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Abstract

Background

South Africa has the highest tuberculosis incidence globally (781/100,000), with an esti-

mated 4.3% of cases being rifampicin resistant (RR). Control and elimination strategies will

require detailed spatial information to understand where drug-resistant tuberculosis exists

and why it persists in those communities. We demonstrate a method to enable drug-resis-

tant tuberculosis monitoring by identifying high-burden communities in the Western Cape

Province using routinely collected laboratory data.

Methods and findings

We retrospectively identified cases of microbiologically confirmed tuberculosis and RR-

tuberculosis from all biological samples submitted for tuberculosis testing (n = 2,219,891) to

the Western Cape National Health Laboratory Services (NHLS) between January 1, 2008,

and June 30, 2013. Because the NHLS database lacks unique patient identifiers, we per-

formed a series of record-linking processes to match specimen records to individual

patients. We counted an individual as having a single disease episode if their positive sam-

ples came from within two years of each other. Cases were aggregated by clinic location (n

= 302) to estimate the percentage of tuberculosis cases with rifampicin resistance per clinic.

We used inverse distance weighting (IDW) to produce heatmaps of the RR-tuberculosis per-

centage across the province. Regression was used to estimate annual changes in the RR-
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tuberculosis percentage by clinic, and estimated average size and direction of change was

mapped. We identified 799,779 individuals who had specimens submitted from mappable

clinics for testing, of whom 222,735 (27.8%) had microbiologically confirmed tuberculosis.

The study population was 43% female, the median age was 36 years (IQR 27–44), and

10,255 (4.6%, 95% CI: 4.6–4.7) cases had documented rifampicin resistance. Among indi-

viduals with microbiologically confirmed tuberculosis, 8,947 (4.0%) had more than one dis-

ease episode during the study period. The percentage of tuberculosis cases with rifampicin

resistance documented among these individuals was 11.4% (95% CI: 10.7–12.0). Overall,

the percentage of tuberculosis cases that were RR-tuberculosis was spatially heteroge-

neous, ranging from 0% to 25% across the province. Our maps reveal significant yearly fluc-

tuations in RR-tuberculosis percentages at several locations. Additionally, the directions of

change over time in RR-tuberculosis percentage were not uniform. The main limitation of

this study is the lack of unique patient identifiers in the NHLS database, rendering findings to

be estimates reliant on the accuracy of the person-matching algorithm.

Conclusions

Our maps reveal striking spatial and temporal heterogeneity in RR-tuberculosis percentages

across this province. We demonstrate the potential to monitor RR-tuberculosis spatially and

temporally with routinely collected laboratory data, enabling improved resource targeting

and more rapid locally appropriate interventions.

Author summary

Why was this study done?

• The World Health Organization’s End TB strategy sets large goals in the reduction of

tuberculosis incidence and mortality; however, past efforts in the control and eradica-

tion of infectious disease demonstrate the critical importance of understanding the spa-

tial and temporal distribution of disease.

• Tuberculosis is now the leading cause of death by infectious disease in the world, mak-

ing it a global health priority.

• South Africa, a country with one of the highest tuberculosis incidence rates globally, has

a centrally collected laboratory database, providing the infrastructure to create an

urgently needed national surveillance system.

What did the researchers do and find?

• South Africa’s centralized laboratory database lacks unique patient identifiers, necessi-

tating the use of a person-matching algorithm to link repeat and longitudinal specimens

to (a) the same individual and (b) to the same episode of disease. We present our meth-

ods for linking the provincial laboratory database from the Western Cape, South Africa.

• We linked a total of 2,219,891 samples submitted for tuberculosis testing between 2008

and 2013 to 799,779 individuals who were mappable to clinic locations. A total of
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222,735 (27.8%) had microbiologically confirmed tuberculosis, of which 10,255 (4.6%,

95% CI: 4.6–4.7) had documented rifampicin resistance, a marker for multidrug-resis-

tant TB.

• RR-tuberculosis was spatially heterogeneous, ranging from 0% to 25% across the prov-

ince. Additionally, our maps reveal significant yearly fluctuations in RR-tuberculosis

percentages at several locations.

What do these findings mean?

• Through this project, we have developed a road map for organizing routinely collected

laboratory data from the South African NHLS, showing that molecular diagnostics can

be transformed into a meaningful surveillance tool.

