LATEX. This method requires
two arguments, with the first being the coefficient label as a string and the
second the LATEX label for the coefficient, i.e. ec for elasticity coefficients and
cc for control coefficients. Once converted the LATEX for the specified control
coefficient is returned.

– getLatexTerm() - To produce the LATEX representations for a control coef-
ficient expression, this method was developed. This method takes a term
and a dictionary of all LATEX labels for species, flux and elasticity data as
the arguments. Once all species, flux and elasticities present in the term are
converted to LATEX, the full LATEX term is returned.
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A.11 Visualise

The methods involved in all aspects of the visualisation process are as follows:

• getFiles() - This method is required to generate the XML and SVG layout files
for the model in question, if no layout files can be located. Once generated these
files are stored in the /layout directory which is located within pscout in the
PySCeS working directory.

• reactionData() - Since all reactions are labelled numerically for the SymCA gen-
erated graphics a HTML page with information pertaining to all reaction labels is
created. This method creates the reaction HTML page for the model in question
and stores it in the appropriate directory within the layout sub-directory. The
page is opened in a browser by clicking on any reaction node in the network.

• SBMLData() - The initial XML layout file is parsed using the ElementTree parser,
and all elasticity and reaction is data is obtained. The data for each individual elas-
ticity and reaction are stored in the SBMLelasticity and SBMLreaction objects
(as summarised in Tables 3.4 and 3.5, respectively) and stored in two dictionaries,
one for all elasticities where the elasticity labels are keys and the corresponding
objects the values. The reaction data is stored in a separate dictionary in the
same manner as that of the elasticities. These dictionaries are then stored as class
attributes, and True is returned.

• checkAlias() - This method was introduced to fix a bug on the SBW SVG render-
ing module, whereby if one used the auto alias function, the labels for the aliased
species were removed from the layout information. Thus this method serves as a
check to ensure that all species are labelled. In the event of the species labels being
absent a dictionary of all absent species is created containing information about
the role of the species, i.e. substrate or product. This dictionary is then initialised
to one of the class attributes.

• getSBMLdetails() - The XML file is read as a normal text file and all information
regarding the species style and text styles are extracted and stored in two separate
lists. This data is stored as class attributes for later use.

• getCoords() - The co-ordinates for all species are extracted from the SVG layout
file and stored in a dictionary where the keys are species labels and the values
represent the data for the specific species, i.e. the x and y co-ordinates as well as
whether or not the species is fixed or not. This dictionary is returned to the user.



APPENDIX A. DETAILED DESCRIPTION OF SYMCA CLASSES 190

• checkSVGEncoding() - The encoding of the SVG layout file needs to be utf-8, and
in certain instances this encoding may be utf-16. This method ensures that the
encoding is correct, and when incorrect the encoding is changed so that it is always
utf-8. Once completed, True is returned.

• SVGHeader() - This is a basic method that extracts the XML header from the
SVG file, and once extracted it is returned as a string.

• getElas() - This method takes a curve identifier and a role as arguments, where
the role can be a substrate, product or modifier. The elasticity object matching the
curve identifier and the role is then found in the dictionary of all SBMLelasticity
objects and returned as a key value pair.

• speciesMidpoint() - The midpoints for each species found in a network is required
for future operations, and this method serves to compute the x and y co-ordinates
for a given species. Once computed this data is stored in a class attribute in the
form of a dictionary.

• getPatternCoords() - As one of the outcomes of this class is to map control pat-
tern data onto the network, we needed to create an elasticity representation for
all elasticities such that the control patterns can be visualised. This method is re-
sponsible for determining the co-ordinates for these graphics, and the co-ordinates
are affected by the nature of the elasticity, i.e substrate, product of modifier. Once
the co-ordinates have been computed they are returned as SVG code.

• elasSignSVG() - Another feature of this class is to enable one to visualise all elas-
ticities on a given network, and the SVG code associated with displaying the sign
(+ or −) associated with each elasticity is generated by this method.

• getModelBlurb() - This method generates the SVG code depicting all model la-
bels that are to be included on the final graphics produced.

• colourRange() - A number of the graphics generated make use of a colour key
where each colour indicates a specific value range. This method generates a dic-
tionary of ten colours where the range is either from 0 – 100 or based on a value
provided as an argument when calling the method. The colour range dictionary
is then returned where colours serve as keys and their respective range is the value.
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• elasColours() - The mapping of the colours from the colour dictionary to each
elasticity, is performed by this method. Each elasticity colour is determined by its
numerical value which is then assigned to its corresponding colour range, a dictio-
nary containing all elasticities and their colour is then returned.

