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Abstract 

Long QT syndrome (LQTS) is a cardiac repolarization disorder affecting every 1:2000-1:3000 

individuals.  This disease is characterized by a prolonged QT interval on the surface 

electrocardiogram (ECG) of patients.  Symptoms of LQTS range from dizziness and syncope to 

more severe symptoms such as seizures and sudden cardiac death (SCD).  Clinical features of 

LQTS are a result of the precipitations of Torsades de Pointes, which is a polymorphic form of 

ventricular tachycardia.  A number of genetic forms of LQTS have been identified with more 

than 700 mutations in 12 different genes leading to disease pathogenesis.  However it has been 

estimated that approximately 25% of patients with compelling LQTS have no mutations within 

the known LQT genes.  This proves to be problematic since treatment regimens depend on the 

genetic diagnosis of affected individuals.  Of the known mutated genes, KCNE2 is associated 

with LQT6.  KCNE2 encodes the beta-subunit of potassium ion channel proteins.  These proteins 

contain cytoplasmic C-terminal domains in which many mutations have been identified. 

We hypothesize that genes encoding KCNE2-interacting proteins might be identified as disease-

causing or modifying genes.  The present study aimed to use yeast two-hybrid (Y2H) 

methodology to screen a pre-transformed cardiac cDNA library in order to identify putative 

interactors of the C-terminal of KCNE2.  Through specific selection methods the number of 

KCNE2 ligands was reduced from 296 to 83.  These interactors were sequenced and 14 were 

identified as putative interacting proteins.  False positive ligands were excluded based on their 

function and subcellular location.  Ultimately three strong candidate ligands were selected for 

further analysis: Alpha-B crystallin (CRYAB), Filamin C (FLNC) and voltage-dependent anion-

selective channel protein 1 (VDAC1).  Three-dimensional (3D) co-localization and co-

immunoprecipitation were used to verify these proposed interactions and succeeded in doing so.  

The genes encoding verified interactors will be screened in our SA panel of LQT patients, to 

potentially identify novel LQT causative or modifying genes.  Furthermore, the interactions 

verified in the present study may shed some light on the mechanism of pathogenesis of LQT 

causative mutations in KCNE2. 
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Opsomming 

Lang QT-sindroom (LQTS) is 'n hart her-polariserende siekte wat elke 1:2000-1:3000 individue 

affekteer. Hierdie siekte word gekenmerk deur 'n lang QT-interval op die oppervlak 

elektrokardiogram (EKG) van pasiënte.  Simptome van LQTS wissel van duiseligheid en floutes 

tot meer ernstige simptome soos stuiptrekkings of aanvalle en skielike kardiale dood (SKD). 

Kliniese kenmerke van LQTS is 'n gevolg van die neerslag van Torsades de Pointes; 'n 

polimorfiese vorm van ventrikulêre tagikardie.  Verskeie genetiese vorms van LQTS is 

geïdentifiseer met meer as 700 mutasies in 12 verskillende gene wat lei tot siekte patogenese.  

Dit is ergter beraam dat ongeveer 25% van pasiënte met dwingende LQTS geen mutasies in die 

bekend LQT gene besit nie.  Dit is problematies aangesien siekte behandeling af hang van die 

genetiese diagnose van geaffekteerde individue.  Een van die bekende gemuteerde gene is 

KCNE2 wat verband hou met LQT6.  KCNE2 kodeer die beta-subeenheid van kalium ioonkanaal 

proteïene.  Hierdie proteïene bevat sitoplasmiese C-terminale waarin baie mutasies alreeds 

geïdentifiseer is. 

Ons veronderstel dat gene wat proteïene kodeer wat met KCNE2 interaksie toon, geïdentifiseer 

kan word as siekte veroorsaakende of wysigings gene.  Die huidige studie het die gis twee-

hibried metode gebruik om 'n vooraf-getransformeerde hart cDNS biblioteek te sif om 

vermeende protein interaksies van die C-terminaal van KCNE2 te identifiseer.  Deur middel van 

seleksie metodes is die aantal KCNE2 ligande verminder van 296 tot 83.  Die identiteit van die 

proteïene is bekend gemaak deur volgorderbepaling waarna 14 geïdentifiseer is as proteïene wat 

moontlik interaksie kan toon met KCNE2.  Vals positiewe ligande is uitgesluit op grond van hul 

funksie en subsellulêre lokasering.  Drie kandidaat ligande is gekies vir verdere analise: Alfa-B 

crystallin (CRYAB), Filamin C (FLNC) en spanning-afhanklike anioon-selektiewe kanaal 

proteïen 1 (VDAC1).  Drie-dimensionele (3D) mede-lokalisering en mede-immunopresipitasie 

tegnieke is gebruik om hierdie voorgestelde interaksies te verifieer en het geslaag om dit te doen. 

Die gene wat geverifieerde proteïene kodeer, sal gekeur word in ons Suid-Afrikaanse paneel van 

LQT pasiënte om sodoende potensieel nuwe LQT veroorsakende of wysigings gene te 

identifiseer.  Verder kan die geverifieer interaksies in die huidige studie lig werp op die 

meganisme van die ontstaan van LQT veroorsakende mutasies in KCNE2. 
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1.1 THE HEART 

1.1.1 Mechanism of cardiac muscle contraction 

The heart is the primary organ responsible for the supply of blood and oxygen to all the parts of 

the body.  This organ is composed of involuntary striated muscles known as the myocardium 

which contain cardiac ion channels enabling the heart to contract.  This allows the 

synchronization of every heart beat (Glaaser et al. 2003).   

At rest, all myocardial cells have a negative membrane potential at approximately -70mV that 

will change with stimulation by electrical signals.  This causes opening of the voltage-gated ion 

channels and subsequent influx of positively charged calcium and sodium ions (Ca2+ and Na+) 

into the cardiac muscle cells.  The cell membrane undergoes rapid depolarization due to the 

membrane potential becoming either more positive or less negative (Figure 1.1) (Glaaser et al. 

2003).   

At diastolic levels of intracellular Ca2+, the troponin I in the troponin complex, which is 

composed of cardiac troponin T (cTnT), cardiac troponin I (cTnI) and cardiac troponin C 

(cTnC), inhibits the interaction between myosin and actin. The binding of Ca2+ to cTnC during 

systole induces conformation changes that relieve the inhibitory effects of cTnI; thereby 

promoting the formation of actomyosin cross bridges (Figure 1.2) (Parmacek and Solaro 2004).  

This ultimately leads to the power stroke when actin filaments slide past the myosin filaments 

resulting in cardiac muscle cell contraction (Figure 1.2) (Parmacek and Solaro 2004; Pinnell et 

al. 2007). 

Repolarization follows directly afterwards, changing the membrane potential back to a more 

negative value which causes the cell to return to its resting state.  This occurs as a result of the 

opening of fast acting potassium (K) channels and efflux of K ions (K+) out of the cell (Figure 

1.1).  Following this, the slow K channels are opened, thus releasing excess K+ from the cell 

(Glaaser et al. 2003).  At the same time the Ca2+ channels will close. 

In order for the muscle cells to be able to contract again, it is necessary for the concentrations of 

K+ and Na+ to be restored to their original resting potential state by means of K+/Na+ pumps in 

the sarcolemma (Xu 2013).  The duration of this event, which is more commonly known as the 

refractory period, is much longer for cardiac muscle than for skeletal muscle and plays a role in 
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preventing prolonged cardiac muscle contraction.  The refractory period is important to ensure 

sufficient time between each contraction, allowing the heart chambers to be filled with blood 

before the next contraction (Pinnell et al. 2007). 

 

 

Figure 1.1:  Ion flow in action potential. 1) Depolarization where Na+ channels opens releasing Na+ into the cell.  

2)  Repolarization where Na+ channels are closed and K+ channels are opened, causing K+ ions to leave the cell. 3)  

K+ channels close.  Figure taken from:  http://www.mindcreators.com/neuronbasics.htm  

 

The contraction of the myocardium occurs spontaneously and is controlled by the sinoatrial (SA) 

node (Figure. 1.3) which is the impulse-generating tissue located in the right atrium of the heart 

(Rastogi 1997; Starr et al. 2010).  Once the impulse reaches the atrioventricular (AV) node 

(Figure 1.3), the contraction spreads towards the ventricles and enters the ventricular septum 

where the action potential is conducted through the bundle of His (Figure 1.3) (Rastogi 1997; 

Starr et al. 2010).   

This bundle then separates into two branches that connect with Purkinje fibres and the 

endocardium.  Ultimately, the action potential reaches the ventricular myocardium  (Rastogi 

1997; Starr et al. 2010).  It is this excitation wave spreading over the heart that causes cardiac 

myocyte membrane depolarization (Clancy 2005; Pinnell et al. 2007).  

 

A 

B 
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Figure 1.2:  Contraction of cardiac muscles through cross-bridge formation. a)  When Ca2+ levels are low, the 

myosin binding sites are blocked by tropomyosin. b)  With increase in cytosolic Ca2+ levels, Ca2+ binds to troponin 

which will release the myosin-binding sites on actin, allowing cross-bridge formation of actin and myosin.  Figure 

taken from:  http://biology-forums.com/gallery/.jpeg 

 

The heart has previously been described as a functional syncytium that allows electrical impulses 

to be passed between cells in close proximity through gap junctions; causing the myocardium to 

function as a single contractile unit (Spach and Starmer 1995; Stein 2008).  Gap junctions are 

intercellular connections between cells, connecting the cytoplasm of adjacent cells allowing free 

movement of ions and molecules (<1000Da) from one cell to the other (Kelsell et al. 2001).  This 

makes it possible for the myocardium to depolarize quickly and efficiently thus aiding in 

contraction of the heart.  

The contractility may however be compromised, resulting in damaging effects to the heart should 

there be aberrant electric signals and incorrect signalling between the gap junctions (Spach and 

Starmer 1995; Stein 2008).  For example:  if the gap junctions close incorrectly after an episode 

of myocardial infarction it will lead to tissue damage which ultimately hinders the tissue from 

participating in the synchronous contraction of the myocardium - thus causing an irregular heart 

rhythm (Spach and Starmer 1995; Glaaser et al. 2003). 
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Defects in cardiac ion channels would lead to defects in ion currents that will result in the 

variation in duration and degree of excitation as well as plateau phases during depolarization and 

repolarization (Glaaser et al. 2003).  This irregular beating of the heart results in arrhythmia or 

arrhythmic disorders leading to syncope, seizures and sudden cardiac death (SCD) (Lehnart et al. 

2007; Schwartz et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3:  The electrical conduction system of the heart.  Electrical impulses start at the SA node and run 

through the atria into the AV node.  The signal causes the atria to contract after which the action potential is spread 

through the Bundle of His branching left and right.  Ultimately the ventricles also contract.  Figure taken from:  

http://kakistudy.blogspot.com/2011/03/heartbeat-mechanism.html  

 

1.1.2 Electrocardiography (ECG) 

Electrocardiography (ECG) is a transthoracic, non-invasive diagnostic tool used to interpret the 

electrical activity of the heart over a period of time.  The basic principle of an electrocardiogram 

(ECG) involves the recording of electrical impulses during each phase of the cardiac cycle.  

These impulses are detected by electrodes attached to the surface of the skin (Glaaser et al. 2003; 

Becker 2006).   

A typical EGC tracing of a cardiac cycle consists of a P wave that represents arterial 

depolarization (Figure 1.4), a QRS complex that reflects ventricular depolarization (Figure 1.4) 
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as well as a T wave which is an indicator of ventricular repolarization (Figure 1.4) (Becker 

2006).    

Under normal physiological circumstances, in healthy individuals, the heart beats between 60-

100 times per minute (bpm).  This is referred to as the normal sinus rhythm (Pinnell et al. 2007).   

When looking at the representation of an ECG (Figure 1.4), one can see the QRS complex, the P 

wave peaking before each QRS complex, the P-R interval as well as the T wave, all in normal 

range and duration.  These parameters are used as indicators to determine whether the electrical 

signal was correctly generated by the SA node and is moving at a normal rate through the heart 

(Glaaser et al. 2003; Becker 2006). 

 

 

Figure 1.4:  Schematic diagram of normal sinus rhythm of a human heart as seen on an ECG.  The P-wave is a 

result of atrial depolarization.  The QRS complex is the average of depolarization waves of the inner and outer 

cardiomyocytes.  The T-wave resembles the repolarization of ventricles. Figure created by Agateller (Anthony 

Atkielski). Figure taken from: https://en.wikipedia.org/wiki/QRS_complex 

 

Changes in the duration and magnitude of the action potential may be due to a number of factors, 

some of which include changes in cell-to-cell interaction, inherited ion channel defects and 
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therapeutic interference.  These changes will be recorded and interpreted as inconsistencies on an 

ECG (Shimizu and Antzelevitch 1997; Gima and Rudy 2002; Clancy 2005).   

Previous studies indicated that alterations in the QRS complex cause conduction defects, with 

expansion of this complex resulting in reduction of conduction velocity.  This is thought to be a 

result of defective ion channels (Tan et al. 2001; Clancy 2005). 

Additional abnormalities can be detected by ECGs such as the prolongation of QT intervals 

(Figure 1.5).  This phenomenon occurs as a result of prolonged action potential generated in the 

heart, causing repolarization to be delayed.  The longer QT intervals may ultimately change the 

morphology of the T wave.  Thus, individuals with abnormal ECG findings are at higher risk for 

developing life threatening arrhythmias which are closely associated with sudden cardiac death 

(SCD) (Priori et al. 1997; Shimizu and Antzelevitch 1999; Schwartz et al. 2001).   

Moreover, many of these fatal arrhythmic episodes have been found to be dependent on heart 

rate.  Therefore, abrupt deviations in the normal heart rate due to exercise or auditory stimulation 

at rest, for example, may result in such arrhythmic events (Schwartz et al. 2001; Glaaser et al. 

2003). 

To date a number of diseases have been associated with such life threatening cardiac arrhythmic 

episodes such as cardiomyopathy (Elliott et al. 2008), myocarditis (Feldman and McNamara 

2000) and Long QT syndrome (Schwartz et al. 2008) to name a few.  However, in the present 

study we will be focussing on the last mentioned disease (Long QT syndrome). 

 

1.2 LONG QT SYNDROME 

1.2.1 LQTS – a cardiac ion channel disorder   

Long QT syndrome (LQTS) has an estimated prevalence of 1:2000 – 1:3000 (Schwartz 2009; 

Schulze Bahr 2012) and can either be inherited or acquired, with the latter believed to be induced 

by therapeutic intervention for treating ventricular arrhythmias but also other disorders not 

related to cardiac arrhythmic diseases (Sanguinetti et al. 1995; Moric-Janiszewska 2012).  

However, this acquired form of LQTS may also manifest as a result of electrical or structural 

abnormalities caused by other cardiac disorders such as cardiomyopathies and cardiac ischemia 

(Glaaser et al. 2003; Clancy 2005). 
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Long QT syndrome has been described as an arrhythmogenic ion channel disorder, characterized 

by abnormal ventricular repolarization, ultimately resulting in QT interval prolongation in 

otherwise healthy young individuals (Figure 1.5) (Vincent 1998; Ackerman and Clapham 1997; 

Gordon et al. 2007; Schwartz 2009).  This may result in episodes of malignant ventricular 

tachycardia or arrhythmia, known as Torsades de Pointes (TdP), as well as SCD (Sanguinetti et 

al. 1995; Schwartz et al. 2008).   

The first report of LQTS was published in 1957 by Anton Jervell and Fred Lange-Nielsen, who 

described LQTS in combination with congenital neuronal deafness and episodes of syncope 

(Jervell and Lange-Nielsen 1957).  A number of years later, in 1964, Romano and Ward 

described a similar cardiac condition with symptoms such as recurring syncope, prolongation of 

the QT interval as well as a family history of sudden death, but without the feature of congenital 

neuronal deafness (Romano et al. 1963; Ward 1964).   

Later it became evident, through research and genetic analyses, that this genetic disorder 

described by Jervell and Lange-Nielsen with symptoms including congenital neuronal deafness, 

was a result of homozygous mutations.  This resulted in severe phenotypes and high risk for 

SCD (Medeiros-Domingo et al. 2007a).   

The syndrome described by Romano and Ward (Romano-Ward syndrome) on the contrary, was 

due to the presence of heterozygous mutations which did not result in deafness, but displayed 

variable disease severity.  This meant that patients with one or more disease-causing mutation in 

more than one gene, had a more severe phenotype than patients with a single gene mutation, 

placing the aforementioned affected individuals at higher risk for SCD (Brink et al. 2005).   

The clinical features of LQTS are also extremely variable. Patients can be asymptomatic, 

develop reoccurring seizures and syncope, or in the worst case, present with SCD (Medeiros-

Domingo et al. 2007a). 

It is thought that the clinical variability of LQTS is due to incomplete penetrance of underlying 

mutations, functional status of interacting genes, age, gender, environmental factors (such as 

food and poison) as well as therapeutic interventions (Abbott 1999; Lehnart et al. 2007).  
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Figure 1.5: Illustration of the prolonged QT interval on an electrocardiogram (ECG).  The QRS complex is the 

average of the depolarization waves from all the cardiac cells.  The distance between the consecutive R-peaks in the 

QRS complex represents one heartbeat.   The QT interval of individuals with Long QT syndrome will be longer 

(bottom figure) as compared to the QT intervals of unaffected individuals (top figure).  Adapted from: 

http://www.genedx.com/wp-content/uploads/2010/12/LQT.jpg  

 

As mentioned previously, some of the subtypes of LQTS are known to have a more severe 

phenotype and it has been reported that in 10-15% of lethal cases, SCD was the first and final 

symptom of the patients (Vincent 1998; Goldenberg et al. 2006). 

 

1.2.2 Classification and diagnosis of Long QT syndrome 

The diagnosis of LQTS is based on the clinical and family history of individuals as well as the 

ECG results.  The ECG measurement of the QT interval in patients is absolutely essential for the 

accurate diagnosis of LQTS.  The interval should be measured and calculated as a mean value of 

at least three cardiac cycles from the QRS complex to the end of the T wave (Goldenberg et al. 

2008) (Figure 1.2).  A formula known as the Bazett formula (QT = QT/√RR; [RR being the 

interval from the onset of one QRS complex to the onset of the next QRS complex, measured in 

seconds]) is used to correct the QT interval (QTc) for heart rate which differs between males and 

females (Table 1.1).   
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It is standard practice to use the longest QT interval when evaluating the patient for LQTS.  

When it is found that the QT interval is notably prolonged (Figure 1.5) the diagnosis is 

undeniable, particularly when it is accompanied by a positive clinical and family history 

(Goldenberg et al. 2006).    

 

Table 1.1:  The suggested Bazzet-corrected QTc values (in ms) for prolonged QT diagnosis 

Long QT rating 1-15 yrs Adult male Adult female 

Normal < 400 < 430 < 450 

Borderline 440 – 460 430 – 450 450 – 470 

Prolonged > 460 > 450 > 470 

Abbreviations: <, less than; >, more than; ms, milliseconds; yrs, years. Table adapted from: Goldenberg et al. 2006. 

 

Family history of symptoms such as syncope and a prolonged QT interval both play a vital role 

in the diagnosis of LQTS as this disease is known to segregate within families (Schwartz 2009).  

In order to simplify the diagnosis, Schwartz and colleagues developed a scoring system (Table 

1.2) which is based on personal and available family history as well as symptoms and ECG 

findings (Schwartz 1993; Schwartz 2012).  

Misdiagnosis of LQTS in Africa is not uncommon and exists as result of a number of reasons.  

These range from a lack of communication which include language and cultural obstructions or 

the high incidence of infectious diseases (such as Tuberculosis and HIV), and poverty causing 

famine and early death which masks rare diseases such as LQTS (Brink and Corfield 2009).   

Another possible reason for the misdiagnosis and/or mismanagement of disease such as LQTS 

and other similar diseases is the relatively poor medical infrastructure in rural areas of South 

Africa and Africa in previous years.   

However, the South African Medical Research Council (MRC) has published an annual report 

2011/2012 which includes the mandate of the Centre for Molecular and Cellular Biology 

(CMCB) to improve research on multifactorial disorders (for example cancer) as well as 

infectious diseases such as Tuberculosis  

(http://www.mrc.ac.za/annualreport/annualreport1112.pdf ). 
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Table 1.2:  Long QT syndrome diagnostic criteria 

   Points 

 Electrocardiographic findings#   

A QTc * ≥ 480ms 3 

  460-479ms 2 

  450-459(male)ms 1 

B QTc * 4th minute of recovery from exercise stress test ≥480ms 1 

C Torsades de Pointes (TdP) **  2 

D T wave alternans  1 

E Notched T wave in 3 leads  1 

F Low heart rate for age†  0.5 

 Clinical History   

A Syncope ** With stress 2 

  Without stress 1 

B Congenital deafness   0.5 

 Family History   

A Family members with definite LQTS‡  1 

B Unexplained sudden cardiac death below 

age 30 among immediate family members‡ 

 
0.5 

 

# In the absence of medications or disorders known to affect these ECG features 

* QTc calculated by Bazzet’s formula where QTc = QT/√RR 

** Mutually exclusive 

† Resting heart rate below the second percentile for age 
‡ The same family member cannot be counted in A and B 

 Score  

≤ 1 point Low probability of LQTS 

1.5 – 3 points Intermediate probability of LQTS 

≥ 5 points High probability of LQTS 

Abbreviations: <, less than; ≤, less than or equal to; LQTS, Long QT Syndrome; >, more than; ≥, more than or equal 

to; ms, milliseconds; QTc, corrected QT interval.  Table adapted from: Schwartz 1993; Schwartz 2012. 
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1.2.3 Risk assessment 

In 2008, Goldenberg and co-workers identified a set of risk factors for symptoms such as SCD, 

in individuals with LQTS.  However, these risk factors only serve as a  baseline reference and 

the most useful predictor of lethal cardiac events in LQTS still remains the family history as well 

as the patients’ history of syncope, other cardiac events such as aborted cardiac arrest (ACA) and 

a QTc of >500ms (Table 1.3) (Goldenberg et al. 2008).   

 

Table 1.3:  High-risk subsets for aborted cardiac arrest or sudden cardiac death by age 

Age High risk subsets 

Childhood  (1-12 years) 
Males with prior syncope and/or QTc > 500ms 

Females with prior syncope 

Adolescence  (13-20 years) 

Males and females with either 1, 2 or more of the following:  

QTc ≥ 530ms 

≥ 1 episode of syncope in the past year 

≥ 2 episodes of syncope in the past 2-10 years 

Adulthood  (21-40 years) 

Possess 1 or more of the following: 

Female gender 

Interim syncope after age 18 years 

QTc ≥ 500ms 

41-60 years 

Possess 1 or more of the following: 

Female gender 

Syncope in the past 10 years 

QTc ≥ 500ms 

LQTS3 genotype 

61-75 years Syncope in the past 10 years 

Abbreviations: LQTS, Long QT Syndrome; ≥, more than or equal to; ms, milliseconds; QTc, corrected QT interval.  

Table adapted from: Goldenberg et al. 2008. 
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In 2006 Goldenberg and colleagues presented evidence that most affected individuals in their 

study cohort who experienced at least one cardiac event during early childhood had elevated risk 

for experiencing SCD (Goldenberg et al. 2006).  This emphasized the importance of a patients’ 

history of cardiac events.  It was also reported that of the 44 patients included in this 

investigation, half died at least one or two decades after experiencing their first cardiac event, 

implying a continuous risk for LQTS patients.  These tragedies come to pass despite 88% of 

patients receiving beta-blocker therapy (Goldenberg et al. 2006). 

 

1.2.4 Therapeutic approaches 

There are a number of therapeutic approaches and management strategies available for 

individuals affected by LQTS; some of which include pharmacological therapy, implanted 

cardioverter defibrillators (ICD), surgical approaches, and lifestyle changes.  Moreover, in 

inherited forms of the disease, the treatment strategy is dependent on the causal gene mutation 

(Goldenberg and Moss 2008).   

Pharmacotherapy for the treatment of LQTS generally consists of the administration of beta-

blockers, a heterogeneous group of antihypertensive agents with an antagonistic action on beta-

adrenergic receptors in the heart (Gorre and Vandekerckhove 2010).  The main function of these 

drugs is therefore to depress myocardial function by reversing the beta-adrenergic signal 

transduction abnormalities as well as slowing down the remodelling process and ultimately 

regulate the heart rhythm (Satwani et al. 2004). 

These beta-blockers are divided into three classes based on their anti-adrenergic profile.  The 

first class contains the drugs propranolol and timolol which are non-selective compounds; 

blocking β1 and β2-receptors with equal affinity and do not have any other significant 

pharmacological properties.  The second class includes metoprolol and bisprolol for example, 

which are cardio selective compounds, blocking β1-receptors to a much greater extent than β2-

receptors.  And finally, the third class contains compounds such as carvedilol and bucindolol 

which blocks β1 and β2-receptors with an equal affinity and in addition exhibit antioxidant and 

vasodilator properties respectively (Moss et al. 2000; Satwani et al. 2004).  

This first-line prophylactic therapy is typically administered to all intermediate and high risk 

patients as these drugs interfere with the normal binding to receptors of epinephrine and other 
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stress hormones; weakening the effect of the stress response and ultimately disrupt cardiac 

arrhythmias (Schwartz et al. 2006). 

This medication has been used successfully to reduce the risk of lethal and life threatening 

cardiac events (Schwartz et al. 2001).  However, there are a number of affected individuals who 

do not respond to beta-blocker treatment and experience recurrent cardiac events (Schwartz et al. 

2001).  This may be due to the response to different genetic loci (Napolitano 2005).  Additional 

therapeutic procedures were therefore developed to manage these symptomatic patients 

(Goldenberg et al. 2008) and these procedures are described in detail below.  

Surgical approaches such as the implantation of ICDs and left cardiothoracic sympathetic 

denervation (LCSD) have also been used to successfully treat LQTS.  Studies have shown that 

ICD in combination with beta-blocker medication is effective treatment for patients who do not 

respond to treatment when only beta-blocker medication is administered (Crotti et al. 2008).  

Left cardiothoracic sympathetic denervation involves the removal of the left stellate ganglion to 

provide adequate cardiac denervation.  This procedure is only considered in patients who remain 

symptomatic and experience recurrent syncope despite beta-blocker medication and ICD 

implantation (Goldenberg et al. 2008).  

Ultimately, changes in lifestyle should be considered to improve quality of life and increase life 

expectancy by avoiding stressors including stringent exercise and competitive sports (Schwartz 

et al. 2006). Also, as far as possible, patients are urged to avoid, loud, starling noises and 

situations that could aggravate or excite them (Goldenberg et al. 2008).   

 

1.2.5 Genetics of LQTS 

Inherited forms of LQTS will usually manifest as an autosomal dominant disorder.  Autosomal 

recessive forms of this disease are less common and usually associate with a more severe 

phenotype.  These inherited forms of LQTS are also known to be caused by mutations in genes 

that encode mainly ion channel proteins, accessory subunits as well as proteins involved in 

regulating the action potential within the heart (Glaaser et al. 2003).  
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Yang and colleges also suggested that common polymorphisms, be it inherited or occur as de 

novo polymorphisms, may increase the patients susceptibility to longer QT intervals and 

arrhythmic events (Yang et al. 2002).  

Previous studies have indicated that many inherited forms of arrhythmia syndromes exist without 

the presence of any other structural heart diseases (Goldenberg et al. 2006; Lehnart et al. 2007; 

Schulze Bahr 2012).  Of these, LQTS can be utilized as a model disease due to the relatively 

high prevalence of the disease as well as the fact that LQTS is found across all ethnic groups 

(Lehnart et al. 2007; Schulze Bahr 2012).  

To date, and over 700 mutations in at least 12 genes have been shown to cause inherited forms of 

LQTS.  These mutations are randomly dispersed throughout the coding regions of the 12 genes 

and have been implicated in the development of different sub forms of the disease (Table 1.4).   

Some of these different forms of LQTS are more common than others and manifest with 

arrhythmias alone whereas rare forms of LQTS, such as LQT8, are usually associated with 

additional structural cardiac abnormalities (Schulze Bahr 2012).  

Long QT syndrome has a large genetic component that is evident in at least 75 % of patients 

diagnosed with this condition (Goldenberg et al. 2008).  Mutations identified in the 12 genes 

listed in table 1.4 either lead to decreased repolarising potassium channel currents or to 

inadequate entering of sodium and/or calcium into, and potassium ions out of the cardiomyocytes 

due to defective ion channels (Figure 1.6) (Goldenberg et al. 2008).  

There are three ion currents that are largely involved in the lengthening of cardiac action 

potential and prolongation of QT intervals namely: IKs, IKr and INa channels. IKs channels are 

responsible for the slowly activating delayed rectifier potassium currents (Splawski et al. 2000). 

IKr channels, on the other hand are responsible for the rapidly activating, delayed rectifier 

potassium current which allows potassium ions to move more easily into rather than out of the 

cell (Splawski et al. 2000; Hibino et al. 2010).    
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Table 1.4: Genes associated with specific subtypes of Long QT Syndrome 

Gene Symbol Subtype Gene Name Chromosome 

AKAP9 LQT11 A-kinase anchor protein 9 7q21-q22 

ANK2 LQT4 Ankyrin-B 4q25-q27 

CACNA1c LQT8 Calcium channel, L type, alpha 1 

polypeptide isoform 

12p13.3 

CAV3 LQT9 Caveolin-3 3p25 

KCNE1 LQT5 Voltage-gated potassium channel , 

Isk-related subfamily, member 1 

21p22 

KCNE2 LQT6 Voltage-gated potassium channel , 

Isk-related subfamily, member 2 

21p22 

KCNH2 LQT2 Potassium channel, voltage gated, 

H2 

7q35-q36 

KCNJ2 LQT7 Inwardly rectifying potassium 

channel 

17q23.1-24.2 

KCNQ1 LQT1 KQT-like voltage-gated potassium 

channel-1 

11p15.5 

SCN4B LQT10 Sodium channel, voltage gated, type 

IV beta subunit 

11q23.3 

SCN5A LQT3 Alpha polypeptide of voltage-gated 

sodium channel type V 

3p21-p23 

SNTA1 LQT12 Syntrophin, alpha 1 20q11.2 

Abbreviations: Isk, slow activating delayed rectifier potassium currents ; LQT, Long QT; p, chromosomal short arm; 

q, chromosomal long arm.  Table adapted from: Ackerman et al. 2011  
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INa channels are responsible for sodium current in the heart (Splawski et al. 2000).  When IKs and 

IKr are reduced or INa is increased in the heart, the cardiac action potential will be prolonged, the 

QT interval will lengthen and the risk for arrhythmia will be increase (Splawski et al. 2000).   

The ion channels that are associated with the development of LQTS are generally 

transmembrane proteins that transport specific ions such as potassium (K+), sodium (Na+) and 

calcium (Ca2+) through the cell membrane (Figure 1.6).  These channels are voltage-dependent; 

they are therefore only activated when the intracellular voltage reaches the required value.  The 

specific voltage necessary for activation differs between channels and is dependent on the 

channel subunit, either the alpha (α) or beta (β) subtype (Figure 1.7) (Medeiros-Domingo et al. 

2007a).   

 

 

Figure 1.6:  Ion channels in cardiac cells associated with LQTS.  Potassium ion (K+) channels facilitate the 

efflux of K+ from the cell.  Sodium ion (Na+) channels and calcium ion (Ca2+) channels mediate influx of their 

respective ions.  The Na+/Ca2+ ion exchanger channel carries three Na+ ions to the cytoplasm for each Ca2+ 

transported to the extracellular matrix across the membrane.  Adapted from: Marbán 2002. 

 

These channels form molecular complexes which are essential for the regulation of 

cardiomyocyte, and ultimately cardiac muscle contraction.  These complexes are made up of a 

protein unit that forms the membrane pore (pore-forming or α-subunit) as well as one or more 

secondary regulatory proteins which are usually auxiliary subunits (for example β-subunits) 

(Figure 1.7). 

Interestingly, the location of the mutations is believed to influence the severity of the disease.   In 

a previous study, Moss and colleagues provided evidence that mutations in the pore region of the 

KCNH2 gene was associated with a more severe clinical phenotype (Moss et al. 2002).   

Extracellular 

Cytoplasmic 
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Similarly Brink and co-workers reported that the A341V mutation in the pore region of the 

KCNQ1 protein was related to an unusually severe clinical phenotype in the South African 

population (Brink et al. 2005).  

On the contrary, Shimizu and colleagues suggested that LQTS1 patients with mutations in the 

transmembrane region of the KCNQ1 proteins were at higher risk for cardiac events (Shimizu et 

al. 2004).   

Thus, it appears that the specific genes involved as well as the location of mutations within those 

genes are responsible for the degree of channel impairment.  Accordingly, Vincent suggested 

that a variable degree of impairment in the HERG potassium channel will be present in LQTS2 

patients carrying the different mutations in different locations (Vincent 1998). 

 

Figure 1.7: The structure of a typical voltage-gated cardiac ion channel.  The figure shows the assembled alpha 

(α) and auxiliary (β) subunits of a typical voltage-gated ion channel to form a complete channel for ion transport. 

Adapted from: http://journals.cambridge.org/fulltext_content/ERM/ERM1_19/S1462399499001349sup022.gif 

 

Previously, genetic testing for LQTS was mainly performed for research purposes at universities 

and other institutes.  However, more recently it became commercially available for diagnostic 

purposes (Goldenberg et al. 2008).  Since mutations in different genes are responsible for each of 

the known LQTS subtypes (Table 1.4), genetic testing has become an invaluable and necessary 

tool for the accurate diagnosis of the disease.  

Stellenbosch University  http://scholar.sun.ac.za

http://journals.cambridge.org/fulltext_content/ERM/ERM1_19/S1462399499001349sup022.gif


19 
 

The various LQTS subtypes are associated with certain harmful stressors (Table 1.5), that can be 

avoided if the LQTS subtype is properly diagnosed.  Moreover, the correlation between genotype 

and phenotype in specific subtypes of LQTS has improved our understanding of the mechanisms 

of arrhythmias as well as the life-threatening cardiac events suffered by individuals with LQTS 

(Schwartz et al. 2001).  

 

Table 1.5:  Stressors associated with some of the more common types of LQTS 

Genotype Stressor for cardiac events 

LQT1 Stringent exercise (swimming) 

LQT2 Startling event (alarm clock) 

LQT3 Resting state 
Abbreviations: LQTS, Long QT Syndrome. Table adapted from: (Goldenberg et al. 2008; Schwartz 2012) 

 

An advantage of genetic testing is that closely related, at-risk family members can be identified 

before they exhibit any symptoms. Furthermore, genetic screening has been shown to be 

beneficial for prenatal and pre-implantation genetic diagnosis of LQTS (Goldenberg et al. 2008). 

Genetic testing should be considered for individuals experiencing symptoms associated with 

LQTS such as syncope and abnormal ECG results as well as individuals with a positive family 

history or familial LQTS.  It is equally important that one month old infants with a QTc > 470ms 

be screened for LQTS mutations.  In a 2009 study, Schwartz and colleagues found that 43% of 

newborns with a QTc > 470ms were identified as carriers of LQTS causing mutations and that 

90% of infants with a QTc > 460ms in the first month of life - who maintained this QTc value for 

at least one year after birth - were carriers of LQTS causing mutations (Schwartz 2009; Schwartz 

2012).   This provided evidence that genetic testing allows for the identification of presumably 

healthy infants who in fact are at high risk for SCD (Schwartz 2012).   

It was also suggested that the diagnostic criteria (Table 1.2) should be used to select patients with 

a score > 3 point regardless of presence or absence of cardiac events for genetic screening.  

Additionally, the results should be used to identify the “silent” mutation carriers through cascade 

screening (Schwartz 2012).       
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Cascade screening is thought to be one of the most important features of genetic testing since it 

allows for the identification of mutation carriers that are generally overlooked.  This form of 

predictive DNA testing consists of screening the entire family for the disease-causing mutation 

identified in the patient/proband.  This is essential since first-degree relatives have a 50% risk of 

carrying the same mutation (Hofman et al. 2010).  This guarantees adequate patient treatment 

and protection from lethal arrhythmic events due to the high success rate of inherited disease 

treatment (Schwartz 2009; Hofman et al. 2010).  This method also allows asymptomatic, yet 

genetically affected individuals to be identified early on and started on the proper medications 

(Schwartz 2012).   

When a patient is selected for genetic screening and mutations are identified, the results can have 

one of the following outcomes: the patient may be positive for any of the known mutations, 

negative for any of the known mutations or a variant of unknown clinical significance may be 

identified.  This distinguishes the carriers from non-carriers (Hofman et al. 2010).    

When a known disease-causing mutation has been identified in an individual a convincing LQTS 

diagnosis can be made (Hofman et al. 2010).  All first-degree family members (parents, siblings 

and children) of these patients will subsequently be given the choice to be screened for the same 

disease-causing mutation.  The identification of mutations allows physicians to advise patients 

on which stressors to avoid (Table 1.5) in order to minimise the chances of experiencing life-

threatening cardiac events (Hofman et al. 2010).  In cases where family members are mutation-

positive it is important to monitor the newly diagnosed individual since variable phenotypic 

expression is observed in individuals of the same family with the same disease-causing mutation 

(Brink et al. 2005). 

In some cases a variant is identified of which the clinical significance is unknown.  The potential 

pathogenic role of the variant can therefore not be confirmed.  In order to prove that the variant 

is pathogenic, closely related family members should be tested.  If it is found that an affected 

relative has the same variant, chances are greater that the variant is indeed pathogenic (disease-

causing) and the variant will then be reconsidered as a family-specific mutation. (Tester et al. 

2006).  To prove that this is true a panel of unrelated control individuals who do not have ECGs 

indicative of LQTS should be screened for the newly identified variant.  If the mutation is absent 

in the control panel and present in affected individuals only, it could be considered pathogenic. 
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For further verification of pathogenesis, functional studies have to be conducted to determine the 

mechanism of pathogenesis. 

Ultimately, the identification of mutations, different types of mutations as well as their different 

functions are vital in determining the disease outcome.  It is clear that LQTS is more complex 

than initially thought, and that mutation-specific risk stratification will be integrated into clinical 

diagnosis (Schwartz 2012).   

 

1.3 SOUTH AFRICAN FOUNDER FAMILY  

In South Africa, a number of LQTS cases have been reported including individuals from Asian, 

Coloured and mostly White ethnicities (Heradien et al. 2007).  In 2005 a study by Brink and co-

workers described a cohort of 22 South African families who shared the same KCNQ1 mutation 

(A341V) (Brink et al. 2005).  Ancestry of this LQTS cohort, which included 345 family 

members, was traced back to a common Afrikaner founder couple (of mixed Dutch and 

Huguenot origin) that married in the year 1730 and gave rise to this South African LQTS founder 

effect (Figure 1.8) (Brink et al. 2005).  A founder effect can be defined as the loss of genetic 

variation that occurs when a new population is established by a small group of individuals from a 

larger population. 

In order to determine if these findings could, without a doubt, be ascribed to a founder effect and 

to ensure that the mutation identified in this cohort did not occur independently on one or more 

occasions, Brink and co-workers used genealogical studies as well as haplotype data to confirm 

the lines of descent of the KCNQ1-A341V mutation (Figure 1.8) (Brink et al. 2005). 