• Our maps reveal striking spatial and temporal heterogeneity in RR-tuberculosis percent-

ages across this province. We demonstrate the potential to monitor RR-tuberculosis

spatially and temporally with routinely collected laboratory data, enabling improved

resource targeting and more rapid locally appropriate interventions.

• Our reported estimates are approximations, reliant on the accuracy of our person-

matching algorithm and adherence to testing algorithms. South Africa would benefit

from adoption of unique patient identifiers integrated into the specimen capture sys-

tems to support stronger surveillance and tracking.

Introduction

In 2015, tuberculosis became the leading infectious disease killer globally, responsible for more

than 4,500 deaths daily [1]. The World Health Organization (WHO) End Tuberculosis Strat-

egy aims to reduce tuberculosis deaths by 95% and disease incidence by 90% before 2035 [2].

Given the current 1.9% annual decline in tuberculosis incidence [1,2], dramatic changes to the

tuberculosis control strategy are required to meet WHO targets [2]. Multidrug-resistant

(MDR) tuberculosis, defined as resistance to both rifampicin and isoniazid, is a significant bar-

rier to successful tuberculosis control because of diagnostic delays, high treatment failure rates,

and the cost burden on health systems [3,4]. Control and elimination strategies for other dis-

eases, such as polio and smallpox, have only succeeded by using detailed spatial information to

understand where and why pathogens persist and then tailoring interventions accordingly [5–

9]. To make tuberculosis elimination affordable, sustainable, and effective, the global control

program needs surveillance systems to monitor drug resistance and identify high burden com-

munities from regularly collected, routine data [10].

South Africa has one of the highest tuberculosis incidence rates globally (781/100,000) [1],

yet relatively little is known about the spatial heterogeneity of tuberculosis or MDR-tuberculo-

sis within the country. A recent modeling study predicts that South African MDR-tuberculosis

incidence will double by 2040 [11]. In contrast, the 2012–2014 South African Tuberculosis

Drug Resistance Survey showed no change in national MDR-tuberculosis prevalence (2.8%,

95% CI: 2.0%–3.6%) compared to the previous 2001–2002 survey [12]. In the Western Cape

Province, the 2012–2014 survey reports an MDR-tuberculosis prevalence of 3.0% (95% CI:

2.1%–4.2%) and 4.3% (95% CI: 3.2%–5.5%) for any rifampicin resistance [12]. The spatial
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distribution of cases was not reported below the provincial level. Drug resistance surveys,

although important for public health planning, are logistically complex, expensive, and limited

in usefulness for identifying transmission hot spots because of lack of spatial granularity and

delay between data acquisition and final reporting.

Investigators in other settings have derived spatial estimates of drug-resistant tuberculosis

and monitored outbreaks by aggregating and analyzing WHO data, leveraging country-spe-

cific surveillance systems, prospectively collecting cohort data, or using social network analysis

[13–16]. In a country such as South Africa, with a high tuberculosis disease burden and a cen-

trally collected laboratory database, the infrastructure exists to create an urgently needed sur-

veillance system. The South African laboratory database became more suited for surveillance

purposes after the introduction of new testing algorithms using rapid tuberculosis molecular

tests, such as the Genotype MTBDRplus line probe assay (LPA; Hain Lifescience GmbH, Neh-

ren, Germany) in 2008 and Xpert MTB/RIF (Xpert; Cepheid, Sunnyvale, CA) in 2011. These

algorithms include performing drug susceptibility tests (DSTs) for rifampicin on all individu-

als with microbiologically confirmed tuberculosis, either sequentially or simultaneously, and

collecting those results in a centralized database [17]. However, patients are not reliably

assigned unique identifiers in this system, and each patient may have multiple specimens.

Without unique identifiers, specimens remain unlinked, thus hindering the ability to aggregate

unique cases spatially. This deficit necessitates the development of methods to organize speci-

men results spatially at the individual-person level. In this paper, we describe a method to link

routinely collected laboratory data from the Western Cape Province National Health Labora-

tory Services (NHLS) to create unique patient identifiers. We then map the spatial distribution

of microbiologically confirmed rifampicin-resistant (RR) tuberculosis cases, which is the diag-

nosis used to initiate MDR treatment, in order to identify areas of high disease burden and to

monitor changes over time.

