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SYNOPSIS 
 

 
In many buildings we rely on large footings to offer structural stability by preventing failure 

deformation patterns.  This is particularly evident in industrial buildings where large open spans 

and little lateral support are a regular occurrence.  Designers often compensate for the lack of 

knowledge available with regard to foundation-soil interaction by furnishing structures with 

overly large footings.  This may lead to a significant increase in building costs if many large 

foundations are present. Also, in absence of an objective modelling and computational method, 

errors may be made, leading to instability of such structures. 

 

This study chronicles the interface material law that governs the behaviour along the contact 

surface of adjacent materials and the behaviour of large foundations under ultimate limit loading.   

 

Various approaches to defining the material law along the concrete-soil interface are 

investigated.  Their differences and similarities are discussed and illustrated using both simple 

single element tests and by applying each interface model type to the finite element model 

defining the case study. 

 

A case study is chosen that represents a common foundation-soil system frequently used in 

general practice and therefore relevant to other structures.  Two contrary structures are 

investigated; a structure subjected to vertical downward wind forces which compound the gravity 

actions on the structure (termed the heavy structure in this document) and a structure subjected to 

uplifting wind forces alleviating the gravity action on the structure (termed the light structure in 

this document).  Further investigations include alterations to the foundation size and subgrade 

compositions, the role of the slab stiffness and presence and the effect of commonly used 

structural joints and connections. 

 

Modelling strategies are developed to represent a complex three-dimensional model by means of 

a considerably simpler and more economical two-dimensional model.  In the final chapter the use 

of two-dimensional linear springs in place of the soil mass is investigated in an attempt to predict 

certain foundation behaviour by means of the simplest finite element model possible using 

software available in most engineering offices. Hereby a simple, but reasonably accurate analysis 

and design method is developed and verified in this study, equipping the practicing engineer with 

computational tools for design of such foundation systems. 
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OPSOMMING 
 

 

In baie geboue maak ons staat op groot fondamente om strukturele stabiliteit te lewer deur falings 

deformasiepatrone te voorkom.  Dit kom veral voor in industriële geboue waar groot oop ruimtes 

en min laterale ondersteuning op ‘n gereelde basis voorkom.  Ontwerpers kompenseer vir die 

tekort aan beskikbare kennis met betrekking tot fondasie-grond wisselwerking (interaksie) deur 

strukture met oormatige groot fondament afmetings voor te skryf.  Dit mag lei tot ‘n 

merkwaardige toename in bou koste as baie groot fondasies teenwoordig is. Aan die ander kant 

kan, in afwesigheid van objektiewe modellerings- en berekeningsmetodes, foute begaan word 

wat tot onstabiliteit van hierdie soort strukture kan lei. 

 

Hierdie studie boekstaaf die koppelvlak materiaalwet wat die gedrag langs die kontak oppervlak 

van aangrensende materiale beheer, en die gedrag van ‘n groot fondasie onder swiglaste. 

 

Verskeie benaderings om die materiaalwet langs die beton-grond koppelvlak te definieer is 

ondersoek.  Hul verskille en ooreenkomste word bespreek en ge-illustreer deur gebruik te maak 

van beide eenvoudige enkelelement toetse en deur die koppelvlak tipe op die eindige element 

model wat in die gevalle studie definieer word, aan te wend. 

 

’n Gevalle-studie is gekies wat ‘n algemene fondasie-grond sisteem verteenwoordig en gereeld 

van gebruik gemaak word in die algemene praktyk en daarom toepaslik is op ander strukture.  

Twee strukture met teenoorgestelde laspatrone is ondersoek; ‘n struktuur onderhewig aan 

vertikaal afwaartse windlaste, wat saam met die gravitasie aksie inwerk (’n swaar struktuur 

genoem in hierdie dokument) en ‘n struktuur waar die vertikale windlaste opwaarts inwerk en die 

gravitasie aksie verlig (’n lig struktuur genoem in hierdie dokument).  Verdere ondersoeke sluit 

in veranderinge aan die fondasie grootte en onderligende grondmateriaal se samestellings, die rol 

van die vloerstyfheid en die teenwoordigheid en uitwerking van algemene strukturele 

uitsettingsvoë en aansluitings. 