Among the 345 family members, 166 members were mutation carriers which consisted of 54% 

females and 46% males.  The majority (79%) of the mutation carriers were symptomatic and had 

experienced their first cardiac events before the age of 10 years.  Surprisingly, 14% of affected 

individuals experienced SCD before the age of 40 years.  With this evidence, researchers 

speculated that the KCNQ1-A341V mutation was associated with a more prominent  risk of life 

threatening cardiac events when compared to other mutations segregating with the LQTS1 

subtype (Brink et al. 2005). 
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Figure 1.8:  Inheritance lines of the KCNQ1-A341V mutation from the common founder couple (P).  A similar 

haplotype with minimal recombination segregates along with the mutation over 10 generations.  No genealogical 

information could be found for pedigree 170 and 180.  The common haplotypes are indicated with borders, and the 

index cases are indicated as diamonds.  The squares signify males and the circles females.  Ped is an abbreviation for 

pedigree and the letters P, Q and T are indicators for the couples in the first two generations from which the 

mutation was inherited.  Figure taken from:  Brink et al. 2005. 
 

In a subsequent South African study where a total number of 51 cases of KCNQ1-A341V 

mutations were reported, only 29% were correctly diagnosed with the disease while 40% of 

cases were  misdiagnosed as epilepsy and 31% remained undiagnosed (Brink and Corfield 2009). 

LQT1 patients carrying the A341V mutation exhibited more severe symptoms as well as more 

LQTS related deaths than other LQTS1 patients.  This holds true for South African patients as 

well as other individuals that have been examined worldwide.  Symptoms also seemed to appear 

at a younger age for A341V-carriers.  When compared to non-A341V carriers,  Brink and 

Corfield provided evidence showing that A341V-carriers have life threatening cardiac events and 
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longer QTc values earlier in life than other LQTS patients; even when treated with beta-blocker 

medication (Brink et al. 2005; Brink and Corfield 2009).  

 

1.4 GENETIC MODIFIERS 

Over the years genetic modifiers have been shown play an important role in the phenotypic 

variability in complex disease and that Mendelian as well as non-Mendelian genetic disorders 

display extreme inter- and intra-familial phenotypic variability  (Houlston and Tomlinson 1998). 

 

1.4.1 Genetic modifiers of LQTS 

As mentioned previously LQTS is one of many diseases that will present with severe phenotypic 

variability, thought to be caused by incomplete penetrance (Crotti et al. 2005).  Furthermore, it is 

believed that single ion defects might not be the sole cause of arrhythmic events and that the 

arrhythmias might be caused by a combination of ion defects and genetic modifiers (Keating and 

Sanguinetti 2001; Crotti et al. 2009).  Through a myriad of studies over the years, numerous 

single nucleotide polymorphisms (SNPs) in known LQTS genes have been identified and 

confirmed to contribute to the QTc interval durations. 

Mutations in KCNQ1 have been shown to be the cause of LQT1 (Table 1.4) and is by far the 

most common form of inherited LQTS.  LQT1 is believed to be responsible for approximately 45 

% of reported cases (Splawski et al. 2000).  This gene encodes the pore-forming subunit of the 

ion channel that mediates IKs.  Mutations identified in KCNQ1 lead to the loss of channel 

function which results in the reduction in repolarising potassium currents and ultimately a delay 

in repolarization of the cardiac action potential. 

In an interesting study by Yu and colleagues the effect of QT-related and diabetes-related 

variants in KCNQ1 on the QT interval were investigated.  The cohort consisted of 2415 Type 2 

diabetes patients and 1163 control individuals from a Chinese population.  Four SNPs in KCNQ1 

were selected (rs12296050, rs12576239, rs2237892 and rs2237895) and genotyped.  

Interestingly, none showed association with QT interval in patients with Type 2 diabetes.  On the 

contrary one of the SNPs (rs12296050) was found to be associated with a prolonged QT interval 
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in the control group.  This indicated that KCNQ1 is linked to QT interval duration in a Chinese 

population with normal glucose regulation (Yu et al. 2013). 

In our South African founder population, Schwartz indicated that the KCNQ1-A341V mutation 

has a far more severe clinical manifestation than other LQT1-causitve mutations (Schwartz 

2012).  This high degree of severity was previously ascribed to the fact that the A341V mutation 

contains a mildly dominant-negative effect and does not result in a total loss of function effect.  

It should be noted, however that the complete mechanism is not known as arrhythmic risk 

continues to be higher when compared with KCNQ1 mutations that contain a strong dominant 

negative effect (Brink and Corfield 2009).  

In the same South African population it has been found that the occurrence of frequent 

polymorphisms in the NOS1AP gene will increase the risk of sudden death by 2 fold in patients 

with the KCNQ1-A341V mutation (Schwartz 2012).  The NOS1AP gene, which encodes a nitric 

oxide synthase adaptor protein, has subsequently been implicated as a contributor to QT interval 

duration as well as an increased risk factor for SCD in the general population (Crotti et al. 2009). 

Crotti and his co-workers investigated the theory that common variants in NOS1AP could modify 

the risk of clinical expression as well as the degree of QT-interval prolongation in a South 

African LQTS cohort (Crotti et al. 2009).  Two variants of NOS1AP (rs4657139 and 

rs16847548) were significantly associated with the occurrence of symptoms with clinical 

severity as well as the probability of experiencing cardiac arrest and SCD.  Additionally, these 

two variants were also associated with a greater chance of having QT intervals that fell in the top 

40% of values among all mutation carriers in the study.  These results showed that the variants of 

the NOS1AP gene not only influence the QTc interval, but also affect the risk for life-threatening 

cardiac arrhythmias and SCD in LQTS patients - ultimately labeling NOS1AP as a genetic 

modifier of LQTS (Crotti et al. 2009).  

Nonetheless, with genetic tests identifying pathogenic mutations, it is possible to change 

management options and to use a more direct line of attack in order to protect the patients 

(Schwartz 2012). 

Mutations identified in KCNH2 (better known as HERG) are thought to be responsible for up to 

40% of LQTS cases (LQT2, Table 1.4).  HERG mediates the IKr current which is an important 
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regulator of repolarization of the cardiac action potential. Most mutations identified in HERG 

leads to a reduced potassium current and ultimately loss of function or reduced function of IKr 

channels.  Previous studies have provided evidence that HERG channel dysfunctions will not 

only lead to inherited LQTS, but also acquired forms of LQTS (Sanguinetti et al. 1995).   

Another group of investigators screened the KCNH2 gene for novel mutations.  The KCNH2-

K897T (rs1805123) polymorphism was identified and researchers suggested examining a cohort 

of 170 LQT1 patients to elucidate the association between this SNP and QTc interval duration as 

well as its effect on modifying the phenotype of LQTS (Laitinen et al. 2000).  A subsequent 

study demonstrated that the KCNH2-K897T SNP modified the clinical expression of the latent 

A1116V LQT2 mutation and that this common variant (K897T) would most likely not cause 

disease on its own (Crotti et al. 2005). 

In 2007 an American study was conducted which included 1730 unrelated patients from the 

Framingham Heart study (Newton-Cheh et al. 2007).  Seventeen SNPs as well as the previously 

associated SNP - rs1805123 (K897T) – in KCNH2 were selected for genotyping.  The study 

showed that only one of the 17 SNPs (rs3807375) along with the rs1805123 SNP was associated 

with the QT interval duration in both men and women (Newton-Cheh et al. 2007). 

A previous study showed that a subset of patients carrying mutations in ion channels displaying 

incomplete penetrance, were prone to drug-induced forms of LQTS that are commonly 

associated with malignant arrhythmias (Napolitano et al. 2000).  When a mutation screen of 

LQTS-related genes was performed, the Y315C point mutation was identified in KCNQ1.  It was 

established that this mutation caused a severe loss of IKs function within cells causing a delay in 

repolarization of the cardiac action potential, despite the analysis of numerous ECG results that 

ruled out the presence of prolonged QT intervals (Napolitano et al. 2000). 

Kubota and co-workers identified another KCNQ1 mutation in a patient with prolonged QT 

interval as well as TdP induced by hypokalaemia (referring to the condition in which the 

potassium concentration is very low).  This missense mutation, R259C, is believed to be the 

molecular source for the dysfunction of IKs currents underlying sporadic cases of hypokalaemia-

induced LQTS.  Researchers subsequently suggested that cases of patients with acquired LQTS, 

carrying genes with such mild mutations, might be more common than expected and accentuated 
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the significance of performing mutation screening to detect these “silent” forms of LQTS 

(Kubota et al. 2000).  

In the same year a study was completed that included mutation screening of five of the known 

LQTS-related genes (KCNQ1, HERG, SCN5A, KCNE1, and KCNE2).  Of the 262 study subjects, 

68 had mutations in HERG of which 52 of the mutations were novel.  A similar number of 

mutations were identified in KCNQ1 (75 mutations).  Additionally, 8%, 3% and 2% of mutations 

were found in SCN5A, KCNE1 and KCNE2 respectively (Splawski et al. 2000). 

The SCN5A gene, which is associated with the LQT3 subtype, is believed to be responsible for 

7% of cases of inherited LQTS.  This gene encodes the alpha subunit of a sodium channel that is 

in charge of cardiac depolarisation.  Mutations in this gene leads to a gain-of-function that will 

influence the normal upholding of the depolarising current and ultimately leads to the 

prolongation of the action potentials (Wang et al. 1995). 

To date, not a single case of LQTS have been diagnosed and documented in the black South 

African population, whereas 88% of LQTS index cases were identified in the White population 

(Heradien et al. 2007).  On the contrary in other countries such as the United States of America 

(USA), a large number of cases have been documented in black populations.  One such study 

included the SCN5A variant - rs7626962 (S1103Y or S1102Y) - that is believed to be a common 

variant in black populations but a rare variant in other ethnic groups.  Previous studies have 

linked this SNP to the risks of SCD, drug-induced arrhythmias as well as  sudden infant death 

syndrome (SIDS) in black populations (Jeff et al. 2011). 

Subsequently Jeff and co-workers selected 72 variants of the SCN5A gene to be genotyped in 

3054 unrelated individuals and found that 14 had significant associations with the QT interval 

duration.  One of the 14 variants, rs7627552, was found to be the SNP best associated with P-

wave and PR durations on the ECG (Jeff et al. 2011). 

Mutations in minK, better known as the KCNE1 gene, are responsible for approximately 5% of 

inherited LQTS cases (Splawski et al. 1997).  This gene encodes the beta subunit of a potassium 

channel that mediates the IKs current and co-assembles with KCNQ1 in order to form the 

functional channel.  In a previous study, it was found that KCNE1 mutations, similar to KCNQ1 
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mutations, change the repolarization of action potentials in the myocardium (Splawski et al. 

1997). 

In a study by Friedlander and co-workers, a linkage and association analysis was conducted to 

investigate whether variants in KCNE1 had any effect on the QTc intervals of an Israeli 

population.  It was found through a family-based association analysis that the G38S SNP showed 

significant association with QTc intervals and that this SNP is modified by gender (male) 

(Friedlander et al. 2005). 

Over the years, four Finnish founder mutations have been identified; two in KCNQ1 (G589D and 

IVS7-2A>G) and two in KCNH2 (L552S and R176W) (Lahtinen et al. 2011).  In a recent study 

the common D85N variant in KCNE1 was investigated for its effect on age, sex, and QTc 

interval duration in LQTS patients carrying these Finnish founder mutations.  This association 

study was conducted due to the fact that D85N has been linked to prolongation of QT intervals 

through inhibiting IKs (KCNQ1) and IKr (KCNH2) currents, thus making KCNE1 a suitable 

candidate for a modifier gene in LQTS (Lahtinen et al. 2011).  The association between D85N 

and clinical variables resembling disease severity was also investigated.  The results obtained 

from this study indicated an association between D85N and QT prolongation in males with the 

KCNQ1 G589D variant, but not in females with the same variant.  Additionally, within the 

G589D mutation group, KCNE1 D85N carriers were mostly identified as probands.  This led to 

the suggestion that KCNE1 D85N is a gender specific modifier of QT interval in LQT1 and 

could possibly be linked to an increase in disease severity (Lahtinen et al. 2011). 

The LQT6 subtype can be caused by a number of mutations identified in KCNE2, also known as 

the mink-related peptide (MiRP1).  This gene encodes the accessory β-subunit of the voltage-

gated potassium ion channel.  The β-subunit regulates the IKr current in the heart and co-

assembles with HERG to form the complete and functional potassium channel (Abbott 1999).  

The mutations associated with this gene are thought to be loss-of-function mutations and cause 

prolongation of action potentials by inhibiting the IKr current in the heart (Abbott 1999).  In a 

study conducted by Abbott and colleagues, three missense KCNE2 mutations (Q9E, M54T and 

I57T) that are believed to be more commonly found in patients with drug-induced TdP, were 

identified.  It is therefore recognized that missense mutations in the KCNE2 gene are related to 
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inherited and acquired forms of arrhythmias as well as alterations in the ion channel functions 

(Abbott 1999; McCrossan et al. 2009). 

Subsequent investigations of KCNE2 led to the identification of a missense mutation (C29T) 

which encodes the T10M variant.  This variant forms part of a cluster of variants previously 

identified as acquired LQTS SNPs (T8A and Q9E) (Figure 1.9).  However, in this study, the 

T10M variant was inherited from the father of the proband and present in other asymptomatic 

family members but not in 578 ethnically matched controls (Gordon et al. 2007).  Gordon and 

co-workers set out to find the functional significance of this disease causing variant in KCNE2 

ion channels.  Results showed that the variant reduces the current density and slows down the 

inactivation and recovery of KCNE2/HERG but does not affect the KCNE2/KCNQ1 currents.  It 

was proposed that the T10M mutation may likely be intensified when accompanied by 

environmental and/or other genetic factors and that KCNE2 does indeed regulate HERG in the 

human heart (Gordon et al. 2007).  

                                  

McCrossan and co-workers investigated KCNE1 and KCNE2 mutations that have previously 

been associated with LQTS.  Two KCNE1 variants (D76N and S74L) were shown to reduce the 

current density and delayed deactivation of an α-subunit – Kv2.1 (McCrossan et al. 2009).  

Variants in KCNE2 (M45T and I57T) reduced KCNE2/HERG currents and was previously 

shown to be associated with inherited and acquired (drug-induced) LQTS (Abbott 1999; Gordon 

et al. 2007; McCrossan et al. 2009).  The R27C variant present in KCNE2 has been linked to 

atrial fibrillation and an increase in KCNE2/KCNQ1 currents without affecting other KCNE2 

channel functions.  Furthermore, it has also been demonstrated that KCNE1 and KCNE2 were 

Figure 1.9:  A figure representing the 

KCNE2 transmembrane protein and 

three known N-terminal domain 

mutations. Three of the known KCNE2 

mutations (T8A, T10M and Q9E) are 

indicated in this figure of which the 

KCNE2 C29T mutation encodes a T10M 

substitution in KCNE2, close to the LQTS 

variants, T8A and Q9E.  Adapted from: 

Gordon et al. 2007. 
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modifiers of Kv2.1 function and that inherited mutations in either of these subunits may 

contribute to cardiac arrhythmias through a number of mechanisms (McCrossan et al. 2009) 

Following this discussion on genetic modifiers, one can speculate that mutations found in these 

ion channel genes directly influence the current changes that regulate action potential.  The ECG 

findings associated with these mutations include prolonged QT intervals as well as ventricular 

tachycardia.  Evidence also suggests that the mutations identified in such a varied subset of 

genetic modifiers can lead to the susceptibility of severe cardiac arrhythmias (Cheng et al. 2003) 

To date, several studies have been conducted in order to discover novel disease-causing 

mutations in genes associated with LQTS or in genes known to modify disease phenotype.   

However, as mentioned earlier, 25% of patients clinically diagnosed with LQTS have no 

apparent genetic cause for their disease (Napolitano 2005; Medeiros-Domingo et al. 2007b; 

Newton-Cheh et al. 2009).  Consequently, KCNE2 was chosen to be investigated for novel 

interacting modifier genes.  Mutations in KCNE2 have been linked to congenital as well as drug-

induced LQTS and therefore proved to be an interesting candidate for this study (Abbott 1999). 

 

1.5 KCNE2 POTASSIUM ION CHANNEL 

1.5.1 KCNE2 genomic structure 

Abbott and co-workers cloned and characterized the potassium voltage-gated channel, IKs-related 

family, member 2 (KCNE2) gene that encodes the MiRP1 protein (Abbott 1999).  This protein 

forms part of a largely diverse class of membrane proteins with a variety of functions made 

possible by α- and regulatory β-subunits from which these channels are assembled.  These 

subunits are encoded by the KCNE family that comprises five known human genes (KCNE1-5) 

(McCrossan and Abbott 2004).  

KCNE2 was found to be located on the long (q) arm of chromosome 21 at position 21.12 on the 

forward strand.  This gene encodes a small transmembrane protein of 123 amino acids (aa), has a 

transcript length of 803 base pairs (bp) and contains two coding exons (Figure 1.10) (Abbott 

1999; www.ensembl.org).  However, investigators indicated that the KCNE1 gene, encoding 

MinK, was previously mapped to this same locus and found that these two genes are arrayed in 

opposite orientation of each other and are only separated by 79kb.   
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Abbott and colleagues subsequently suggested that KCNE2 and KCNE1 are related by means of 

gene duplication and divergent evolution and that KCNE2 shares a 27% identity and a 45% 

homology to KCNE1 (Abbott 1999).   

Following the identification and classification of KCNE2 several studies have shown high levels 

of expression of KCNE2 in cardiac and skeletal muscle (Abbott 1999) as well as the brain (Ying 

et al. 2012), pancreas, kidney, placenta and colon.  Lower levels of expression are found in liver, 

ovary, testis and small intestines with near to undetectable levels of expression present in the 

lung (Tinel et al. 2000).  When compared to expression of other KCNE proteins, it was found 

that KCNE2 is less expressed in the heart, especially in the ventricles (Bendahhou et al. 2005).  

Nevertheless, KCNE2 is present in the heart and the highest expression levels of KCNE2 is 

localized to the SA node and up to 40% in atrial tissue (Yu et al. 2001). 

 

1.5.2 KCNE2 protein structure 

KCNE2 contains one extracellular N-terminal that includes two predicted N-glycosylation sites 

(N6 and N29) (Figure 1.10 and Figure 1.12) (Zhang et al. 2012), one transmembrane domain and 

one intracellular C-terminal domain that includes protein kinase C-mediated (PKC) consensus 

phosphorylation sites (T71 and S74; Figure 1.10) (Abbott 1999; McCrossan and Abbott 2004).   

This small integral membrane subunit has been shown to co-assemble with HERG - the KCNH2 

gene product - in order to form a functional unit of the IKr channel (Abbott 1999).  However, in a 

subsequent study by Jiang and colleagues it was found that a very small amount of KCNE2 

showed association with HERG in co-immunoprecipitation analysis (Jiang et al. 2009).  

This gave rise to the suggestion that this specific protein has other possible interacting partners 

(Jiang et al. 2004). Other investigators suggested that KCNE2 might interact/associate with 

KCNQ1 and KCNQ3 and draw out a voltage-dependent current.  Or it may also associate with 

Hyperpolarization Activated Cyclic Nucleotide-Gated Potassium Channel 1 and 2 (HCN1and 

HCN2) to increase the potassium current (Yu et al. 2001). 

The association of KCNE proteins with the appropriate α-subunits have been found to take place 

in the endoplasmic reticulum (ER) (Chandrasekhar et al. 2006) as well as at the plasma 

membrane (Jiang et al. 2009) with more than one protein co-assembling with the channel 
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complex.  Evidence suggests that one of the KCNE proteins could take the place of another 

family member to influence the current properties (Eldstrom and Fedida 2011). 

In a 2008 study, Abbott and colleagues determined the secondary structure of KCNE2 as largely 

α-helical and concluded that the predicted transmembrane and intracellular domains require an 

extensive hydrophobic interaction in order for the molecule to take on an ordered, non-

aggregated structure (Abbott et al. 2008).   

The N-terminal domain was found to be the only water-soluble domain in this study which 

indicated the consistency with the predicted extracellular location of this section.  Abbott and co-

workers mention that the function of the N-terminal of KCNE2 has not yet been elucidated but 

the removal of residues four-nine from the N-terminal of KCNE1 results in the loss of channel 

function.  This might be extrapolated to KCNE2 due to the homology shared between these two 

subunits (Abbott et al. 2008). 

Additionally two inherited mutations (Q9E and T8A) located in the N-terminal of KCNE2 

(Figure 1.12) have been associated with acquired (drug-induced) forms of arrhythmias (Abbott 

1999).  One of these mutations - Q9E - was found to increase the sensitivity of IKr channel 

blockage for drugs such as clarithromycin.  This complicates the repolarization action of mutant 

IKr complexes and is believed to contribute to the prolongation of the QTc interval of the cardiac 

action potential; regardless of the presence of drugs (Abbott 1999). 

The transmembrane domain structure of KCNE1 has proven to be more difficult to determine 

than anticipated; with several studies suggesting controversial conformations for this domain.  

Some investigators proposed a β-conformation, while others concluded an α-helical structure for 

this section of the protein (Abbott et al. 2008).   

Similarly, the transmembrane domain of KCNE2 presented with some difficulty but was 

ultimately identified through infrared spectroscopy as predominantly α-helical with a minor 

intra-molecular β-strand conformation (Abbott et al. 2008). 

The intracellular C-terminal domain of KCNE2 was shown to be insoluble in water, indicating 

that a hydrophobic interaction is essential for solubility as well as an ordered secondary structure 

of this domain (Abbott et al. 2008). 
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   Exon 1                                        
     1 GTAAGGTGAAGGTGCCCAGCAGGCTGAGGCTTGTGTGCAACCCAGAAGAGAGCTCGCTAA 

       ............................................................ 

          

    61 CGCCAGCAAGAAGGTTCAGAACAGCCTGGCTTTGGAAAGGAATTTCATCCTGCCCACACA 

       ............................................................ 

               Exon 2                     N-Terminal 
   121 CTGCATAGCAGGAGGGAAGCATGTCTACTTTATCCAATTTCACACAGACGCTGGAAGACG 

       ....................-M--S--T--L--S--N--F--T--Q--T--L--E--D-- 

               

   181 TCTTCCGAAGGATTTTTATTACTTATATGGACAATTGGCGCCAGAACACAACAGCTGAGC 

    14 V--F--R--R--I--F--I--T--Y--M--D--N--W--R--Q--N--T--T--A--E— 

                                       Transmembrane domain    
   241 AAGAGGCCCTCCAAGCCAAAGTTGATGCTGAGAACTTCTACTATGTCATCCTGTACCTCA 

    34 Q--E--A--L--Q--A--K--V--D--A--E--N--F--Y--Y--V--I--L--Y--L-- 

                                                            C-Terminal 
   301 TGGTGATGATTGGAATGTTCTCTTTCATCATCGTGGCCATCCTGGTGAGCACTGTGAAAT 

    54 M--V--M--I--G--M--F--S--F--I--I--V--A--I--L--V--S--T--V--K-- 

            

   361 CCAAGAGACGGGAACACTCCAATGACCCCTACCACCAGTACATTGTAGAGGACTGGCAGG 

    74 S--K--R--R--E--H--S--N--D--P--Y--H--Q--Y--I--V--E--D--W--Q-- 

                  

   421 AAAAGTACAAGAGCCAAATCTTGAATCTAGAAGAATCGAAGGCCACCATCCATGAGAACA 

    94 E--K--Y--K--S--Q--I--L--N--L--E--E--S--K--A--T--I--H--E--N-- 

     

   481 TTGGTGCGGCTGGGTTCAAAATGTCCCCCTGATAAGGGAGAAAGGCACCAAGCTAACATC 

   114 I--G--A--A--G--F--K--M--S--P--*-............................ 
 

   541 TGACGTCCAGACATGAAGAGATGCCAGTGCCACGAGGCAAATCCAAATTGTCTTTGCTTA  

       ............................................................ 
 

   601 GAAGAAAGTGAGTTCCTTGCTCTCTGTTGAGAATTTTCATGGAGATTATGTGGTTGGCCA 

       ............................................................ 
 

   661 ATAAAGATAGATGACATTTCAATCTCAGTGATTTATGCTTGCTTGTTGGAGCAATATTTT 

       ............................................................ 

        

   721 GTGCTGAAGACCTCTTTTACTTTCCGGGCAAGTGAATGTCATTTTAATCAATATCAATGA 

       ............................................................ 

                

   781 TGAAAATAAAGCCAAATTTGAAG 

       ....................... 

Figure 1.10:  KCNE2 genomic and protein sequence.  The sequence in orange marks the beginning of the second 

exon.  The red codons, ATG and TGA, resembles the start and stop codons respectively.  The sequences in blue, 

purple and green indicate the N-terminus, the transmembrane domain and the C-terminus respectively.  The section 

highlighted in light-blue in the protein sequence indicates the two glycosylation sites whereas the grey shaded area 

resembles the two PKC sites.  Adapted from Eldtorm 2011and www.ensembl.org. 
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Finally Abbott and co-workers concluded that, although their findings were consistent with 

previous studies, it should be noted that KCNE2 is glycosylated at two sites in the N-terminal 

domain (Figure 1.10 and Figure 1.12) as well at the PKC sites in the C-terminal domain (Figure 

1.10) and that this, in conjunction with KCNE2 interaction with α-subunits, might alter the 

structure of the KCNE2 protein (Abbott et al. 2008).  

 

1.5.3 KCNE2 trafficking and interacting proteins 

Previous studies have shown the association between KCNE2 and HERG as well as between 

KCNE1 and HERG (McDonald et al. 1997) however, studies elucidating the functional effects of 

KCNE2 on HERG were contradicting.  Abbott showed that the co-assembly between KCNE2 

and HERG lead to altered voltage-dependent activation of the channels, requiring a more 

positive potential when compared to channels formed only with HERG subunits (Abbott 1999).  

On the other hand, Lu and co-workers indicated that there was a significant decrease in current in 

the early phases of action potential for KCNE2/HERG channels (Lu et al. 2003).  Another study 

concluded that KCNE2 accelerated HERG deactivation and shifted HERG activation voltage 

dependence in the hyperpolarizing direction when co-expressed (Weerapura et al. 2002). 

Um and co-workers decided to investigate these discrepancies between KCNE1 and KCNE2 

through studying the biological differences in protein processing and physical interactions with 

HERG.  They found that during biogenesis of channels, HERG had a greater prevalence for 

assembling with KCNE1 rather than KCNE2.  This was ascribed to differences in trafficking 

rates of the KCNE1 and KCNE2 and not due to different affinities for these proteins (Um and 

McDonald 2007).   

It is important that translated proteins are translocated to their specific cellular location in an 

ordered and structural manner through the Golgi apparatus.  Proteins are passed through the ER 

and sent to the Golgi apparatus to be modified by specific enzymes and packaged into vesicles 

from where they are then transported to their final destination.  In the case of KCNE2 the 

proteins are transported to the cell membrane (Peer 2011).  

In a study by Abbott, co-immunoprecipitation experiments of KCNE2 and KCNE1 showed the 

association of the KCNE β-subunits with their respective α-subunits before reaching the cell 

membrane (Abbott 1999). 
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Um and McDonald used an ER retention signal to study the effects of KCNE trafficking and 

their association with HERG (Figure 1.11).  The results indicated that the retention signal of 

KCNE2 yielded an increased amount of higher molecular weight bands which is consistent with 

a protein that can translocate to the Golgi apparatus but is retained within the ER where 

prolonged exposure to glycosylation enzyme is allowed (Um and McDonald 2007).   

Furthermore, with fluorescent staining of both KCNE and HERG protein, it was clear that HERG 

and KCNE2 was predominantly confined to the cell surface.  An enhanced association was found 

between KCNE2/HERG.  Additionally, Um and McDonald suggested that the co-assembly of 

KCNE2 and HERG would be expected more to occur if KCNE2 was retained within the ER for 

longer periods (Um and McDonald 2007). 

 

Figure 1.11:  Schematic representation of proposed trafficking and association of KCNE1, KCNE2 and 

HERG.  The red arrows indicate the more rapid trafficking of KCNE2 whereas the yellow arrow shows the slower 

trafficking of KCNE1and HERG to the cell membrane.  KCNE2 trafficking is facilitated by endosomes as well as 

multivesicular endosomes (MVE).  The export of KCNE2 from the cell surface is enabled through exosomes where 

extracellular proteins may exist as monomers of oligomers.  Adapted from: Um and McDonald 2007. 

  

The association of KCNE1 and KCNE2 with HERG has significant implications for cardiac 

conduction, inherited forms of arrhythmia and pro-arrhythmic drug sensitivity (Abbott and 
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Goldstein 2001).  Thus, it is important to study and characterize their specific functions 

particularly since there is significant controversy surrounding this subject. 

Um and McDonald studied the physical interaction between these proteins and their respective 

trafficking pathways and found that HERG associates more readily with KCNE1 than with 

KCNE2.  However if forward trafficking of KCNE2 is chemically or molecularly interrupted or 

slowed down, co-assembly of HERG and KCNE2 is increased.  Investigators speculate that the 

prevention of forward trafficking changed the subcellular delivery of KCNE2 and that the 

interruption caused a significant increase in KCNE2 accumulation in the cell (Figure 1.11).  This 

was not observed for KCNE1 or HERG.  A large amount of KCNE2 was also reported to be 

exported from the cell (Figure 1.11).  Subsequently it was concluded that KCNE2 is likely to be 

processed and trafficked to the cell surface more rapidly than KCNE1 and HERG (Um and 

McDonald 2007) (Figure 1.11). 

Over the years, several studies have provided evidence that KCNE2 interacts with a variety of 

potassium channels.  Some of these channels include the IKs complex (Jiang et al. 2009), Kv1.4, 

Kv2.1 (McCrossan et al. 2009), Kv3.1 and KV3.2 (Lewis et al. 2004), Kv4.2 (KCND2) and 

Kv4.3 as well as HCN1 and HCN2 as mentioned earlier (Yu et al. 2001). 

 

1.5.4 KCNE2 channel dysfunction and LQTS 

How are changes in the KCNE2 gene related to pathological conditions?  Firstly defects in 

KCNE2 are the cause of long QT syndrome type 6 (LQT6) (Abbott 1999) as well as familial 

atrial fibrillation type 4 (ATFB4) which is a common cardiac arrhythmic disorder characterized 

by the disorganized electrical activity and ineffective contraction of the atria (McMichael 1982; 

Yang et al. 2004).  This causes blood stasis in the atria and ultimately reduces filling of the 

ventricle.  Similarly to LQTS, ATFB4 can result in heart palpitations, syncope and heart failure 

(Yang et al. 2004). 

It has been estimated that more than 10 mutations in KCNE2 have been linked to the most 

common form of LQTS i.e. Romano-Ward syndrome (Eldstrom and Fedida 2011) (Figure 1.12).  

These mutations changes the ability of the protein to regulate cardiac muscle potassium channels, 

causing the potassium channels to open at a slower rate and close more rapidly than usual, 
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reducing the flow of positively charged potassium ions out of these cardiac muscle cells (Towbin 

and Vatta 2001).  This channel dysfunction leads to the symptoms experienced by LQTS 

patients; i.e. cardiac arrhythmia, syncope and SCD (Ward 1964). 

Familial atrial fibrillation is a relatively rare condition found in a small subset of patients and is 

caused by a single mutation in KCNE2.  This mutation changes the arginine amino acid at 

position 27 to a cysteine in the KCNE2 protein - R27C.  Contrasting the mutations found in 

KCNE2 responsible for LQTS, it has been found that the R27C mutation increases the flow of 

potassium ions through channels regulated by KCNE2 in cardiac muscle cells.  This may lead to 

changes in the normal rhythm of the heart and give rise to atrial fibrillation (Yang et al. 2004). 

Many of the mutations identified in KCNE2 have functionally been characterized and are located 

across the entire protein (Figure 1.12).  For example, the I57T and A116V mutations have been 

shown to decrease channel conductance at the cell surface (Abbott and Goldstein 2001).  The 

Q9E mutation causes a positive shift in activation voltage whereas the T8A mutation leads to a 

negative shift in activation.   

Additionally, the KCNE2-M54T mutation was shown to cause a faster deactivation and no shift 

in the voltage-dependent activation (Abbott 1999).  The V56M mutation was found to accelerate 

the inactivation of co-assembled channels (Isbrandt et al. 2002) whereas the T10M mutation 

caused an almost 30% reduction in current amplitude as well as a slower recovery from 

inactivation (Gordon et al. 2007). 

Drug-induced LQTS or acquired LQTS can also be considered another disorder caused by 

mutations in the KCNE2 gene and other LQT genes (Abbott 1999).  These drugs include 

medications used to treat infections, seizures as well as arrhythmias and psychotic disorders such 

as quinidine (used for malaria infection) and thioridazine (used for psychotic disorders).  The 

mechanism by which mutations cause drug-induced LQTS has been shown to mostly involve 

blockage of the rapid component of the delayed rectifier potassium current (IKr) (HERG) and, to 

a lesser extent, other potassium and sodium channels.   
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The structure of ion channels provides high-affinity binding for a wide range of molecule.  Thus, 

by introducing mutation into these channels it would reduce the binding affinity for a variety of 

drugs and ultimately cause disruption of the channel and drug-induced LQTS (Moss et al. 2000; 

Kannankeril et al. 2010). 

 

1.6 PRESENT STUDY  

As mentioned, congenital LQTS can be inherited in either an autosomal dominant or autosomal 

recessive manner with an estimated prevalence of approximately one in 2500 individuals 

(Schwartz 2009; Schulze Bahr 2012).  A number of investigations have shown that it is an 

important cause of cardiac arrest in young, otherwise healthy individuals (Vincent 1998).  Over 

700 mutations in 12 genes have been linked to the pathogenesis of the disorder, however, for 

approximately 25% of patients with compelling LQTS clinical diagnoses, no causative mutations 

have been found (Napolitano 2005; Medeiros-Domingo et al. 2007b; Newton-Cheh et al. 2009).  

It is therefore important to identify new candidate genes to screen for LQTS causative mutations. 

The present study aims to approach this problem by performing yeast two-hybrid analysis (Y2H) 

to identify potential novel candidate genes for LQTS.  It has been well established that LQTS is 

involved in the dysfunction of cardiac ion channels and that eight of the 12 genes that have been 

mutated in congenital LQTS encode ion channels and their accessory proteins.   

Figure 1.12: KCNE2 mutations 

mapped onto a representation of 

the transmembrane protein.  The 

extracellular N-terminus and known 

mutations and two glycosylation 

sites (red capital letter G) in that 

domain, the transmembrane domain 

and known mutations as well as the 

intracellular C-terminal domain with 

previously identified mutations are 

indicated and mapped to their 

positions in this figure.   Adapted 

from: Eldstrom and Fedida 2011. 

 

N-terminal 

Transmembrane domain 

C-terminal 

Stellenbosch University  http://scholar.sun.ac.za



38 
 

Hypothesis: 

We therefore hypothesize that genes encoding proteins that interact with ion channels could also 

be mutated in LQTS.  Furthermore, in addition to environmental factors, other disease-modifying 

genes exist that influences the expression of the LQTS phenotype.  Consequently, we believe 

that the genes encoding KCNE2-interacting proteins may also be considered as candidate 

disease-modifying genes that can be screened in a cohort of LQTS patients. 

Objectives 

In the present study, we used the C-terminal domain of KCNE2, whose encoding gene is 

frequently mutated in LQT6 (Figure 1.13), as bait to screen a pre-transformed cardiac cDNA 

library using Yeast two-hybrid (Y2H) analysis.  

We chose to focus on the C-terminal domain since many of the LQTS causative mutations have 

been found in this part of the KCNE2 gene. We foresee that this study will help us gain a better 

understanding into the role of KCNE2 in LQTS as well as provide us with novel candidate genes 

to screen for LQTS-causative mutations.  

The objectives of the study are to perform an Y2H screen and to verify the newly identified 

interactions using independent biochemical analysis, which include 3D co-localization and co-

immunoprecipitation. 
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VERIFICATION OF TRUE PROTEIN INTERACTORS

Label H9C2 cells with appropriate antibodies 
and perform fluorescence microscopy and co-

locatization analysis

Confirm co-localization with co-
immunoprecipitation analysis

IDENTIFICATION OF PUTATIVE POSITIVE INTERACTORS

NCBI-BLAST sequence inserts to identify 
positive prey clones and alocate protein 

function

Indentify plausible putative interacting 
proteins.

YEAST TWO-HYBRID ASSAY

Mate transformed bait strain (AH109) with 
Y187 yeast strain, pretransformed with 

cardiac cDNA library

Use nutritional and colourometric selection to 
identify positive prey colonies after which 

prey plasmids were rescued from yeats

EXPRESSION OF PROTEINS

Transform purified bait construct into yeast 
strain AH109

Test for autonomous reporter gene activation, 
cell toxicity and mating efficiency

INSERT FRAME AND INTEGRITY VERIFICATION

Transform the bait construct into E.coli to 
select transformed colonies

Extract and purify plasmid DNA in order to 
perform automated DNA sequencing

GENERATION OF BAIT CONSTRUCT

Design primers to amplify the C-terminus 
of KCNE2 from human genomic DNA

Amplify product and clone into pGBKT7 
shuttle vector

                                                                                            

 

 

 

 

 

Figure 2.1: Summary of methodology followed in the present study. 
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2.1 DNA EXTRACTION 

2.1.1 Bacterial plasmid purification using the Zyppy™ Plasmid Miniprep Kit 

In order to isolate the specific plasmids from successfully transformed Escherichia coli (E.coli) 

cultures, single colonies were picked from the antibiotic selection plates and inoculated in 50ml 

polypropylene tubes.  These tubes contained 10ml Luria-Bertani Broth (LB) media (Appendix I) 

as well as the appropriate antibiotic (Ampicillin or Kanamycin).  The bacterial cultures were then 

incubated at 37ºC overnight in a shaking YIH DER model LM-530 (Scilab Instrument Co., Ltd., 

TW) incubator. 

After the incubation period the cultures were centrifuged in a Beckman model TJ-6 centrifuge 

(Beckman Coulter, Scotland, UK) for 10min at 2400rpm.  The supernatant was discarded and the 

pellet resuspended in 600μl dH2O.  The Zyppy™ Plasmid Miniprep Kit (Zymo Research Corp., 

USA) was then used as per manufacturer’s instructions and the plasmid purified and eluted with 

30μl of dH2O. 

After purification, a volume of 2μl of plasmid preparation was used to assess quality and the 

concentration of the plasmid determned using a Nanodrop Spectrophotometer (Thermo 

Scientific, USA).  The remainder of the purified product was used as template for yeast 

transformation reactions (Section 2.11.2).  This kit was also used to assist in yeast plasmid 

purification (Section 2.1.3) and was found to yield higher concentrations than the GTpure™ 

Plasmid Miniprep Kit (Section 2.1.2) initially used for bacterial plasmid purification. 