Methods

Patient population and data source

We performed a retrospective study of all tuberculosis tests submitted to the Western Cape

Province NHLS between January 1, 2008, and June 30, 2013. The 2011 South African Census

reports the Western Cape Province population as 5,822,734, dominated by the Cape Town

metropole, with 3,740,026 residents [18]. With a few exceptions, all samples from persons

being evaluated for tuberculosis in the public sector in the Western Cape are sent to NHLS for

diagnosis. From 2008 to 2011, all patients with a positive smear and/or culture for Mycobacte-
rium tuberculosis were to reflexively receive LPA to test for isoniazid and rifampicin resistance

[19]. Since the introduction of Xpert in 2011 [20], two samples are routinely sent to NHLS:

one for Xpert and, if Xpert indicates rifampicin-susceptible M. tuberculosis complex, one for

acid-fast bacilli (AFB) smear. If rifampicin resistance is detected on Xpert, the second sample

is subjected to decontamination, smear microscopy, mycobacterial culture, and resistance

results are confirmed by LPA.

Because the NHLS sample database lacks reliable unique patient identifiers, we created a

person-matching algorithm using name, surname, age, location, and sex to match and link

specimen records to individual patients. Specimens with no name or location were excluded.

Specimens that had the same patient name with a recorded age within two years of one another

and had either the same physical location of sample collection or patient sex were designated

as coming from the same individual. We ran specimens labeled with common surnames

through a stricter algorithm requiring full matches on all aforementioned fields, as detailed in

the supporting information (S1 Text). If an individual had an additional positive tuberculosis
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test within a year of the first, we removed the later result to avoid multiple positive tests for the

same disease episode (further detailed in S2 Text). The same individual was defined as having

multiple disease episodes if they had positive tests for tuberculosis greater than two years apart

within our study window. We defined more than two years as being a new episode to reflect

the increased likelihood at that point of being reinfection rather than ongoing treatment, treat-

ment failure, or relapse [21].

We abstracted AFB sputum grade, mycobacterial culture result, rifampicin and isoniazid

LPA resistance results, sample collection location, and test result date. Because Xpert was used

only midway during this study period, and we did not have access to all Xpert results, we did

not include Xpert results as part of a case definition. We defined a case of microbiologically

confirmed tuberculosis as having a positive AFB smear or mycobacterial culture. We consid-

ered individuals with no microbiologic evidence of tuberculosis and at least one negative cul-

ture result to have a negative test. Individuals with only indeterminate tests, which included

empty or insufficient samples submitted or contaminated samples, were considered indetermi-

nate. We designated a patient with rifampicin resistance on LPA or phenotypic DST result on

culture as a RR-tuberculosis case because these are the confirmatory tests in the NHLS system

(details in S3 Text) [3]. Individuals with documented rifampicin susceptibility on LPA or phe-

notypic DST, and those for whom DST were not available in our dataset, were considered to

have rifampicin-susceptible tuberculosis disease.

If a specimen that was positive for tuberculosis and was submitted from a clinic, we

assigned the tuberculosis episode for that specimen to that clinic location. Individuals

with positive specimens submitted from two different clinics within two years of each

other were assigned to the first clinic from which a specimen was submitted. If an individ-

ual tests RR any time during their tuberculosis episode, then that episode is a RR-tubercu-

losis episode and assigned to the initial clinic location. We removed individuals with

samples submitted exclusively from non-clinic locations (military, correctional, or psy-

chiatric facilities, women’s shelters, or hospitals) on the assumption that cases from non-

clinic locations originate from a broader community and therefore do not reflect the spa-

tial distribution of disease in the location where they were tested. Individuals diagnosed at

a non-clinic location with an additional specimen submitted from a clinic at any point

were assigned to the clinic closest in time to their positive specimen, based on the assump-

tion that the clinic location reflected his/her area of residence. We removed smaller clinics

with fewer than 20 tuberculosis episodes over the study period to avoid the introduction

of clinics with very small sample sizes and therefore very low precision. These smaller

clinics also do not regularly evaluate individuals for tuberculosis, reflected by their small

number of samples submitted.

The study was approved by Stellenbosch University’s Health Research Ethics Committee

and the Boston Medical Center’s Institutional Review Board. Given the retrospective nature of

the study, a waiver for informed consent was granted.