• elasSigns() - The sign for each elasticity is determined based on its value, this
data is stored in a dictionary with key value pairs being the elasticity name and
the elasticity sign (+ or −). This dictionary is returned once all elasticity signs
have been determined.

• colourRangeGlyphs() - In order to display the colour range the appropriate SVG
code must be generated, which is handled by this method. Two strings are re-
turned are, one containing the SVG for the actual colours to be displayed and the
other for the corresponding numerical range associated to each colour.

• insertBackground() - Given a height and a width as arguments, the SVG encod-
ing these dimensions is generated. The SVG file is read and appended onto the
newly generated SVG code, and the new SVG is written to file for future use and
customisation.

• xy() - The xy method is used by the prepAlias method to compute the x and
y co-ordinates for the species that have been affected in the process of perform-
ing the auto alias function mentioned previously. The co-ordinates are generated
taking into account whether or not a species is a product or a substrate, and once
generated the co-ordinates are returned.

• prepAlias() - The SVG code for each alias that needs to be added to the SVG
layout is generated by this method, and once generated is returned.

• addAlias() - Any additional species labels required due to auto aliasing are added
to the SVG layer and the file is then saved for future use.

• customiseSVG() - This is the main method governing the customisation of the
SVG layout as generated by SBW. The SVG containing all additional information
required in future visualisation operations is added onto the initial SBW SVG file
by this method. Once all information has been added a base layout SVG file is
created, which serves as the master template.
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• getSVGelements() - Like the previous method, this is also a central method in
that it parses the SVG layout file, extracts all required SVG data and initialises
several class attributes.

• writeSVG() - In its simplest form, this method allows one to write the customised
SVG layout file to disk.

The following methods are all cosmetic in nature, in that they allow the user to set the
colour of the species and reaction labels as well as determine the text to be used for the
labels. The user can also manage the signs associated with the elasticities, the control
pattern image details, those for the colour range as well as setting the text for the image
title and the control coefficient legend.

• setSpecies() - The colour of the species label as well as whether or not a species
label is to be underlined is determined by this method. A dictionary containing
all required information pertaining to the colours is passed as an argument. This
dictionary is stepped through and each species present is processed.

• setSpeciesLabels() - As the method name suggests, this method is concerned
with setting the colour associated with a species label, the species label to be af-
fected and the desired colour are required as arguments.

• setElasticity() - Information displayed pertaining to elasticities includes the
colour of the elasticity as determined by its absolute numerical value and the sign
based on its numerical value. A dictionary containing all this data is required as
an argument, which is then stepped through and changes are incorporated into the
final image.

• setPatternElasticity() - Since one of the outcomes of the visualise class is
to display quantified control patterns, this method takes a dictionary similar to
that used in the previous method, with data for only those elasticities found in the
control pattern under investigation. The desired control pattern is then displayed
as per the data provided.

• setReaction() - This method governs the final colours associated with either the
square or circle used to denote a reaction. A dictionary of all reactions is provided
and the desired changes are made.

• setReactionLabels() - The colour of the text used to denote a specific reaction
is set using this method.
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• setControlPatterns() - The details and colours used to display a quantified con-
trol pattern are made via this method. Changes include the change of a reaction
node to a square from the standard circle for the modulated reaction, all flux la-
bels for the fluxes present in the control pattern change to the colour of the control
pattern, and in the case of a control pattern for a concentration control coefficient
the affected species is underlined.

• setTitle() - The title for the image is set by providing the desired legend as a
string as an argument.

• setCoeffTitle() - This legend is set in the same manner as the main legend, and
requires the desired text to be provided as a string as an argument.

• setColourRange() - The colour range used to differentiate the elasticities based
on their absolute values as well the indicator for a control pattern value is set via
this method.

It was also desired that the user could export the final images in a variety of formats
other than the native SVG. In order for this feature to be available, a local installation of
Inkscape (www.inkscape.org) [12] (an open-source vector graphics editor) is required.
Provided Inkscape is installed one can export images in the following formats: EPS, PDF,
PNG and PS. The methods, as shown below, require no arguments to function, however,
if one would like to assign a specific name to the file as well as stipulate the directory
where the image is to be exported the option is available. In the event of no arguments
being provided the files names are of the form model name custom.eps/.pdf/.png/.ps,
where the final file extension depends on the format exported. The files are stored
within the model sub-directory:
$PSCOUT/layout/model name /.

• exportEPS(svg file=None,file out=None,dir=False),

• exportPDF(svg file=None,file out=None,dir=False),

• exportPNG(svg file=None,file out=None,dir=False),

• exportPS(svg file=None,file out=None,dir=False).

Here svg file refers to the file to be exported, file out is the file name associated with
the newly exported file and dir is the directory location for the newly exported file.

www.inkscape.org
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