 

2.1.2 Bacterial plasmid purification using the GTpure™ Plasmid Miniprep Kit 

The specific E.coli colonies containing the plasmids of interest were picked from the antibiotic 

selection plates or 100µl of the bacterial glycerol stock was inoculated in 50ml polypropylene 

tubes containing 10ml of LB media (Appendix I) as well as the appropriate antibiotic.  The 

cultures were incubated at 37ºC shaking in a YIH DER model LM-530 (Scilab Instrument Co., 

Ltd., TW) incubator at 250rpm overnight.  

The following day the cultures were centrifuged for 10 minutes at 2600rpm in a Beckman model 

TJ-6 centrifuge (Beckman Coulter, UK) and the supernatant discarded. The plasmid DNA were 
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then extracted from the pellets using the GTpure™ Plasmid Miniprep kit (Gene Tech Co., Ltd., 

HK) as indicated by the manufacturer’s instructions. 

After purification, 2µl of the plasmid preparation was used to determine the purity and 

concentration of the sample by using a Nonodrop Spectrophotometer (Thermo Scientific, USA) 

and the remainder of the product used for sequencing reactions following recommendation by 

the manufacturer.    

 

2.1.3 Yeast plasmid purification 

Plasmids of interest were isolated from yeast (Saccharomyces cerevisiae) cultures by inoculating 

100µl of the yeast glycerol stocks in 1ml of single dropout (SD) media (Appendix I) containing 

the correct dropout supplement (BD Biosciences, Clontech, USA) in 15ml polypropylene tubes.  

The cultures were placed in a shaking incubator (Scilab Instrument Co., Ltd., TW) at 30ºC 

overnight, shaking at 250rpm.  The following day, 4ml of YPDA media (Appendix I) was added 

to the overnight cultures.  The cultures were incubated in a shaking incubator at 30ºC for an 

additional four to five hours.  Subsequently the cultures were centrifuged at 3000rpm for five 

minutes in a Beckman model TJ-6 centrifuge (Beckman Coulter, UK) and the supernatant 

discarded by pouring off the liquid.   

The pellets were then resuspended in the residual supernatant and transferred to a clean 2ml 

Eppendorf tube and subsequently centrifuged at 15000rpm for 30 seconds in a bench top 

centrifuge (Labnet International Inc., USA). The supernatant was discarded and to the pellet 

200µl yeast lysis buffer (Appendix I), 200µl Phenol Chloroform Isoamyl alcohol (PCI) and 0.3g 

sterile 450-600µm glass beads (Sigma-Aldrich (Pty) Ltd., RSA) was added.  The cells were then 

vortexed for at least two minutes followed by centrifugation at 15000rpm for 10 minutes at room 

temperature in a bench top centrifuge (Labnet International Inc., USA) for phase separation.   

The top aqueous layer was then transferred to sterile 1.5ml Eppendorf tubes.  An additional lysis 

step was included by adding 100µl lysis buffer (Zyppy Plasmid Miniprep Kit, Zymo Research 

Corp., USA) to the aqueous layer as well as 350µl neutralization buffer (Zyppy Plasmid 

Miniprep Kit, Zymo Research Corp., USA) and 200µl membrane binding solution (Wizard® 

Purefection Mini Plasmid DNA purification kit, Promega Corp., USA).  The mixtures were then 
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centrifuged for 10 minutes at 15000rpm in a bench top centrifuge (Labnet International Inc., 

USA).  The aqueous layers were then transferred to the spin columns of the Wizard® Purefection 

Mini Plasmid DNA purification kit and purified as per manufacturers’ instructions (section 

2.1.4).  Following purification, DNA was eluted with 35µl of sterile water. 

 

2.1.4 DNA purification using the Wizard® SV Gel and PCR Clean-up System 

Purification of the yeast plasmid preparations (Section 2.1.3), PCR-amplified products (Section 

2.2) as well as restriction enzyme  digest clean-up experiments (Section 2.6) were performed 

using the Wizard® SV Gel and PCR Clean-up System (Promega Corp., USA) according to the 

manufacturers’ instructions.  The products were used for bacterial transformation reactions 

(Section 2.12.1) and cloning reactions (Section 2.6) respectively. 

 

2.1.5 DNA purification from agarose gels using the Wizard® SV Gel and PCR Clean-up 

System 

When performing restriction enzyme digestions, the final digested product was electrophoresed 

in a 1% agarose gel (Section 2.3.1) and viewed under short wave ultraviolet (UV) light.  If the 

band was indeed the correct size, a sterile blade was used to remove the segment of the gel that 

contained the DNA fragment of interest.  The agarose gel slice was transferred to an autoclaved 

eppendorf tube after which the DNA was purified using the Wizard® SV Gel and PCR Clean-up 

System following the manufacturer’s protocol and instructions.  

 

2.2 POLYMERASE CHAIN REACTION (PCR) 

2.2.1 Oligonucleotide primer design and synthesis 

2.2.1.1 Primers for generation of insert for Y2H cloning 

Primers used to PCR-amplify the C-terminus of KCNE2 were designed using Oligo Analyzer 

Integrated DNA Technologies software (http://eu.idtdna.com/analyzer/applications/oligoanalyzer/) 

and synthesized at the University of Cape Town DNA synthesis Laboratory (University of Cape 

Town, RSA). 

The GenBank database (http://www.ncbi.nlm.nih.gov/Entrez) mRNA sequence for KCNE2 

(NM_172201.1) (Appendix I) was used as a reference sequence for designing the forward and 
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reverse primers.   Each primer set was analysed for self-complementarities, primer-primer 

complementarities and hairpin structures.  The GC content and melting temperature 

compatibility could also be determined using this software.   

The primer sequences were finally submitted to the Basic Local Alignment Search Tool 

(BLAST) (http://www.ncbi.nlm.nih.gov/BLAST) in order to determine whether they were able 

to anneal to other genomic DNA sequences.  

To facilitate the cloning of the PCR-amplified KCNE2 amplicon into the pGBKT7 shuttle vector 

(BD Bioscience, Clontech, USA) restriction enzyme sites were incorporated into the primers.  

The forward primer was designed to contain the NdeI restriction site in the 5 prime (5’) end, 

while the reverse primer contained the EcoR1 restriction enzyme site as well as the stop codon 

(TGA).  

The sequence of the primers used for cloning the KCNE2 C-terminal encoding amplicon into 

pGBKT7 is shown in table 2.1. 

 

Table 2.1: Nucleotide sequences of primers used to amplify the C-terminal of KCNE2  

Primer Sequence Ta (ºC) 

KCNE2-FNde1 5’ - ACTGCAGAACATATG CTCAAATCCAAGAGACGG - 3’ 50 

KCNE2-REcoR1 5’ - ACTGCAGAAGAATTCCTATCAGGGGAACATTTTGAAC - 3’ 51 

Abbreviations: Ta = Annealing temperature, ˚C = Degrees Celsius.  The blue text represents a tag which facilitates 

restriction enzyme digestion, while the green and purple sequences correspond to the Nde1 and EcoR1 restrictions 

sites respectively.  The short pink sequence symbolizes the stop codon and the black text represents the sequence of 

the primer which will anneal to the DNA in the PCR amplification reaction.  

 

2.2.1.2 Primers for Y2H insert sequencing 

Vector-specific primers were designed to flank the multiple cloning sites (MCS) of pGBKT7 and 

pACT2 shuttle vectors (BD Bioscience, Clontech, USA) (Appendix II).  This was necessary in 

order to sequence the inserts cloned into these Y2H vectors.  The sequences used to generate the 

primers were acquired from the Clontech™ Matchmaker™ vector guide (www.clontech.com) 

and are shown in table 2.2. 
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Table 2.2: Primers used for sequencing inserts from Y2H cloning vectors 

Primers Sequence Ta(˚C) 

pGBKT7-F 5’- GTAATACGACTCACTATAGGGC -3’ 64 

pGBKT7-R 5’-AAACCCCTCAAGACCCGTTT-3’ 60 

pACT2-F 5’-CTATTCGATGATGAAGATACCCCACCAAACCC-3’ 68 

pACT2-R 5’-GTGAACTTGCGGGGTTTTTCAGTATCTACGA-3’ 68 

Abbreviations: Ta = Annealing temperature, ˚C = Degrees Celsius  

 

2.2.2 PCR-amplification for generation of KCNE2 C-terminus fragment 

Since the C-terminus of KCNE2 is encoded by a single exon (exon 2) of the KCNE2 gene, the 

fragment of interest was amplified from human DNA (Section 2.13.1) by means of PCR.  The 

product of this amplification was subsequently cloned into the Y2H bait vector, pGBKT7 

(Section 2.7) (Appendix II).   

For the amplification reaction, 20ng of genomic DNA was used in a final reaction volume of 

50μl.  The reaction included 150ng of each primer, forward and reverse (Table 2.1), 5x Buffer, 

10mM dNTP’s (dATP, dCTP, dTTP and dGTP) (Kapa Biosystems (Pty) Ltd., RSA) 

25mM MgCl2, 5u/μl long range Taq™ DNA polymerase (Kapa Biosystems (Pty) Ltd., RSA) as 

well as sterile distilled water to a final volume of 50µl.  The reaction was performed in a 

Mastercycler® ep PCR system (Eppendorf, GER).  The cycle parameters consisted of a 

denaturing step at 95ºC for four minutes, followed by 30 cycles of 95ºC for 30 seconds,  68°C 

for 30 seconds and 72ºC for 30 seconds after which an extension step followed for 10 minutes at 

72ºC.  The products of the PCR reaction was then visualized on a 1% agarose gel under UV light 

to verify amplification of the correct fragment (Section 2.3.1). 

 

2.2.3 Bacterial colony PCR 

The vectors used in Y2H do not support blue-white selection. Therefore, in order to identify 

bacterial colonies harbouring the recombinant plasmid constructs, bacterial colony PCRs were 

performed.  Small amounts from the individual bacterial colonies were used as DNA templates 

which were selected from the appropriate agar plates.  Vector-specific primers were used to 

amplify the desired fragments (Table 2.2).   
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The reaction was carried out in a Mastercycler® ep PCR system with a final reaction volume of 

50µl.  The reaction consisted of 150ng/µl of vector-specific forward and reverse primers 

(Table2.2), 25µl Readymix (Kapa Biosystems (Pty) Ltd., RSA) and distilled water was used to 

make up the final volume.  The thermal cycling parameters were as follows: a denaturing step at 

95ºC for eight minutes, followed by 30 cycles of 94ºC for 30 seconds, Ta (Table 2.2.) for 30 

seconds and 72ºC for one minute, followed by an elongation step at 72ºC for five minutes. 

In each of the PCR reactions described in the paragraphs above, a negative control was included 

(i.e. no DNA was included in one specific sample for each PCR reaction) to detect any 

contamination during the process.   

The final PCR products were then visualized by gel electrophoresis on a 1% agarose gel for 

verification (Section 2.3.1). 

 

2.3 GEL ELECTROPORESIS 

2.3.1 Agarose gel electrophoresis 

In the present study, agarose gel electrophoresis was used either to visualize fragments that have 

been amplified by PCR (Section 2.2), plasmid preparation integrity (Section 2.1.1), for excision 

of DNA fragments for purification after restriction digest (Section 2.1.5) or for visualization of 

identical prey-inserts identified by restriction mapping (Section 2.6.2). 

 

2.3.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)  

Proteins from co-immunoprecipitation (Co-IP) reactions (Section 2.15) as well as western blot 

analyses (Section 2.16) were electrophoresed in Mini-PROTEAN® TGX™ precast 

polyacrylamide gels (Bio-Rad Laboratories (Pty) Ltd., RSA) containing 1% Sodium dodecyl 

sulphate (SDS) ranging from 4% to 15% depending on the size of the proteins (Appendix I).  

Typically 10μl - 35μl loading dye (Appendix I) was mixed with 150μg of Co-IP reaction product 

or 50μg whole cell lysate (Section 2.10.4) for western blot analysis and incubated at 95°C for 

five minutes.  Ten microlitres of molecular weight marker (Spectra™ Multicolor Broad Range 

Protein Ladder, Thermo Scientific, USA) was co-electrophoresed with the protein products.  The 

samples were loaded onto the vertical gel along with two negative controls (HA-probe and 
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protein agarose G) and electrophoresed at 100V for approximately 1 hour in 1x SDS-PAGE 

running buffer (Appendix I).  

 

2.4 AUTOMATED DNA SEQUENCING 

The bacterial cultures were grown in 10ml Luria-Bertani (LB) media (Appendix I) along with 

10μl or 20μl of the appropriate antibiotic (either 50mg/ml Ampicillin or 100mg/ml Kanamycin 

respectively) at 37ºC in a shaking incubator (Scilab Instrument Co., Ltd., TW).  Following this, 

the plasmids were extracted and purified using the Zyppy™ Plasmid Miniprep Kit (Section 

2.1.1).  The samples were diluted to a final concentration of 200ng/μl and the gene fragment 

specific primers (Table 2.1) as well as the vector-specific primers (Table 2.2) were diluted to 

1.1pmol each.  The tubes were labeled accordingly and send for automated sequencing on an 

ABI Prism™ 377 or ABI Prism™ 3100 sequencer (P.E. Biosystems, USA) at the Central DNA 

Sequencing Facility at Stellenbosch University (Central Analytical Facilities-DNA Sequencing 

Unit, Department of Genetics, University of Stellenbosch, RSA). 

 

2.5 SEQUENCE ANALYSIS 

All sequenced data was analysed using the BioEdit Sequence Alignment Editor Software system 

(Ibis Biosciences, USA) as well as the DNAman software (Lynnon Corp., USA) to verify the 

sequence integrity and identity of the fragments generated.  The generated fragments were 

compared to their reference sequences obtained from GenBank database 

(www.ncbi.nlm.nih.gov/Entrez).  

 

2.5.1 DNA sequence analysis 

DNA sequence analysis was done to verify the sequence integrity of the KCNE2 fragment 

generated by PCR amplification (Section 2.2.2) as well as to identify Y2H putative interactor 

prey clones selected during the Y2H library screening. 

The C-terminus fragment of KCNE2 generated in this study was compared to the KCNE2 

reference sequence from the GenBank database (www.ncbi.nlm.nih.gov/Entrez) to establish 

whether the sequence integrity and reading frame were maintained. The Y2H prey constructs 
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were identified by BLASTn comparison of the nucleotide sequences against the GenBank 

database (www.ncbi.nlm.nih.gov/Entrez) and the Ensembl database. (www.ensembl.org). 

 

2.5.2 Protein sequence analysis 

The DNA insert sequences identified in the Y2H screen were translated into protein in the frame 

dictated by the of the GAL4 activation domain reading frame (reading frame 1). The protein 

sequences were subsequently compared to human reference protein sequences in the Swissprot 

database using BLASTp in order to identify the protein.  

Once proteins have successfully been identified, GeneCards (http://www.genecards.org/) and 

neXtProt (http://www.nextprot.org/) were used to analyse the proteins and determine their 

location, structure and function.  

 

2.6 RESTRICTON ENZYME DIGESTION 

2.6.1 Restriction enzyme digest for cloning inserts 

In order to clone the PCR-generated (Section 2.2.2) fragment into the specific pGBKT7 bait 

vector (Appendix II) for Y2H analysis, the fragment as well as the plasmid were consecutively 

double-digested using appropriate restriction enzymes (NdeI and EcoRI).  The restriction 

enzymes as well as their corresponding buffers were provided by New England Biolabs (New 

England Biolabs® Inc., RSA).  Primers designed to amplify this insert and specific restriction 

enzyme sites which were included in the primer sequences can be seen in table 2.1.     

The PCR fragment of KCNE2 and the plasmid DNA of the shuttle vector was used as the DNA 

template for the restriction enzyme digest reactions which was prepared in a final volume of 50μl 

consisting of the following reagents: 30μl of the PCR-generated fragment or 20μl of vector 

DNA, 5μl restriction enzyme buffer, 2μl Nde1 restriction enzyme and sterile water to make up 

the final volume of 50µl.  The mixtures were incubated for two hours at 37ºC in a model 329 

stationary CO2 incubator (Former Scientific, USA).  Following the incubation period, the 

enzymes were heat inactivated at 65ºC for 5 minutes after which the samples were purified using 

the Wizard®  SV Gel and PCR Clean-up System (Promega Corp., USA) (Section 2.1.4) and 

eluted with 43μl sterile water. 
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The eluted mixtures were used as templates for the second digest reaction to which 5μl of 

enzyme buffer and 2μl EcoR1 restriction enzyme was added.  The samples were then incubated 

at 37ºC for another two hours.  The samples were subsequently heat inactivated and finally 

purified using the Wizard®  SV Gel and PCR Clean-up System (Promega Corp., USA) (Section 

2.1.4) and eluted with 30μl sterile water. 

To guarantee that the double-digested pGBKT7 vector do not anneal to itself, the vector was 

treated with Calf Intestinal Alkaline Phosphatase (CIAP) (Section 2.7.2) before being used in the 

DNA ligation (Section 2.7.3) reactions.  The final digested fragments were loaded onto a 1% 

agarose gel, electrophoresed (Section 2.3.1) and subsequently purified using the Wizard™ SV 

Gel and PCR Clean-up system (Section 2.1.5). 

 

2.6.2 Restriction mapping for yeast two-hybrid (Y2H) prey clones 

Restriction mapping was performed on Y2H prey-inserts that interacted with the pGBKT7-

KCNE2 construct.  This was carried out with the purpose of grouping identical prey plasmids 

identified by Y2H analysis.  These inserts were transformed into E.coli (Section 2.11.1) and 

ultimately the plasmids purified using the Zyppy™ Miniprep kit (Section 2.1.1).  The purified 

plasmids were digested with HaeIII restriction enzyme (New England Biolabs® Inc., RSA) in a 

final volume of 10µl digest mixture consisting of 5μl plasmid DNA, 1μl enzyme buffer, 0.2μl 

HaeIII enzyme and 3.8μl ddH2O.  The samples were then incubated at 37ºC for two hours and 

subsequently viewed on a 1.5% agarose gel (Section 2.3.1).   

The restriction pattern for each sample was analysed and compared to each other.  Samples that 

showed the same restriction digest patterns for the HaeIII digest were selected and digested with 

a second enzyme, RsaI (Promega Corp., USA), in a subsequent reaction with the same conditions 

as the previously described reaction.  This was done to verify the similarities between inserts.   

If it was found that the inserts had the same patterns for the HaeIII as well as the RsaI restriction 

enzyme digest, they were considered to be identical clones and one sample was chosen out of the 

group as a representative. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



52 
 

2.7 GENERATION OF CONSTRUCTS 

2.7.1 Generation of Y2H construct 

The pGBKT7 shuttle vector (Appendix II) was used as the bait vector into which the Y2H bait-

insert was cloned (Section 2.2).  Following automated sequence analysis (Section 2.5) to verify 

the integrity of the insert as well as the reading frame conservation of the sequence, the construct 

was transformed into the yeast strain AH109 (Section 2.11.2).  This construct was subsequently 

used to screen a Clontech MATCHMAKER pre-transformed cardiac cDNA library (BD 

Biosciences, Clontech, USA) (Section 2.13.1).  The library consisted of cardiac cDNAs which 

was cloned into pACT2 prey-vectors (Appendix II) and transformed into the yeast strain Y187. 

 

2.7.2 Alkaline phosphatase treatment of vector 

The ends of the linearised plasmids, which had been double digested with restriction enzymes 

Nde1 and EcoR1, were CIAP-treated to remove the phosphate groups and thus prevent the 

plasmid to re-anneal to itself and reform a circularized vector. 

Briefly, 30μl pGBKT7 vector DNA, 2μl CIAP (Promega Corp., USA), 10μl CIAP buffer 

(Promega Corp., USA) and 58μl of sterile water were transferred to a 1.5ml sterile Eppendorf 

tube.  The reaction mixture was incubated at 37ºC for 15 minutes followed by 15 minute 

incubation at 56ºC to inactivate the CIAP.  Following this, an extra 2μl of CIAP was added to the 

reaction after which the incubation and inactivation cycles were repeated. 

The CIAP-treated pGBKT7 vector was subsequently purified using the Wizard™ SV Gel and 

PCR Clean-up System (Promega Corp., USA) (Section 2.1.4) and used in the ligation reactions 

(Section 2.7.3).    

 

2.7.3 DNA ligation 

In order to generate the construct for Y2H analysis, DNA ligation reactions were performed.  

The ligation reaction was done using three separate dilution ratios to ensure the optimum 

conditions for the constructs to be produced (Table 2.3).     
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Table 2.3: DNA ligation reaction ratios  

 Ratios 

Reagents 1:1 1:3 1:5 

Insert DNA 1µl 3µl 5µl 

Vector DNA 1µl 1µl 1µl 

T4 DNA Ligase buffer (10x buffer) 1µl 1µl 1µl 

T4 DNA Ligase (5 Weiss units/µl) 1µl 1µl 1µl 

ddH2O 6µl 4µl 2µl 

Total volume 10µl 10µl 10µl 

The T4 DNA ligase buffer as well as the 5 Unit T4 DNA ligase reagent was supplied by Promega Corp., USA.  The 

ratio of insert DNA to vector DNA was 1:1. 

 

The ligation reactions were incubated at 4ºC for a period of 16 hours (overnight) to allow 

ligation of the insert and vector DNA to take place.  Subsequently, 5μl of each reaction was 

transformed into E.coli (DH5α bacterial strain; Appendix VI) (Section 2.12.1) and plated onto 

LB agar plates (Appendix I) containing the appropriate antibiotic.  The plates were incubated at 

37˚C in a stationary incubator in a model 329 stationary CO2 incubator (Former Scientific, USA) 

overnight.  Successful transformed colonies were subsequently identified by colony PCR 

(Section 2.2.3). 

 

2.8 BACRTERIAL STRAINS, YEAST STRAINS AND CELL LINES 

2.8.1 Bacterial Strains 

The transformation of ligation reactions (Section 2.7.3) into E.coli strain DH5α was carried out 

in order to select and purify Y2H constructs.  The transformed colonies were selected according 

to their ability to grow on antibiotic selection LB agar plates (Appendix I) and the recombined 

plasmids identified by colony PCR (Section 2.2.3).  For the selection of pGBKT7 recombinant 

plasmids, Kanamycin (100mg/ml stock) was used as the antibiotic and when selecting pACT2 

recombinant plasmids, Ampicillin (50mg/ml stock) was used. 

 

2.8.2 Yeast Strains 

After identification of the recombined KCNE2-pGBKT7 construct, the purified product was 

cloned into the AH109 yeast strain (Section 2.11.2).  The clones present in the pre-transformed 
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Clontech MATCHMAKER cDNA library (Section 2.13.1) which was used in the Y2H screen 

had been transformed into the yeast strain Y187. 

 

2.9 GENERATION OF E.coli DH5α COMPETENT CELLS 

An aliquot of 20μl of E.coli DH5α frozen (-80ºC) glycerol stock was used to inoculate 10ml of 

LB media (Appendix I) without any antibiotics in a 50ml polypropylene tube.  The tube was 

incubated at 37ºC in a shaking incubator (YIH DER model LM-530, Scilab Instrument Co., Ltd., 

TW) for 16 hours at 200rpm after which 300μl of the culture was inoculated in 2L Erlenmeyer 

flask containing 200ml of LB media (Appendix I).  These flasks were shaken on a Labcon orbital 

shaker (Labcon (Pty), Ltd., RSA) at room temperature for 16 hours at 70rpm until the culture 

reach the mid-log growth phase (OD600nm = 0.6). 

Once the culture has reached the acquired optical density, the 200ml liquid culture was 

transferred to 4 x 50ml polypropylene tubes and centrifuged for 15 minutes at 4ºC, 3000rpm in a 

Beckman model TJ-6 centrifuge (Beckman Coulter, Scotland, UK).  The supernatant was 

discarded and the pellet resuspended in 8ml of ice-cold CAP buffer (Appendix I). 

The suspension was centrifuged again in a Beckman model TJ-6 centrifuge (Beckman Coulter, 

Scotland, UK) at 4ºC, 3000rpm to re-pellet the cells.  The supernatant was removed for the 

second time and the pellet resuspended in 4ml of ice-cold CAP buffer (Appendix I).  The cells 

were transferred in volumes of 200µl into 2ml eppendorf tubes and stored at -80ºC until it was 

needed for bacterial transformation reactions (Section 2.12.1). 

 

2.10 CULTURING OF THE H9C2 CELL LINE 

2.10.1 Culture of H9C2 cells from frozen stocks 

2.10.1.1 Thawing the cells 

Frozen Rattus norvegicus (rat) H9C2 cardiac myocytes were purchased from the American Type 

Culture Collection (ATCC, USA).  The frozen stock was thawed rapidly by immersing the tube 

in a 37ºC water bath for 10 minutes.  After adequate thawing of the cells, the vile was 

immediately sterilized by spraying the outside with 70% ethanol.  
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2.10.1.2 Removing DMSO from stocks and culturing cells 

Dimethyl sulphoxide (DMSO) is used as a cryoprotectant and added to cell media to reduce ice 

forming, thereby preventing cell death during the freezing process.  It is used in a slow-freeze 

method after which cells can be stored in liquid nitrogen.  In order to remove this toxic substance 

from the frozen stocks and to ensure viability of the cells the following method was used:  The 

thawed stock culture was added to 1ml of pre-warmed growth media (Appendix I) in a 12ml 

Greiner tube (Greiner Bio-one, GER) and mixed by moderate pipetting.  Another 5ml of growth 

media was added to the tube and the cells pelleted by centrifugation at 1000rpm for one minute 

using a Sorval® GLC-4 General Laboratory centrifuge (Separations Scientific, RSA).  The 

supernatant was removed and the pellet resuspended in an additional 5ml of growth media and 

the cells pelleted again using a Sorval® GLC-4 General Laboratory centrifuge (Separations 

Scientific, RSA).  The cell pellet was subsequently resuspended in 10ml of growth media and 

transferred into a T25 culture flask.  The flask was lightly swirled to make sure the cells were 

distributed evenly throughout the flask.  The flask was then incubated in a Farma-therosteri-cycle 

5% carbon dioxide (CO2) humidified incubator (Farma International, USA) at 37ºC.     

 

2.10.2 Splitting cell cultures  

When cells were needed for various experiments, they were cultured at 37ºC in a Farma-

therosteri-cycle 5% CO2 humidified incubator (Farma International, USA) and split every two to 

four days depending on when they reached approximately 80-90% confluency.  Before splitting 

the cells, the growth media was removed with a sterile pipette and the cells washed with trypsin 

to remove dead cells and/or cell debris.  After this wash step, the trypsin was removed and an 

additional volume of trypsin (Table 2.4) was added to facilitate detachment of the cells from the 

growth surface.  The flask was then incubated at room temperature for approximately 10-15 

minutes after which a volume of growth media was added (Table 2.4) in which the detached cells 

were resuspended.   

The suspension was transferred to a 12ml Greiner tube (Greiner Bio-one, GER) and centrifuged 

at 1000rpm for 30 seconds using a Sorval® GLC-4 General Laboratory centrifuge (Separations 

Scientific, RSA) to create a pellet.  The pellet was resuspended in 4ml of growth media.  

Depending on the confluency of the cells before the splitting process began, the size of the flask 
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as wells as the number of flasks into which the cells will be split, an estimated volume of 

resuspended cells were placed into flasks containing fresh sterile growth media. 

 

Table 2.4: Standard Trypsin volumes for detachment of cells from growth surface 

Flask size Volume of Trypsin Volume of media 

Small (25cm2) 1ml 4ml 

Medium (75cm2) 3ml 4ml 

Large (150cm2) 5ml 4ml 

Abbreviations: cm2, square centimetre; ml, millilitre  

 

2.10.3 Differentiation of H9C2 cells 

In order to facilitate differentiation of cardiomyocytes into myotubes, the growth medium was 

removed from the flasks or 6-well plates after 24 hours of incubation at 37ºC in a Farma-

therosteri-cycle 5% CO2 humidified incubator (Farma International, USA).  The cells were 

washed with a small volume of differentiation medium (Appendix I) after which the appropriate 

volume of differentiation medium was added to each container (3ml to each well of the 6-well 

plates or 23ml to a large 150cm2 culture flasks).  The cells were then incubated for 10-14 days at 

37ºC in a Farma-therosteri-cycle 5% CO2 humidified incubator (Farma International, USA).  On 

the fifth day, the cells were washed again and new differentiation media was added and on day 

10-14, the cells were viewed on an Olympus IX 81 motorised inverted microscope (Olympus, 

GER) to confirm differentiation of the cells.  The cells were later used in 3D co-localization 

assays (Section 2.17). 

 

2.11 TRANSFORMATION OF PLASMIDS INTO PROKARYOTIC CELLS 

2.11.1 Bacterial transformations 

Prior to transforming plasmids of interest into the bacteria, tubes containing 200μl aliquots of 

E.coli DH5α cells (Section 2.9) were removed from the -80ºC freezer and thawed on ice for 20 

minutes.  Once the cells had thawed, 5μl of plasmid preparation (Section 2.1.1) or 5μl of ligation 

reaction (Section 2.7.3) was added to the tube and the mixture was incubated on ice for an 
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additional 20 minutes.  Following this incubation step, the samples were heat-shocked for 

exactly 45 seconds at 42ºC in a heating block (Dry Block Heater HB2) (Hägar designs, RSA).  

The samples were removed and incubated at room temperature for two minutes.  Following this, 

1ml of LB media (Appendix I) was added to each sample and incubated at 37ºC for one to two 

hours shaking at 200rpm in a YIH DER model LM-530 (Scilab Instrument Co., Ltd., TW) 

shaking incubator.   

The samples were subsequently centrifuged for four minutes in a bench top centrifuge (Labnet 

International Inc., USA).  Next, 200μl of the supernatant was drawn off with a pipette and the 

rest discarded.  The 200μl was used to resuspend the pellet and plate the sample on LB agar 

plates (Appendix I) containing the appropriate antibiotic.  The plates were inverted and incubated 

for 16 hours at 37ºC in a model 329 stationary CO2 incubator (Former Scientific, USA). 

 

2.11.2 Yeast transformations 

In order to perform yeast transformations, 200μl aliquots of the yeast strain to be transformed 

(AH109 or Y187) were plated onto YPDA agar plates (Appendix I).  These were inverted and 

incubated at 30ºC for three to four days in a Sanyo MIR262 stationary ventilated incubator 

(Sanyo Electronic Co., Ltd., JP).  Once the yeast has grown enough, a volume representing 20-

50μl of yeast cells were picked from the plate and resuspended in 1ml of sterile Millipore water 

in a 2ml Eppendorf tube.  The cells were pelleted by centrifugation for 30 seconds at 2000g in an 

Eppendorf model 5417C centrifuge (Eppendorf International, GER).  The supernatant was 

discarded and the pellet resuspended in 1ml of Lithium Acetate (Appendix I) and incubated at 

30ºC for five minutes in a stationary ventilated incubator (Sanyo Electronic Co., Ltd., JP).  Again 

the cells were pelleted by centrifugation at 2000g for 30 seconds in an Eppendorf model 5417C 

centrifuge (Eppendorf International, GER) and all the Lithium Acetate removed with a pipette.  

Following this, five reagents were rapidly added to the pellet in the following order: 240μl 50% 

Polyethylene glycol (PEG), 36μl 1M Lithium Acetate, 25μl of 2mg/ml heat-denatured and snap-

cooled herring sperm DNA (Promega Corp., USA), 10-20μl E.coli plasmid preparation (Section 

2.1.1) and 30-40μl sterile Millipore water.  The sample was then generously mixed by vortexing 

for at least one minute, using a Snijders model 34524 press-to-mix vortex (Snijders Scientific, 

NL).  The sample was incubated at 42ºC for 25 minutes in a dry heating block (Dry Block 
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Heater, HB2) (Hägar designs, RSA).  After incubation, the cells were pelleted again by 

centrifuging the tubes for 30 seconds at 2000rpm in an Eppendorf model 5417C centrifuge 

(Eppendorf International, GER).  The supernatant was completely removed with a pipette and 

the pellet resuspended in 200μl of sterile Millipore water.  The suspension was plated onto the 

appropriate selection plates (Appendix I), inverted and incubated at 30ºC for two to five days in a 

Sanyo MIR262 stationary ventilated incubator (Sanyo Electronic Co., Ltd., JP). 

 

2.12 ASSESMENT OF Y2H CONSTRUCTS 

2.12.1 Phenotypic assessment of yeast strains 

Both yeast strains used in the Y2H analysis (AH109 and Y187) were assessed based on their 

phenotype, prior to transformations being performed.  The strains were both plated onto agar 

plates lacking individual essential amino acids (Appendix I), i.e., SD-Ade, SD-Trp, SD-His, SD-Leu 

and SD-Ura.  Yeast cells that have not yet been transformed and were able to grow on SD-Ura and 

unable to grow on SD-Ade, SD-Trp, SD-His and SD-Leu plates were used for transformations and 

subsequently Y2H analysis.   

The bait construct was transformed into AH109 (Section 2.11.2) and streaked out onto each of 

the respective plates SD-Ade, SD-Trp, SD-His, SD-Leu and SD-Ura.  The reason for this test was to 

ensure that the transformed AH109 strain was not able to activate transcription of reporter genes 

automatically.  The yeast strain AH109 containing the successfully transformed bait construct 

should be able to grow only on SD-Trp and SD-Ura agar plates, while the Y187 yeast strain 

containing the prey construct should only be able to grow on SD-Leu and SD-Ura plates. 

 

2.12.2 Toxicity test of transformed cells 

In order to continue with the Y2H library mating (Section 2.13.4), it was essential to test whether 

the bait-construct had a toxic effect on the AH109 yeast host strain.  This was done by generating 

a linearised growth curve of AH109 transformed with the KCNE2-pGBKT7 bait construct as 

well as the AH109 transformed with an intact, non-recombinant pGBKT7 vector.  The cultures 

were set up simultaneously under identical experimental conditions which were as follows: each 

of the strains was grown in culture until it reached the stationary phase.  This was done by 

placing the yeast in SD-Trp media (Appendix I) in 50ml polypropylene tubes followed by 
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incubation at 30ºC in a YIH DER model LM-530 (Scilab Instrument Co., Ltd., TW) shaking 

incubator.  A 1:10 dilution of each sample was made in SD-Trp media and incubated for a further 

24 hours in a 200ml Erlenmeyer flask at 30ºC in a YIH DER model LM-530 (Scilab Instrument 

Co., Ltd., TW) incubator shaking at 200rpm.  During this incubation period, 1ml aliquots were 

taken every two hours over a period of eight hours and the optical density (OD) measured at 

600nm.  A reading at the 24 hour time point was also taken.  Following these measurements, a 

linearised growth curve was set up using the log values of these OD measurements over the time 

periods set out.  The slopes of the graphs were used to compare the difference in growth rate 

between these two transformed AH109 strains.   

 

2.12.3 Mating efficiency testing 

Preliminary yeast matings were performed in small scale in order to determine what affect the 

bait construct had on the mating efficiency of the AH109 yeast strain.  In order to do this, AH109 

transformed with the pGBKT7-KCNE2 construct was mated with the prey host strain, Y187 

transformed with a non-recombinant prey vector, pACT2 or the control vector pTD1.1 (BD 

Biosciences, Clontech, USA).  Control matings was also performed which included AH109 

transformed with non-recombinant pGBKT7 or the control vector pGBKT-53 (BD Biosciences, 

Clontech, USA) to be mated with the prey host strain, Y187 transformed with non-recombinant 

prey vector pACT2 or the control vector, pTD1.1.    

 

Table 2.5: Different nutritional selection plates for the yeast strains AH109 and Y187 

 Nutritional Selection plates 

Yeast strains SD-Trp SD-Leu 

AH109 pGBKT7-KCNE2    

AH109 pGBKT7    

AH109 pGBKT-53    

Y187 pACT2    

Y187 pTD1.1    

Abbreviations: SD, single dropout; -Trp, without Tryptophan; -Leu, without Leucine. 
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All the strains used in the mating efficiency testing were plated onto their appropriate selection 

plates (Table 2.5) and incubated at 30ºC for two to five days inverted in a Sanyo MIR262 

stationary ventilated incubator (Sanyo Electronic Co., Ltd., JP). 

After the two to five day incubation period, a single colony was picked from each plate and used 

in the mating efficiency experiment.  The matings were performed in 1ml YPDA media 

(Appendix I) which was placed in a 2ml Eppendorf tube and subsequently incubated at 30ºC in a 

YIH DER model LM-530 (Scilab Instrument Co., Ltd., TW) incubator shaking at 200rpm. 

Following a 16 hour incubation period, serial dilutions (1:10, 1:100, 1:1000 and 1:10 000) of the 

mating cultures were plated onto SD-Trp, SD-Leu and SD-Trp-Leu agar plates and were incubated at 

30ºC for four to five days inverted in a Sanyo MIR262 stationary ventilated incubator (Sanyo 

Electronic Co., Ltd., JP).  Following this, the colonies on each plate were counted and the mating 

efficiency calculated (Appendix III). 

 

2.13 Y2H ANALYSIS 

Briefly, the Y2H screening system is one of the most common molecular techniques used to 

identify protein-protein interactions (Berggård et al. 2007).  The advantages of using Y2H are 

that the system is fairly easy to use, little optimization is needed and can be completed within a 

reasonable time frame and the system is reasonably priced.  The Y2H analysis also allows the 

identification of low affinity interactions and provides simultaneous protein identification and 

gene cloning (Berggård et al. 2007). 

The yeast transcription factor (Gal4) is comprised of two domains; the GAL4 DNA-binding 

domain (GAL4-BD) and the GAL4 activation domain (GAL4-AD) that facilitates transcriptional 

activation (Figure 1.13).  The bait protein (in this study the C-terminal of KCNE2) is expressed 

as a fusion protein along with the GAL4-BD and the prey proteins are expressed as fusion 

proteins with GAL4-AD (Figure 2.2).  If a positive interaction takes place between the bait and 

prey protein, the GAL4-BD and GAL4-AD are brought together and ultimately initiates 

transcriptional activation of the reporter genes (Chapter 2). 

 

Stellenbosch University  http://scholar.sun.ac.za



61 
 

 

Figure 2.2: An illustration of a Yeast two-hybrid system.  The yeast transcription factor (Gal4) is comprised of 

two domains; the GAL4 DNA-binding domain (GAL4-BD) and the GAL4 activation domain (GAL4-AD).  In the 

Y2H system two plasmids are constructed; one encoding the bait protein fused to the GAL4-BD and the other 

encoding the prey protein fused with the GAL4-AD.  With positive interaction between the bait and prey proteins, 

transcription is activated and the reporter gene/s are activated.  Adapted from:  http://www.scq.ubc.ca/the-yeast-two-

hybrid-assay-an-exercise-in-experimental-eloquence/ 

 

2.13.1 Cardiac cDNA library  

In order to carry out the Y2H library assay, a pre-transformed Clontech MATCHMAKER human 

cardiac cDNA library (BD Bioscience, Clontech, USA) was used.  This consisted of the 

S.cerevisiae Y187 yeast strain transformed with a cardiac cDNA library in the pACT2 cloning 

vector. 

This library was constructed from a pool of normal, whole hearts of 3 Caucasian males between 

the ages of 28 and 47 years.  The library was XhoI-(dT)15 primed and it was estimated to contain 

approximately 3.5x106 independent clones which were inserted into the pACT2 vector at 

locations between the XhoI and EcoRI sites.  The ranges of insert sizes were between 0.4 and 

4.0kb with the average fragment for this library being approximately 2.0kb in size.    