Mapping and statistical analyses

The Western Cape Province is divided administratively into 6 districts and 25 subdistricts. We

mapped each clinic’s geo-coordinates and obtained district and subdistrict population esti-

mates from the most recent 2011 South African population census [18]. We used ArcGIS ver-

sion 10.3 [22] to generate maps of clinic locations, subdistrict populations, aggregated

tuberculosis and RR-tuberculosis case counts at the subdistrict level, and heatmaps for visuali-

zation of interpolated rates of RR-tuberculosis as a percentage of tuberculosis diagnosed

between clinic locations.
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Case counts of tuberculosis and RR-tuberculosis were aggregated at the clinic level for each

year and over the entire study period. A percentage of RR-tuberculosis cases for all tuberculo-

sis cases was calculated for each clinic. We used a standard inverse distance weighting (IDW)

technique implemented in ArcGIS to pixelate the Western Cape and generate a color-coded

interpolated RR-tuberculosis percentage for each unobserved pixel, further detailed in S4 Text.

By using a standard IDW approach, we assume that things that are close to one another are

more alike than those that are far apart, reflecting that individuals attend a clinic closest to

their residence to receive a tuberculosis diagnosis and, therefore, that the clinic represents the

more proximal area.

To visualize the evidence for changing RR-tuberculosis percentages over time in a single

map, we estimate the change in the percentage of RR-tuberculosis via a regression model with

year as the predictor and the yearly number of RR-tuberculosis cases as the outcome, with an

offset term of the total number of tuberculosis cases diagnosed that year at the clinic. We fit a

Poisson regression at each clinic unless a clinic location had less than four years of data, in

which case we fit a negative binomial regression for better estimability. We mapped the results

of these clinic-level models by plotting one minus the p-value estimating the statistical signifi-

cance of the annual change in RR-tuberculosis percentages, and then making the value nega-

tive if the model estimated that there was a decrease in RR-tuberculosis over time. For

example, a clinic with an estimated decrease in RR-tuberculosis over time and a p-value for

that trend of 0.05 would be assigned −0.95 for the mapping exercise, while a clinic with similar

statistical significance but an increasing RR-tuberculosis percentage through time would be

assigned 0.95 for mapping. This transformation restricts the range of transformed p-values

between −1 and 1, and provides a measure of evidence for the likelihood that the direction of

change of the RR rate, either positive or negative over time, is not due to inherent variability in

the percentage. These analyses are intended to identify locations that warrant further investiga-

tion. All statistical calculations were performed using the R statistical software package version

3.3.1 [23]. Data are deposited in the Dryad repository, https://doi.org/10.5061/dryad.34hp52d

[24].

Results

Between January 1, 2008, and June 30, 2013, 2,219,891 biological specimens, of which 94%

were sputum and bronchial, were submitted for tuberculosis testing to the NHLS; these speci-

mens had a person-name and location from which they were submitted. We removed 47,147

samples (2.1%) because of lack of person-name or location. After applying the person-match-

ing algorithm, we counted 942,358 unique individuals in the database (Fig 1). Of these individ-

uals, 799,779 (85%) were mappable to a clinic location: 748,691 (80%) had specimens

submitted for testing solely from a clinic and 51,088 (5%) had tests submitted from a clinic

and at least one additional location. The remaining 142,579 (15%) individuals had tests sub-

mitted exclusively from non-clinic locations and were therefore excluded from further analy-

ses (S1 Table details the non-clinic locations from which samples were submitted). The

percentage of individuals with microbiologically confirmed tuberculosis did not differ between

clinic and non-clinic locations (27.8% versus 28.0%, p = 0.16). The percentage of microbiologi-

cally confirmed RR-tuberculosis was lower for individuals with at least one specimen submit-

ted from a clinic compared to individuals with specimens submitted only from non-clinic

locations (4.6% versus 6.7%, p< 0.0001).

Of the 799,779 individuals with tests submitted from clinics, 222,735 (27.8%) had microbio-

logically confirmed tuberculosis. Of those with microbiologically confirmed tuberculosis,

109,246 (49%) had rifampicin susceptibility documented by LPA or culture-based techniques;
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the 51% without documented results were assumed to have rifampicin-susceptible tuberculo-

sis. Accounting for multiple tuberculosis episodes from the same person, 231,844 distinct

tuberculosis episodes were identified. The individuals with microbiologically confirmed tuber-

culosis were 43% female and had a median age of 36 years (IQR: 27–44). Of the 231,844 tuber-

culosis episodes, 10,762 (4.6%, 95% CI: 4.5–4.7) were RR-tuberculosis and 8,205 episodes

(3.5%, 95% CI: 3.5–3.6) had both rifampicin and isoniazid resistance documented (Table 1).

Among individuals with microbiologically confirmed tuberculosis, 8,947 (4.0%) had more

Fig 1. Flow diagram showing initial specimens from NHLS, person-linkage results in unique individuals, reasons

for exclusion from final mapping, and final results stratified by number of tuberculosis episodes and number of

individuals with RR-tuberculosis. �Locations of individuals with no specimens submitted from a clinic, indicating the

location of the first specimen submitted for a given individual. αIndividuals without a positive tuberculosis test and at

least one negative tuberculosis test. βOf these individuals with microbiologic confirmation of tuberculosis, 109,246

(49%) had documented rifampicin DST results, either Genotype MTBDRplus LPA or culture based. γThe percentage of

individuals with RR-tuberculosis is calculated as the number of RR-tuberculosis cases diagnosed by DST divided by all

individuals with microbiologically confirmed tuberculosis. Because a proportion did not complete the rifampicin

resistance testing algorithm, this percentage is a lower boundary. DST, drug susceptibility test; LPA, line probe assay;

NHLS, National Health Laboratory Services; RR, rifampicin-resistant.

https://doi.org/10.1371/journal.pmed.1002638.g001

Table 1. Number of tuberculosis episodes mappable to clinics by year, and the breakdown of tuberculosis episodes among individuals with only one episode or with

more than one episode of tuberculosis during the study period, and the number of RR-tuberculosis episodes each year, with percentages of the total number of

tuberculosis episodes for the given year.

Number of episodes 2008 2009 2010 2011 2012 2013� Total

One episode (%)6¼ 45,809 (92.0%) 40,867 (92.4%) 41,276 (92.4%) 36,039 (92.5%) 29,493 (92.7%) 20,304 (90.9%) 213,788 (92.2%)

�One episode (%)α 3,989 (8.0%) 3,383 (7.6%) 3,411 (7.6%) 2,912 (7.5%) 2,323 (7.3%) 2,038 (9.1%) 18,056 (7.8%)

RR-tuberculosis (%)º 2,304 (4.6%) 1,766 (4.0%) 1,734 (3.9%) 1,702 (4.4%) 1,752 (5.5%) 1,504 (6.7%) 10,762 (4.6%)

Total episodes 49,798 44,250 44,687 38,951 31,816 22,342 231,844

�Reflects a partial year, January through June 2013.
6¼Episodes of tuberculosis among individuals who were not found to have any additional episode of tuberculosis during the study period.
αEpisodes of tuberculosis among individuals who were found to have an additional episode of tuberculosis during the study period.

ºEpisodes of RR-tuberculosis among all episodes of disease.

Abbreviation: RR, rifampicin-resistant.

https://doi.org/10.1371/journal.pmed.1002638.t001
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than one episode of disease during the study period. Among individuals with more than one

episode, the percentage with RR-tuberculosis was 11.4% (95% CI: 10.7–12.0).

To discern geographic differences in disease distribution, we aggregated mappable tuber-

culosis and RR-tuberculosis case counts at the subdistrict level (Fig 2A and 2B). The highest

case counts were in subdistricts containing the largest metropolitan areas (Cape Town and

George). However, subdistricts with the highest RR-tuberculosis case counts did not neces-

sarily have the highest tuberculosis case counts; some regions with a high number of RR-

tuberculosis cases had a low number of tuberculosis cases. This discrepancy became more

apparent after adjusting for population (Fig 2C for tuberculosis and 2d for RR-tuberculo-

sis). For example, the subdistricts of Matzikama and Cederberg in the West Coast had

among the highest mappable RR-tuberculosis counts (18 and 11 per 100,000 population)

but not the highest mappable tuberculosis counts (144 and 95 per 100,000 population).

Conversely, Overstrand and Cape Agulhas subdistricts in the south had relatively high

tuberculosis counts (247 and 119 per 100,000 population) but low RR-tuberculosis counts

(5 and 2 per 100,000 population).

Fig 2. Tuberculosis case counts and RR-tuberculosis case counts aggregated by subdistrict (a and b) and per 100,000 population (c and d). (a) Clinic-diagnosed

tuberculosis case counts at subdistrict level between January 2008 and June 2013. (b) Clinic-diagnosed RR-tuberculosis case counts at subdistrict level for the same

period. (c) Clinic-diagnosed tuberculosis case count at subdistrict per 100,000 population per year. (d) Clinic-diagnosed RR-tuberculosis case count per 100,000

population per year. Black points denote clinic locations, X’s denote large towns, and the star denotes the Cape Town metropole. RR, rifampicin-resistant.

https://doi.org/10.1371/journal.pmed.1002638.g002
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Maps of the percentage of microbiologically confirmed RR-tuberculosis cases at clinics

revealed marked spatial heterogeneity (Fig 3). By mapping at the clinic level, we achieved a

higher resolution of variability than captured by subdistricts alone (Fig 2). We removed 66

clinics (17.9%) that had fewer than 20 tuberculosis episodes during this study period to avoid

skewing because of a single case with a low denominator. This resulted in 581 tuberculosis epi-

sodes (0.26% of all tuberculosis episodes) being removed from these smaller locations.