 

2.13.2 Establishment of bait culture 

After the successful transformation of the bait vector (pGBKT7-KCNE2) into AH109, four 

single colonies were picked from the selection plate and inoculated into four separate 500ml 
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Erlenmeyer flasks, each containing 50ml of SD-Trp liquid media (Appendix I).  The flasks were 

incubated in a shaking YIH DER model LM-530 (Scilab Instrument Co., Ltd., TW) incubator 

shaking at 30ºC overnight.  The reason for generating four bait cultures was to facilitate the 

pooling of the initial cultures which will allow the generation of a final bait culture of at least 

1x1010, i.e. 100-fold excess of bait to prey, to ensure high mating efficiency.  Following 

overnight incubation, the four initial bait cultures were transferred to four separate 50ml 

polypropylene tubes and the cells pelleted by centrifugation at 3000rpm for 10 minutes in a 

Beckman model TJ-6 centrifuge (Beckman Coulter, Scotland, UK).   

The supernatants were discarded and the pellets resuspended together in 50ml SD-Trp media.  

Subsequently the suspension was transferred to a single 500ml Erlenmeyer flask and the pooled 

culture was incubated for 16 hours at 30ºC shaking at 200rpm in a YIH DER model LM-530 

(Scilab Instrument Co., Ltd., TW) incubator.  After incubation, the titre of the bait culture was 

determined by measuring the OD of a 1ml aliquot of the bait culture at 600nm.  The titre was 

confirmed by means of haemocytometer cell count (Section 214.3). 

The pooled bait culture was centrifuged at room temperature at 30ºC for 10 minutes in a 

Beckman model TJ-6 centrifuge (Beckman Coulter, Scotland, UK) to pellet the cells, after which 

the supernatant was removed and the cells resuspended in the residual SD-Trp media.  This 

volume was used to make 10μl aliquots of culture to be used in subsequent control mating 

experiments.  

  

2.13.3 Haemocytometric cell count  

In order to verify the titre of the bait culture that will be used in the library mating experiment, a 

Neubauer Haemocytometer (Figure 2.3) (Superior, GER) was used to count the cells.  This was 

done by placing the glass coverslip over the counting surface of the Haemocytometer and 

pipetting 10μl of the cell culture into the filling notch in counting chamber (Figure 2.3).  The 

chamber filled by means of capillary action. 

The chamber was placed on the platform of a microscope (Nikon TMS, Nikon Instruments Inc., 

USA) and the cells view under the lowest magnification.  The cells that were in the correct areas 

of the Haemocytometer were counted and used in a formula to calculate the number of cells per 

microliter. The calculation specifications are shown in Appendix III. 
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Figure 2.3:  Representation of a Haemocytometric counting chamber.  Neubauer Haemocytometer side view, 

top view and enlarged view of counting grid.  The Haemocytometer consists of a thick glass slide with two counting 

chambers which are each divided into 9 1mm squares.  The grid on the surface of the counting chamber is engraved.  

Figure taken from: http://www.swtafe.vic.edu.au/toolbox/lab_ops/laboratory/studynotes/SNHaemo.htm 

 

2.13.4 Library mating 

To perform library mating experiments, a 1ml aliquot of the pre-transformed cardiac cDNA 

library (BD Bioscience, Clontech, USA) was removed from the -80ºC freezer and thawed at 

room temperature.  The library sample was vortexed using a Snijders model 34524 press-to-mix 

vortex (Snijders Scientific, NL).  A 10μl aliquot was pipetted into a sterile 1.5ml sterile micro-

centrifuge tube for library titering (Section 2.13.5).  

The pellet containing the AH109 pGKKT7-KCNE2 construct (Section 2.13.2) was resuspended 

in 45ml of 2x YPDA media (Appendix I) supplemented with 10μg/ml Kanamycin (Kan) in a 2L 

Erlenmeyer flasks.  The remaining 990μl of the aliquoted library culture was added to the Flask 

This  mating culture was incubated overnight at 30ºC, while shaking at 200rpm in a YIH DER 

model LM-530 shaking incubator (Scilab Instrument Co., Ltd., TW).  After the incubation 

period, the mating culture was transferred into a single sterile 50ml polypropylene centrifuge 

tube and the cells pelleted by centrifugation at 3000rpm for five minutes in a Multex centrifuge 

(MSE Instruments, UK) after which the supernatant was discarded.  The flask in which the 

library mating was performed was rinsed twice with 40ml of 2x YPDA media containing 

10μg/ml Kan and used to resuspend the pellet.  After resuspending the pellet, the cells were re-

pelleted by centrifugation for 10 minutes at 3000rpm (Multex centrifuge, MSE Instruments, 
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UK).  After the final centrifugation step, the supernatant was removed and the pellet resuspended 

in 15ml of 0.5x YPDA media containing 10μg/ml Kan (Appendix I). 

In order to determine the bait:library mating efficiency (Section 2.13.5), a serial dilution (1:1, 

1:100, 1:1000, 1:10 000) of this cell suspension was made and 100μl of each dilution 

subsequently plated onto SD-Leu , SD-Trp and SD –Leu-Trp agar plates.  Two-hundred and fifty 

microlitres of the remaining mating culture was plated onto each of 60 140mm Triple Dropout 

(TDO) agar plates (agar plates lacking tryptophan, leucine and histidine) (Appendix I).  The 

TDO plates were subsequently incubated inverted, in a Sanyo MIR262 stationary incubator at 

30°C for three weeks. 

 

2.13.5 Library titre and Library mating efficiency 

The serial dilution of the mating cultures described in section 2.13.4 were plated onto SD-Leu , 

SD-Trp and SD-Leu-Trp 90mm agar plates (Appendix I) and incubated upside down at 30°C for four 

days in a Sanyo MIR262 stationary ventilated incubator (Sanyo Electronic Co., Ltd., JP).  

Subsequently the colonies were counted in order to perform the calculations necessary to 

establish the mating efficiency of the library and the number of library plasmids screened 

(Appendix II). 

 

2.13.6 Activation detection of nutritional reporter genes 

2.13.6.1 Selection of transformed yeast colonies 

The yeast strain transformed with the bait construct pGBKT7-KCNE2 (Section 2.11.2) was 

plated onto SD-Trp agar plates and incubated for four days at 30°C in a Sanyo MIR262 stationary 

ventilated incubator (Sanyo Electronic Co., Ltd., JP).  Following the incubation period, 

transformant colonies were picked and used in small and large scale bait cultures (Section 

2.13.2) as well as interaction specificity tests (Section 2.13.9). 

 

2.13.6.2 Selection of diploid yeast colonies containing putative interactor peptides 

Diploid colonies, (the yeast colonies containing the bait- and prey-fusion peptides), were 

identified by plating the yeast colonies firstly onto TDO and then quadruple dropout (QDO) 
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plates (Appendix I).  The yeast cells that were able to grow on the TDO plates signified the 

transcriptional activation of the HIS3 nutritional reporter gene, while growth on the QDO plates 

suggested transcriptional activation of the HIS3 as well as the ADE2 nutritional reporter genes.  

For further verification of HIS3 reporter gene activation, 3-Amino-1, 2, 4-triazole (3-AT) was 

added to QDO plates (Appendix I).  This is a heterocyclic organic compound which acts as a 

competitive inhibitor of the product of the HIS3 gene, which is an enzyme catalysing the sixth 

step of histidine production.  Thus, by adding 3-AT to the QDO selection plates, cultures which 

are dependent on plasmids containing the HIS3 gene to produce histidine, would have to produce 

higher levels of histidine in order for them to survive.  The activation of these reporter genes are 

evidence of the bait and prey peptides interacting within the diploid colonies.  Nutritional 

selection was performed as follows: 

The library mating culture (Section 2.13.4) was plated onto 140mm TDO agar plates (Appendix 

I) and incubated at 30°C inverted for three weeks in a Sanyo MIR262 stationary ventilated 

incubator (Sanyo Electronic Co., Ltd., JP).  The growth of the colonies were examined every 

seventh day and colonies with a growth diameter of 2mm and more were selected and plated 

onto QDO agar plates (Appendix I).  These plates were then incubated in a Sanyo MIR262 

stationary ventilated incubator (Sanyo Electronic Co., Ltd., JP) at 30°C for four days.  Following 

the incubation period, the growing colonies were judged on their ability to activate the necessary 

nutritional reporter genes and streaked onto fresh QDO agar plates containing 3-AT (Appendix I) 

and incubated for a further four days at 30°C in a Sanyo MIR262 stationary ventilated incubator 

(Sanyo Electronic Co., Ltd., JP).  These plates were then used for the x-α-galactosidase assay 

(Section 2.13.7) which assessed the activation of the MEL1 reporter gene. 

 

2.13.7 Activation detection of colourimetric reporter genes 

2.13.7.1 X-α-galactosidase assay 

The x-α-galactosidase assays were performed in order to test the activation of the MEL1 reporter 

gene by the specific interactions between the bait and prey peptides (Section 2.13.6.2).  This 

assay was performed as follows:  Diploid yeast colonies (which could activate the HIS3 and 

ADE2 genes) identified through methods in section 2.13.6.3 were replicated onto Hybond N+ 

nylon membranes and placed colony side up onto QDO plates containing 20mg/ml x-α-
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galactosidase solution (BD Bioscience, Clontech, USA).  The plates were placed in a Sanyo 

MIR262 stationary ventilated incubator (Sanyo Electronic Co., Ltd., JP) for two days at 30°C.  

Following the incubation period, the intensity of the blue colour produced by the colonies that 

activated the MEL1 reporter gene was analysed.    

 

2.13.8 Rescuing prey plasmids from diploid colonies  

In order to identify putative proteins interactors detected through the Y2H screen, the prey 

plasmids needed to be isolated from the diploid yeast colonies.  The plasmid DNA was extracted 

from the diploid yeast cells as described in section 2.1.3 after which it was transformed into 

E.coli DH5α bacterial cells as discussed in section (2.11.1).  The transformed cells were plated 

onto LB agar plates containing 50mg/ml Ampicillin (Appendix I), only allowing growth of 

transformed cells containing the prey constructs.  These prey constructs were subsequently 

isolated using the method described in section 2.1.1.  The purified constructs were then 

transformed into the yeast strain Y187 (Section 2.11.2) in order to be used in the interaction 

specificity tests (Section 2.13.9). 

 

2.13.9 Interaction specificity test 

Interaction specificity tests along with nutritional (Section 2.13.6) and colourimetric (Section 

2.13.7) reporter gene assays were necessary to establish whether or not the interactions between 

the pGBKT7-KCNE2 construct and the putative prey interactors identified in the Y2H screen 

were specific.  The Y187 colonies expressing the specific prey plasmids were individually mated 

with the yeast strain AH109 transformed with pGBKT7-KCNE2 bait construct, AH109 

transformed with non-recombinant pGBKT7, AH109 transformed with the pGBKT7-53 control 

bait-plasmid encoding murine p53 (BD Bioscience, Clontech, USA) and AH109 transformed 

with pGBKT7-WFS1.   

The protein encoded by WFS1 is a neuronal-specific transmembrane protein which shows 

highest expression in the brain and is localized to the endoplasmic reticulum, thus no interaction 

with KCNE2 is expected.   
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The diploid colonies were selected and streaked onto TDO and QTO selection plates (Appendix 

I) to test their ability to activate the specific reporter genes (Section 2.13.6.2), thus establishing 

whether the prey-peptides were able to interact with the heterologous baits as well as with the 

AH109 pGBKT7-KCNE2 bait construct.  Prey peptides that only interacted with the AH109 

pGBKT7-KCNE2 bait construct were identified as specific putative interactors.  Inserts of these 

colonies were selected for nucleotide sequencing (Section 2.4) and their sequences subsequently 

analysed (Section 2.5) in order to determine their identities. 

 

2.14 CO-IMMUNOPRECIPITATION (Co-IP) PREPARATION  

2.14.1 Hypoxia treatment of differentiated H9C2 cardiomyocytes 

To create hypoxic conditions, medium tissue culture flasks with 70%–80% confluent 

differentiated H9C2 cells were used.  The culture medium was removed from the flasks and 

replaced with 18ml Esuni buffer (Appendix I).  The flasks were placed in the hypoxia chamber 

along with one Petri dish filled with sterile water to provide adequate humidification of the 

cultures.  A hypoxic environment was created by removing all or most of the oxygen (O2) from 

the system.  This was achieved by flushing the system with a 1% O2 gas mixture at a flow rate of 

20L/minute for approximately four minutes.  The chamber was then placed in a tissue culture 

incubator with 2% O2 and 5% CO2 at 37 °C for two hours.  Following the incubation period, the 

cells were lysed as described in section 2.14.2. 

 

2.14.2 Cell lysis  

After the differentiation of H9C2 cardiomyocytes in large tissue culture flasks or medium tissue 

culture flasks for Hypoxia treatment (section 2.14.1) for approximately 14 days (Section 2.10.3), 

the cells needed to be lysed in order to be used for subsequent co-immunoprecipitation (Section 

2.15) and western blot (Section 2.16) analysis.  Lysis of cells was achieved as follows:  The 

growth media was removed and 5ml of trypsin was added to the flask.  The flask was incubated 

at 37ºC for 10-15 minutes to facilitate the detachment of the cells after which a cell scraper was 

used to scrape the remaining cells off from the growth surface.  The detached cells were 

transferred to a 50ml polypropylene tube to which a volume of 30ml of growth media was added 

to deactivate the trypsin.  The tubes were centrifuged at 4ºC for three minutes at 2500rpm in a 
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Beckman model TJ-6 centrifuge (Beckman Coulter, Scotland, UK).  The supernatant was 

discarded and the pellet resuspended in 1ml of PBS (Appendix I) and the suspension transferred 

to 2ml eppendorf tubes.  The cells were re-pelleted at 9000rpm for two minutes and the PBS 

removed with a pipette.  Lysis buffer was prepared (Appendix I) and 300µl used to resuspend the 

pellet.  The mixture was placed on ice for at least 15 minutes after which one scoop, 

approximately 0.5ml, of ZROB05 Ceria Zirconium Oxide beads (0.5mm diameter) (Next 

Advance Inc., USA) was added to the suspension and placed in a Bullet Blender® (Gentaur, UK) 

for one minute at speed four.  The blending step was repeated three times with five minute 

waiting periods in between.  Centrifugation at 9000rpm followed in a bench top centrifuge 

(Labnet International Inc., USA) for two minutes after which the supernatant was transferred to 

fresh 1.5ml eppendorf tubes and stored at -80ºC until required.   

 

2.14.3 Bradford protein concentration determination 

Before storage of samples prepared in section 2.14.2, 1µl of each lysed sample was aliquoted and 

used to perform a Bradford assay in order to assess the protein concentration.  This was done as 

follows: 

In order to calculate the standard curve, 10µl of serial diluted bovine serum albumin (BSA) 

ranging from 0-1000µg/µl was loaded into the wells of a luminometer plate together with1µl of 

the lysate samples in duplicate.  Two hundred microlitres of Bradford reagent was added to all of 

the standard as well as the lysate samples.  The plates were read on a Synergy HT luminometer 

(BioTek Instruments Inc., USA) and were used to determine the protein concentration of each 

well.  The KC4™ v 3.4 program (BioTek Instruments Inc., USA) was used to calculate and set 

up the standard curve, as well as each sample’s protein concentration at an absorbance of 595nm. 

 

2.15 CO-IMMUNOPRECIPITATION (CO-IP) 

Following sections 2.14, the lysates were thawed on ice and pre-cleared by adding 30µl Protein 

G agarose beads to each sample and incubating it at 4ºC on a rotating wheel for 30 minutes.  

Following incubation, the samples were centrifuged at 9000rpm for 30 seconds in a bench top 

centrifuge (Labnet International Inc., USA) and the supernatant transferred to fresh 1.5ml 

eppendorf tubes.  One microgram of the appropriate primary antibody was added to each lysate 
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samples and the volume made up to 100µl by adding lysis buffer containing protease inhibitors 

and phenylmethylsulfonyl fluoride (PMSF) (Appendix I).  This mixture was incubated overnight 

at 4ºC on a rotating wheel. 

The following morning, 60µl of Protein G agarose was added to each sample after which an 

incubation period of one hour followed at 4ºC rotating.  Afterwards, the beads were collected by 

centrifugation at 9000rpm for 30 seconds in a bench top centrifuge (Labnet International Inc., 

USA).  The beads were washed four times with ice cold prepared lysis buffer (Appendix I) by 

mixing it and collecting it again by means of centrifugation at 9000rpm for 30 seconds in a 

bench top centrifuge (Labnet International Inc., USA).   

After completion of all the wash steps, 35µl of SDS loading dye (Appendix I) was added to each 

sample and denatured at 95ºC for five minutes after which the beads were pelleted again and the 

supernatant loaded onto SDS-PAGE gel (Section 2.3.2).  Co-immunoprecipitation (Co-IP) 

analysis was performed in order to verify the interactions of the putative positive prey interactors 

with the C-terminal of KCNE2 as identified by the Y2H experiments (Section 2.13). 

 

2.16 WESTERN BLOTTING 

2.16.1 Membrane blocking 

Following SDS-PAGE (Section 2.3.2), the proteins were transferred to a membrane using the 

iBlot® Dry Blotting system (Invitrogen, RSA).   

After complete transfer of the proteins onto the membrane, the membranes were removed from 

the transfer apparatus and washed in TBST for approximately two minutes.  Afterwards, the 

membrane was placed in 5% fat free powder milk (Weigh-less) supplemented with 0.01% 

Tween-20 to ensure the blockage of all not specific binding sites.  The membrane was incubated 

at room temperature for one hour shaking on a Stuart® orbital shaker SSL1(Barloworld 

Scientific Ltd., UK).   

 

2.16.2 Addition of primary antibody 

After blocking of the membranes (Section 2.15.1), the membranes were rinsed with TBST and 

the primary antibodies diluted in 5% fat free powder milk supplemented with 0.01% Tween-20 
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(Table 2.6).  The membranes were then placed in a container along with the appropriate primary 

antibody and incubated overnight shaking at 4°C on an Orbit 300 shaker (Labnet International 

Inc., USA). 

 

2.16.3 Addition of secondary antibody 

Following section 2.16.2, the membranes were washed in TBST (Appendix I) for approximately 

15 minutes after which the membranes were placed in 5% fat free powder milk supplemented 

with 0.01% Tween-20 containing the appropriate horseradish peroxidase (HRP) conjugated 

secondary antibodies (Santa Cruz Biotechnology Inc., USA) (Table 2.6).  The membranes were 

placed on a shaker for one hour shaking at room temperature on a Stuart® orbital shaker 

SSL1(Barloworld Scientific Ltd., UK).  Subsequently, the membranes were rinsed twice in 

TBST and then washed for at least 30 minutes in TBST (Appendix I). 

 

Table 2.6: List of primary and secondary antibodies and their optimized concentrations 

used in Co-immunoprecipitation as well as Western blot assays 

Antigen Primary antibody  

Optimum 

ratio 
Secondary antibody  Optimum ratio 

KCNE2 KCNE2* 1:200 Donkey anti-rabbit* 1:2000 

CRYAB CRYAB†  1:1000 Donkey anti-mouse* 1:2000 

FLNC Filamin 2* 1:1000 Donkey anti-goat* 1:2000 

VDAC1 VDAC1†  1:200 Donkey anti-mouse* 1:2000 

Manufacturer: †, Abcam, Biocom Biotech, RSA; *, Santa Cruz Biotechnology Inc., USA.  

 

 

2.16.4 Chemiluminescent visualization of membrane proteins 

Following sections 2.16.1-2.16.3, the membranes were taken to a dark room where the two 

substrate components of the SuperSignal® West Pico Chemiluminescent Substrate kit (Thermo 

Scientific, USA), SuperSignal West Pico Luminol/Enhancer solution and the SuperSignal West 

Pico Stable Peroxide solution, were mixed in a ratio of 1:1 and used to label the membranes for 

five minutes.  After removing the excess chemiluminescent reagent, the membranes were placed 

in an autoradiography cassette and covered with a transparent plastic sheet after which they were 
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exposed to CL-Xposure™ autoradiography film (Thermo Scientific, USA).  A glow-in-the-dark 

sticker was placed on the right hand corner next to the membranes for orientation purposes.   

The exposure time varied between 10 seconds and three minutes, depending on the strength of 

the signal.  Following adequate exposure, the film was developed in a Hyperprocessor™ 

automatic autoradiography film processor (Amersham Pharmacia Biotech UK Ltd., UK) and the 

protein bands visualized.  

 

2.17 THREE-DIMENSIONAL CO-LOCALIZATION 

The co-localization assay was used in order to assess the protein-protein interactions in a 

physical cellular environment.  The bait protein (KCNE2) as well as the prey proteins of interest 

were expressed in H9C2 rat cardiomyocytes and labeled with appropriate primary and secondary 

antibodies (Section 2.16.2 and 2.16.3).  Fluorescence microscopy followed using the Zeiss LSM 

510 Meta confocal microscope housed at the Department of Anatomy imaging facility 

(University of Cape Town, RSA).  The images acquired were processed for co-localization.  The 

protein antibodies are indicated in Table 2.7. 

 

2.17.1 Three-dimensional co-localization assay 

Rat H9C2 cardiomyocytes were detached from the growth surface of flasks (Section 2.10.2 and 

Table 2.4) and counted by means of a Haemocytometric cell counting chamber (Section 2.13.3) 

to establish seeding of 10000 cells per well of a 6-well plate.  Each of the 6-well chambers 

contained 3ml of growth media (Appendix I) and a glass cover slip (Lasec, RSA).  After 24 

hours, the growth media was removed and differentiation media (Appendix I) was added to all 

the wells (Section 2.10.3) and left to differentiate for approximately 14 days. 

 

Subsequently the media was removed and the cells briefly rinsed with PBS (Appendix I).  The 

cells were fixed for five minutes at room temperature in 4% Paraformaldehyde (Appendix I) and 

then washed in PBS three times for 10 minutes.  The cells were then incubated in 1% BSA for 

one hour at room temperature.  The 1% BSA solution acts as the blocking solution to ensure 

blockage of all non-specific binding sites.  Following the incubation period, the cells were 

incubated with the appropriate pair of primary antibodies (Table 2.7) diluted in 1% BSA 
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(Blocking solution).  The slides were then transferred to a sealed container and incubated at 4ºC 

overnight. 

Table 2.7: List of primary and secondary antibodies and their optimized concentrations 

used in co-localization assays 

Antigen Primary antibody  

Optimum 

ratio 
Secondary antibody 

Optimum 

ratio 

KCNE2 KCNE2* 1:50 Donkey anti-rabbit  

Alexa 488 (Green)¥ 
1:500 

CRYAB CRYAB† 1:20 Donkey anti-mouse  

Cy3 red¥ 
1:500 

FLNC Filamin 2* 1:50 
Donkey anti-goat 

Cy3 red¥ 
1:500 

VDAC1 VDAC1† 1:50 Donkey anti-mouse  

Cy3 red¥ 
1:500 

Manufacturer: †, Abcam, Biocom Biotech, RSA; *, Santa Cruz Biotechnology Inc., USA; ¥, Jackson 

ImmunoResearch Laboratories Inc., USA 

 

The following day the cells were washed with PBS for 10 minutes, repeating the wash step three 

times.  The cells were then labeled with the appropriate secondary antibodies (Table 2.7) which 

were diluted in PBS and incubated at room temperature for 90 minutes in the dark.   

With every experiment, negative controls were included that consisted of H9C2 cardiomyocytes 

labeled with secondary antibodies only.  This was necessary for constructing baseline values for 

each fluorochrome (secondary antibodies) before acquiring the single and z-stacks images.  

Subsequently, the cells were washed with PBS for 10 minutes, repeating the wash step three 

times.  A 1:200 dilution of the nucleic acid stain Hoechst H-33342 (Sigma-Aldrich (Pty) Ltd., 

RSA) was made for staining the nuclear material blue and thus for orientation purposes during 

the acquisition of z-stack images as well as single images.  The cells were incubated with 

Hoechst at room temperature for 10 minutes after which a 10 minute wash step with PBS 

followed.  Mowiol, containing n-propylgallate as anti-fade (Appendix I), was used to mount the 

cells onto glass slides.  The completed slides were stored at 4ºC in the dark until viewing.  After 

viewing and acquisition of a minimum of three single images, three overlay images as well as 

three z-stacked images from the appropriately labeled H9C2 cardiomyocytes, the co-localization 

analysis was performed using the ZEN 2011 lite edition software package.  Carl Zeiss 

(http://microscopy.zeiss.com/microscopy/en_de/downloads/zen.html). 
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3.1 YEAST TWO-HYBRID ANALYSIS        

3.1.1 Generation of Y2H bait construct       

Following successful generation of the pGBKT7-KCNE2 bait construct, the construct was 

sequenced to establish whether the reading frame had been maintained and also to determine the 

integrity of the reading frame.  Sequence analysis confirmed that the pGBKT7-KCNE2 insert 

was in the correct reading frame.  The insert sequence was preserved throughout the multiple 

rounds of PCR amplification that had been used to create the fragment (Section 2.2.2) (Appendix 

IV).  

 

3.1.2 Assessment of the AH109 bait strain   

3.1.2.1 Phenotypic assessment 

The bait construct was successfully transformed into the AH109 S.cerevisiae yeast strain and 

was able to grow on SD-Trp selection plates.  Growth on SD-Leu and SD-Ada plates was however 

inhibited, thus confirming that the pGKBT7-KCNE2 construct did not autonomously activate 

transcription of the host reporter genes (Section 2.13.1).  Conversely, moderate growth was 

observed when colonies were streaked onto SD-His plates.  The transformed yeast cells showed 

growth on SD-Ura plates, indicating that the phenotype of the S.cerevisiae AH109 strain was not 

altered.  Additionally, this growth indicated that the phenotype of the yeast remained conserved 

following transformation with the pGBKT7-KCNE2 bait construct. 

 

3.1.2.2 Toxicity Test 

In order to establish whether the pGBKT7-KCNE2 bait construct was toxic to the yeast strain 

AH109, a growth curve was generated (Section 2.12.2) in which growth of AH109 transformed 

with the bait construct was compared to that of AH109 transformed with a non-recombinant 

pGBKT7 plasmid.  When comparing the slopes of the linearized test curves of the AH109 strain 

transformed with the bait construct and the AH109 transformed with the non-recombinant 

plasmid, there was no significant difference (Figure 3.1).  This indicates that these transformants 

were able to grow at similar rates.  It was therefore determined that the pGBKT7-KCNE2 

construct was not toxic to the yeast.   

Stellenbosch University  http://scholar.sun.ac.za



75 
 

 

Figure 3.1: Linear growth curve of the yeast strain AH109 transformed with either pGBKT7-KCNE2 bait 

construct (purple squares and purple line) or a non-recombinant pGBKT7 plasmid (green diamonds and 

green line).  The growth rates of the two yeast transformants were compared to each other by measuring absorbance 

at 600nm every two hours in order to determine whether the bait construct had a toxic effect on the AH109 strain.  

This was determined by calculating the slope of each curve.  It was concluded that the growth of the host strain was 

not affected by the bait construct as the slopes were similar and comparable. 

 

3.1.2.3 Mating efficiency of AH109 transformed with bait construct 

Small scale mating efficiency testing was performed (Section 2.12.3) in order to determine 

whether the transformation of pGBKT7-KCNE2 had affected the ability of the AH109 to mate.  

The mating efficiency results ultimately showed that the bait construct did not affect the mating 

efficiency of the AH109 yeast strain.  The observed mating efficiency was calculated at 10.2% 

(Appendix III), which is higher than the minimum 2% mating efficiency specified by the 

manufacturer of the MATCHMAKER Y2H system (BD Biosciences, clontech, USA) (Table 

3.1). 

 

Table 3.1: Effect of the pGBKT7-KCNE2 bait construct on AH109 mating efficiency 

Mating Mating efficiency 

pGBKT7-KCNE2 (AH109) × pACT2 (Y187) 10.2% 

pGBKT7-53 (AH109) × pACT2 (Y187) 2.15% 
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3.1.3 Y2H screen of pre-transformed cardiac cDNA library 

3.1.3.1 Bait culture titre 

The titre of the bait culture was established by counting the cells with a Haemocytometric 

counting chamber (Section 2.13.3).  The average of the total amount of cells counted on both 

sides of the chamber was 603 and following calculations (Appendix III) the bait culture titre 

amounted to 6.03×109 colony forming units (cfu)/ml, with the commercial transformed bait titre 

estimated at 5×107. 

 

3.1.3.2 Library titre and library mating efficiency  

The library titre and mating efficiency was established as described in section 2.13.5 and after 

the four day incubation period, approximately 2984 cfu were counted on the 1:10000 dilution 

SD-Leu plate.  Following the necessary calculations (Appendix II) a library titre of 2.9×108 was 

established.   

The number of offspring S.cerevisiae cells that were present on the SD-Trp, SD-Leu and SD-Trp-Leu 

media plates was counted (Table 3.2) and the library mating efficiency calculated to 2.1%, which 

is slightly higher than the manufacturer’s recommended minimum value of 2% (Appendix III).   

 

Table 3.2: Library mating efficiency as established by progeny colonies on growth selection 

media  

 Library mating: pGBKT7-KCNE2 × pACT2 

Mating culture dilution 1:10 1:100 1:1000 1:10000 

SD-Trp * * * * 

SD-Leu * * 725 87 

SD-Trp-Leu 220 45 15 0 

Mating efficiency (%) 2.1% 

* Too many colonies to count.  Abbreviations: SD, single dropout; -Trp, without Tryptophan; -Leu, without 

Leucine; -Trp-Leu, without Tryptophan and Leucine. 
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Further analysis included determining the number of pre-transformed cardiac cDNA clones 

screened, which was calculated to be 3.066×105 independent clones with a final resuspension 

volume of 14.6ml (Appendix III). 

 

3.1.3.3 Y2H screen of pre-transformed cardiac cDNA library  

The diploid yeast colonies identified through procedures explained in section 2.13.6, were 

exposed to a cascade of nutritional selection with increasing stringency in order to enhance the 

chances of identifying true interactors. 

The screen ultimately yielded 721 clones that were able to grow on TDO plates containing 

10mM 3-AT (Section 2.13.6.2) (Appendix I), thus indicating that they were capable of activating 

the HIS3 reporter gene.  For the second stage, the 721 clones were transferred to QDO plates 

containing 10mM 3-AT (Section 2.13.6.2) and after four days, 427 clones were selected based on 

their ability to activate both the HIS3 and ADE2 reporter genes as determined by the growth on 

the nutritional selection plates (Appendix I).   

Subsequently, the ability of the 427 clones to activate the colourimetric reporter gene, MEL1 

(Section 2.13.7) was evaluated.  After the two day incubation period, it was determined that 379 

clones were able to activate the MEL1 reporter gene.  This was established by plating the 427 

clones onto QDO plates containing 10mM 3-AT as well as 20mg/ml x-α-galactosidase solution 

(Appendix I). 

 

Table 3.3: Grouping of primary and secondary clones based on the x-α-galactosidase 

colour production and intensity 

Group 
x-α-galactosidase Colour 

intensity 

Number of clones per 

group 

Primary +++ (High) 85 

Secondary ++ (Medium) 294 

 

The 379 selected clones were divided into two groups.  This division was based on the x-α-

galactosidase colour intensity of each individual clones (Appendix V).  Clones with a higher or 
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brighter blue colour (labeled +++) were selected as Primary clones and clones with less blue 

colour intensities (labeled ++) were grouped as Secondary clones (Appendix V and Table 3.3). 

To determine whether any of the 294 secondary clones were duplicates of one another, 

restriction enzyme digestion with two frequent cutting enzymes (HaeIII and RsaI) was 

performed on each of the clones and their restriction pattern subsequently compared to each 

other (Section 2.6.2).  

The digests patterns indicated that 83 of the 294 secondary clones were duplicates, and this 

ultimately resulted in the elimination of those 83 samples.  The remaining 211 secondary clones 

along with the 85 primary clones were selected for interaction specificity testing.   

 

3.1.3.4 Interaction specificity test  

The plasmids of the diploid colonies that were able to activate expression of all three reporter 

genes (HIS3, ADE2 and MEL1) were rescued from the selected clones (Section 2.13.8).  This 

was done in order to facilitate heterologous mating experiments and to test the specificity of the 

bait and prey interactions.  The experiments were performed as described in section 2.13.9 and 

the growth of the diploid colonies recorded (Appendix V). 

 

3.1.3.5 Sequence analysis of putative interactor peptides 

Upon completion of the interaction specific tests, 39 primary clones and 44 secondary clones 

were identified as candidate interactors.  These prey constructs were able to grow on QDO 

selection plates when mated with the pGBKT7-KCNE2 bait plasmid but not when mated with the 

pGBKT7, pGBKT7-53 and pGBKT7-WFS1 plasmids (Figure 3.2).    

This was followed by sequencing of the clones and the identification of the inserts in each of 

them.  The identity of the clones was determined through the mining of publically available 

nucleotide (http://www.ncbi.nlm.nih.gov) and protein (http://www.ensemble.org) databases 

(Appendix V). 

Of the 39 primary clones sequenced, 35 contained inserts that were not selected for further 

investigation as their open reading frames (ORF) fused to the GAL4-AD ORF did not match the 

ORFs predicted from the gene locus in either NCBI GenBank or Ensembl protein databases.   
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Prey plasmids 

               

Figure 3.2:  Interaction specificity testing through heterologous mating of baits and prey plasmids.  An 

example of a QDO selection plate showing the growth of diploid colonies following heterologous mating of five 

individual prey colonies (# 693, 718, 774, 893, 1340 in columns) with bait constructs (pGBKT7-KCNE2, pGBKT7, 

pGBKT7-53 and pGBKT7-WFS1 in rows).  Colony #893 is a good example of a specific interactor, as it only 

showed binding specificity for the pGBKT7-KCNE2 bait protein.  No growth was seen when mated with the 

pGBKT7, pGBKT7-53 and pGBKT7-WFS1bait plasmids as indicated by the red colour of colonies.  Colony #1340 

was identified as a non-interactor as it did not show growth when mated with any of the bait plasmids and colony 

#774 was identified as a non-specific interactor as it showed growth with mating of all bait plasmids. 

 

This is not a completely unexpected finding, given that only one out of every six clones 

represented in MatchmakerTM pre-transformed cDNA libraries are in the correct reading frames  

(MATCHMAKER Two-Hybrid Assay Kit User Manual).  Table 3.4 provides the identities of the 

four remaining clones selected for further assessment.    

Thirty-four of the 44 secondary clones were discarded for the same reasons as mentioned above 

and the identities of the remaining 10 secondary prey constructs are shown table 3.5.  

Through the use of NCBI and Ensembl, false positive ligands were identified and eliminated as 

possible interactors.  These online databases also allowed a total of three ligands that were to be 

excluded based on the fact that their cellular location would make it impossible to interact with 

the cytoplasmic C-terminal of a plasma membrane-bound protein such as KCNE2 (#122, #398 

and #1880) (Table 3.4 and Table 3.5).  Additionally, four ligands were excluded because their 

known functions make them unlikely to interact with KCNE2 (#18, #64, #293 and #668) (Table 

3.4 and Table 3.5). 

 

1340         893           774         718          693 
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 pGBKT7-KCNE2 

 

 pGBKT7 

 

 pGBKT7-53 

 

 pGBKT7-WFS1 
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Table 3.4: Identification of primary putative interactor clones from Y2H screen 

Clone 

# 

BLASTn Acc # 

(e-value) 
Identity 

BLASTp Acc # 

(e-value) 
Identity 

Cellular 

location 

122 
NM_000088.3 

(0.0) 

Homo sapiens 

collagen, type I, 

alpha 1, mRNA 

EAW94630.1 

(7E-157) 
COL1A1 

Extracellular 

matrix 

398 
NC_012920.1 

(0.0) 

Homo sapiens 

mitochondrion, 

complete genome 

ADB44568.1 

(6E-17) 

 

NADH 

dehydrogenase 

subunit 1 

Mitochondrial 

inner 

membrane 

501 
NM_001127487.1 

(0.0) 

Homo sapiens 

filamin C, 

gamma, mRNA 

1V05_A 

(2E-57) 

 
FLNC 

Cytoplasm, 

Cell 

membrane, 

Sarcomere 

668 
NM_002844.3 

(0.0) 

Homo sapiens 

protein tyrosine 

phosphatase, 

receptor type, K, 

mRNA 

EAW48088.1 

(1E-106) 

 

PTPRK 
Cell 

membrane 

Clones in bold were selected for further verification.  Abbreviations:  Acc, Accession; #, number; e-value, 

expectation value. 

 

The seven remaining clones where subsequently prioritised based on their function and 

subcellular location.  Ultimately three clones where chosen for further analysis as part of the 

present study.  These ligands include Alpha-B crystallin (CRYAB), Filamin C (FLNC) as well as 

Voltage-dependent anion-selective channel protein 1 (VDAC1) (Table 3.4 and Table 3.5).  

 

3.2 LIGANDS CHOSEN FOR FURTHER ANALYSIS   

The three above mentioned clones were selected for further analysis as they resembled good 

candidates for true KCNE2 interactors.  In order to verify the interactions between KCNE2 and 

the three candidate interactors, co-immunoprecipitation and 3D co-localization analyses were 

performed. 

A brief summary of each of the three candidate interactors, their functions as well as their 

subcellular locations are given, along with the rationale for selecting these proteins for further 

analysis and verification as possible KCNE2 ligands. 
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Table 3.5: Identification of secondary putative interactor clones from Y2H screen 

Clone 

# 

BLASTn Acc # 

(e-value) 
Identity 

BLASTp Acc # 

(e-value) 
Identity 

Cellular 

location 

15 
NR_036625.1 

(0.0) 

Voltage-

dependent anion-

selective channel 

protein 1 

NP_003365.1 

(0.0) 
VDAC1 

Mitochondrial 

outer 

membrane, 

Cell 

membrane 

18 
NM_002046.3 

(0.0) 

glyceraldehyde

-3-phosphate 

dehydrogenase 

NP_001243728.1 

6E-153 
GAPDH 

Cytoplasm, 

Nucleus 

22 
NM_133379.3 

(0.0) 
Titin 

CAD12458.1 

2E-76 
TTN 

Cytoplasm, 

Nucleus 

64 
NM_006873.3 

(0.0) 

Stonin 1 

protein 

AFE71436.1 

1E-46 
STON1 

Cytoplasm, 

Cell 

membrane 

93 
NM_019856.1 

(0.0) 
Myomesin 1 

NP_062830.1 

2E-56 
MYOM1 

Sarcomere, 

M-band 

95 
NM_001885.1 

(0.0) 

Alpha-B 

crystalline 

EAW67166.1 

6E-55 
CRYAB 

Cytoplasm, 

Nucleus 

250 
NM_005159.4 

(0.0) 

Cardiac alpha 

Actin 

EAW92317.1 

1E-117 
ACTC1 

Cytoplasm, 

Cytoskeleton 

293 
NM_020202.4 

(0.0) 

Nitrilase family 

member 2 

BAG57372.1 

8E-106 
NIT2 Cytoplasm 

436 
NM_015932.5 

(0.0) 

Proteasome 

maturation 

protein 

NP_057016.1 

6E-96 
POMP 

Cytoplasm, 

Nucleus, 

Microsome 

membrane 

1880 

NM_00112295

7.1  (1.00E-

104) 

 

Branched-chain 

alpha-ketoacid 

dehydrogenase 

kinase 

AAB82714.1 

2E-32 
BCKDK 

Mitochondrial 

matrix 

Clones in bold were selected for further verification.  Abbreviations:  Acc, Accession; #, number; e-value, 

expectation value. 