Although the median percentage of RR-tuberculosis diagnosed at clinics was 4.3% for the

province, we found areas with very high percentages of RR-tuberculosis (maximum 25%) and

others with no diagnosed RR-tuberculosis (S1 Fig). Cape Town townships and informal settle-

ments, the rural region of the West Coast, and areas bordering the Eastern Cape and adjacent

to the metropole of George had the highest RR-tuberculosis percentages (Fig 3). Additionally,

there were discrete areas with high RR-tuberculosis percentages in the Swartland area and the

western part of the Cape Winelands and in Zoar, a town in the Central Karoo.

When case counts were stratified by year, 252 clinics (83%) had stable RR-tuberculosis per-

centages, while 40 (13%) had increasing and 10 (3%) had decreasing percentages over time

(Figs 4 and 5). For example, the West Coast initially had a very high percentage of RR-tubercu-

losis that decreased by 2012–2013. Conversely, communities bordering the Eastern Cape Prov-

ince had higher RR-tuberculosis percentages in 2010–2013 compared to 2008–2009. The RR-

tuberculosis percentage increased in many townships and informal settlement clinics in Cape

Town during this time period.

Fig 3. The percentage of total clinic-diagnosed tuberculosis cases found to be rifampicin resistant in Western Cape Province between 2008 and 2013. Colors are

broken by quantiles. Black dots denote clinic locations, X’s denote large towns, and the star denotes the Cape Town metropole. Zoom to Cape Town. Spatial locator map

available in S2 Fig.

https://doi.org/10.1371/journal.pmed.1002638.g003
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Fig 4. The percentage of total clinic-diagnosed tuberculosis cases found to be rifampicin resistant in Western Cape Province, yearly, for 2008–2013.

Each year has an associated spectrum of interpolated percentages, beginning with the percentage of total clinic-diagnosed tuberculosis cases found to be

RR-tuberculosis equal to 0 set at blue, with a median value of 4.3% (provincial average) at yellow, and the year-specific maximum (Max.) percentage in

red. X’s denote large towns and the star denotes the Cape Town metropole. Max., year-specific maximum; RR, rifampicin-resistant.

https://doi.org/10.1371/journal.pmed.1002638.g004
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Discussion

Our data aggregation, cleaning, linkage, and mapping method detected substantial heteroge-

neity in the RR-tuberculosis case percentages across the Western Cape Province, with the per-

centage of tuberculosis cases found to be RR at clinics ranging from 0% to 25%. This wide

variability in drug resistance among clinics indicates an urgent need for more granular surveil-

lance to locate emerging and chronic hot spots. Through this project, we have developed a

road map for organizing routinely collected laboratory data from the South African NHLS,

showing that molecular diagnostics can be transformed into a meaningful surveillance tool.

The South African Tuberculosis Drug Resistant Tuberculosis Survey from 2012–2014 esti-

mated that 4.3% of tuberculosis cases in the Western Cape Province were RR, a figure very

close to our province-wide mean estimate of 4.6% [12]. We successfully identified areas

known to have a high burden of RR-tuberculosis, such as poorer townships in Cape Town

[25], communities near George [26], and an outbreak in the West Coast District (Fig 3)[27].

We also identified areas warranting further investigation for RR-tuberculosis, such as rural

wine and farming regions and communities bordering the Eastern Cape Province—an area

with poorer healthcare infrastructure, known higher drug-resistant tuberculosis rates, and

from where drug-resistant tuberculosis cases have been linked via molecular epidemiology

studies [28–30].

Our subdistrict maps reveal that high-burden tuberculosis and RR-tuberculosis regions dis-

aggregate spatially, reflecting that high RR-tuberculosis burden does not always derive from

Fig 5. Interpolation heatmap of the statistically significant change in rifampicin resistance as a percentage of clinic-diagnosed tuberculosis during 2008–2013.