 

3.2.1 Alpha-B crystallin   

Alpha crystallins are composed of two subunits, αA and αB, and from part of the small heat 

shock protein (sHSP) family (Boelens et al. 2001).  These small proteins accumulate under stress 
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conditions after which they have been shown to translocate from the cytoplasm to the nucleus 

(Kato et al. 1992).  These sHSP act as molecular chaperones - but they cannot be seen as so-

called 'conventional chaperones' as they do not renature and release proteins as true chaperones 

would (Vicart et al. 1998).  Alternatively, they hold the proteins in large soluble aggregates 

(Berry et al. 2001).   

Alpha crystallins have been shown to have autokinase activity and play a role in the intracellular 

design of the cell (Clements et al. 2007).  They are differentially expressed - with alpha-B 

crystallin being expressed in a wide range of cell types (Golenhofen et al. 2004), tissues and 

organs such as the heart.  Alpha crystallins have been associated with myofibrillar myopathy and 

desmin-related cardiomyopathy (Vicart et al. 1998; Golenhofen et al. 2004; Ghosh et al. 2007). 

Furthermore, in a parallel Y2H screen conducted in our laboratory, focusing on the identification 

of novel interactors of KCNE1, alpha-B crystallin was also identified as a putative interactor.   

For these reasons, we chose alpha-B crystallin for further analysis.  

 

3.2.2 Filamin C           

Filamin C, also known as acting binding protein, is involved in the cross linking of actin 

filaments into complex networks (Gariboldi et al. 1994).  These networks are located in the 

cortical cytoplasm of the cell.  The filamin protein plays an important role in anchoring 

membrane proteins for the actin cytoskeleton (Gariboldi et al. 1994) and has been linked to 

various signalling networks (Dalkilic et al. 2006).   

This muscle-specific filamin (Gariboldi et al. 1994) may also exhibit structural functions at the 

Z-lines in muscle cells (Dalkilic et al. 2006) and has been shown to interact with KCND2 

(potassium voltage-gated channel subfamily D member 2) (Petrecca et al. 2000). 

The KCND2 gene, which is similar to KCNE2, encodes a protein that forms potassium ion 

channels that are responsible for: regulating heart rate, transporting epithelial electrolytes and 

contraction of smooth muscle.  KCND2, like KCNE2, has also been associated with arrhythmia 

(Drago et al. 2008) and Long QT syndrome (Frank-Hansen et al. 2005).  For these reasons, 

FLNC was identified as a plausible putative interactor of the C-terminal of KCNE2. 
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3.2.3 Voltage-dependent anion-selective channel protein 1     

Voltage-dependent anion-selective channel protein 1 (VDAC1), also known as the mitochondrial 

porin, is a channel protein located on the outer membrane of the mitochondria.  This protein 

plays a key role in the exchange of ions and other metabolites across the mitochondrial 

membrane, forming the main interface between mitochondrial and cellular metabolism.  This 

allows the protein to regulate metabolic and energetic functions of the mitochondria (Shoshan-

Barmatz and Golan 2012).   

VDAC1 also forms channels in the plasma membrane that are thought to be involved in 

transmembrane electron transport, regulating cell volume as well as apoptosis (Kayser et al. 

1989; Okada et al. 2004). 

Expression of this protein is found across a number of different tissues including the heart and 

skeletal muscle with previous studies linking VDAC1 to myocardial ischemia and reperfusion 

(Kerner et al. 2012).  It is therefore reasonable to suggest that VDAC1, which also encodes a 

voltage-dependant channel, may interact with the C-terminus of KCNE2.  

 

3.3 THREE-DIMENSIONAL CO-LOCALIZATION   

In order to evaluate the interactions between KCNE2 and each of its putative interacting 

proteins, 3D co-localization analysis was executed using confocal microscopy (Section 2.17.1).  

The visual co-localization output indicates that each of the three putative interactors namely 

CRYAB (Figure 3.3), FLNC (Figure 3.4) and VDAC1 (Figure 3.5), occupied the same three-

dimensional subcellular space as KCNE2.   

The images were corrected for background noise by including negative control images with 

every experiment and image acquiring (Section 2.17.1).   

In the figures resulting from the co-localization analysis, F represents a scatter diagram which 

considers all pixels that have the same position in both source images (A and B) to be a pair.  For 

each pair of pixels from the two source images, the signal intensity of pixels from channel 1 

(Ch3-T2, red) were interpreted as X-axis coordinates and the signal intensity of pixels from 

channel 2 (Ch2-T1, green) as Y-axis coordinates.  Each pixel of the diagram represents a value 
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that illustrates how often a particular pixel pair has occurred.  These scatterplots are important as 

they provide a qualitative indication of the degree of co-localization (Dunn et al. 2011).  The 

crosshair in each diagram corresponds to the threshold values determined by the pixel intensity 

of the single images acquired for KCNE2 (Ch2-T1) and the three prey interactors; CRYAB 

(Ch3-T2), FLNC (Ch3-T2) and VDAC1 (Ch3-T2).   

In order to quantify the co-localization results, three coefficients were calculated by means of 

specially designed algorithms (Zinchuk et al. 2007; Dunn et al. 2011) (Table 3.6.).   

Considering the visual representation of co-localization (Figure 3.3 - Figure 3.5) as well as the 

quantification coefficients (Table 3.6), significant co-localization was observed between KCNE2 

and all three of the candidate interactors (Table 3.7 - Table 3.9). 

 

Table 3.6: Comparison of coefficients used to quantify co-localization analysis  

Coefficients Meaning Values 

Weighted Co-

localization 

Coefficient 

Illustrates the contribution of 

each of the two channels to 

the pixels of  interest 

0 – 1.0 

If Ch3-T1 is 1.0 and Ch2-T1 is  0.2 for red-

green pair, it means that all (100%) red 

pixels co-localize with green, but only 20% 

of green pixels co-localize with red 

Overlap 

Coefficient 

Signifies the actual overlap 

of signals and represents the 

true degree of co-localization 

0 – 1.0 

Where 0.5 suggests that 50% of both 

selected channels co-localize etc. 

Pearson’s 

correlation 

coefficient 

(Correlation R) 

The correlation of intensity 

distribution between 

channels 

-1.0 – 1.0 

0 indicates no significant correlation,          

-1 indicates negative correlation and           

1 indicates positive correlation 

Table 3.6 Adapted from (Zinchuk et al. 2007) 
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Figure 3.3: Fluorescent imaging and co-localization analysis of KCNE2 and CRYAB in differentiated H9C2 

cardiomyocytes.  The fluorescent imaging of (A) KCNE2 labeled with the rabbit polyclonal anti-KCNE2 primary 

antibody (Abcam: ab69376) as well as a donkey anti-rabbit Alexa 488 secondary antibody (Green).   B) CRYAB 

labeled with the mouse monoclonal anti-Alpha B Crystallin primary antibody (Abcam: ab13496) as well donkey 

anti-mouse Cy3 secondary antibody (Red). C) Nucleus labeled with Hoechst H-33342 (blue).  D) Overlay of images 

A-C.  E) Co-localization of KCNE2 and CRYAB generated from merged images (white).  F) Scatter diagram 

generated by co-localization analysis with quadrant three representing the degree of co-localization.   

  

Table 3.7: Quantification of co-localization for the interaction between KCNE2 and 

CRYAB proteins 

Weighted                

Co-localization 

Coefficient Channel 1 

(Ch3-T2) 

Weighted                 

Co-localization 

Coefficient Channel 2 

(Ch2-T1) 

Overlap 

Coefficient 
Correlation R 

Correlation 

R x R 

0.094 0.195 0.563 0.062 0.093 
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Figure 3.4: Fluorescent imaging and co-localization analysis of KCNE2 and FLNC in differentiated H9C2 

cardiomyocytes.  The fluorescent images of (A) KCNE2 labeled with the rabbit polyclonal anti-KCNE2 primary 

antibody (Abcam: ab69376) as well as a donkey anti-rabbit Alexa 488 secondary antibody (Green).   B) FLNC 

labeled with the goat polyclonal anti-Filamin 2 primary antibody (Santa Cruz Biotechnology: sc-48496) as well as a 

donkey anti-goat Cy3 secondary antibody (Red). C) Nucleus labeled with Hoechst H-33342 (blue).  D) Overlay of 

images A-C.  E) Co-localization of KCNE2 and FLNC generated from merged images (white).  F) Scatter diagram 

generated by co-localization analysis with quadrant three representing the degree of co-localization.   

 

Table 3.8: Quantification of co-localization for the interaction between KCNE2 and FLNC 

proteins 

Weighted                

Co-localization 

Coefficient Channel 1 

(Ch3-T2) 

Weighted                 

Co-localization 

Coefficient Channel 2 

(Ch2-T1) 

Overlap 

Coefficient 
Correlation R 

Correlation 

R x R 

0.361 0.096 0.657 0.201 0.064 
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Figure 3.5: Fluorescent imaging and co-localization analysis of KCNE2 and VDAC1 in differentiated H9C2 

cardiomyocytes.  The fluorescent images of (A) KCNE2 labeled with the rabbit polyclonal anti-KCNE2 primary 

antibody (Abcam: ab69376) as well as a donkey anti-rabbit Alexa 488 secondary antibody (Green).   B) VDAC1 

labeled with the mouse monoclonal anti-VDAC1 primary antibody (Abcam: ab14734) as well as a donkey anti-

mouse Cy3 secondary antibody (Red). C) Nucleus labeled with Hoechst H-33342 (blue).  D) Overlay of images A-

C.  E) Co-localization of KCNE2 and VDAC1 generated from merged images (white).  F) Scatter diagram 

generated by co-localization analysis with quadrant three representing the degree of co-localization.   

 

Table 3.9: Quantification of co-localization for the interaction between KCNE2 and 

VDAC1 proteins 

Weighted                

Co-localization 

Coefficient Channel 1 

(Ch3-T2) 

Weighted                 

Co-localization 

Coefficient Channel 2 

(Ch2-T1) 

Overlap 

Coefficient 
Correlation R 

Correlation 

R x R 

0.321 0.041 0.602 0.086 0.029 

 

Stellenbosch University  http://scholar.sun.ac.za



88 
 

It should be noted that although co-localization offers proof that proteins occupy the same 

cellular space, it does not provide evidence of a physical interaction nor their functional 

relationship (Dunn et al. 2011).  For this reason, it is important that other confirmatory analysis 

be done that will show a physical interaction between the proteins.  In the present study, co-

immunoprecipitation analysis was chosen for this purpose. 

 

3.4 CO-IMMUNOPRECIPITATION (Co-IP) OF KCNE2 AND PUTATIVE Y2H 

INTERACTORS      

Since autonomous activation of reporter genes and false positive interactor identifications are 

commonly observed with Y2H screens, it was necessary to verify bait-prey interactions.  This 

was achieved by conducting co-immunoprecipitation experiments with the prey proteins 

(CRYAB, FLNC and VDAC1) and the KCNE2 bait protein (Section 2.15) (Figure 3.6).  These 

assays were conducted with lysates from either normal or hypoxia treated differentiated H9C2 

cardiomyocytes (Section 2.14) since both CRYAB and FLNC have been linked to cell stress 

response (Section 4.2.2)  (Djabali et al. 1997; Kesner et al. 2010).  

The results indicate that all three candidate interactors co-immunoprecipitated with KCNE2 

(Figure 3.6, A).  Two of the prey proteins (CRYAB and FLNC) co-immunoprecipitated with 

KCNE2 when using lysates from hypoxia treated cardiomyocytes (Figure 3.6, A, i and Figure 

3.6, A, ii) (Section 2.14.1).  The third prey protein (VDAC1) co-immunoprecipitated with 

KCNE2 when lysates from normal differentiated H9C2 cardiomyocytes were used (Figure 3.6, 

A, iii). 

For comprehensiveness, reciprocal immunoprecipitation analyses were conducted.   The results 

indicated that KCNE2 only immunoprecipitated with FLNC under hypoxic conditions (Figure 

3.6, B, ii).  No co-immunoprecipitation was observed for KCNE2 with either CRYAB or 

VDAC1 (Figure 3.6, B, i and Figure 3.6, B, iii).   

Therefore, in the present study we have provided convincing evidence of the spatial (3D co-

localization) and adequate proof of the physical (Co-IP) interaction between the KCNE2 proteins 

and three novel putative interacting proteins: CRYAB, FLNC and VDAC1.  
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Figure 3.6: Co-immunoprecipitation of KCNE2 with prey proteins CRYAB, FLNC and VDAC1.  A: CRYAB 

(i), FLNC (ii) and VDAC1 (iii) co-immunoprecipitated with KCNE2 in lysates of hypoxia treated differentiated 

H9C2 cardiomyocytes (i and ii) and standard lysates from differentiated H9C2 cardiomyocytes (iii).  B: Reciprocal 

co-immunoprecipitations indicated that KCNE2 only co-immunoprecipitated with FLNC in lysates of differentiated 

H9C2 cardiomyocytes placed under hypoxic conditions (ii).  No co-immunoprecipitation of KCNE2 was observed 

with CRYAB or VDAC1.  Two negative controls, HA-probe and protein agarose G control, were included in all co-

immunoprecipitation experiments.  The clear HA-probe and protein agarose G control lanes indicate that these 

interactions are not false but rather a true physical interaction between the applicable proteins.  Abbreviations: IP, 

immunoprecipitate; Neg., negative control; Prot G, protein agarose G control; WB, western blot.  
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4.1 YEAST TWO-HYBRID ANALYSIS 

LQTS is a cardiac repolarization disorder characterized by a prolonged QT interval on the ECG 

of affected individuals (Vicart et al. 1998; Schwartz et al. 2001).  The symptoms of LQTS range 

from minor symptoms like dizziness and syncope to more severe symptoms such as seizures and 

SCD.  Clinical features of LQTS are a result of the precipitations of Torsades de Pointes, which 

is a form of polymorphic ventricular tachycardia (Sanguinetti et al. 1995).  A number of genetic 

forms of LQTS have been identified with more than 700 mutations in 12 different genes leading 

to disease pathogenesis.  Of these known mutated genes, KCNE2 is associated with LQT6.  This 

gene encodes the β-subunit of potassium ion channels (Abbott et al. 1999; Abbott and Goldstein 

2001; Eldstrom and Fedida 2011). 

KCNE2 is a small transmembrane protein with an extracellular N-terminal and intracellular C-

terminal domain (Section 1.5).  This β-subunit protein assembles with voltage-gated potassium 

channel complex of pore-forming α-subunits to perform functions which included regulating 

heart rate, smooth muscle contraction and cell volume (McCrossan and Abbott 2004; 

www.genecards.org).  

KCNE2 has been shown to associate with a number of different proteins such as HERG, 

KCNQ1-3 as well as HCN1 and HCN2 (Abbott et al. 1999; Tinel et al. 2000; Yu et al. 2001).    

Although several disease-causing mutations have been identified in KCNE2 (many in the C-

terminal domain of the protein), approximately 25% of patients with compelling LQTS have no 

genetic diagnosis (Napolitano 2005; Medeiros-Domingo et al. 2007b; Newton-Cheh et al. 2009).  

Therefore the present study aimed to identify plausible candidate genes for LQTS through 

searching for interactors of proteins encoded by known LQTS-causing genes.  

We implemented an Y2H approach, using the C-terminal of KCNE2 as bait, to screen a cardiac 

cDNA library in order to identify novel protein ligands.  Subsequently, we aim to screen the 

genes encoding novel protein interactors of KCNE2 in a South African LQTS cohort.  This could 

possibly lead to the identification of novel disease-causing mutations or genetic modifier effects.  
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4.1.1 Y2H analysis to identify novel KCNE2 C-terminal domain interactors  

Following successful transformation of the bait construct into yeast AH109, nutritional selection 

indicated that the pGBKT7-KCNE2 construct did not autonomously activate transcription of the 

reporter genes.  However, moderate growth was observed when colonies were streaked onto SD-

His plates, suggesting leaky expression of the HIS3 reporter gene.  Thus, it was decided to add 

10mM of 3-AT to the nutritional (Section 2.13.6) as well as colourimetric selection (Section 

2.13.7) plates/media (Daniel et al. 2006).  The 3-AT is a heterocyclic organic compound which 

acts as a competitive inhibitor of the product of the HIS3 gene, which is an enzyme catalyzing 

the sixth step of histidine production.  Thus, by adding 3-AT to the selection plates, cultures 

which are dependent on plasmids containing the HIS3 gene to produce histidine, would have to 

produce higher levels of histidine in order for them to survive (Joung et al. 2000; Daniel et al. 

2006; Bruckner et al. 2009). 

According to the library mating efficiency calculations (Section 3.1.3.2) (Appendix III) 

approximately 3.066 x 105 pre-transformed cardiac cDNA clones were screened using the 

pGBKT7-KCNE2 bait construct.  Although this was an acceptable number of clones to be 

screened in the present study, it should be noted that it was much less than the calculated library 

titre of 2.9 x 108cfu/ml (Appendix III).  This suggests that approximately 2.8 x 107 independent 

clones were not screened and that important ligands might have been overlooked. 

Subsequently 379 clones were able to activate all the necessary reporter genes (HIS3, ADE2 and 

MEL1) and were divided into primary and secondary clones (Table 3.3), based on their 

phenotype.   

A number of different clones, encoding the same protein, were pulled out multiple times for 

example; NADH dehydrogenase subunit 1, ACTC1 (Appendix V) and others identified through 

restriction enzyme mapping (Section 2.6.2).  This is not uncommon as Y2H have been shown to 

pull out different clones encoding the same protein yet; artefacts may perhaps exist and be the 

rationale behind multiple protein copies being identified. 
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4.2 PUTATIVE PROTEIN ANALYSIS 

Thirty-nine primary clones and 44 secondary clones were selected for sequencing.  Of these, 35 

primary and 34 secondary clones were not selected for further investigation, as they were either 

duplicate clones or their open reading frames (ORF) did not match the ORFs predicted from the 

gene locus in either NCBI GenBank or Ensembl protein databases (Appendix V).  Although the 

insert sequences of the clones had significant genomic matches in the NCBI database 

(http://www.ncbi.nlm.nih.gov), several of these inserts were not in-frame according to the ORF 

determined by the upstream GAL4 activation domain (AD).  Subsequently, mismatch or non-

significant proteins were translated (Appendix V).  The reason for this could be the traditional 

methods used to generate libraries which are derived form oligo-dT primed cDNA.  This causes 

one out of six cloned inserts to be in-frame with the transcription factor activation domain (Van 

Criekinge and Beyaert 1999).  These mismatch peptides were too short and physiologically 

irrelevant and were therefore excluded from further analysis. 

The remaining four primary clones (Table3.4) and 10 secondary clones (Table 3.5) were 

prioritized based on the following: subcellular location, function and likelihood of interaction. 

It is safe to suggest that protein-protein interactions are unlikely to occur when proteins are 

separated by subcellular compartmentalization in vivo.  Therefore, primary preys #122 

(COL1A1) and #398 (NADH dehydrogenase subunit 1) and secondary prey #1880 (BCKDK) 

were eliminated from further analysis due to their subcellular location in the extracellular matrix 

of the cell, the mitochondrial inner membrane and the mitochondrial matrix, respectively (Table 

3.4 and Table 3.5). 

Primary prey #668 (PTPRK) as well as the three secondary preys; #18 (GAPDH), #64 (STON1) 

and #293 (NIT2) were excluded based on their functions.  Although both PTPRK and STON1 

are located at the cell membrane, their functions could not be related to those of KCNE2.  

Functions of PTPRK included cell growth control, tumour invasion, and metastasis, whereas 

STON1 is found to be involved in the endocytic machinery (www.genecards.org).     

GAPDH is located in the cytoplasm and the nucleus and plays a role in glycolysis and nuclear 

related functions such as RNA transport and apoptosis while NIT2 is only present in the 

cytoplasm and has an omega-amidase activity (www.genecards.org).  Taken together, these 
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functions are dissimilar from the known KCNE2 functions, indicating that these proteins are less 

likely to be ligands of the C-terminal of KCNE2 and were subsequently excluded from the study. 

The primary prey #501 (FLNC) and the following secondary prey interactors; #15 (VDAC1), 

#22 (TTN), #93 (MYOM1), #95 (CRYAB), #250 (ACTC1) and #436 (POMP) were all good 

candidates for being true KCNE2 C-terminal ligands.  Subsequently three proteins were selected 

for further verification analysis namely: CRYAB, FLNC and VDAC1.   

In a parallel Y2H screen in our laboratory, focusing on novel KCNE1 interacting proteins, 

CRYAB was identified as a putative interactor and was therefore selected for further 

investigation.  FLNC was selected based on a previous study that showed interaction between 

FLNC and KCND2; a protein functionally comparable and structurally similar to KCNE2.  The 

voltage-dependent ion channel protein, VDAC1, was chosen for further verification because of 

its functional similarity to KCNE2 and plasma membrane localization.  The four remaining 

putative interactor peptides, not selected for further analyses in the present study, will be 

screened in future studies. 

 

4.3 VERIFICATION STUDIES 

Given that post-translational modifications and protein folding may not occur adequately in the 

Y2H system, it was necessary to verify the three selected putative interactions using independent 

assays in mammalian cells. We chose to verify these putative interactions using 3D co-

localization and co-immunoprecipitation analysis. 

 

4.3.1 Three-dimensional co-localization 

In previous years, older methods of co-localization were used to determine whether proteins 

share the same subcellular location by means of overlaying two-dimensional images captured 

from different colour channels (Costes et al. 2004).  However, in the present study, the 

subcellular locations of the proteins were determined through the use of single images as well as 

z-stack analysis.  The z-stack analysis reflects co-localization through the diameter of the cell 

making it a three dimensional application and therefore a much more powerful tool to assess co-

localization.  This 3D co-localization technique also assigns a value to the visual output; making 

this a quantitative method for the detection of co-localization 
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The present study made use of this 3D approach and convincingly showed that KCNE2 occupy 

the same subcellular space in differentiated H9C2 cardiomyocytes as CRYAB, FLNC and 

VDAC1.   

 

4.3.2 Co-immunoprecipitation 

As previously discussed (Section 3.3), significant co-localization was observed between the bait 

protein (KCNE2) and the three prey proteins (CRYAB, FLNC and VDAC1).  Subsequently all 

three prey proteins were selected for further verification studies.   

Following the identification of plausible interactions through the Y2H screen, Co-IP allowed for 

rapid assessment of protein-protein interactions.  Co-IP analysis was selected as the technique to 

confirm the physical bait-prey protein interactions.  This basic method is relatively easy to use, 

inexpensive, and proteins identified by Co-IP will be present in their native state and native 

concentrations (Phizicky and Fields 1995).  This method provides conclusive evidence of the 

physical interactions between two or more proteins (highly specific) and is compatible with most 

downstream analysis methods (Miernyk and Thelen 2008).  Finally, this technique has been well 

established in our laboratory and has proven to be a reliable method for protein-protein 

interaction verification. 

Lysates used for Co-IP reactions initially originated from standard differentiated H9C2 

cardiomyocytes.  When the three prey proteins were co-immunoprecipitated with the bait protein 

(KCNE2), KCNE2 and VDAC1 indicated a relatively strong interaction (Figure 3.6, A, iii), 

KCNE2 and CRYAB a rather weak interaction and KCNE2 and FLNC showed no interaction at 

all (Figures not shown).  However, several studies provided evidence that both CRYAB and 

FLNC have been linked to cell stress response (Djabali et al. 1997; Kesner et al. 2010), 

potentially explaining the weak or lack of interaction between these two proteins and KCNE2 

under typical physiological conditions.  Subsequently, differentiated H9C2 cardiomyocytes were 

subjected to stress by exposing the cells to hypoxic conditions for two hours (Section 2.14.1). 

Thereafter, the Co-IP experiments were repeated using hypoxia lysates and results showed the 

positive interactions between the two putative prey proteins (CRYAB and FLNC) and KCNE2 

(Figure 3.6, A, i and Figure 3.6, A, ii).   
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Furthermore, reciprocal Co-IP analyses were executed for completeness.  The results indicated 

that KCNE2 was able to co-immunoprecipitate with FLNC (Figure 3.6, B, ii).  No Co-IP was 

observed with either CRYAB (expected size of 20kDa) or VDAC1 (expected size of 39kDa) 

(Figure 3.6, B, i and Figure 3.6, B, iii).  This could be explained by inadequate antibodies 

available for these two proteins i.e. antibodies that were not functionally tested for Co-IP 

analysis.  Nonetheless, the present study provided suitable evidence of the interaction of KCNE2 

with CRYAB and VDAC1 as well as irrefutable evidence for the spatial (3D co-localization) as 

well as physical (Co-IP) interaction between KCNE2 and FLNC (Appendix IV).  

Included in each of the Co-IP experiments were two negative controls; lysate with HA-antibody 

and lysate with protein G agarose containing no antibody.  These lanes were uncontaminated in 

all experiments and test antibodies did not bind non-specifically to protein G agarose in the 

absence of an antibody.  Thus Co-IP analyses could proceed without any interference and were 

the reflection of true physical interactions. 

 

4.4. PROTEINS IDENTIFIED AS KCNE2-PROTEIN LIGANDS 

Three proteins, CRYAB, FLNC and VDAC1 were identified as KCNE2-interacting proteins in 

the present study.  In the sections that follow, the functions of these proteins and the potential 

functional significance of their interactions with KNCE2 will be discussed. 

 

4.4.1 Small heat-shock protein (CRYAB) 

Alpha crystallins are known to exist as large soluble aggregates and contain two related subunits 

- αA (alpha-A crystallin or CRYAA) and αB (alpha-B crystallin or CRYAB) - that share a 55% 

amino acid sequence homology (Berry et al. 2001).  These proteins form part of the small heat 

shock protein family (sHSPs) (Figure 4.1) and is characterized by an 80-100 amino acid 

conserved region.  The latter region forms part of the homologous WDPF motifs 

(Tryptophan=W, Aspartic acid=D, Proline=P, Phenylalanine=F) and α-crystallin domains that 

connects the peptide to N- and C-terminal extensions (Boelens et al. 2001). 

Both CRYAA and CRYAB consist of polar, flexible C-terminal domains (Figure 4.1) that are 

believed to be implicated in the chaperone-like activity of these proteins.  When these crystallin 

subunits are subjected to post-translational modifications that includes deamination, glycation, 
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phosphorylation and truncation of the N-terminal and C-terminal regions; it decreases their 

chaperone activity (Berry et al. 2001). 

Alpha-B crystallin (CRYAB) is highly expressed in vertebrate eye lens, skeletal and cardiac 

muscle and has been shown to form complexes with native proteins (alpha-A crystallin, Hsp27 

and Hsp22) and interact with cytoskeletal proteins (actin, tubulin and intermediate filaments) 

(Boelens et al. 2001).   

 

 

Figure 4.1: Structural domains of human HSP27, 

HSP22 and αB crystallin proteins.  The schematic 

representation of Hsp27, αB-crystallin and Hsp22 

structures indicating the N-terminal domains, flexible 

C-terminal domains, WDPF domains and the α-

crystallin domains.  Phosphorylation sites at serine 

(S) and threonine (T) residues are also shown.  Figure 

taken from (Acunzo et al. 2012) 

 

 

In cardiac muscle phosphorylated CRYAB binds to myofibrils under ischemic conditions as well 

as to titin - a large sarcomeric protein (Bullard 2003).  These findings provide evidence of 

CRYAB being involved in the remodelling of the cytoskeleton and stabilizing/modulating 

filament assembly; assigning a protective function to this protein  (Djabali et al. 1997; Boelens et 

al. 2001; Bullard 2003; Ghosh et al. 2007). 

Crystallins function as chaperone-like molecules by preventing precipitation of denatured 

proteins and increasing the cells’ tolerance to stress, even though they do not  renature and 

release proteins as true chaperones would (Boelens et al  2001; Augusteyn 2004).  Additionally, 

alpha crystallins are involved in regulating correct protein-folding, degradation and signalling  

(auto kinase activity) in the cell (Goldfarb et al. 2008). 
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Normally, CRYAB is located in the cytoplasm from where it is subsequently translocated and 

bound to an isolated region of the I-bands in the sarcomere (Bennardini et al. 1992; Bullard 

2003; Ghosh et al. 2007).  However, when stress is induced (specifically heat shock) the proteins 

are translocated to the nucleus where they reside in sub-nuclear structures (Klemenz et al. 1991).  

More recently though, it was found that CRYAB dissociates from filaments in order to interact 

with unfolding proteins in the cytoplasm, such as β- and gamma (γ)-crystallins, under these stress 

conditions (Ghosh et al. 2007).  In our study, we found CRYAB to be located at both the plasma 

membrane as well as in the cytoplasm (Figure 3.3). 

Another study found that the function and localization of CRYAB is largely dependent on its 

phosphorylation status (Clements et al. 2007).  When CRYAB is not phosphorylated it is located 

in the cytoplasm where chaperone and signalling functions are executed.  Then, with stress such 

as ischemia, CRYAB is phosphorylated and cellular protection is enhanced; translocating 

CRYAB to the sarcomere (Golenhofen et al. 2004; Clements et al. 2007).   

Some variants in CRYAB (D109H and R157H) have previously been linked to late onset 

cardiomyopathy (Andley et al. 2011; Sacconi et al. 2012) which is a disease caused by 

conduction blocks, arrhythmias and chronic heart failure; causing patients to experience syncope 

and SCD (Goldfarb et al. 2008). 

CRYAB has been shown to interact with several crystallins such as alpha-A crystallin (CRYAA) 

and beta-crystallin B2 (CRYBB2) (Fu and Liang 2002), also other heat shock proteins like heat 

shock protein beta-1 (HSPB1) (Figure 4.1) and heat shock protein beta-2 (HSPB2) (Fu and Liang 

2002).  CRYAB also interacts with other proteins such as cardiac titin (TTN) (Bullard 2003) 

filamin C (FLNC) (Kley et al. 2007), and voltage dependent anion-selective channel protein 1 

(VDAC1) (Mitra et al. 2013) to name a few.  

In a study by Kundu and colleagues, KCNE2 was shown to be regulated by the estrogen hormone 

E2 (17- β-estradiol) in mice.  This hormone exhibits a protective function, very similar to that of 

CRYAB, as it activates numerous protective signalling pathways during cellular stress.   

Estrogen has also been shown to regulate the expression of regulatory subunits of other cardiac 

K+ channel genes such as KCNE1 (Kundu et al. 2008).  Additionally, high levels of estrogen 

have been shown to cause QT interval prolongation (Eghbali et al. 2005). 
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In the present study we focused on KCNE2 - a LQTS causing gene - and identified CRYAB to be 

a putative interactor of KCNE2; mainly under stress (Section 2.14.1) (Figure 4.2).  This was 

expected since CRYAB is a heat shock protein with known protective functions under stress 

conditions (Clements et al. 2007).   

With normal/optimal physiological conditions, cardiomyocytes require a nutrient rich 

environment with a pH of approximately 7 (Fabiato and Fabiato 1978) and sufficient oxygen 

resources.  Therefore, in the present study stress was induced by replacing enriched growth 

media with Esuni buffer (pH 6.4) and inducing hypoxia for two hours (Section 2.14.1).  With the 

3D co-localization analysis, a significant association was observed between CRYAB and 

KCNE2 (Section 3.3).  However, with Co-IP analysis the physical interaction between these two 

proteins was only verified partially since (not confirmed with reciprocal experiments) (Section 

3.4).  

Nonetheless, we speculate that this interaction is true and that the location of this novel 

KCNE2/CRYAB interaction will most likely take place within the cytoplasm since this is where 

CRYAB is predominantly situated (Bennardini et al. 1992; Bullard 2003).  In a previous study 

by Um and McDonald it was demonstrated that the intracellular trafficking of KCNE2 through 

the cytoplasm takes place before the protein reaches the plasma membrane (Um and McDonald 

2007).  This finding supports our hypothesis of cytoplasmic KCNE2/CRYAB interaction.  We 

propose that this cytoplasmic interaction is necessary in order for CRYAB to regulate the correct 

conformational changes and folding of the KCNE2 protein before it reaches the cell membrane 

which would affect the subsequent functioning of KCNE2 K+ channels.  

However, it should also be considered that the novel KCNE2/CRYAB interaction might occur at 

the plasma membrane.  This suggestion is reinforced with findings from a previous study by 

Clements and co-workers; showing the presence of CRYAB at the cell surface after stress was 

induced (Clements et al. 2007).    

Taken together, these findings provide evidence of the possibility that both KCNE2 and CRYAB 

could be present in the same subcellular compartment at the same time under stress conditions; 

strengthening the findings of the present study (Figure 4.2).  
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Figure 4.2: Predicted association between KCNE2 and CRYAB proteins.  A schematic representation of known 

protein interactions indicated in green, blue and purple lines.  The red dashed line indicates the proposed interaction 

between KCNE2 and CRYAB identified in the present study.  Abbreviations:  CRYAB, Alpha-B crystallin; DES, 

Desmin; FLNC, Filamin C; KCND2, potassium voltage-gated channel, Shal-related subfamily, member 2;   

KCND3, potassium voltage-gated channel, Shal-related subfamily, member 3; KCNE2, potassium voltage-gated 

channel, Isk-related family, member 2; KCNH2, potassium voltage-gated channel, subfamily H (eag-related), 

member 2; KCNQ1, potassium voltage-gated channel, KQT-like subfamily, member 1; KY, kyphoscoliosis 

peptidase; MYOT, Myotilin; MYOZ1, Myozenin 1; SGCD, Sarcoglycan, delta; SCN5A, sodium channel, voltage-

gated, type V, alpha subunit.  Figure adapted from: www.string-db.org.  

 

4.4.2. Filamin (FLNC) 

Filamins are characterized as elongated homodimeric proteins that crosslink filamentous actin 

(F-actin) in the cytoskeleton.  They consist of a conserved actin-binding domain (ABD) at the N-

terminal followed by an extended rod-like domain.  With the ability to form dimers or tetramers, 

filamins are capable of bundling and crosslinking actin filaments into orthogonal networks and 

linking them to the cell membrane.  Additionally, filamins are believed to act as scaffolding 

proteins that bind components of signalling pathways in order to enhance their activation 

(Murray et al. 2004; Popowicz et al. 2006).     
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The ABD consists of two tandem calponin domains whereas the rod regions of human filamin 

proteins are built by 24 immuno-globulin (Ig)-like repeats.  Of these repeats, the last one is 

known to be responsible for dimerization of this protein (Figure 4.3).  Furthermore, unique 

hinges are also located in the rod domain of filamins (Figure 4.3).  This class of proteins is 

comprised of three members, filamin A (FLNA), filamin B (FLNB) and filamin C (FLNC) 

(Figure 4.3).  These proteins share a 70% sequence homology (although the hinge regions are 

less homologous) and have been associated with diseases affecting the brain (periventricular 

nodular heterotopia or PVNH) and cardiovascular development (patent ductus arteriosus and 

aortic aneurysms)  (Gariboldi et al. 1994; Robertson et al. 2003; Popowicz et al. 2006; Zhou et 

al. 2007). 

   

 

 

 

Figure 4.3:  Structure of the human Filamin C protein.  A schematic representation of the filamin C (FLNC) 

protein structure indicating the actin binding domain (ABD) at the N-terminal, 24 Ig-like repeat domains and two 

hinges (green arrows) in the rod region.  Figure adapted from Linnemann et al. 2010. 

 

The filamin protein is located in the cytoplasm at the Z-line, at the stress fibres in non-muscle 

cells (that consist of actin filaments and crosslinking proteins) as well as at the sarcolemmal 

membrane of muscle cells and is thought to be a signal transducer in a variety of systems 

(Kesner et al. 2010).  Therefore, Thompson and colleagues hypothesized that FLNC may be 

involved in muscle maintenance by regulating and protecting the muscle during contraction 

(Thompson et al. 2000).  This hypothesis is consistent with most filamin functions reported, such 

as being involved in actin polymerization (crosslinking).  This process that is essential for 

regulating the contractile apparatus in skeletal and cardiac muscles, cell structure and 

organization of membrane receptors with signalling molecules.  These processes are known to 

control cellular procedures including cell adhesion and migration, cell shape, growth, 

differentiation, apoptosis and survival (Thompson et al. 2000; Dalkilic et al. 2006; Popowicz et 

al. 2006).   

Mutations identified in FLNA and FLNB largely impact human cortical development and results 

in skeletal muscle disorders, whereas mutations in FLNC cause skeletal and cardiac muscle 

NH2 COOH 
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disorders since the expression of FLNC is restricted to muscle cells (Zhou et al. 2007; Gontier et 

al. 2013).   

Mutations in the FLNC gene have previously been implicated in myofibrillar myopathy (MFM), 

which is characterized by the disruption of focal myofibrils and the abnormal accumulation of 

proteins in skeletal muscle fibres.  The onset of MFM is variable and sudden death due to 

cardiovascular complications has previously been described.  In a study by Kley and co-workers, 

it was found that approximately one third of patients with filamin-related myopathies had cardiac 

abnormalities including tachycardia, diastolic dysfunction and left ventricular hypertrophy.  

These investigators also found that FLNC interacts with CRYAB (Section 4.1.3.1) (Kley et al. 

2007). 

Moreover, mutations in FLNC have been associated with desminopathy, which is characterized 

by muscle weakness, conduction blocks, arrhythmias and chronic heart failure resulting in 

unexpected or sudden death (Goldfarb et al. 2008).  This is of particular interest to the present 

study given that mutations in KCNE2 have previously been associated with very similar 

symptoms i.e. arrhythmias, heart failure and SCD (Abbott et al. 1999; Gordon et al. 2007;  

Schwartz 2009).   

In a previous study, FLNC was identified as an interactor of KCND2 (Petrecca et al. 2000).  

KCND2 encodes the α-subunit of the voltage-gated potassium channel protein (also known as the 

Kv4.2 channel) located at the cell membrane and have been found to regulate heart rate and 

muscle contraction (Fiset and Giles 2006).  Petrecca and co-workers proposed that FLNC 

mediates the direct link between KCND2 and the actin cytoskeleton and that this interaction is 

essential for the generation of appropriate KCND2 current densities (Petrecca et al. 2000).  

Following mapping studies, it was found that the C-terminal of FLNC interacted specifically 

with a four amino acid (aa) motif (PTPP) 30aa upstream of the C-terminus of KCND2 (Petrecca 

et al. 2000).  The KCND2 ion channel conducts the fast transient outward current of cardiac 

action potential in the myocardium and has been associated with prolonged action potential as 

well as QT interval prolongation (LQTS) (Barry et al. 1998; Frank-Hansen et al. 2005).   

In addition to the interaction with FLNC, Roepke and colleagues found KCND2 to interact with 

KCNE2 and revealed that KCNE2 regulate ventricular fast transient outward currents by 
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modulating KCND2 channels.  Additionally it was discovered that targeted disruption of KCNE2 

leads to α-subunit targeting and impaired ventricular repolarization (Roepke et al. 2008). 

In the present study FLNC was identified as a putative interactor of KCNE2.   The protein 

structure of KCNE2 is similar to other FLNC interacting proteins identified by Thompson and 

colleagues i.e.; β1-integrins, γ-sarcoglycan and delta (δ)-sarcoglycan, apart from the fact that the 

sarcoglycans have intracellular N-terminal and extracellular C-terminal domains.  These 

sarcoglycans are thought to be important components of structural support as well as signalling 

pathways in muscle cells (Thompson et al. 2000). 

Furthermore, we observed the binding of the C-terminal of KCNE2 with the C-terminal of FLNC 

exclusively under conditions of stress, which is similar to results from a study by Kesner and co-

workers.  Here, in the last mentioned study, it was hypothesized that stress-induced 

conformational changes in filamins could have a direct effect on cell signalling through 

disruption of existing interactions or by presenting novel interactions (Kesner et al. 2010).  It 

may therefore be possible that this stress-induced unfolding of FLNC is necessary for the 

interaction of FLNC with KCNE2. 

The subcellular location of this novel KCNE2/FLNC interaction is thought to be either 

cytoplasmic or membrane associated.  Depending on the phosphorylation state of FLNC, the 

protein can either be present at the membrane interacting with membrane associated proteins or it 

can be found in the cytoplasm interacting with the actin cytoskeleton (Thompson et al. 2000; 

Murray et al. 2004).  At the membrane, FLNC has been shown to interact with the intracellular 

domains of  γ-sarcoglycan, δ-sarcoglycan and β1-integrin proteins (Thompson et al. 2000) as 

well as with the C-terminal of KCND2 .  Hence, with KCNE2 containing of a cytoplasmic 

domain, the newly identified interaction between FLNC and KCNE2 could possibly occur in a 

similar fashion as the previously identified FLNC/KCND2 interaction at the membrane. 

Additionally, it is believed that although FLNC can be recruited to the membrane through a 

specific group of receptor signals, another group of signals could allow FLNC to translocate 

back to the actin cytoskeleton (Thompson et al. 2000).  As explained previously in section 1.5.3, 

premature KCNE2 proteins are trafficked through the ER, Golgi apparatus and the cytoplasm to 

ultimately reach the cell membrane as mature proteins.  The trafficking of both FLNC and 
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KCNE2 through the cytoplasm could be the alternative subcellular location for the novel 

interaction (Um and McDonald 2007). 

In conclusion, literature research revealed several connections between FLNC and KCNE2 

which strengthens the probability of their physical interaction in vitro.  These overlaps include 

mutations in both genes causing similar symptoms (arrhythmia, conduction block, syncope and 

SCD) in different diseases (LQTS, RCM, and MFM); common interacting protein partners 

(KCND2) (Figure 4.2) as well as subcellular localization in cardiac muscle cells.   

 

Figure 4.4: Predicted association between KCNE2 and FLNC proteins.  A schematic representation of known 

protein interactions indicated with green, blue and purple lines.  The red dashed line indicates the proposed 

interaction between KCNE2 and FLNC identified in the present study.  Abbreviations: FLNC, Filamin C; KCND1, 

potassium voltage-gated channel, Shal-related subfamily, member1; KCND2, potassium voltage-gated channel, 

Shal-related subfamily, member 2;   KCND3, potassium voltage-gated channel, Shal-related subfamily, member 3; 

KCNE2, potassium voltage-gated channel, Isk-related family, member 2; KCNIP1, Kv channel interacting protein 1; 

KCNIP2, Kv channel interacting protein 2; KCNIP4, Kv channel interacting protein 4; KY, kyphoscoliosis 

peptidase; MYOT, Myotilin; MYOZ1, Myozenin 1; NCS1, neuronal calcium sensor 1  SGCD, Sarcoglycan, delta.  

Figure adapted from: www.string-db.org.  

 

We hypothesize that the interaction of FLNC with KCNE2 might be required for the membrane 

anchoring of the KCNE2 proteins and the subsequent functioning of these K+ protein channels.  

Additionally, filamin have been shown, in a previous study, to mediate the direct link between 

KCND2 and the actin cytoskeleton and it is thought that the FLNC/KCND2 interaction is 

essential for the generation of appropriate current densities of KCND2 (Petrecca et al. 2000).  
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Accordingly, this can be extrapolated to the findings of the present study since KCNE2 and 

KCND2 are structurally and functionally related.  We therefore propose that the KCNE2/FLNC 

interaction is important for the generation of proper KCNE2 current density and KCNE2-actin 

cytoskeleton association. 

 

4.4.3 Porin ion channel protein (VDAC1) 

The voltage-dependent anion-selective channel proteins (VDACs), also known as mitochondrial 

porins, have three known isoforms namely; VDAC1, VDAC2 and VDAC3.  These proteins are 

mainly located on the outer mitochondrial membrane (OMM) (Sampson et al. 1997; Colombini 

2004; De Pinto et al. 2010).  VDAC1 and VDAC2 are characterized by their ability to form 

pores that allows diffusion of small hydrophilic solutes through the membrane whereas VDAC3 

on the other hand, plays a more important physiological role by means of regulating functions of 

other proteins (Sampson et al. 1997; De Pinto et al. 2010).   

At membrane potentials close to zero, these anion-selective channels are open.  Once the voltage 

changes to values above +20mV or below -20mV, the pores close.  Thus, previous studies have 

suggested that this protein is able to sense the membrane electrical potential and react to it 

accordingly (De Pinto et al. 2010). 

VDACs consist of approximately 285 amino acid residues that contains 12 to 19 transmembrane 

β-strands and one α-helix situated at the N-terminal of the molecule (Figure 4.5) (Bay and Court 

2002; Bayrhuber et al. 2008; Ujwal et al. 2008).  The β-strands are connected by loops of 

different lengths (Figure 4.2) that play particular roles in gating of VDAC channels, pore size, 

ion selectivity as well as structural support of VDAC channels (Bay and Court 2002; Ujwal et al. 

2008). 

VDACs display a variety of functions including metabolite and energy interchange as well as 

cell volume control and apoptosis (Murphy 2004; De Pinto et al. 2010; Kerner et al. 2012).  

These functions have been shown to be dependent on interaction with other proteins and is 

regulated by the phosphorylation of VDACs (Kerner et al. 2012).  VDAC proteins are expressed 

in a variety of tissue including the liver, kidney, heart and skeletal muscle (Kerner et al. 2012). 
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Figure 4.5: Secondary structure of VDAC1.  The VDAC1 protein structure consists of transmembrane β-strands 

(up and down arrows) and one α-helix (blue cylinders) at the N-terminal.  In the β-strands and the α-helix are the 

single-letter amino acid codes of VDAC1.  β1 is mentioned again at the C-terminal to indicate that this is a closed 

barrel.  Figure adapted from (Ujwal et al. 2008). 

 

VDAC1 have been shown to interact with a number of proteins including BCL2-like 1(BCL2L1) 

a potent inhibitor of cell death (Shi et al. 2003) and Gelsolin (GSN) - an intracellular actin 

binding protein that also inhibits apoptosis through stabilizing the mitochondria (Koya 2000).  

Additionally, VDAC1 interact with CRYAB (Mitra et al. 2013); the small heat shock protein 

discussed in section 4.1.3.1 as well as tropomyosin 3 (TPM3); a protein that plays an essential 

role in the troponin complex and muscle contraction that has recently been identified as a 

possible biomarker for risk of arrhythmias (Rosengarten et al. 2013).  

Diseases in which VDACs have been implicated include mitochondrial dysfunction diseases 

such as Alzheimer’s disease, as well as other diseases such as Down syndrome (Yoo et al. 2001), 

cancer (Arbel and Shoshan-Barmatz 2010) type 2 diabetes mellitus, myocardial ischemia 

reperfusion and hypertension (Yuqi et al. 2009; Kerner et al. 2012).  VDACs are also linked to 

hypertension, a major risk factor for coronary heart disease and congestive heart failure.   

Hypertension has been characterized as the risk factor responsible for the poor diagnosis in a 

range of cardiovascular diseases since it has been shown to mask the underlying illness (Yuqi et 

al. 2009). 

In addition to the outer mitochondrial membrane (OMM) localization; VDAC1 was shown to be 

the porin protein most abundantly expressed at the plasma membrane (Kayser et al. 1989; 

Buettner et al. 2000; Okada et al. 2004; De Pinto et al. 2010; Kerner et al. 2012).   

β1 β1 

β18 

β19 β17 β15 β13 β11 β5 β7 β9 β3 

β12 β10 β8 β6 β4 β2 β14 β16 

N-terminus 

C-terminus 
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This protein has been studied extensively with previous studies implicating VDAC1 in the early 

stages of programmed cell death (Shimizu et al. 2001; Zheng et al. 2004). 

Yuqi and co-workers investigated the effect of a mitochondrial transfer-RNA (tRNA) A4263G 

mutation on blood pressure in a family with maternally-inherited hypertension.  Using 

lymphoblastoid cell lines from individuals carrying the mutation and control individuals, they 

showed an increase in VDAC1 expression and increased levels of apoptosis, while the 

mitochondrial potential significantly decreased.  These results indicated that this specific 

A4263G mutation is associated with alterations in the expression of the VDAC1 protein, its 

localization as well as the level of apoptosis (Yuqi et al. 2009). 

Apoptosis is accompanied by cell volume alterations.  It was shown that certain ion channels, 

such as K+ and Na+ channels, activated during apoptosis are important in cell volume regulation 

(Bortner et al. 1997).  The increase in K+ efflux, associated with anion channel activation during 

rapid cell volume decrease, is important to sustain the electro neutrality of the membrane.  This 

emphasizes the necessity for correct intracellular concentrations of cations as well as anions in 

order to regulate apoptosis.  These apoptotic events cause activation of plasma membrane 

associated VDAC1 channels and subsequently the activation of K+ channels (delayed rectified 

type)  (Okada et al. 2004). 

KCNE2, as discussed earlier (Section 1.5), is a voltage-gated K+ channel situated at the plasma 

membrane that regulates the IKr current, which is the rapid delayed rectifier current, in the heart 

(Abbott et al. 1999).  Functions of this channel include the regulation of heart rate, insulin 

secretion, muscle contraction and cell volume control (Yang et al. 2004; Yuqi et al. 2009; 

www.ncbi.nlm.nih.gov). 

We identified the positive interaction between KCNE2 and VDAC1 through the Y2H screen of a 

cardiac cDNA library.  This interaction took place under normal physiological conditions.  

However, when stress was induced through hypoxia (Section 2.14.1), no interaction was 

observed.  This suggested that these two proteins do not interact under stress conditions. 

In view of evidence from previous studies of both KCNE2 and VDAC1, one can deduce that the 

structure and functions of these proteins are relatively similar.  This is supported by the fact that 
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both proteins are voltage-gated ion channels and form transmembrane pores at the plasma 

membrane (Figure 4.6) (Abbott et al. 1999; Okada et al. 2004; De Pinto et al. 2010).   

Furthermore, KCNE2 and VDAC1 have similar functions including ion transport and cell 

volume control and have previously been associated with arrhythmic events and heart failure 

(Yang et al. 2004; Yuqi et al. 2009; www.ncbi.nlm.nih.gov).  

 

 

 

Interestingly, the KCND2 protein, previously shown to interact with KCNE2 (Zhang et al. 2001), 

was found to be even more similar to VDAC1.  KCND2 is a voltage-gated ion channel (Figure 

4.7) with six transmembrane spanning loops and an intracellular N-terminal domain (Isbrandt et 

al. 2000; Barros et al. 2012), almost identical to VDAC1 that contains approximately 19 

transmembrane loops and an intracellular N-terminal domain (Figure 4.5) (Bay and Court 2002; 

Ujwal et al. 2008).   

Through experimental procedures followed in the present study, the novel KCNE2/VDAC1 

interaction was successfully confirmed through 3D co-localization analysis (Section 3.3) yet; Co-

IP analysis could not provide conclusive evidence of the physical interaction between these 

proteins since reciprocal Co-IP results were inadequate (Section 3.4).   

Even so, we hypothesize that this interaction is highly possible and that the subcellular 

localization of the novel KCNE2/VDAC1 association could occur at the plasma membrane.  This 

is supported by previous studies detecting KCNE2 and, more recently, VDAC1 at the plasma 

membrane (Abbott et al. 1999; Okada et al. 2004; De Pinto et al. 2010).  

On the other hand, mitochondria have been shown to be located throughout the cell’s cytoplasm; 

depending on the energy requirements of the cell as well as the specific function of these 

Figure 4.6: Schematic representation of 

KCNE2 transmembrane protein.  In the 

diagram, KCNE2 is shown to stretch through 

the membrane with one pore forming region.  

KCNE2 has an extracellular N-terminal 

domain and an intracellular C-terminal 

domain.  Figure adapted from: Um and 

McDonald 2007. 
COOH 

NH2 

Intracellular 

Extracellular 
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organelles and their role in cell survival (Frederick and Shaw 2007).  Thus, we may speculate 

that membrane bound KCNE2 (more specifically the intracellular C-terminal of KCNE2) could 

associate with the intracellular OMM associated VDAC1 when mitochondria are located close to 

the plasma membrane.  

 

Figure 4.7: Schematic diagram of the Kv channel organization.  This representation of a Kv channel, for 

example KCND2, indicates the six transmembrane regions (labeled S1-S6), the pore domain and the voltage sensor 

domain.  Abbreviations: ext, extracellular; int, intracellular.  It should be noted that this is a general representation of 

Kv channels and although uniformity exists in transmembrane and pore regions, large variability is found in the size 

and location of the N-terminal and C-terminal of different Kv channels.  Figure adapted from: Barros et al. 2012. 

 

Cytoplasmic localization of the novel KCNE2/VDAC1 interaction is another option to be 

explored.  With mitochondria, containing VDAC1 on its outer membrane, situated and 

translocated within the cytoplasm (Frederick and Shaw 2007) and premature KCNE2 being 

trafficked through the ER and cytoplasm (Um and McDonald 2007) it is very possible that these 

proteins might associate here. 

Numerous studies provided evidence that supports the finding of the present study; showing 

positive KCNE2/VDAC1 interaction.  Particularly the study by Okada and colleagues who 

showed that the regulation of cell volume activates VDAC1 as well as delayed rectifier type K+ 

channels (Okada et al. 2004) of which KCNE2 is one.    

NH2 

COOH 
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Taken together, we propose that the interaction between KCNE2 and VDAC1 might be 

necessary for the regulation of cell volume and apoptosis since both of these proteins are 

implicated in these processes.  Additionally, the functions of VDAC1 channels have been shown 

to be dependent upon interactions with other proteins (Kerner et al. 2012).  Consequently, we 

speculate that KCNE2 might be one of these proteins that control VDAC1 functions.   

However, the opposite should also be considered since VDAC proteins were shown to regulate 

the functions of other proteins (De Pinto et al. 2010).  Hence, we can also suggest that the 

KCNE2/VDAC1 interaction is necessary in order for VDAC1 to regulate KCNE2 functions at 

the plasma membrane.  It could also be possible that this novel interaction is essential for the 

activation of KCNE2 and other K+ channels during apoptosis (Okada et al. 2004). 

  

 

 

 

 

 

 

 

 

 

 

Three likely interaction sites/methods were proposed in the current study.  Although, when 

looking at figure 3.5 it seems possible that the association of these proteins takes place at more 

than one of these suggested locations or in more than one way simultaneously i.e. in the 

cytoplasm as well as close to the cell surface. 

Ultimately, we identified VDAC1 to be a novel putative interactor of the C-terminal domain of 

KCNE2 through 3D co-localization and Co-IP analysis.  We also offered relevant evidence 

supporting the findings of the present study. 

Figure 4.8: Predicted association between 

KCNE2 and VDAC1 proteins.  A 

schematic representation of known protein 

interactions indicated with green, blue and 

purple lines.  The red dashed line indicates 

the proposed interaction between KCNE2 

and VDAC1 identified in the present study.  

Abbreviations: CRYAB, Alpha-B crystallin; 

FLNC, Filamin C; KCND2, potassium 

voltage-gated channel, Shal-related 

subfamily, member 2; KCNE2, potassium 

voltage-gated channel, Isk-related family, 

member 2; VDAC1, voltage-dependent anion 

channel 1.  Figure adapted from www.string-

db.org.  
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4.5 IMPLICATIONS FOR KCNE2 

The Y2H system was used to identify novel interactors of the C-terminal of KCNE2 in order to 

elucidate additional functions or pathways in which KCNE2 might be involved.  The putative 

interactors identified and verified in the present study include CRYAB, FLNC and VDAC1.  

This indicates that the C-terminal of KCNE2 is able to interact with at least three classes of 

proteins known as small heat-shock proteins, filamins and porin ion channels, respectively.  

Among these proteins identified, none to our knowledge have previously been proposed as 

interactors of the C-terminal of KCNE2, thus classifying them as novel interactions.   

Following adequate research, it was established that the disruption of pathways in which all three 

interacting proteins are involved lead to cardiac dysfunction.  Therefore, considering that only 

75% of LQTS-causing mutations are known, the novel positive interacting proteins and other 

components of their respective pathways could be model candidates to be investigated for 

disease-causing or disease/phenotype modifiers.  

 

4.6 STUDY LIMITATIONS 

4.6.1 Y2H analysis limitations 

The Y2H system is one of the most widely used and well established genetic techniques 

available to identify novel protein-protein interactions in vivo (Berggård et al. 2007).  The Y2H 

system has proven to be relatively inexpensive, do not require special equipment and can easily 

be performed in any molecular laboratory with high efficacy and over the years, a myriad of 

interactions have successfully been identified using this technique.  However, with the extreme 

application of this method a number of limitations have come to light (Bruckner et al. 2009). 

When using a classic cDNA library Y2H screen, as was done in the present study, the aim is to 

search for pairwise interactions between bait and prey proteins that have been pooled.  This 

means that the pooled prey library do not only contain full length ORFs but small DNA 

fragments as well leading to false positives being identified due to non-specific interactions (Van 

Criekinge and Beyaert 1999).   

Moreover, since Y2H relies on the reconstitution of a transcription factor and the expression of 

reporter genes, all interaction in this assay takes place within the nucleus of the yeast cell (Fields 
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and Song 1989; Bruckner et al. 2009).  This, of course does not represent the true cellular 

compartments where interacting proteins reside in vivo. Therefore interactions may be detected 

in Y2H analysis that cannot take place in vivo because the putative interacting proteins are 

located in cellular compartments that makes it impossible for them to interact.  Furthermore, 

certain proteins may become toxic to the host cell when expressed or could degrade vital yeast 

proteins or proteins necessary for the assay (Van Criekinge and Beyaert 1999).  

One should also be aware that Y2H is notorious for producing false positive interactions, i.e. 

showing reporter gene activation where no bait-prey interaction has taken place.  This could be 

due to the bait construct being able to autonomously activate the transcription of reporter genes 

(auto activation) (Cusick et al. 2005; Lalonde et al. 2008; Bruckner et al. 2009).  In the present 

study, the KCNE2-bait construct was unable to act as an auto-activator of reporter gene 

transcription. 

The detection of false negative interactions is also a possibility when performing an Y2H screen.  

This happens when the interaction between the bait and prey was facilitated by a fusion or 

anchor protein; leading to the prevention of interaction due to a change in molecular structure 

(Van Criekinge and Beyaert 1999).  Moreover, false negatives may also be caused by 

interactions that require specific post-translational modifications and unless the enzymes 

responsible for these modifications are present in the yeast, no interaction will be detected 

(Cusick et al. 2005; Bruckner et al. 2009).   

Additionally, Y2H screening only identifies defined binary interactions in a complex and not all 

the components of a larger complex which could lead to certain protein interactions being 

overlooked (Berggård at al. 2007; Bruckner et al. 2009). 

Another limitation of this system can be ascribed to the bait and prey proteins fusing to the DNA 

binding domain.  This fusion of proteins might change the conformation of the bait and/or prey 

proteins and could influence their functions and binding properties (Fields and Song 1989; 

Bruckner et al. 2009).   

When taking the above mentioned limitations into consideration, it is evident that independent 

verification of protein-protein interaction is crucial.  Thus, in order to address this matter, a co-
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localization assay was selected to determine whether the interacting proteins are located in the 

same subcellular compartment at any given time.   

However, although co-localization of proteins provides evidence of spatial closeness and the 

presence of two or more proteins in the same cellular compartment, it does not offer prove of a 

physical interaction between these proteins (Dunn et al. 2011).  Therefore, an additional 

verification technique is necessary to determine if the interaction is a true specific binary protein 

interaction.  In the present study we used a co-immunoprecipitation (Co-IP) assay to confirm 

this. 

 

4.6.2 Three-dimensional co-localization limitations 

Some of the limitations identified throughout the use of 3D co-localization are as follows:  The 

use of highly specific primary antibodies raised against the proteins of interest and fluorophore-

labeled secondary antibodies required a great deal of optimization to determine the adequate 

concentration for each antibody to be used.  This was necessary in order to acquire suitable 

images for analysis which proved to be somewhat time consuming.  Additionally, when 

investigating endogenous proteins (like in the present study), components of the protein complex 

may not be expressed sufficiently in the cell line studied (Berggård et al. 2007).   

Finally, when using conventional light microscopy the resolution is limited to approximately 

200nm by the diffraction of light, causing objects closer than 200nm to each other to appear as a 

single object (Lalonde et al. 2008).  However, the method used in the present study allowed z-

stack images to be taken roughly 260nm (0.26µm) apart, suggesting that this distance may 

separate proteins that appear co-localized by fluorescence microscopy.  As a result it is possible 

to determine whether two proteins share the same subcellular space yet, no conclusive evidence 

can be given regarding physical association between the proteins of interest.   

This 3D co-localization method should therefore be considered as one technique that could be 

used in conjunction with other techniques - such as Co-IP - in order to verify physical protein-

protein interactions. 
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4.6.3 Co-immunoprecipitation limitations 

Some Co-IP limitations were encountered during the course of this study.  The predicted size of 

KCNE2 has been estimated between 14kDa and 20kDa however, the size of KCNE2 detected 

throughout all the Co-IP and WB experiments in the present study were approximately 40kDa - 

50kDa.  This matter was addressed by conducting experiments with three different KCNE2-

specific antibodies from three different manufacturers, yet all yielded similar results of lysates 

producing an intense protein band at approximately 50kDa. 

Another possible explanation for the bigger protein band of KCNE2 could be attributed to 

complex formation of the protein (Um and McDonald 2007).  Um and McDonald also reported a 

40kDa protein fragment on western blots for the KCNE2 protein.  They analysed the band and 

found that it represented the correct KCNE2 fragment.  Further analysis indicated that the 40kDa 

fragment resulted from the dimerization of KCNE2 proteins (Um and McDonald 2007).  

Subsequently, this provided support for the results presented in the current study. 

 

4.7 FUTURE STUDIES 

The three novel interactors of the C-terminal of KCNE2 identified and verified in the present 

study demands further investigation to elucidate the true nature of their interaction and 

physiological relevance to KCNE2 and LQTS. 

Therefore, genes encoding these novel interacting proteins should be considered as good 

candidates to screen for mutations, especially in our SA cohort of LQTS patients.  With the 

identification of novel disease-causing mutations in patients (possibly segregating in the family) 

and the absence of these mutations in control subjects, functional studies should be considered to 

establish the effect of these mutations on disease phenotype.  This would include the deletion or 

inhibition of gene expression (Knockout experiments) as well as mutagenesis experiments in 

order to elucidate the precise mechanism of function of these mutations and the effect they have 

on K+ flow and general functioning of KCNE2 K+ channels in cardiac muscle cells.   

Through the identification of the three prey interactors, additional pathways were identified in 

which KCNE2 might be implicated.  Therefore it will be interesting to investigate these 

pathways in terms of their contribution to cardiac conduction disorders and heart failure.   
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Furthermore, future studies should include the investigation of the four putative interactors that 

fell outside the scope of the present study (ACTC1, MYOM1, POMP and TTN). 

 

4.8 CONCLUSION 

In this investigation of the C-terminal of KCNE2, seven putative interactors were identified by 

means of Y2H analysis.  Three of these interactors were selected for further investigation and 

were subsequently subjected to direct Y2H protein-protein interaction verification assays 

namely; 3D co-localization and co-immunoprecipitation (Co-IP) analysis.  Although some 

difficulty was experienced with reciprocal Co-IP verification experiments, it is still considered 

that CRYAB and VDAC1 are true KCNE2 C-terminal ligands due to positive co-localization and 

partially positive Co-IP data.  Both protein interaction techniques used for the verification of the 

KCNE2/FLNC interaction provided irrefutable evidence of the subcellular localization as well as 

physical association between these two proteins.   

All three of the putative positive interactors identified in this study are novel and should provide 

new understanding and insight into the mechanisms in which KCNE2 is involved and how it 

contributes to disease pathogenesis.  By means of identifying novel KCNE2 interacting proteins, 

different pathways and targets could be revealed.  With investigation of these new targets and 

pathways the mechanism by which KCNE2 mutations induce cardiac dysfunction, can possibly 

be elucidated.  In conclusion, this study identified interesting and novel interactors that will 

contribute to our current knowledge of KCNE2. 
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Appendix I 

Reagents 

1.  SOLUTION USED IN GENERATION OF COMPETENT CELLS  

CAP buffer: 

60mM CaCl2        2.21g 

15% glycerol        37.5ml 

10mM PIPES        0.76g 

ddH2O up to 250ml. pH 7.0.  Keep in fridge 

 

2.  BACTERIAL MEDIA 

Luria-Bertani (LB) Media 

Bacto tryptone        5g 

Yeast extract        2.5g 

NaCl         5g 

Agar         8g 

ddH2O to final volume of 500ml 

Autoclave for 20 minutes at 121ºC and add appropriate antibiotic to media when the 

temperature has reached ±55ºC (Ampicillin, 50mg/ml and Kanamycin 100mg/ml). 

 

LB Agar Plates  

Bacto tryptone        5g 

Yeast extract        2.5g 

NaCl         5g 

Agar         8g 

ddH2O to final volume of 500ml 

Autoclave for 20 minutes at 121ºC and add appropriate antibiotic to media when the 

temperature has reached ±55ºC, prior to pouring plates (Ampicillin, 50mg/ml and 

Kanamycin 100mg/ml). 
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3. YEAST MEDIA 

YPDA Media 

Difco peptone       10g 

Yeast extract       5g 

Glucose       10g 

L-adenine hemisulphate (0.2% stock)   7.5ml 

ddH2O to a final volume of 500ml; Autoclave at 121ºC for 15 minutes 

 

2X YPDA Media 

Difco peptone       12g 

Yeast extract       6g 

Glucose       12g 

L-adenine hemisulphate (0.2% stock)   9ml 

ddH2O to a final volume of 500ml; Autoclave at 121ºC for 15 minutes 

 

YPDA Agar 

Difco peptone       10g 

Yeast extract       5g 

Glucose       10g 

Bacto agar       10g 

L-adenine hemisulphate (0.2% stock)   7.5ml 

ddH2O to a final volume of 500ml; Autoclave at 121ºC for 15 minutes 

 

4. YEAST TRANSFORMATION REAGENTS 

1M Lithium Acetate (LiAc) 

LiAc        5.1g 

ddH2O to a final volume of 50ml  

 

100mM LiAc 

1M LiAc       5ml 

ddH2O to a final volume of 50ml  
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50% PEG 4000 

PEG 4000       25g 

ddH2O to a final volume of 50ml  

 

Herring Sperm 

Herring Sperm       50mg 

ddH2O to a final volume of 50ml 

 

5. SINGLE DROPOUT MEDIA 

SD-Trp Media 

 Glucose       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp amino acid supplement     0.4g 

 0.2% adenine hemisulphate     9ml 

ddH2O to a final volume of 600ml; Autoclave at 121ºC for 15 minutes 

 

SD-Trp Agar Plates 

 Glucose       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp amino acid supplement     0.4g 

 Bacto agar       12g 

 0.2% adenine hemisulphate     9ml 

ddH2O to a final volume of 600ml; Autoclave at 121ºC for 15 minutes 

 

SD-Leu Media 

 Glucose       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Leu amino acid supplement    0.4g 

 0.2% adenine hemisulphate     9ml 

ddH2O to a final volume of 600ml; Autoclave at 121ºC for 15 minutes 
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 SD-Leu Agar Plates 

 Glucose       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Leu amino acid supplement    0.4g 

 Bacto agar       12g 

 0.2% adenine hemisulphate     9ml 

ddH2O to a final volume of 600ml; Autoclave at 121ºC for 15 minutes 

 

SD-Trp/-Leu Media 

 Glucose       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp/-Leu amino acid supplement    0.4g 

 0.2% adenine hemisulphate     9ml 

ddH2O to a final volume of 600ml; Autoclave at 121ºC for 15 minutes 

 

SD-Trp/-Leu Agar Plates  

 Glucose       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp/-Leu amino acid supplement    0.4g 

 0.2% adenine hemisulphate     9ml 

 Bacto agar       12g 

ddH2O to a final volume of 600ml; Autoclave at 121ºC for 15 minutes 

 

TDO Media 

 Glucose        12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp-Leu-His amino acid supplement    0.4g 

 ddH2O to a final volume of 600ml; pH 5.8; Autoclave at 121ºC for 15 minutes 
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TDO Agar Plates 

Glucose        12g 

Bacto agar       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp-Leu-His amino acid supplement    0.4g 

 ddH2O to a final volume of 600ml; pH 5.8; Autoclave at 121ºC for 15 minutes 

 

QDO Media 

Glucose        12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp-Leu-His-Ade amino acid supplement   0.4g 

 ddH2O to a final volume of 600ml; pH 5.8; Autoclave at 121ºC for 15 minutes 

 

QDO Agar Plates 

Glucose        12g 

Bacto agar       12g 

 Yeast nitrogen base without amino acids   4g 

 SD-Trp-Leu-His-Ade amino acid supplement   0.4g 

 ddH2O to a final volume of 600ml; pH 5.8; Autoclave at 121ºC for 15 minutes 

 

X-α-galactosidase Solutions (20mg/ml) 

x-α-galactosidase      250mg  

Dimethylformamide (DMF)     12.5ml 

 

3-Amino-1,2,4-triazole (3-AT) (10mM) 

 3-AT        0.84g 

 ddH2O to a final volume of 1L 

Add 6ml 3-AT solution and 1ml X-α-Galactosidase solution to TDO and QDO plates when agar 

temperature has reached ± 55ºC 

 

Note: All media or plates containing glucose were autoclaved for 15 minutes to avoid 

crystallisation   
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6. ELECTROPHORESIS SOLUTIONS 

SB Buffer (20X stock) 

Di-sodium tetraborate decahydrate     38.137g/mol 

ddH2O to a final volume of 1L 

 

SDS-PAGE Running buffer (10X) 

Tris base       30g 

Glycine       144g 

10% SDS       100ml 

ddH2O to a final volume of 1L 

 

7. GELS 

1 % Agarose Gel       

Agarose        1g 

SB Buffer (1X)      100ml 

Microwave for 2-3 minutes; add 5µl ethidium bromide (10mglml) when temperature 

reaches ± 55ºC 

 

 

8. LOADING DYES 

Ethidium bromide stock (10mg/ml) 

 Ethidium bromide (Sigma)     500mg 

 ddH2O        50ml 

 Stir for 4 hours using magnetic stirrer and store in dark container at 4ºC 

Bromophenol Blue loading dye 

 Bromophenol blue      1% (w/v) 

 ddH2O to a final volume of 100ml; store at 4ºC 

SDS Loading Dye 

 Laemmli sample buffer (Bio-Rad)    950µl 

 β-mercapto-ethanol      50µl 
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9. CO-IP REAGENTS 

 Lysis buffer 

 Hepes        10ml 

 5M NaCl       4ml 

 0.5M EDTA       4ml 

 Triton X-100       2ml 

 10mM Nappi       80ml 

 1M Na3VO4       400µl 

 ddH2O to final volume of 200ml 

 1
4⁄  tablet protease inhibitor and 100µl PMSF freshly added to 5ml lysis buffer for 

Co-IP experiment 

 

TBST (pH7.6) 

 5M NaCl       60ml 

 1M Tris base       40ml 

 0.1% Tween-20      2ml 

 ddH2O to a final volume of 2L 

 

Membrane blocking solution 

 Powder milk       7.5g 

 Tween-20       15µl 

 TBST solution       150ml 

 

Esuni Buffer 

 NaCl        8.1g 

 KCl        0.9g 

 MgCl2        0.1g 

 CaCl2.H2O        0.13g 

 Hepes        0.95g 

ddH2O to a final volume of 1L; pH6.2;  
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Metabolic inhibition with 2DG     3.28g 

ddH2O to a final volume of 1L; pH6.4 

 

10. CO-LOCALIZATION REAGENTS 

Phosphate buffered saline (PBS) 

 1 PBS Tablet 

 ddH2O to a final volume of 200ml 

 

1% Bovine Serum Albumin (BSA) 

 BSA        0.5g 

 PBS solution        50ml 

 

Cell mounting solution 

 Mowiol       1ml 

 Anti-fade       <0.01g 

 Heat for 1hour at 55ºC; spin tube down before use 

 

11. EUKARYOTIC CELL CULTURE MEDIA 

Growth Media 

 DMEM (4.5g/L glucose, with L-glutamine)   500ml 

 Foetal Bovine Serum      50ml 

 Penicillin/Streptomycin     5ml 

 Pre-warm to 37ºC before use   

 

Differentiation Media 

 DMEM (4.5g/L glucose, with L-glutamine)   500ml 

 Horse Serum       5ml 

 Penicillin/Streptomycin     5ml 

 Pre-warm to 37ºC before use 
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Appendix II 

Vectors 

 

Restriction map and Multiple Cloning Site (MCS) of pGBKT7 Y2H vector.  A)  The 

positions of the Kanamycin resistance gene (Kanr), the trypsin (TRP1) nutritional marker for 

selection in yeast, GAL4-BD coding sequences, f1 bacteriophage and pUC origins of replication, 

the truncated S.cerevisiae ADH1 promoter sequence (PADH1) and the MCS.  B)  The nucleotide 

sequence of the pGBKT7 MCS.  The sequence indicated the positions of all the unique 

restriction enzyme recognition sequences, stop codons in the T7 termination sequence, GAL4-

BD coding sequence, T7 promoter sequence, c-Myc epitope tag, position of screening and 

sequencing primers.  (Adapted from pGBKT7 vector information datasheet, Clontech) 
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Restriction map and Multiple Cloning Site (MCS) of pACT2 Y2H prey vector.  A)  Shows 

the positions of unique restriction enzyme sites indicated in bold font as well as the positions of 

the Ampicillin resistance gene (Ampr), the leucine (LEU2) nutritional marker, GAL4-BD coding 

sequence, 2µ and pBR322 plasmid origin of replication, the S.cerevisiae ADH1 promoter, 

S.cerevisiae ADH1 termination sequence, Lox sites (Lox 1 and Lox 2), the haemagglutinin (HA) 

epitope tag and the MCS.  B)  The nucleotide sequence of the pACT2 MCS.  The position of 

restriction enzyme sites, stop codons, GAL4-BD coding sequence, HA epitope tag and the 

positions of the pACT2-F and pACT2-R primer sequences.  (Adapted from pACT2 vector 

information datasheet, Clontech) 

Stellenbosch University  http://scholar.sun.ac.za



143 
 

Appendix III 

Calculations 

 
CALCULATING YEAST MATING EFFICIENCY  

 Count number of colonies on all plates with 30-300 colonies after 4 days 

 

#colony forming units (cfu)/ml =   #cfu x 1000µl/ml 

     Volume plated (µl) x dilution factor 

 

1. #cfu/ml on SD-Leu plates = viability of prey partner 

2. #cfu/ml on SD-Trp plates = viability of bait partner 

3. #cfu/ml on SD-Leu-Trp plates = viability of diploids 

4. Lowest #cfu/ml of SD-Leu plates or SD-Trp plates = indication of limiting partner 

  

5. Mating efficiency =  #cfu/ml of diploids x 100 

    #cfu/ml of limiting partner 

 

Library titre: 

 Count number of colonies on all plates with 30-300 colonies after 4 days 

 

#cfu/ml =   #colonies 

  Volume plated (µl) x dilution factor 

 

Number of clones screened: 

#cfu/ml x final resuspension concentration 

 

 

HAEMOCYTOMETRIC CELL COUNT 

In order to determine the number of cells per millilitre (ml), the number of cells in each of the 

five larger square blocks was counted.  The amount of the cells in these five squares was added 

together and divided by five to get an average number of cells for each of the 25 large squares of 

the central quadrant of the haemocytometer (See figure 2.2).  The average number of cells was 

subsequently multiplied by 25 to get an estimated average number of cells within the large 

central quadrant.  The formula used to determine the number of cells/ml is as follows:  

 

# cells/ml = # cells x dilution factor x 104 (because the depth of the counting chamber is 0.1mm) 
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Appendix IV 

Aligned sequence of KCNE2 

Colony #1A   ----------------------------------------------------------------------------------------------------  

KCNE2 C-term ----------------------------------------------------------------------------------------------------  

Reference    --ATGTCTACTTTATCCAATTTCACACAGACGCTGGAAGACGTCTTCCGAAGGATTTTTATTACTTATATGGACAATTGGCGCCAGAACACAACAGCTGA  

 

Colony #1A   ----------------------------------------GTAATACGACTCACTATAGGGCGAGCCGCCATCATGGAGGAGCAGAAGCTGATCTCAGAG  

KCNE2 C-term ----------------------------------------------------------------------------------------------------  

Reference    GCAAGAGGCCCTCCAAGCCAAAGTTGATGCTGAGAACTTCTACTATGTCATCCTGTACCTCATGGTGATGATTGGAATGTTCTCTTTCATCATCGTGGCC  

 

Colony #1A   GAGGACCTGCATATGGTGAAATCCAAGAGACGGGAACACTCCAATGACCCCTACCACCAGTACATTGTAGAGGACTGGCAGGAAAAGTACAAGAGCCAAA  

KCNE2 C-term ---------------GTGAAATCCAAGAGACGGGAACACTCCAATGACCCCTACCACCAGTACATTGTAGAGGACTGGCAGGAAAAGTACAAGAGCCAAA  

Reference    ATCCTGGTGAGCACTGTGAAATCCAAGAGACGGGAACACTCCAATGACCCCTACCACCAGTACATTGTAGAGGACTGGCAGGAAAAGTACAAGAGCCAAA  

 

Colony #1A   TCTTGAATCTAGAAGAATCGAAGGCCACCATCCATGAGAACATTGGTGCGGCTGGGTTCAAAATGTCCCCCTGATAGGAATTCCCGGGGATCCGTCGACC  

KCNE2 C-term TCTTGAATCTAGAAGAATCGAAGGCCACCATCCATGAGAACATTGGTGCGGCTGGGTTCAAAATGTCCCCCTGA--------------------------  

Reference    TCTTGAATCTAGAAGAATCGAAGGCCACCATCCATGAGAACATTGGTGCGGCTGGGTTCAAAATGTCCCCCTGATAAGGGAGAAAGGCACCAAGCTAACA  

 

Colony #1A   TGCAGCGGCCGCATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTT----------------------------------------  

KCNE2 C-term ----------------------------------------------------------------------------------------------------  

Reference    TCTGACGTCCAGACATGAAGAGATGCCAGTGCCACGAGGCAAATCCAAATTGTCTTTGCTTAGAAGAAAGTGAGTTCCTTGCTCTCTGTTGAGAATTTTC  

 

Colony #1A   ----------------------------------------------------------------------------------------------------  

KCNE2 C-term ----------------------------------------------------------------------------------------------------  

Reference    ATGGAGATTATGTGGTTGGCCAATAAAGATAGATGACATTTCAATCTCAGTGATTTATGCTTGCTTGTTGGAGCAATATTTTGTGCTGAAGACCTCTTTT  

 

Colony #1A   ----------------------------------------------------------------------- 

KCNE2 C-term -----------------------------------------------------------------------  

Reference    ACTTTCCGGGCAAGTGAATGTCATTTTAATCAATATCAATGATGAAAATAAAGCCAAATTTGAAGAAAAAA  

Figure 1: Sequence analysis of the pGBKT7-KCNE2 construct.  Sequence homology alignment of colony #1A with the C-terminal encoding sequence of KCNE2 in the 

pGBKT7 vector as well as the reference sequence for KCNE2 (GenBank: http://www.ncbi.nlm.nih.gov/Entrez) (NM_172201.1).  The primer nucleotide sequences of the 

pGBKT7 vector are shade grey; the pBGKT7 vector sequences are in the turquoise boxes and the restriction enzyme recognition sequences are shaded yellow.  The start and stop 

codons of the KCNE2 reference sequence are indicated in the green shaded boxes respectively.  
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Appendix V 

Tables of primary and secondary clones 

 
Table 1.1: Activation of nutritional and colourimetric reporter genes of the 427 clones. 

Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

4 +++ +++ ++ (light blue) 

5 +++ ++ ++(light blue) 

8 +++ +++ ++(light blue) 

9 +++ +++ +++ (dark blue) 

10 +++ +++ +++(dark blue) 

11 +++ ++ +++(dark blue) 

15 +++ +++ ++(light blue) 

16 +++ +++ +++(dark blue) 

17 +++ ++ ++(light blue) 

18 +++ ++ ++(light blue) 

22 +++ ++ ++(light blue) 

23 +++ +++ +++(dark blue) 

24 +++ ++ +++(dark blue) 

26 +++ ++ + (no blue) 

28 +++ ++ +(no blue) 

29 +++ +++ ++(light blue) 

30 +++ +++ ++(light blue) 

38 +++ ++ ++(light blue) 

41 +++ ++ ++(light blue) 

42 +++ +++ - (no growth) 

46 +++ +++ +++(dark blue) 

48 +++ +++ ++(light blue) 

53 +++ +++ ++(light blue) 

56 +++ +++ +++(dark blue) 

57 +++ ++ ++(light blue) 

61 +++ +++ ++(light blue) 

64 +++ ++ ++(light blue) 

65 +++ +++ +(no blue) 

66 +++ +++ ++(light blue) 

67 +++ +++ ++(light blue) 

68 +++ +++ +++(dark blue) 

72 +++ ++ ++(light blue) 

73 +++ ++ - (no growth) 

74 +++ +++ +(no blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

79 +++ +++ +++(dark blue) 

81 +++ +++ - (no growth) 

82 +++ +++ +++(dark blue) 

84 +++ +++ +(no blue) 

89 +++ +++ - (no growth) 

92 +++ +++ ++(light blue) 

95 +++ +++ ++(light blue) 

96 +++ +++ +++(dark blue) 

97 +++ +++ ++(light blue) 

98 +++ +++ ++(light blue) 

101 +++ +++ ++(light blue) 

102 +++ +++ +++(dark blue) 

103 +++ ++ ++(light blue) 

105 +++ +++ ++(light blue) 

106 +++ +++ ++(light blue) 

107 +++ +++ +(no blue) 

108 +++ +++ +(no blue) 

111 +++ +++ ++(light blue) 

112 +++ +++ +++(dark blue) 

113 +++ +++ +++(dark blue) 

114 +++ ++ - (no growth) 

116 +++ +++ ++(light blue) 

118 +++ +++ ++(light blue) 

120 +++ ++ ++(light blue) 

121 +++ +++ ++(light blue) 

93 +++ +++ ++(light blue) 

124 +++ ++ - (no growth) 

125 +++ +++ +++(dark blue) 

127 +++ ++ ++(light blue) 

128 +++ ++ ++(light blue) 

129 +++ +++ +(no blue) 

131 +++ ++ - (no growth) 

132 +++ ++ +(no blue) 

134 +++ +++ +(no blue) 

135 +++ ++ ++(light blue) 

137 +++ +++ +++(dark blue) 

138 +++ ++ - (no growth) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

139 +++ ++ ++(light blue) 

142 +++ ++ ++(light blue) 

143 +++ +++ +++(dark blue) 

144 +++ +++ ++(light blue) 

145 +++ +++ ++(light blue) 

146 +++ ++ ++(light blue) 

148 +++ +++ ++(light blue) 

149 +++ +++ ++(light blue) 

155 +++ +++ ++(light blue) 

157 +++ +++ ++(light blue) 

158 +++ +++ ++(light blue) 

160 +++ +++ ++(light blue) 

162 +++ ++ ++(light blue) 

163 +++ +++ ++(light blue) 

165 +++ +++ ++(light blue) 

170 +++ +++ ++(light blue) 

171 +++ ++ +(no blue) 

174 +++ ++ ++(light blue) 

175 +++ +++ ++(light blue) 

176 +++ ++ +(no blue) 

180 +++ ++ +(no blue) 

181 +++ ++ +(no blue) 

182 +++ ++ +(no blue) 

185 +++ +++ ++(light blue) 

186 +++ ++ - (no growth) 

191 +++ ++ +(no blue) 

192 +++ ++ ++(light blue) 

193 +++ +++ ++(light blue) 

194 +++ ++ ++(light blue) 

196 +++ ++ +(no blue) 

197 +++ +++ ++(light blue) 

198 +++ +++ ++(light blue) 

199 +++ +++ - (no growth) 

202 +++ +++ ++(light blue) 

203 +++ +++ +(no blue) 

205 +++ +++ ++(light blue) 

206 +++ ++ +(no blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

209 +++ +++ +(no blue) 

211 +++ ++ +(no blue) 

212 +++ ++ +(no blue) 

214 +++ +++ ++(light blue) 

216 +++ +++ ++(light blue) 

217 +++ +++ +++(dark blue) 

218 +++ +++ +++(dark blue) 

219 +++ +++ +(no blue) 

222 +++ +++ ++(light blue) 

223 +++ ++ +(no blue) 

226 +++ ++ ++(light blue) 

227 +++ ++ - (no growth) 

228 +++ +++ ++(light blue) 

229 +++ ++ ++(light blue) 

230 +++ +++ +++(dark blue) 

233 +++ ++ ++(light blue) 

234 +++ +++ ++(light blue) 

236 +++ ++ ++(light blue) 

237 +++ +++ ++(light blue) 

238 +++ +++ +++(dark blue) 

239 +++ ++ ++(light blue) 

242 +++ +++ +++(dark blue) 

243 +++ ++ +(no blue) 

244 +++ ++ ++(light blue) 

247 +++ +++ +++(dark blue) 

248 +++ +++ ++(light blue) 

250 +++ +++ ++(light blue) 

251 +++ +++ +++(dark blue) 

252 +++ +++ ++(light blue) 

257 +++ +++ ++(light blue) 

259 +++ +++ ++(light blue) 

261 +++ +++ ++(light blue) 

262 +++ ++ ++(light blue) 

264 +++ ++ ++(light blue) 

265 +++ +++ ++(light blue) 

271 +++ +++ ++(light blue) 

272 +++ +++ ++(light blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

278 +++ +++ ++(light blue) 

279 +++ +++ ++(light blue) 

281 +++ +++ +++(dark blue) 

283 +++ +++ +++(dark blue) 

285 +++ ++ ++(light blue) 

290 +++ ++ +(no blue) 

291 +++ ++ ++(light blue) 

293 +++ ++ ++(light blue) 

295 +++ +++ ++(light blue) 

296 +++ ++ ++(light blue) 

297 +++ ++ +(no blue) 

299 +++ ++ ++(light blue) 

302 +++ +++ +++(dark blue) 

303 +++ +++ +++(dark blue) 

305 +++ ++ ++(light blue) 

307 +++ ++ ++(light blue) 

309 +++ +++ +(no blue) 

317 +++ +++ ++(light blue) 

319 +++ +++ ++(light blue) 

321 +++ ++ ++(light blue) 

323 +++ ++ ++(light blue) 

328 +++ +++ ++(light blue) 

329 +++ ++ ++(light blue) 

330 +++ +++ ++(light blue) 

331 +++ +++ ++(light blue) 

333 +++ +++ ++(light blue) 

334 +++ +++ +(no blue) 

335 +++ +++ ++(light blue) 

336 +++ ++ ++(light blue) 

338 +++ +++ ++(light blue) 

340 +++ +++ +(no blue) 

343 +++ +++ ++(light blue) 

349 +++ +++ +++(dark blue) 

351 +++ +++ ++(light blue) 

355 +++ +++ +++(dark blue) 

358 +++ ++ ++(light blue) 

359 +++ ++ ++(light blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

360 +++ +++ +++(dark blue) 

368 +++ ++ +++(dark blue) 

371 +++ +++ +++(dark blue) 

375 +++ ++ ++(light blue) 

380 +++ +++ ++(light blue) 

383 +++ +++ +++(dark blue) 

395 +++ +++ +++(dark blue) 

396 +++ +++ ++(light blue) 

398 +++ +++ +++(dark blue) 

403 +++ +++ ++(light blue) 

406 +++ ++ ++(light blue) 

407 +++ +++ +++(dark blue) 

409 +++ +++ ++(light blue) 

412 +++ ++ +++(dark blue) 

414 +++ +++ ++(light blue) 

416 +++ +++ +++(dark blue) 

417 +++ ++ +++(dark blue) 

418 +++ +++ +++(dark blue) 

419 +++ +++ +(no blue) 

420 +++ +++ ++(light blue) 

423 +++ ++ ++(light blue) 

424 +++ ++ ++(light blue) 

425 +++ +++ ++(light blue) 

426 +++ +++ ++(light blue) 

427 +++ +++ ++(light blue) 

428 +++ +++ ++(light blue) 

430 +++ +++ ++(light blue) 

431 +++ +++ ++(light blue) 

432 +++ +++ ++(light blue) 

433 +++ +++ ++(light blue) 

434 +++ ++ ++(light blue) 

435 +++ +++ ++(light blue) 

436 +++ +++ ++(light blue) 

437 +++ +++ ++(light blue) 

439 +++ +++ ++(light blue) 

440 +++ ++ ++(light blue) 

441 +++ ++ ++(light blue) 

    

Stellenbosch University  http://scholar.sun.ac.za



151 
 

Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

442 +++ +++ ++(light blue) 

443 +++ +++ ++(light blue) 

445 +++ ++ ++(light blue) 

446 +++ +++ ++(light blue) 

448 +++ +++ ++(light blue) 

451 +++ +++ ++(light blue) 

452 +++ +++ +++(dark blue) 

453 +++ +++ ++(light blue) 

456 +++ ++ ++(light blue) 

459 +++ ++ ++(light blue) 

461 +++ ++ ++(light blue) 

462 +++ ++ ++(light blue) 

464 +++ +++ +++(dark blue) 

470 +++ ++ ++(light blue) 

475 +++ +++ ++(light blue) 

477 +++ ++ ++(light blue) 

479 +++ +++ ++(light blue) 

480 +++ +++ ++(light blue) 

481 +++ ++ ++(light blue) 

484 +++ +++ +++(dark blue) 

487 +++ +++ ++(light blue) 

490 +++ ++ +(no blue) 

493 +++ ++ ++(light blue) 

494 +++ +++ ++(light blue) 

495 +++ +++ ++(light blue) 

496 +++ ++ +(no blue) 

501 +++ +++ +++(dark blue) 

503 +++ ++ ++(light blue) 

506 +++ +++ ++(light blue) 

507 +++ +++ ++(light blue) 

508 +++ +++ ++(light blue) 

510 +++ +++ +++(dark blue) 

514 +++ +++ +++(dark blue) 

515 +++ +++ ++(light blue) 

520 +++ ++ ++(light blue) 

521 +++ +++ ++(light blue) 

523 +++ ++ ++(light blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

525 +++ ++ ++(light blue) 

526 +++ +++ ++(light blue) 

534 +++ ++ ++(light blue) 

537 +++ +++ ++(light blue) 

538 +++ ++ ++(light blue) 

540 +++ ++ ++(light blue) 

543 +++ ++ ++(light blue) 

546 +++ +++ +++(dark blue) 

550 +++ ++ ++(light blue) 

553 +++ ++ +++(dark blue) 

554 +++ ++ ++(light blue) 

564 +++ +++ ++(light blue) 

578 +++ ++ ++(light blue) 

579 +++ ++ ++(light blue) 

589 +++ ++ +(no blue) 

590 +++ ++ ++(light blue) 

594 +++ ++ ++(light blue) 

598 +++ ++ ++(light blue) 

601 +++ ++ ++(light blue) 

610 +++ +++ +++(dark blue) 

615 +++ ++ ++(light blue) 

616 +++ ++ ++(light blue) 

617 +++ ++ ++(light blue) 

619 +++ ++ ++(light blue) 

623 +++ ++ ++(light blue) 

627 +++ ++ ++(light blue) 

630 +++ ++ ++(light blue) 

634 +++ ++ +(no blue) 

635 +++ +++ ++(light blue) 

636 +++ ++ ++(light blue) 

639 +++ ++ ++(light blue) 

640 +++ ++ ++(light blue) 

645 +++ ++ ++(light blue) 

649 +++ ++ +++(dark blue) 

655 +++ ++ ++(light blue) 

665 +++ ++ ++(light blue) 

668 +++ ++ +++(dark blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

669 +++ ++ ++(light blue) 

684 +++ ++ +++(dark blue) 

686 +++ ++ ++(light blue) 

687 +++ +++ +++(dark blue) 

689 +++ ++ ++(light blue) 

691 +++ +++ ++(light blue) 

693 +++ +++ +++(dark blue) 

695 +++ ++ ++(light blue) 

696 +++ ++ ++(light blue) 

698 +++ +++ ++(light blue) 

700 +++ ++ ++(light blue) 

701 +++ +++ ++(light blue) 

706 +++ ++ ++(light blue) 

710 +++ ++ ++(light blue) 

711 +++ ++ ++(light blue) 

712 +++ ++ ++(light blue) 

713 +++ ++ ++(light blue) 

718 +++ +++ +++(dark blue) 

724 +++ ++ ++(light blue) 

726 +++ ++ ++(light blue) 

727 +++ ++ ++(light blue) 

749 +++ ++ ++(light blue) 

750 +++ ++ ++(light blue) 

753 +++ ++ ++(light blue) 

759 +++ ++ ++(light blue) 

760 +++ ++ ++(light blue) 

770 +++ ++ ++(light blue) 

771 +++ ++ ++(light blue) 

774 +++ ++ +++(dark blue) 

775 +++ ++ +++(dark blue) 

776 +++ ++ +++(dark blue) 

777 +++ ++ +++(dark blue) 

780 +++ ++ ++(light blue) 

781 +++ ++ ++(light blue) 

782 +++ ++ ++(light blue) 

784 +++ ++ ++(light blue) 

785 +++ ++ ++(light blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

787 +++ ++ ++(light blue) 

789 +++ ++ ++(light blue) 

790 +++ ++ ++(light blue) 

798 +++ ++ ++(light blue) 

802 +++ ++ +++(dark blue) 

817 +++ +++ +++(dark blue) 

818 +++ ++ +++(dark blue) 

819 +++ ++ ++(light blue) 

823 +++ ++ ++(light blue) 

832 +++ ++ ++(light blue) 

836 +++ ++ ++(light blue) 

841 +++ ++ ++(light blue) 

842 +++ ++ ++(light blue) 

846 +++ ++ ++(light blue) 

847 +++ ++ ++(light blue) 

852 +++ ++ ++(light blue) 

855 +++ ++ ++(light blue) 

861 +++ +++ ++(light blue) 

864 +++ ++ ++(light blue) 

869 +++ ++ ++(light blue) 

870 +++ ++ +++(dark blue) 

872 +++ +++ +++(dark blue) 

875 +++ ++ ++(light blue) 

876 +++ ++ +++(dark blue) 

881 +++ ++ ++(light blue) 

883 +++ ++ ++(light blue) 

887 +++ ++ +++(dark blue) 

890 +++ ++ ++(light blue) 

893 +++ ++ +++(dark blue) 

1008 +++ ++ ++(light blue) 

1020 +++ ++ +(no blue) 

1340 +++ +++ +++(dark blue) 

1363 +++ ++ ++(light blue) 

1451 +++ ++ ++(light blue) 

1482 +++ +++ +++(dark blue) 

1569 +++ ++ ++(light blue) 

1596 +++ ++ ++(light blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

1649 +++ ++ ++(light blue) 

1661 +++ +++ +++(dark blue) 

1728 +++ +++ +++(dark blue) 

1808 +++ ++ ++(light blue) 

1830 +++ ++ +++(dark blue) 

1848 +++ ++ ++(light blue) 

1857 +++ ++ ++(light blue) 

1859 +++ ++ ++(light blue) 

1860 +++ ++ ++(light blue) 

1880 +++ ++ ++(light blue) 

1940 +++ ++ ++(light blue) 

1951 +++ ++ ++(light blue) 

1962 +++ ++ ++(light blue) 

2011 +++ ++ ++(light blue) 

2102 +++ ++ ++(light blue) 

2138 +++ ++ ++(light blue) 

2180 +++ ++ ++(light blue) 

2189 +++ ++ ++(light blue) 

2222 +++ ++ ++(light blue) 

2223 +++ ++ ++(light blue) 

2264 +++ ++ ++(light blue) 

2322 +++ ++ ++(light blue) 

2358 +++ ++ ++(light blue) 

2391 +++ ++ ++(light blue) 

2393 +++ ++ ++(light blue) 

2641 +++ ++ ++(light blue) 

2736 +++ ++ ++(light blue) 

2753 +++ ++ +++(dark blue) 

2764 +++ +++ +++(dark blue) 

2792 +++ +++ +++(dark blue) 

2948 +++ ++ ++(light blue) 

3005 +++ ++ ++(light blue) 

3006 +++ ++ +++(dark blue) 

3040 +++ ++ ++(light blue) 

3066 +++ ++ ++(light blue) 

3074 +++ ++ ++(light blue) 

3103 +++ ++ ++(light blue) 
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Colony # 

Growth on TD0 with 

3-AT (HIS3 

activation) 

Growth on QDO with 

3-AT (ADE2 

activation) 

X-α-Galactosidase assay 

(Colour) (MEL1 activation) 

3135 +++ ++ ++(light blue) 

3167 +++ ++ ++(light blue) 

3204 +++ +++ +++(dark blue) 

3325 +++ ++ ++(light blue) 

3375 +++ +++ +++(dark blue) 

3404 +++ +++ +(no blue) 

3441 +++ ++ ++(light blue) 

3445 +++ +++ ++(light blue) 

3458 +++ +++ +++(dark blue) 

3481 +++ ++ ++(light blue) 

3483 +++ ++ ++(light blue) 

3496 +++ +++ +++(dark blue) 

3507 +++ ++ ++(light blue) 

3512 +++ ++ ++(light blue) 

3542 +++ ++ ++(light blue) 

3547 +++ ++ ++(light blue) 

3570 +++ ++ ++(light blue) 

3573 +++ ++ ++(light blue) 

3605 +++ +++ +++(dark blue) 

3610 +++ +++ +++(dark blue) 

3624 +++ ++ ++(light blue) 

3628 +++ +++ +++(dark blue) 

3640 +++ ++ ++(light blue) 

Colonies in blue bars were able to activate HIS3, ADE2 and MEL1 reporter genes.  TDO = SD-Leu-Trp-His plates; QDO 

= SD-Leu-Trp-His-Ade plates.  Growth on solid media: +++ = very good; ++ = good, + = weak; - = no growth.  Dark blue 

= primary clones; light blue = secondary clones 
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Table 1.2: Interaction of primary prey clones with heterologous baits in specificity tests 

Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO 

x WFS1 

TDO 

x WFS1 

QDO 

9 +++ +++ +++ ++ +++ +++ +++ ++ 

10 ++ - ++ - ++ - ++ - 

*11 +++ +++ +++ +++ +++ - +++ - 

*16 +++ +++ ++ +++ +++ - +++ - 

23 + - + - + - + - 

*24 +++ +++ +++ +++ +++ - ++ - 

46 + - + - + - + - 

56 +++ - +++ - +++ - ++ - 

*68 ++ - ++ - ++ - ++ - 

*79 +++ +++ +++ ++ ++ + - - 

*82 +++ +++ ++ +++ ++ + ++ - 

96 + - + - + - + - 

102 +++ - +++ - +++ - ++ - 

*112 +++ +++ +++ ++ +++ + +++ + 

113 - - - - - - - - 

125 +++ +++ +++ +++ +++ +++ +++ +++ 

*137 +++ +++ +++ +++ +++ - + - 

*143 +++ +++ +++ ++ + + + - 

217 +++ +++ +++ +++ +++ +++ ++ +++ 

*218 +++ - ++ - ++ - +++ - 

230 +++ +++ +++ +++ +++ + +++ +++ 

238 +++ +++ +++ +++ +++ +++ +++ ++ 

242 + - + - + - + - 

247 +++ +++ +++ +++ ++ ++ + - 

*251 ++ +++ ++ ++ ++ - + - 

*281 +++ +++ ++ ++ + - + - 

283 ++ - ++ - ++ - + - 

302 + - + - ++ - ++ - 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO 

x WFS1 

TDO 

x WFS1 

QDO 

*303 +++ +++ +++ ++ +++ - ++ - 

*349 +++ +++ +++ +++ +++ ++ +++ - 

*355 +++ +++ +++ ++ ++ - ++ - 

360 +++ +++ +++ +++ ++ +++ ++ +++ 

368 + - ++ - ++ - + - 

371 +++ +++ +++ +++ +++ +++ + - 

383 +++ +++ +++ +++ +++ +++ ++ - 

*395 +++ +++ +++ ++ +++ + ++ - 

*398 ++ ++ +++ - +++ - ++ - 

407 ++ - + - + - + - 

412 ++ - ++ - ++ - ++ - 

416 ++ - ++ - ++ - +++ - 

417 +++ +++ +++ +++ +++ +++ ++ - 

*418 +++ +++ +++ + +++ - ++ - 

*452 ++ +++ +++ + +++ + ++ - 

*464 +++ - ++ - +++ - ++ - 

*484 +++ +++ ++ +++ ++ + + - 

*501 +++ +++ +++ +++ +++ + ++ - 

510 +++ +++ ++ ++ ++ ++ ++ - 

514 +++ +++ +++ +++ +++ +++ - - 

546 +++ +++ +++ +++ +++ ++ +++ - 

*553 +++ +++ +++ ++ +++ ++ +++ - 

610 +++ +++ +++ +++ +++ ++ ++ - 

649 +++ +++ +++ +++ +++ +++ +++ + 

*668 +++ +++ +++ +++ +++ ++ ++ - 

684 +++ +++ +++ +++ +++ +++ ++ - 

*687 +++ +++ ++ ++ ++ - ++ - 

*693 +++ +++ ++ ++ +++ + +++ - 

*718 +++ +++ +++ ++ +++ + +++    - 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO 

x WFS1 

TDO 

x WFS1 

QDO 

774 +++ +++ ++ ++ +++ ++ +++ + 

775 ++ - +++ - +++ - ++ - 

776 ++ - ++ - ++ - ++ - 

*777 +++ +++ +++ +++ ++ ++ ++ - 

*802 +++ +++ ++ ++ +++ ++ +++ + 

817 +++ +++ +++ +++ +++ +++ ++ - 

818 +++ +++ +++ +++ +++ +++ +++ + 

870 +++ +++ +++ +++ +++ +++ +++ - 

872 +++ +++ ++ ++ +++ ++ - + 

876 +++ +++ +++ +++ +++ ++ ++ - 

887 +++ +++ +++ +++ +++ +++ ++ + 

893 +++ +++ +++ + +++ - - - 

1340 +++ - +++ - +++ - +++ - 

1482 ++ - ++ - +++ - ++ - 

1661 ++ - ++ - +++ - +++ - 

1728 ++ - ++ - ++ - ++ - 

1830 ++ - ++ - ++ - ++ - 

*2753 +++ +++ +++ +++ ++ ++ - - 

*2764 +++ +++ +++ ++ +++ - +++ - 

2792 ++ - +++ - +++ - +++ - 

*3006 +++ +++ +++ + +++ ++ - - 

3204 ++ - ++ - ++ - +++ - 

3375 ++ - ++ - ++ - ++ - 

3458 ++ - ++ - +++ - +++ - 

*3496 +++ +++ +++ +++ +++ ++ +++ + 

*3605 +++ +++ +++ +++ +++ ++ +++ - 

*3610 ++ + ++ - ++ - ++ - 

*3628 ++ ++ +++ - +++ - ++ - 

TDO = SD-Leu-Trp-His plates; QDO = SD-Leu-Trp-His-Ade plates.  Growth of colonies: +++ = very good; ++ = good; + = weak; - = no growth.  * = Clones selected for 

sequencing.  
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Table 1.3: Interaction of secondary prey clones with heterologous baits in specificity tests 

Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO x WFS1 TDO 

x WFS1 

QDO 

4 ++ - - - - - - - 

5 +++ +++ +++ +++ +++ +++ - +++ 

8 +++ +++ ++ + ++ ++ ++ ++ 

*15 +++ +++ +++ - ++ - - - 

17 +++ - ++ - ++ - ++ - 

*18 +++ +++ ++ - - - + - 

*22 +++ ++ ++ - ++ - +++ - 

29 +++ +++ +++ ++ +++ ++ ++ + 

*30 +++ +++ +++ + ++ - ++ - 

38 +++ +++ +++ ++ +++ +++ +++ ++ 

41 + - - - - - - - 

48 +++ +++ +++ +++ +++ +++ +++ + 

53 +++ +++ +++ +++ +++ +++ +++ +++ 

57 +++ +++ +++ ++ +++ +++ - - 

61 +++ +++ +++ +++ +++ +++ ++ - 

*64 +++ +++ +++ ++ ++ - + - 

66 +++ +++ +++ +++ +++ +++ ++ - 

67 +++ +++ +++ +++ ++ + + - 

*72 +++ +++ +++ - ++ - ++ - 

92 +++ +++ +++ +++ +++ +++ +++ ++ 

*93 +++ +++ ++ ++ +++ + ++ + 

*95 +++ +++ +++ +++ +++ - + - 

97 ++ +++ +++ - - - ++ - 

98 +++ +++ +++ +++ +++ +++ ++ - 

*101 +++ +++ +++ + - - - - 

103 ++ - - - - - - - 

105 +++ +++ +++ +++ +++ ++ ++ +++ 

111 +++ +++ +++ ++ +++ ++ - - 

118 +++ +++ +++ ++ +++ +++ +++ + 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO x WFS1 TDO 

x WFS1 

QDO 

120 +++ +++ +++ ++ +++ ++ + ++ 

121 ++ - - - - - - - 

127 +++ +++ +++ +++ - + - - 

128 +++ +++ +++ +++ +++ ++ - - 

135 +++ +++ +++ ++ +++ ++ + - 

139 +++ +++ +++ +++ +++ +++ +++ + 

142 +++ +++ +++ ++ +++ ++ +++ + 

*144 +++ +++ +++ + ++ - - - 

145 +++ +++ +++ ++ ++ + - - 

149 +++ +++ +++ +++ +++ +++ - - 

157 +++ +++ +++ ++ +++ +++ +++ ++ 

160 ++ - - - - - - - 

*162 +++ +++ +++ - + - - - 

163 +++ +++ +++ +++ +++ + +++ +++ 

174 +++ +++ +++ ++ +++ +++ ++ - 

175 +++ +++ +++ ++ +++ +++ +++ - 

185 +++ +++ +++ - +++ +++ +++ ++ 

*192 +++ +++ +++ - +++ - ++ - 

193 +++ +++ +++ ++ +++ +++ + - 

*194 +++ +++ +++ - +++ - - - 

*197 +++ +++ +++ ++ +++ ++ - - 

202 +++ +++ +++ +++ +++ +++ +++ + 

205 +++ +++ +++ + +++ +++ +++ +++ 

216 +++ +++ +++ +++ +++ ++ + - 

222 +++ +++ +++ ++ +++ +++ +++ - 

228 +++ +++ +++ + +++ ++ +++ ++ 

229 +++ +++ +++ + +++ +++ +++ +++ 

233 +++ +++ +++ - +++ +++ - - 

*236 +++ +++ +++ + + - - - 

244 +++ +++ +++ - +++ +++ + - 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO x WFS1 TDO 

x WFS1 

QDO 

248 +++ +++ +++ - +++ +++ +++ - 

*250 +++ +++ +++ - ++ - ++ - 

252 +++ +++ +++ + ++ + - - 

*257 +++ +++ +++ + ++ ++ - - 

*259 +++ +++ +++ - ++ + - - 

261 +++ ++ +++ - ++ - - - 

*262 +++ +++ +++ - - - + - 

265 +++ +++ +++ + +++ +++ +++ - 

*272 +++ +++ +++ ++ ++ + - - 

278 +++ +++ +++ ++ +++ +++ +++ - 

279 +++ +++ +++ ++ + - ++ + 

*285 +++ +++ ++ - ++ + - - 

*291 +++ +++ ++ ++ - - - - 

*293 +++ +++ ++ + + - + - 

295 +++ +++ +++ ++ ++ +++ ++ + 

296 +++ +++ +++ + +++ +++ +++ + 

299 +++ +++ ++ + +++ ++ +++ ++ 

*307 +++ +++ - + ++ - - - 

*321 +++ +++ +++ - ++ - ++ - 

323 +++ +++ +++ +++ +++ +++ +++ +++ 

328 + - - - - - - - 

329 +++ +++ +++ ++ +++ ++ +++ - 

330 +++ +++ ++ ++ +++ +++ ++ - 

331 +++ +++ ++ ++ +++ +++ ++ ++ 

333 ++ - - - - - - - 

336 +++ +++ +++ ++ +++ ++ - - 

358 +++ +++ +++ +++ +++ - +++ +++ 

359 +++ +++ +++ ++ +++ + +++ +++ 

375 +++ +++ +++ +++ ++ + +++ +++ 

380 +++ +++ ++ +++ +++ ++ + - 

Stellenbosch University  http://scholar.sun.ac.za



163 
 

Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO x WFS1 TDO 

x WFS1 

QDO 

395 +++ +++ ++ +++ +++ +++ +++ +++ 

414 +++ +++ ++ ++ ++ - ++ ++ 

424 +++ +++ +++ ++ ++ - +++ +++ 

426 +++ +++ +++ - +++ +++ +++ - 

427 +++ +++ +++ +++ +++ +++ ++ - 

431 ++ - - - - - - - 

432 +++ +++ +++ ++ +++ +++ - - 

433 +++ +++ ++ ++ +++ ++ +++ - 

434 +++ +++ +++ +++ +++ - +++ - 

*436 +++ +++ + - ++ - +++ - 

439 - - - - - - - - 

440 - - - - - - - - 

*441 +++ +++ ++ - ++ + +++ - 

445 +++ ++ +++ - ++ - +++ - 

446 +++ +++ +++ - +++ +++ +++ - 

453 ++ - ++ - - - - - 

457 +++ +++ +++ - +++ ++ +++ ++ 

*459 +++ +++ +++ - +++ - +++ - 

461 +++ +++ +++ + +++ + +++ ++ 

470 +++ - - - - - - - 

475 +++ + +++ - +++ + + - 

480 +++ +++ +++ - +++ +++ - - 

481 +++ +++ +++ ++ +++ - +++ +++ 

*495 +++ ++ +++ - ++ - - - 

503 ++ - - - + - + - 

507 +++ +++ +++ ++ +++ +++ +++ +++ 

515 +++ +++ +++ +++ +++ ++ +++ +++ 

520 +++ +++ +++ ++ ++ +++ +++ +++ 

521 +++ +++ ++ + +++ +++ +++ +++ 

523 ++ +++ ++ + + + +++ +++ 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO x WFS1 TDO 

x WFS1 

QDO 

525 +++ +++ +++ + ++ +++ ++ - 

*526 +++ +++ ++ + ++ + - - 

534 +++ +++ +++ ++ +++ ++ - - 

537 +++ +++ ++ +++ +++ ++ + - 

538 +++ +++ +++ +++ ++ ++ + + 

540 ++ +++ +++ +++ - - +++ +++ 

543 ++ - - - - - - - 

550 +++ +++ +++ + +++ ++ ++ - 

554 +++ +++ +++ + +++ ++ ++ - 

578 +++ +++ +++ + ++ ++ - - 

579 +++ +++ +++ ++ ++ + - - 

*590 +++ +++ +++ + ++ + - - 

594 +++ +++ +++ ++ ++ + + - 

598 +++ +++ +++ + +++ +++ - - 

*601 ++ ++ + - - - - - 

616 +++ +++ +++ ++ ++ + - - 

*623 +++ +++ +++ + - - ++ - 

630 +++ +++ +++ ++ +++ +++ +++ ++ 

645 ++ - - - - - - - 

*665 +++ +++ +++ + - + - - 

669 +++ +++ +++ ++ +++ ++ ++ - 

*686 ++ +++ ++ - ++ + - - 

691 +++ +++ +++ + +++ - - - 

695 +++ +++ +++ + +++ +++ - - 

*696 +++ +++ +++ ++ +++ - - - 

698 +++ +++ +++ - +++ +++ +++ ++ 

700 +++ +++ +++ ++ + - +++ +++ 

701 +++ ++ +++ - +++ - +++ - 

706 +++ +++ +++ +++ +++ +++ +++ + 

710 +++ +++ +++ ++ +++ +++ +++ ++ 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO x WFS1 TDO 

x WFS1 

QDO 

711 ++ - - - - - - - 

712 +++ +++ +++ + ++ + ++ ++ 

*713 +++ +++ +++ + +++ ++ +++ - 

724 +++ +++ +++ + +++ +++ ++ - 

726 +++ +++ +++ - +++ ++ +++ + 

727 +++ +++ +++ +++ +++ +++ +++ +++ 

749 +++ +++ +++ + +++ +++ ++ - 

750 +++ +++ +++ ++ +++ - +++ +++ 

753 ++ - ++ - ++ - ++ - 

759 +++ +++ +++ + +++ +++ - - 

770 + - - - - - - - 

781 +++ +++ +++ - +++ +++ +++ - 

787 ++ - - - - - - - 

790 +++ +++ +++ - +++ +++ - - 

798 +++ +++ +++ + +++ +++ - - 

819 +++ +++ +++ + +++ +++ - - 

823 + - - - - - - - 

836 +++ +++ +++ + +++ +++ +++ +++ 

846 + - - - - - - - 

847 +++ +++ +++ ++ ++ ++ ++ - 

852 ++ - - - - - - - 

861 +++ +++ +++ - +++ +++ - - 

864 +++ +++ +++ - +++ +++ + ++ 

869 - - - - - - - - 

881 +++ +++ +++ + - - +++ +++ 

883 +++ +++ +++ ++ +++ +++ +++ - 

*1008 +++ +++ +++ + ++ ++ - - 

1363 +++ + +++ - ++ - ++ - 

1451 + - - - - - - - 

1569 ++ - - - - - - - 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO 

x WFS1 

TDO 

x WFS1 

QDO 

1596 +++ +++ +++ + +++ +++ +++ - 

1649 +++ +++ +++ +++ +++ +++ +++ ++ 

*1808 ++ +++ - - - - - - 

*1857 +++ +++ +++ - ++ - + - 

1859 + - - - - - - - 

1860 +++ +++ +++ ++ +++ +++ ++ - 

*1880 +++ +++ +++ - ++ - - - 

1940 ++ - - - - - - - 

1962 +++ +++ +++ ++ +++ +++ +++ - 

*2011 +++ +++ +++ - +++ - +++ ++ 

2102 +++ +++ +++ - +++ +++ - - 

2138 +++ ++ +++ - ++ ++ - - 

2180 ++ - - - - - - - 

*2189 +++ +++ +++ ++ + ++ - - 

2264 +++ ++ +++ - +++ ++ - - 

2322 ++ - - - - - - - 

2391 +++ +++ +++ - ++ +++ + ++ 

2641 +++ +++ +++ +++ ++ + - - 

2736 +++ +++ +++ - +++ +++ +++ +++ 

3066 +++ +++ +++ +++ +++ - +++ +++ 

3074 +++ +++ +++ +++ +++ +++ +++ +++ 

3135 +++ - ++ - ++ - +++ - 

3167 ++ - ++ - + - +++ - 

3441 +++ +++ +++ +++ +++ +++ +++ +++ 

3481 +++ ++ ++ - ++ - ++ - 

3483 +++ - +++ - ++ - ++ - 

3507 +++ ++ +++ - ++ - +++ - 

3512 ++ - + - - - - - 

3542 +++ - +++ - ++ - +++ - 
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Clone # 
x pGBKT-KCNE2 

TDO 

x pGBKT7-KCNE2 

QDO 

x pGBKT7 

TDO 

x pGBKT7 

QDO 

x pGBKT-53 

TDO 

x pGBKT-53 

QDO 

x WFS1 

TDO 

x WFS1 

QDO 

3547 +++ +++ +++ +++ +++ +++ +++ +++ 

3570 ++ - - - - - - - 

*3640 +++ +++ +++ - + - - - 

TDO = SD-Leu-Trp-His plates; QDO = SD-Leu-Trp-His-Ade plates.  Growth of colonies: +++ = very good; ++ = good; + = weak; - = no growth.  * *Clones selected for 

sequencing. 