Red indicates increased rifampicin resistance percentage. Green indicates decreased rifampicin resistance percentage. Yellow indicates no significant change in

rifampicin resistance percentages. Intensity of color denotes degree of statistical significance. Black dots denote clinic locations, X’s denote large towns, and the star

denotes the Cape Town metropole. Zoom to Cape Town.

https://doi.org/10.1371/journal.pmed.1002638.g005
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higher tuberculosis burden (Fig 2). This disaggregation has been observed in other settings as

well, leading to a consensus that tuberculosis disease burden per se is not sufficient to predict

drug resistance clusters [14]. Additionally, the change in RR-tuberculosis percentages did not

change uniformly nor unidirectionally across the province (Figs 4 and 5). The spatiotemporal

variability of RR-tuberculosis may be driven in part by initiatives implemented during our

study period, including more enrollment of HIV-coinfected individuals into antiretroviral

therapy (ART) programs and the use of Xpert MTB/RIF in the diagnostic algorithm. For

example, Nanoo and colleagues showed that scale-up of ART had differential impact on pul-

monary tuberculosis incidence between 2004 and 2012 in different South African provinces,

potentially reflecting variation in ART rollout or HIV prevalence in different regions [31]. Cox

and colleagues reported that Xpert MTB/RIF rollout had a differential impact on the percent-

age of patients initiating MDR-tuberculosis treatment between provinces, in part dependent

on successful linkage to care [32]. Our results suggest that these differential effects are identifi-

able at levels below the provincial scale.

To map the NHLS routinely collected laboratory results, we made critical decisions on how

to organize the data. First, we chose to map RR-tuberculosis because this diagnosis should trig-

ger initiation of an MDR regimen (second-line drugs), and current molecular techniques

more accurately capture rifampicin than isoniazid; mapping only MDR-tuberculosis cases

could have led to missing up to 10% of cases because of misclassification of isoniazid suscepti-

bility [33]. Second, we aggregated at clinics rather than home addresses because the laboratory

system more accurately captures clinic locations. Third, we assumed that tuberculosis is not a

diagnosis for which individuals travel far for treatment except in cases of severe disease, mak-

ing clinics an acceptable proxy for recent residence. Kapwata and colleagues have reported

that individuals with XDR-tuberculosis traveled long distances for diagnosis in KwaZulu-

Natal between 2011 and 2014 [34]. Although XDR-tuberculosis is a more severe form of the

disease that might not generalize to all tuberculosis, future work should confirm whether bur-

den of disease at a particular clinic reflects its surrounding community or is a surrogate for

reputation of care quality. Fourth, we assumed similar adherence to the rifampicin drug sus-

ceptibility testing algorithm across locations. Almost half of the individuals with confirmed

tuberculosis in our dataset had rifampicin susceptibility documented. This approach is sup-

ported by our finding that our percentage of RR-tuberculosis adjusted for all tuberculosis cases

was similar to the drug resistance survey results of this period [12]. The percentage of RR-

tuberculosis cases documented also did not change drastically after 2011 when Xpert MTB/

RIF was implemented, leading to more complete DST being performed (3.9%–4.6% pre-Xpert

MTB/RIF versus 4.4%–6.7% post-Xpert MTB/RIF). In reality, our maps may in part reflect

clinics that variably apply the testing algorithm, meaning the variation in our maps could be

driven by a combination of disease burden and facility quality.

Our approach and findings had several limitations. Our person-matching algorithm is an

approximation. Others have produced estimates of province-wide tuberculosis and MDR-

tuberculosis case counts from the same NHLS specimen database using their own person-link-

ing algorithms but have not focused on those individuals diagnosed at mappable clinic set-

tings, explaining our lower total numbers [31,35,36]. Additionally, we erred on the side of

more conservative matches to avoid repeatedly counting the sample individual, but this may

have led to counting two individuals as the same person. It is clear that South Africa would

benefit from adoption of unique patient identifiers integrated into the specimen capture sys-

tems to support stronger surveillance and tracking [37,38].