 

Table 1.4: Identification of primary putative KCNE2 interactor clones from the Y2H cardiac cDNA library screen 

Clone # 
Identity 

BLASTn                                                           BLASTp 
Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

11 
Homo sapiens arginine and glutamate rich 1 

(ARGLU1), mRNA 

dihydrolipoamide succinyltransferase 

[Streptomyces sviceus ATCC 29083] 

NM_018011.3 

(0.0) 

ZP_06916558.1  

(0.33) 
n/a 

16 

Homo sapiens ATP synthase, H+ transporting, 

mitochondrial F1 complex, beta polypeptide 

(ATP5B), nuclear gene encoding 

mitochondrial protein, mRNA 

hypothetical protein Ajs_0177  

NM_001686.3 

(0.0) 

YP_984508.1 

(7.2) 
n/a 

24 

Homo sapiens interleukin 1 receptor, type I 

(IL1R1), mRNA 

RecName: Full=Probable beta-1,3-

galactosyltransferase 12 
NM_000877.2 

(0.0) 

Q66GS2.1 

 (8) 

Golgi 

apparatus 

membrane 

68 
Homo sapiens tropomyosin 1 (alpha) (TPM1), 

transcript variant 1,mRNA 

No significant similarity NM_001018005.1 

(0.0) 
n/a n/a 

79 

Homo sapiens chromosome 8 genomic contig, 

alternate assembly whole genome shotgun 

sequence 

No significant similarity 
NW_001839132.1 

(0.0) 
n/a n/a 

82 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1  

(0.0) 

ADB44568.1 

(2E-11) 
Mitochondria 

112 
Homo sapiens collagen, type I, alpha 1 

(COL1A1), mRNA 

collagen, type I, alpha 1, isoform 

CRA_a [Homo sapiens] 

NM_000088.3  

(0.0) 

EAW94630.1 

(7E-157) 

Extracellular 

matrix 

137 
Homo sapiens mitochondrion, complete 

genome 

cytochrome oxidase subunit II [Homo 

sapiens]  

NC_012920.1  

(0.0) 

ABG27224.1 

(3E-22) 
Mitochondria 
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http://www.ncbi.nlm.nih.gov/nucleotide/134152707?report=genbank&log$=nucltop&blast_rank=1&RID=R04G37GT01S
http://www.ncbi.nlm.nih.gov/protein/297199161?report=genbank&log$=prottop&blast_rank=1&RID=R04XAUNS01N
http://www.ncbi.nlm.nih.gov/nucleotide/50345985?report=genbank&log$=nucltop&blast_rank=1&RID=R04SVMH601N
http://www.ncbi.nlm.nih.gov/protein/121592612?report=genbank&log$=prottop&blast_rank=1&RID=R0527MJ701S
http://www.ncbi.nlm.nih.gov/nucleotide/27894331?report=genbank&log$=nucltop&blast_rank=1&RID=NKCM54RK01S
http://www.ncbi.nlm.nih.gov/protein/75115370?report=genbank&log$=prottop&blast_rank=1&RID=NKMMCUSV01N
http://www.ncbi.nlm.nih.gov/nucleotide/63252897?report=genbank&log$=nucltop&blast_rank=1&RID=P3732M2N016
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNW_001839132.1%7C&gi=157696693&term=157696693%5Bgi%5D&taxid=9606&RID=NBJGESJV013&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NKD3YWSE01S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NKMTP14D01S
http://www.ncbi.nlm.nih.gov/nucleotide/110349771?report=genbank&log$=nucltop&blast_rank=1&RID=P37MFA3T016
http://www.ncbi.nlm.nih.gov/protein/119615036?report=genbank&log$=prottop&blast_rank=1&RID=P37R0UT4016
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/109256003?report=genbank&log$=prottop&blast_rank=1&RID=NBR8Z2R7013


168 
 

Clone # 
Identity 

BLASTn                                                           BLASTp 
Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

 

143 

Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1  

(0.0) 

AAN77914.1 

(2E-15) 
Mitochondria 

218 
Homo sapiens tropomyosin 1 (alpha) (TPM1), 

transcript variant 1, mRNA 

No significant similarity NM_001018005.1 

(0.0) 
n/a n/a 

251 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1  

(0.0) 

ADB44568.1 

(2E-21) 
Mitochondria 

281 
Homo sapiens mitochondrion, complete 

genome 

hypothetical protein [Tuber 

melanosporum Mel28] 

NC_012920.1  

(0.0) 

XP_002841996.

1 (0.54) 
n/a 

303 

Homo sapiens aspartyl-tRNA synthetase 

(DARS), mRNA 

RecName: Full=Putative 

uncharacterized mitochondrial protein 

NCU16001 

NM_001349.2 

 (0.0) 
Q35137.2 (0.21) Mitochondria 

349 

Homo sapiens protein kinase, AMP-activated, 

alpha 2 catalytic subunit (PRKAA2), mRNA 

hypothetical protein 

HMPREF9473_04582 [Clostridium 

hathewayi] 

NM_006252.3  

(0.0) 

ZP_09152519.1 

(2.8) 
n/a 

355 
Homo sapiens mitochondrion, complete 

genome 

cytochrome oxidase I [Pteropus 

temminckii] 

NC_012920.1  

(0.0) 

AAA32045.2 

(5E-12) 
Mitochondria 

395 
Homo sapiens myotubularin related protein 4 

(MTMR4), mRNA 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NM_004687.4  

(0.0) 

ADB44568.1 

0.000000002 
Mitochondria 

398 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1  

(0.0) 

ADB44568.1 

6E-17 
Mitochondria 

418 
Homo sapiens mitochondrion, complete 

genome 

unnamed protein product [Bacillus 

pseudofirmus OF4] 

NC_012920.1 

(0.0) 

YP_003425713.

1 8.6 
n/a 

452 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.2 

(0.0) 

AAN77914.1 

2E-15 
Mitochondria 

464 
Homo sapiens tropomyosin 1 (alpha) (TPM1), 

transcript variant 1,mRNA 

No significant similarity NM_001018005.1 

(0.0) 
n/a n/a 

484 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1 

(0.0) 

ADB44568.1 

1E-13 
Mitochondria 

*501 

Homo sapiens filamin C, gamma (FLNC), 

transcript variant 2, mRNA 

Chain A, Dimerization Of Human 

Filamin C: Crystal Structure Of the 

domain 24 

NM_001127487.1 

(0.0) 
1V05_A 2E-57 

Cytoplasm, 

Membrane, 

Sarcomere, 

Myofibril 
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http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/26050070?report=genbank&log$=prottop&blast_rank=1&RID=NBRPDPXU016
http://www.ncbi.nlm.nih.gov/nucleotide/63252897?report=genbank&log$=nucltop&blast_rank=1&RID=P3732M2N016
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NBRZA89D013
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=P38A5EAH012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/296424927?report=genbank&log$=prottop&blast_rank=1&RID=P39GWY1S013
http://www.ncbi.nlm.nih.gov/protein/296424927?report=genbank&log$=prottop&blast_rank=1&RID=P39GWY1S013
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/363805616?report=genbank&log$=prottop&blast_rank=1&RID=NKMBMKAU01S
http://www.ncbi.nlm.nih.gov/nucleotide/157909838?report=genbank&log$=nucltop&blast_rank=1&RID=NBKWCBXJ012
http://www.ncbi.nlm.nih.gov/protein/358065985?report=genbank&log$=prottop&blast_rank=1&RID=NBSAAKNZ016
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/7363473?report=genbank&log$=prottop&blast_rank=1&RID=NBSKGKR801N
http://www.ncbi.nlm.nih.gov/nucleotide/217272864?report=genbank&log$=nucltop&blast_rank=1&RID=NBMAFZC9013
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NBUH295M01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NBUH295M01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/288553778?report=genbank&log$=prottop&blast_rank=1&RID=NBVJSVTD01S
http://www.ncbi.nlm.nih.gov/protein/288553778?report=genbank&log$=prottop&blast_rank=1&RID=NBVJSVTD01S
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NKD3YWSE01S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/26050070?report=genbank&log$=prottop&blast_rank=1&RID=NKDDT3B001S
http://www.ncbi.nlm.nih.gov/nucleotide/63252897?report=genbank&log$=nucltop&blast_rank=1&RID=P3A66PT501S
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NBUH295M01N
http://www.ncbi.nlm.nih.gov/nucleotide/188595686?report=genbank&log$=nucltop&blast_rank=1&RID=NKDKG8XP01N
http://www.ncbi.nlm.nih.gov/protein/58176963?report=genbank&log$=prottop&blast_rank=1&RID=NKDR0XS301N
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Clone # 
Identity 

BLASTn                                                           BLASTp 
Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

553 
Homo sapiens mitochondrion, complete 

genome 

No significant similarity NC_012920.1 

(0.0) 
n/a n/a 

668 

Homo sapiens protein tyrosine phosphatase, 

receptor type, K (PTPRK),transcript variant 2, 

mRNA 

protein tyrosine phosphatase, receptor 

type, K, isoform CRA_e 
NM_002844.3 

(0.0) 

EAW48088.1 

1E-106 

Cell 

membrane, 

Cell junction 

687 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1 

(0.0) 

ADB44568.1 

6E-10 
Mitochondria 

693 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1 

(0.0) 

AAN77914.1 

2E-15 
Mitochondria 

718 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1 

(0.0) 

ADB44568.1 

1E-13 
Mitochondria 

777 
Homo sapiens metastasis associated lung 

adenocarcinoma transcript 

hypothetical protein, unlikely 

[Trypanosoma vivax Y486] 

NR_002819.2 

(0.0) 
CCC51287.1 1.5 n/a 

802 
Homo sapiens mitochondrion, complete 

genome 

No significant similarity NC_012920.1 

(0.0) 
n/a n/a 

872 
Homo sapiens mitochondrion, complete 

genome 

No significant similarity NC_012920.2 

(0.0) 
n/a n/a 

876 

Homo sapiens yippee-like 5 

(Drosophila)(YPEL5), transcript variant 

3,mRNA 

unnamed protein product 

[Desulfosporosinus orientis DSM 765] 
NM_001127399.1 

(0.0) 

YP_004972419.

1 (4) 
n/a 

893 
Homo sapiens chromosome 10 genomic 

contig, GRCh37.p5 Primary Assembly 

unnamed protein product [Tetraodon 

nigroviridis] 

NT_030059.13 

(0.0) 

CAF87655.1 

0.14 
n/a 

2753 
Homo sapiens MT-RNR2-like 1 

(MTRNR2L1), mRNA 

Fe(3+) ions import ATP-binding protein 

FbpC [Pseudoalteromonas] 

NM_001190452.1 

(0.0) 

ZP_09239936.1 

3.6 

Cell 

membrane 

2764 
Homo sapiens mitochondrion, complete 

genome 

2-octaprenyl-6-methoxyphenol 

hydroxylase [Collimonas fungivorans ] 

NC_012920.1 

(0.0) 

YP_004754278.

1 45 
Mitochondria 

3006 
Homo sapiens chromosome 2 genomic contig, 

GRCh37.p5 Primary Assembly 

hypothetical protein TREAZ_2861  NT_022184.15 

(0.0) 

YP_004528574.

1 22 
n/a 

3496 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.1 

(0.0) 

AAN77914.12E-

15 
Mitochondria 

3605 
Homo sapiens mitochondrion, complete 

genome 

NADH dehydrogenase subunit 1 [Homo 

sapiens] 

NC_012920.2 

(0.0) 

AAN77914.12E-

15 
Mitochondria 
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http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NKD3YWSE01S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/nucleotide/208431813?report=genbank&log$=nucltop&blast_rank=1&RID=NKE3C3PY01S
http://www.ncbi.nlm.nih.gov/protein/119568473?report=genbank&log$=prottop&blast_rank=1&RID=NKE9FURK01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NBUH295M01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/26050070?report=genbank&log$=prottop&blast_rank=1&RID=NBW3VGVT01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/283838256?report=genbank&log$=prottop&blast_rank=1&RID=NBW9DG6901N
http://www.ncbi.nlm.nih.gov/nucleotide/207113128?report=genbank&log$=nucltop&blast_rank=1&RID=NKEF4AGH01S
http://www.ncbi.nlm.nih.gov/protein/340056948?report=genbank&log$=prottop&blast_rank=1&RID=NKEJCKZ501N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=P39MKZ4101S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=P39MKZ4101S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/nucleotide/188528705?report=genbank&log$=nucltop&blast_rank=1&RID=P39YCB00012
http://www.ncbi.nlm.nih.gov/protein/374996920?report=genbank&log$=prottop&blast_rank=1&RID=P3A1G08M01S
http://www.ncbi.nlm.nih.gov/protein/374996920?report=genbank&log$=prottop&blast_rank=1&RID=P3A1G08M01S
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_030059.13%7C&gi=224514917&term=224514917%5Bgi%5D&taxid=9606&RID=NBN4KB6V013&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/47202037?report=genbank&log$=prottop&blast_rank=1&RID=NBWEBX6801S
http://www.ncbi.nlm.nih.gov/nucleotide/299473738?report=genbank&log$=nucltop&blast_rank=1&RID=P3AAUXWX016
http://www.ncbi.nlm.nih.gov/protein/359450502?report=genbank&log$=prottop&blast_rank=1&RID=P3AD3FU5016
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NBJVTHK7012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/340788813?report=genbank&log$=prottop&blast_rank=1&RID=NBWK0GVN01S
http://www.ncbi.nlm.nih.gov/protein/340788813?report=genbank&log$=prottop&blast_rank=1&RID=NBWK0GVN01S
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_022184.15%7C&gi=224515010&term=224515010%5Bgi%5D&taxid=9606&RID=NBNDC0HJ012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/333995961?report=genbank&log$=prottop&blast_rank=1&RID=NBWSC7MS01N
http://www.ncbi.nlm.nih.gov/protein/333995961?report=genbank&log$=prottop&blast_rank=1&RID=NBWSC7MS01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NKEPTN0F01S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/26050070?report=genbank&log$=prottop&blast_rank=1&RID=NKETV36K01S
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=NKD3YWSE01S&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/26050070?report=genbank&log$=prottop&blast_rank=1&RID=NKF22P6Z01S
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Clone # 
Identity 

BLASTn                                                           BLASTp 
Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

3610 n/a n/a n/a n/a n/a 

3628 

Homo sapiens S-phase kinase-associated 

protein 1 (SKP1), transcript 

hypothetical protein 

HMPREF9074_05118 

[Capnocytophaga sp. oral ] 

NM_170679.2 

(0.0) 

ZP_08449328.1 

486 
n/a 

* = Clones selected for further investigation in the present study 

 

 

Table 1.5: Identification of primary putative KCNE2 interactor clones from the Y2H cardiac cDNA library screen 

Clone # 
Identity 

BLASTn                                     BLASTp 

Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

*15 
Homo sapiens voltage-dependent anion 

channel 1 (VDAC1),  

voltage-dependent anion-selective 

channel protein 1 
NR_036625.1 

(0) 

NP_003365.1 

(0) 

Mitochondrial 

outer 

membrane, 

Cell membrane 

18 
Homo sapiens glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 

glyceraldehyde-3-phosphate 

dehydrogenase isoform 2 
NM_002046.3 

(0) 

NP_001243728.

1 

(6E-153) 

Cytoplasm, 

Nucleus 

22 
Homo sapiens titin (TTN), transcript variant 

novex-3, mRNA 
Novex-3 Titin Isoform 

NM_133379.3 

(0) 

CAD12458.1 

(2E-76) 
Cytoplasm, 

Nucleus 

30 
Homo sapiens titin (TTN), transcript variant 

N2-B, mRNA 
putative regulatory protein NosR 

NM_003319.4 

(2.00E-139) 

ZP_01737051.1 

(4.1) 
n/a 

64 

Homo sapiens stonin 1 (STON1), transcript 

variant 2, mRNA 
STON1 protein [Homo sapiens] 

NM_006873.3 

(0) 

AFE71436.1 

(1E-46) 
Cytoplasm, 

Cell membrane 

72 

Homo sapiens glucan (1,4-alpha-), branching 

enzyme 1 (GBE1),  
dsDNA-dependent ATPase (Rad54b),  

NM_000158.3 

(0) 

XP_001268743.

1 

(6.7) n/a 

93 

Homo sapiens myomesin 1, 185kDa 

(MYOM1), transcript variant 2 
myomesin-1 isoform b [Homo sapiens] 

NM_019856.1 

(0) 

NP_062830.1 

(2E-56) 
Sarcomere, M-

band 

*95 

Homo sapiens crystallin, alpha B (CRYAB), 

mRNA 
crystallin, alpha B, isoform CRA_c  

NM_001885.1 

(0) 

EAW67166.1 

(6E-55) 
Cytoplasm, 

Nucleus 

 
    

 

Stellenbosch University  http://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/nucleotide/160420326?report=genbank&log$=nucltop&blast_rank=1&RID=R058AVDK01S
http://www.ncbi.nlm.nih.gov/protein/332881680?report=genbank&log$=prottop&blast_rank=1&RID=R05BFHK001S
http://www.ncbi.nlm.nih.gov/nucleotide/307133766?report=genbank&log$=nucltop&blast_rank=1&RID=0X7RBU5U01N
http://www.ncbi.nlm.nih.gov/protein/4507879?report=genbank&log$=prottop&blast_rank=1&RID=0X7UYXGY012
http://www.ncbi.nlm.nih.gov/nucleotide/83641890?report=genbank&log$=nucltop&blast_rank=1&RID=0WZ8GMZT013
http://www.ncbi.nlm.nih.gov/protein/378404908?report=genbank&log$=prottop&blast_rank=1&RID=0WZBK9PJ016
http://www.ncbi.nlm.nih.gov/protein/378404908?report=genbank&log$=prottop&blast_rank=1&RID=0WZBK9PJ016
http://www.ncbi.nlm.nih.gov/nucleotide/291045226?report=genbank&log$=nucltop&blast_rank=1&RID=0X8JU98X016
http://www.ncbi.nlm.nih.gov/protein/17066107?report=genbank&log$=prottop&blast_rank=1&RID=0X8MMJ9Z01N
http://www.ncbi.nlm.nih.gov/nucleotide/291045222?report=genbank&log$=nucltop&blast_rank=1&RID=0WZ0AHT4016
http://www.ncbi.nlm.nih.gov/protein/126666071?report=genbank&log$=prottop&blast_rank=1&RID=0WZ404MX013
http://www.ncbi.nlm.nih.gov/nucleotide/310750315?report=genbank&log$=nucltop&blast_rank=1&RID=0X86J8HV01S
http://www.ncbi.nlm.nih.gov/protein/380799121?report=genbank&log$=prottop&blast_rank=1&RID=0X887EKH012
http://www.ncbi.nlm.nih.gov/nucleotide/189458811?report=genbank&log$=nucltop&blast_rank=1&RID=0X5HDB3A012
http://www.ncbi.nlm.nih.gov/protein/121700957?report=genbank&log$=prottop&blast_rank=1&RID=0X5RDU98012
http://www.ncbi.nlm.nih.gov/protein/121700957?report=genbank&log$=prottop&blast_rank=1&RID=0X5RDU98012
http://www.ncbi.nlm.nih.gov/nucleotide/140560916?report=genbank&log$=nucltop&blast_rank=1&RID=0X6MKAMF012
http://www.ncbi.nlm.nih.gov/protein/140560917?report=genbank&log$=prottop&blast_rank=1&RID=0X6PYXE4016
http://www.ncbi.nlm.nih.gov/nucleotide/4503056?report=genbank&log$=nucltop&blast_rank=1&RID=0X75CCT9016
http://www.ncbi.nlm.nih.gov/protein/119587570?report=genbank&log$=prottop&blast_rank=1&RID=0X77GB1H012
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Clone # 
Identity 

BLASTn                                     BLASTp 

Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

101 

Homo sapiens mitochondrion, complete 

genome 

cytochrome c oxidase subunit I 

[Sarcocystis neurona] 
NC_012920.1 

(0) 

AAZ39838.1 

(3E-11) 
n/a 

144 

Homo sapiens ring finger protein 145 

(RNF145), transcript variant 4 
n/a 

NM_001199382.1 

(0) 
n/a 

n/a 

162 

Homo sapiens actin, alpha 2, smooth muscle, 

aorta (ACTA2),transcript variant 1 

actin, alpha, cardiac muscle, isoform 

CRA_b 
NM_001141945.1 

(0) 

EAW92317.1 

(1E-117) 
Cytoplasm, 

Cytoskeleton 

192 

Homo sapiens family with sequence similarity 

100, member A (FAM100A) 
uncharacterized protein LOC100982856 

NM_145253.2 

(0) 

XP_003815203.

1 

(3E-75) n/a 

194 

Homo sapiens mitochondrion, complete 

genome 
PDK repeat-containing protein 

NC_012920.1 

(0) 

YP_004988500.

1 

(1.9) n/a 

197 
Homo sapiens chromosome 6 genomic contig hypothetical protein LOC100426450 

NT_007592.15 

(0) 

XP_002803747.

1 

(1.00E-07) n/a 

236 
n/a n/a n/a n/a 

n/a 

250 

Homo sapiens actin, alpha, cardiac muscle 1 

(ACTC1), mRNA 
cardiac actin ACTC1 

NM_005159.4 

(0) 

EAW92317.1 

(1E-117) 
Cytoplasm, 

Cytoskeleton 

257 
Homo sapiens chromosome 2 genomic contig n/a 

NT_005334.16 

(2E-146) 
n/a 

n/a 

259 

Homo sapiens ral guanine nucleotide 

dissociation stimulator-like  
hypothetical protein SNOG_12038  

NR_028387.1 

(5.00E-41) 

XP_001802270.

1 

(12) n/a 

262 

Homo sapiens actin, alpha, cardiac muscle 1 

(ACTC1), mRNA 
cardiac actin ACTC1 

NM_005159.4 

(0) 

EAW92317.1 

(1E-117) 
Cytoplasm, 

Cytoskeleton 

272 

Homo sapiens chromosome 14 open reading 

frame 126 (C14orf126 
unknown [Pongo pygmaeus] 

NM_080664.2 

(6E-85) 

AAY51665.1 

(8.1) 
n/a 

285 

Homo sapiens KIAA1191 (KIAA1191), 

transcript variant 3, mRNA 

PREDICTED: similar to AGAP008389-

PA [Tribolium castaneum] 
NM_001079685.1 

(0) 

XP_001815332.

1 

(1.4) n/a 

291 
Homo sapiens chromosome 1 genomic contig n/a 

NT_004487.19 

(6.00E-90) 
n/a 

n/a 

Stellenbosch University  http://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=0X693Z06012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/71727353?report=genbank&log$=prottop&blast_rank=1&RID=0X6BGGH5016
http://www.ncbi.nlm.nih.gov/nucleotide/313661394?report=genbank&log$=nucltop&blast_rank=1&RID=0X64935G016
http://www.ncbi.nlm.nih.gov/nucleotide/213688374?report=genbank&log$=nucltop&blast_rank=1&RID=0X6VYR23013
http://www.ncbi.nlm.nih.gov/protein/119612723?report=genbank&log$=prottop&blast_rank=2&RID=0X70JE12013
http://www.ncbi.nlm.nih.gov/nucleotide/149588684?report=genbank&log$=nucltop&blast_rank=1&RID=1FNTVE7F01N
http://www.ncbi.nlm.nih.gov/protein/397488294?report=genbank&log$=prottop&blast_rank=1&RID=1FNWZX1401N
http://www.ncbi.nlm.nih.gov/protein/397488294?report=genbank&log$=prottop&blast_rank=1&RID=1FNWZX1401N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=1FP6EKGM01N&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/375011512?report=genbank&log$=prottop&blast_rank=1&RID=1FP8B0EN01N
http://www.ncbi.nlm.nih.gov/protein/375011512?report=genbank&log$=prottop&blast_rank=1&RID=1FP8B0EN01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_007592.15%7C&gi=224514668&term=224514668%5Bgi%5D&taxid=9606&RID=0X7B8XYN016&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/297290621?report=genbank&log$=prottop&blast_rank=1&RID=0X7DDKZ9016
http://www.ncbi.nlm.nih.gov/protein/297290621?report=genbank&log$=prottop&blast_rank=1&RID=0X7DDKZ9016
http://www.ncbi.nlm.nih.gov/nucleotide/113722123?report=genbank&log$=nucltop&blast_rank=1&RID=1FPN8VFR01N
http://www.ncbi.nlm.nih.gov/protein/119612723?report=genbank&log$=prottop&blast_rank=2&RID=1FPRC4TU01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_005334.16%7C&gi=224514621&term=224514621%5Bgi%5D&taxid=9606&RID=0WNTWHT001N&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/nucleotide/257096072?report=genbank&log$=nucltop&blast_rank=1&RID=0WPPUTKM012
http://www.ncbi.nlm.nih.gov/protein/169617712?report=genbank&log$=prottop&blast_rank=1&RID=0WPVVCTZ012
http://www.ncbi.nlm.nih.gov/protein/169617712?report=genbank&log$=prottop&blast_rank=1&RID=0WPVVCTZ012
http://www.ncbi.nlm.nih.gov/nucleotide/113722123?report=genbank&log$=nucltop&blast_rank=1&RID=1FPN8VFR01N
http://www.ncbi.nlm.nih.gov/protein/119612723?report=genbank&log$=prottop&blast_rank=2&RID=1FPRC4TU01N
http://www.ncbi.nlm.nih.gov/nucleotide/87162456?report=genbank&log$=nucltop&blast_rank=1&RID=0D3AF5AK013
http://www.ncbi.nlm.nih.gov/protein/66576116?report=genbank&log$=prottop&blast_rank=1&RID=0D3DE0V501N
http://www.ncbi.nlm.nih.gov/nucleotide/119120891?report=genbank&log$=nucltop&blast_rank=1&RID=0D3WR24D01S
http://www.ncbi.nlm.nih.gov/protein/189240161?report=genbank&log$=prottop&blast_rank=1&RID=0D44ZBSD013
http://www.ncbi.nlm.nih.gov/protein/189240161?report=genbank&log$=prottop&blast_rank=1&RID=0D44ZBSD013
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_004487.19%7C&gi=224514980&term=224514980%5Bgi%5D&taxid=9606&RID=0X6FX7GA012&QUERY_NUMBER=1&log$=nucltop
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Clone # 
Identity 

BLASTn                                     BLASTp 

Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

293 
Nitrilase family member 2 (NIT2) Nitrilase family member 2 (NIT2) 

NM_020202.4 

(0) 

BAG57372.1 

(8E-106) 
Cytoplasm 

307 

Homo sapiens inositol(myo)-1(or 4)-

monophosphatase 1 (IMPA1) 

hypothetical protein 

HMPREF1063_00697 
NM_005536.3 

(0) 

EIY30101.1 

(5) 
n/a 

321 

Homo sapiens family with sequence similarity 

46, member A (FAM46A),  

family with sequence similarity 46,  

member A 
NM_017633.2 

(8.00E-170) 

CAI23545.1 

(3E-72) 
n/a 

436 

Homo sapiens proteasome maturation protein 

(POMP), mRNA 
proteosome maturation protein 

NM_015932.5 

(0) 

NP_057016.1 

(6E-96) 

Cytoplasm, 

Nucleus, 

Microsome 

membrane 

441 

Homo sapiens lipoprotein lipase (LPL), 

mRNA 
n/a 

NM_000237.2 

(0) 
n/a 

n/a 

459 

Homo sapiens AT rich interactive domain 1B 

(SWI1-like) (ARID1B) 

novel protein ,AT rich interactive 

domain 1B (SWI1-like) 
NM_017519.2 

(0) 

CAI42305.1 

(1E-145) 
n/a 

495 

Homo sapiens chromosome 3 genomic contig, 

GRCh37.p5 
hypothetical protein DDB_G0276853 

NT_005612.16 

(0) 

XP_642945.1 

(13) 
n/a 

526 
Homo sapiens tropomyosin 1 (alpha) (TPM1) n/a 

NM_001018005.1 

(0) 
n/a 

n/a 

590 

Homo sapiens mitochondrion, complete 

genome 
site-specific recombinase 

NC_012920.1 

(0) 

YP_003425713.

1 

(9.6) n/a 

601 

Homo sapiens tropomyosin 1 (alpha) (TPM1), 

transcript variant 1, mRNA 
Retinol-binding protein 3 

NM_001018005.1 

(1.00E-98) 

P12665.1 

(92482) 
n/a 

623 

Homo sapiens adenylate kinase 4 (AK4), 

nuclear gene encoding mitochondrial protein 
n/a 

NM_013410.3 

(0) 
n/a 

n/a 

665 

Homo sapiens ATPase, Ca++ transporting, 

plasma membrane 1 (ATP2B1),  

putative Fe-S oxidoreductase [Mesotoga 

prima MesG1.Ag.4.2] 
NM_001682.2 

(0) 

YP_006345749.

1 

(4.5) n/a 

686 
n/a n/a n/a n/a 

n/a 

696 

Homo sapiens PDZ and LIM domain 5 

(PDLIM5),  
n/a 

NM_001011515.1 

(0) 
n/a 

n/a 

Stellenbosch University  http://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/nucleotide/194578874?report=genbank&log$=nucltop&blast_rank=1&RID=1FR7Z4KU01N
http://www.ncbi.nlm.nih.gov/protein/194376056?report=genbank&log$=prottop&blast_rank=1&RID=1FR9RBA601N
http://www.ncbi.nlm.nih.gov/nucleotide/221625478?report=genbank&log$=nucltop&blast_rank=1&RID=0X5WRXFF016
http://www.ncbi.nlm.nih.gov/protein/392636217?report=genbank&log$=prottop&blast_rank=1&RID=0X61T5H701S
http://www.ncbi.nlm.nih.gov/nucleotide/117414142?report=genbank&log$=nucltop&blast_rank=1&RID=0WREXHZJ016
http://www.ncbi.nlm.nih.gov/protein/56417853?report=genbank&log$=prottop&blast_rank=2&RID=0WRP4VGY01S
http://www.ncbi.nlm.nih.gov/nucleotide/304766540?report=genbank&log$=nucltop&blast_rank=1&RID=1FN2HA2301N
http://www.ncbi.nlm.nih.gov/protein/7705429?report=genbank&log$=prottop&blast_rank=1&RID=1FN7ZG2F01N
http://www.ncbi.nlm.nih.gov/nucleotide/145275217?report=genbank&log$=nucltop&blast_rank=1&RID=1FNCV23H01N
http://www.ncbi.nlm.nih.gov/nucleotide/297139702?report=genbank&log$=nucltop&blast_rank=1&RID=1FNH1TJU01N
http://www.ncbi.nlm.nih.gov/protein/57208442?report=genbank&log$=prottop&blast_rank=1&RID=1FNK7RWH01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_005612.16%7C&gi=224514994&term=224514994%5Bgi%5D&taxid=9606&RID=1FP0SRR501N&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/66818571?report=genbank&log$=prottop&blast_rank=1&RID=1FP3D8XX01N
http://www.ncbi.nlm.nih.gov/nucleotide/63252897?report=genbank&log$=nucltop&blast_rank=1&RID=1FM7ENNT013
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNC_012920.1%7C&gi=251831106&term=251831106%5Bgi%5D&taxid=9606&RID=0X693Z06012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/288553778?report=genbank&log$=prottop&blast_rank=1&RID=0X7KE8V2012
http://www.ncbi.nlm.nih.gov/protein/288553778?report=genbank&log$=prottop&blast_rank=1&RID=0X7KE8V2012
http://www.ncbi.nlm.nih.gov/nucleotide/63252897?report=genbank&log$=nucltop&blast_rank=1&RID=0WR0EHH7016
http://www.ncbi.nlm.nih.gov/protein/124893?report=genbank&log$=prottop&blast_rank=1&RID=0WR3W7Z9012
http://www.ncbi.nlm.nih.gov/nucleotide/298566319?report=genbank&log$=nucltop&blast_rank=1&RID=0WS146E601N
http://www.ncbi.nlm.nih.gov/nucleotide/48255944?report=genbank&log$=nucltop&blast_rank=1&RID=0X8RWJ5G013
http://www.ncbi.nlm.nih.gov/protein/389843669?report=genbank&log$=prottop&blast_rank=1&RID=0X8U3UJA01N
http://www.ncbi.nlm.nih.gov/protein/389843669?report=genbank&log$=prottop&blast_rank=1&RID=0X8U3UJA01N
http://www.ncbi.nlm.nih.gov/nucleotide/58533158?report=genbank&log$=nucltop&blast_rank=1&RID=0WR9V1GP01S
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Clone # 
Identity 

BLASTn                                                             BLASTp 

Accession # 

e-value 

Accession # 

e-value 

Cellular 

location 

713 

Homo sapiens CD36 molecule (CD36) 

transcript variant 3, mRNA 
IMV membrane protein [Tanapox virus] 

NM_000072.3 

(0) 

YP_001497059.

1 

(0.24) n/a 

1008 

Homo sapiens multiple coagulation factor 

deficiency 2 (MCFD2), 
hypothetical protein LOC100426989 

NM_001171509.2 

(0) 

XP_002800068.

1 

(1.00E-05) n/a 

1808 
Homo sapiens tropomyosin 1 (alpha) (TPM1) n/a 

NM_001018005.1 

(0) 
n/a 

n/a 

1857 

Homo sapiens chromosome 12 genomic 

contig 
hypothetical protein Mahau_2676  

NT_009759.16 

(0) 

YP_004464634.

1 

(3) n/a 

1880 

Branched-chain alpha-ketoacid 

dehydrogenase kinase (BCKDK) 

Branched-chain alpha-ketoacid 

dehydrogenase kinase 
NM_001122957.1 

(1.00E-104) 

AAB82714.1 

(2E-32) 
Mitochondrial 

matrix 

2011 

Homo sapiens cullin-associated and 

neddylation-dissociated 1 (CAND1) 

cullin-associated and neddylation-

dissociated 1, isoform CRA_a 
NM_018448.3 

(0) 

EAW97171.1 

(6E-75) 
Nucleus 

2189 
Homo sapiens chromosome 2 genomic contig 

hypothetical protein 

HMPREF9430_00966 
NT_022184.15 

(0) 

ZP_08028855.1 

(4.5) 
n/a 

3640 

Homo sapiens tropomyosin 1 (alpha) (TPM1), 

transcript variant 6 
n/a 

NM_001018008.1 

(7.00E-114) 
n/a 

n/a 

* = Clones selected for further investigation in the present study 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/nucleotide/188536061?report=genbank&log$=nucltop&blast_rank=1&RID=0WS87URH012
http://www.ncbi.nlm.nih.gov/protein/157939687?report=genbank&log$=prottop&blast_rank=1&RID=0WSD0A87012
http://www.ncbi.nlm.nih.gov/protein/157939687?report=genbank&log$=prottop&blast_rank=1&RID=0WSD0A87012
http://www.ncbi.nlm.nih.gov/nucleotide/298493308?report=genbank&log$=nucltop&blast_rank=1&RID=0X7XYE4K01N
http://www.ncbi.nlm.nih.gov/protein/297270450?report=genbank&log$=prottop&blast_rank=1&RID=0X81STBF016
http://www.ncbi.nlm.nih.gov/protein/297270450?report=genbank&log$=prottop&blast_rank=1&RID=0X81STBF016
http://www.ncbi.nlm.nih.gov/nucleotide/63252897?report=genbank&log$=nucltop&blast_rank=1&RID=1FM7ENNT013
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_009759.16%7C&gi=224514789&term=224514789%5Bgi%5D&taxid=9606&RID=0WSHMEWU012&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/332983193?report=genbank&log$=prottop&blast_rank=1&RID=0WSM1YDC013
http://www.ncbi.nlm.nih.gov/protein/332983193?report=genbank&log$=prottop&blast_rank=1&RID=0WSM1YDC013
http://www.ncbi.nlm.nih.gov/nucleotide/171906592?report=genbank&log$=nucltop&blast_rank=1&RID=1FPBNHWY01N
http://www.ncbi.nlm.nih.gov/protein/2583173?report=genbank&log$=prottop&blast_rank=7&RID=1FPE2VTR01N
http://www.ncbi.nlm.nih.gov/nucleotide/187829863?report=genbank&log$=nucltop&blast_rank=1&RID=1FPWZA0E01N
http://www.ncbi.nlm.nih.gov/protein/119617577?report=genbank&log$=prottop&blast_rank=6&RID=1FPZWPAC01N
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_022184.15%7C&gi=224515010&term=224515010%5Bgi%5D&taxid=9606&RID=0X8CGGMT016&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/protein/320527683?report=genbank&log$=prottop&blast_rank=1&RID=0X8EZJR8016
http://www.ncbi.nlm.nih.gov/nucleotide/63252903?report=genbank&log$=nucltop&blast_rank=1&RID=1FR58FMU01N
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Appendix VI 

Prokaryotic and eukaryotic phenotypes 

 

BACTERIAL STRAIN PHENOTYPE 

E.coli strain DH5α 

Φ 80d lacZΔM15 recA1, endA1, Gry A96 thi-1, hsdR17 supE44, relA1, deoR Δ (lacZYA argF) 

u169 

 

YEAST STRAIN PHNOTYPES 

Yeast strain AH109 

MATa, trp-901, leu2-3, ura3-5, his3-200, gal4Δ, gal80Δ, LYS::GAL1uas - GAL1TATA - HIS3, 

GAL2UAS - GAL2TATA - ADE2, URA::MEL1UAS - MEL1TATA - lacZ (James et al. 1999) 

 

Yeast strain Y187 

MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, mef, gal80Δ, 

URA3::GAL1UAS - GAL1TATA - lacZ (Harper et al. 1993) 

 

 

  

Stellenbosch University  http://scholar.sun.ac.za



175 
 

Appendix VII 

List of suppliers   

 

3-Amino-1, 2, 4-triazole     Sigma 

Agarose       Whitehead scientific 

Ampicillin        Roche 

Autoradiography film      Thermo Scientific 

β-mercapto-ethanol      Sigma 

Bacto Agar       Merck 

Bacto trypone       Fluka 

Bradford reagent      Thermo Scientific 

Bromophenol blue      Promega 

CaCl2        Merck 

Calf intestinal alkaline phosphatase    Promega 

dATP        Promega 

dCTP        Promega 

dGTP        Promega  

Dimethylformamide      Merck 

Di-Sodium tetraborate decahydrate    Merck 

DMEM       Whitehead scientific 

dTTP        Promega 

EcoRI        Promega 

EDTA        Boerhinger Mannheim 

Ethanol       Sigma 

Ethidium bromide      Roche 

Foetal bovine serum      The Scientific Group 

Glass beads       Amersham pharmacia 

Glucose       Kimix 

Glycine       Sigma 

HaeIII        Promega 

H9C2        American Type Culture Collection 
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Haemagglutinin antibody     Santa Cruz Biotechnologies 

HCl        Merck 

Herring sperm DNA      Promega 

Horse serum       Sigma 

Hybond N+ nylon membrane     BD Biosciences 

Kanamycin       Roche 

Leammli sample buffer     Bio-Rad 

LiAc        Sigma 

Matchmaker two-hybrid system 3    BD Biosciences 

MgCl2        Bioline 

Molecular size marker (100 bp)    Lasec 

NaCl        Sigma 

NdeI        Promega 

Oligonucleotide Primers Department of Molecular and Cell 

Biology, University of Cape Town 

(UCT) Cape Town, RSA 

pACT2 BD Biosciences 

PBS Sigma 

PEG4000 Merck 

Penicillin/Streptomycin The Scientific Group 

Peptone       Difco 

pGBKT7       BD Biosciences 

PIPES        Merck 

PMSF        Roche 

Protein G agarose      Whitehead scientific  

Protein ladder       Thermo Scientific 

QDO        BD Biosciences 

RsaI        Promega 

SD-Ade        BD Biosciences 

SD-Leu        BD Biosciences 

SD-Leu-Trp       BD Biosciences 

SD-Met        BD Biosciences 
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SDS        Merck 

SD-Ura        BD Biosciences 

SD-Trp         BD Biosciences 

T4 DNA Ligase      Promega 

Taq polymerase      Bioline 

TDO        BD Biosciences 

Tris        Merck 

Tris-HCl       Merck 

Triton X-100       Sigma 

Trypsin       Whitehead scientific 

Tween-20       Merck 

Wizard® SV Gel and PCR Clean-up System   Promega 

X-α-Galactosidase      Southern Cross  

Yeast extract       Difco 

Yeast nitrogem base (without amino acids)   BD Biosciences 

Zyppy™ Plasmid Miniprep Kit     Zymo Research 
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