Next, we note that the number of tuberculosis and MDR-tuberculosis cases diagnosed

decreased yearly during our study period (Table 1). Because we assign tuberculosis episodes to

the first year a positive result is identified, our 2008 and possibly early 2009 numbers are
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inflated by individuals who had treatment initiated in earlier years and would have been

assigned to 2007 or earlier if we had those data. Based on the data presented in Table 1, we can

estimate the number of cases in 2008 that would have been assigned to 2007, had we had 2007

data. The number of individuals who tested positive in 2009 and were excluded because of also

testing positive in 2008 was 3,373, representing 7.6% of reported cases in 2009. This implies

that approximately 7.5% of the cases reported in 2008 were potentially from individuals who

would have tested positive in 2007 if those data were available. This would lead to an adjusted

2008 case count of 46,000 cases, suggesting a 30% decline between 2008 and 2012. A decline of

15%–20% has been reported by others, hypothesized because of changes in the diagnostic algo-

rithm and increased access to ART [39–41]. In 2011, when Xpert MTB/RIF was rolled out, the

initial predictions were that more tuberculosis cases would be identified. It is unclear whether

the lower numbers reported, especially in 2012, reflect changes in testing approaches or how

data were collected and aggregated in the central NHLS after the Xpert rollout. Our aggregated

numbers from the first half of 2013 appear on track to be closer to 2011. We were also limited

by lack of access to a complete set of Xpert results after its 2011 rollout and therefore based our

estimates on smear, mycobacterial culture, and LPA results, which are the confirmatory tests.

True tuberculosis cases could have been missed that were found only with a positive Xpert

result; we believe this approach to aggregation and mapping would benefit from application to

a dataset containing complete Xpert results, as well. A challenge with Xpert is how to interpret

specimens that are positive only by its testing and subsequently without confirmation on

smear or culture [42].

Third, as noted above, we omitted non-clinic locations from our analysis and mapping

because of their lack of spatial relevance to an individual’s residence. Our approach could

introduce bias if individuals with tuberculosis or RR-tuberculosis enter those facilities from

particular locations more frequently. The South African Department of Health protocol is to

have persons being evaluated for tuberculosis to do so at the clinic level and be referred to hos-

pital only if they are too ill to receive care in the community [17]. Patients diagnosed in hospi-

tals and lacking a clinic specimen are likely those who were most ill, supported by our finding

of higher percentages of RR-tuberculosis among tuberculosis cases solely from non-clinic loca-

tions compared to clinics (6.7% versus 4.6%). An alternative possibility for the higher RR-

tuberculosis percentage in the non-clinic locations (which were dominated by hospitals and

prisons) is that it reflects improved adherence to the testing algorithm. This biasing, due to

more severely ill patients or differences in testing, could introduce underestimation in some of

our numbers, making our evaluation potentially conservative. Our data are limited to the pub-

lic sector, which is where the majority of tuberculosis testing occurs in South Africa (estimated

93% in 2012–2013), but we could have underestimated case burden if particular communities

access the private sector disproportionately [43]. We also assume in our mapping approach

that areas between clinics reflect the percentage at the most proximal clinic, whereas there

could be areas where this relationship is more complex because of population density or geog-

raphy. We removed small clinics that had fewer than 20 tuberculosis episodes because a single

RR-tuberculosis case could skew the percentages because of the low denominator; their

removal may have impacted on capturing this complexity in shading between larger clinics.

In summary, we demonstrate a novel method to leverage routinely collected laboratory

data to estimate the distribution of microbiologically confirmed RR-tuberculosis disease in a

population. In the future, this framework could allow public health providers to have near

real-time surveillance of drug resistance burden, evaluate programmatic interventions, and

monitor progress towards national and global tuberculosis reduction goals. This approach is

in contrast to the current approach of conducting large, costly, and often too infrequent drug
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resistance surveys, the most recent of which in South Africa, 2012–2014, was the first under-

taken in 10 years.

Recent evidence from models and molecular data indicates that MDR-tuberculosis infec-

tion in high-burden settings is overwhelmingly due to transmission of preexisting MDR

strains (>70%), rather than acquisition through selection of drug-resistant mutations during

previous ineffective treatment, and that MDR-tuberculosis due to transmission will increase in

the coming years [44–46]. Preventing MDR-tuberculosis transmission requires different con-

trol methods than preventing drug-resistant acquisition, including an increased focus on real-

time knowledge of where active drug-resistant cases are clustering, in order to identify cases

and initiate treatment. Maps such as the ones we have created can be the platform for this next

generation of disease surveillance. The epidemic appears very dynamic, requiring constant

monitoring. Improved knowledge of subnational geographic variability of RR-tuberculosis is

essential for the improved design and implementation of national and local responses to

reduce drug-resistant tuberculosis transmission and for timely context-specific resource

allocation.
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