 

Modelering stategiëe is ontwikkel om ‘n komplekse drie-dimensionele model met ‘n aansienlik 

eenvoudiger en meer ekonomiese twee-dimensionele model te verteenwoordig.  In die finale 

hoofstuk word die gebruik van twee-dimensionele lineêre vere ondersoek om die grond massas 

voor te stel. Dit word gedoen in ‘n poging om sekere fondasie gedrag te voorspel deur die 

gebruik van die eenvoudigste moontlike eindige element model wat met sagteware wat in meeste 
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ingeneurs kantore beskikbaar is, geanaliseer kan word. Hierdeur word ‘n eenvoudige, maar 

redelik akkurate analise- en ontwerpmetode ontwikkel en geverifieer in hierdie studie, wat 

berekeningsgereedskap vir die ontwerp van sulke fondasie sisteme bied aan die praktiserende 

ingenieur. 
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1. INTRODUCTION 
 

 

Structural characteristics of concrete column-foundation systems embedded in compacted 

soils or gravels and various subgrades, and the interaction between them, such as load 

distribution characteristics, inelastic response, and ultimate strength; cannot be calculated 

realistically with simple procedures currently used in design and evaluation.  Experimental 

tests are at times time consuming and expensive, depending on the number of specimens and 

parameters required for an investigation.  If properly conducted, comprehensive numerical 

studies can provide reliable estimates of response of such structures, eliminating the necessity 

for extensive physical experimental tests for these systems.  Nonlinear finite element analysis 

is thus used in this study to predict and detail the behaviour of large foundations under 

loading and the interaction with its soil surroundings. 

 

 

1.1 Background 
 

In order to create a study that has relevance to its field of practice, the design of an aluminium 

foil finishing plant received from Mr Gerrit Bastiaanse of BKS (Rosochacki, 2007) was used 

to determine initial geometrical dimensions, loading and soil structure of a typical industrial 

building.  The writer undertook investigations of this specific light structure which 

experiences uplifting wind loads and that of a geometrically identical heavy structure under 

the application of compressing loads.  This is done in order to broaden the relevance of the 

study to foundations experiencing different failure conditions.  Uplifting forces could cause 

the “popping out” of a foundation while the same foundation under compressive forces could 

cause failure of the subgrade materials by exceeding its bearing capacity.  In both cases 

failure could be as result of slip lines forming in the subgrade due to moments causing 

rotation.  It would therefore be more inclusive to consider both structures in a study 

concerning foundation design. 

 

1.1.1 Case Study 
 

Typical of the requirements of an industrial structure, the foil finishing plant has large open 

spaces and large spans between slender reinforced concrete columns.  There are thirteen spans 

of six metres, giving a structure footprint of eighty by one hundred metres.  To provide for 
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unrestricted movement of overhead cranes along the lengths of the building, every second 

span is supported by outer columns alone, allowing for more floor space (see figure 1.1).  The 

section of roof between every other supported span is carried by universal beam rafters. 

 
Figure 1.1: Floor layout of foil finishing plant. 

 

The roof is supported by light steel truss frames that are connected to the concrete columns 

via UB rafters.  The large distance between the slender columns requires an alternative to 

lateral bracing members to withstand typical loading on this structure.  This bracing is 

provided in the form of large column foundations able to resist bending moments and toppling 

forces from wind loads (see figure 1.2).  In the design of this structure it is assumed that the 

structure is fixed to these large foundations.  If they are unable to withstand their ultimate 

limit state in a worse case scenario, the entire structure will fail.  

Figure 1.2:  The layout of the span of the foil finishing plant. 

 

This particular case is an example of a commonly used structure and allows the investigation 

to be relevant to similar industrial buildings.  By considering a representative column-

foundation system allows for the easy adaptation of a finite element model to new 

dimensions, loads and material parameters. 
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1.1.2 The Light Structure 
 

Worst case scenarios are assumed in determining the loads on the structure.  This scenario 

occurs when openings are present at the windward side of the structure while the rest of the 

structure is effectively sealed.  The light structure experiences uplifting forces under the 

application of the wind load.  Values are rounded to the nearest fifty and are given in table 

1.1.  The dead load given is weight of the structure above and includes the self weight of the 

column.  The weight of the foundation is not included as the foundation dimensions will vary 

in later investigations and is therefore added separately.   Global axes and directions are given 

in figure 1.3. 

Table 1.1:  Ultimate limit loads on the light structure. 
 V(x) (kN) F(y) (kN) M(z) (kNm) 

Deadload 0 -500 0 

Windload 200 850 500 

 

 
Figure 1.3: The layout of ultimate limit state column reaction forces and moments. 

 

1.1.3 The Heavy Structure 
 

As for the light structure, the worst case scenario is considered in determining the loading (see 

table 1.2).  The difference between the heavy and light structures is the size of the dead load 

and the direction of the wind load.  A heavier structure naturally has a high amount of self 

weight.  The wind load is found for a situation of an impermeable structure in a part of the 

building experiencing downward pressures.  The values are chosen to have a size that makes 

behaviour of the structure comparable to that of the lighter version.  To generalise the loading 

conditions, the given sets of load cases are varied proportionally in later investigations in this 

thesis in order to study the behaviour at a range of loads.  

ULS= 0.9DL +1.3WL  

F(y) 

V(x) 

M(z) 

y 

x 
z 
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Table 1.2:  Ultimate limit loads on the heavy structure. 
 V(x) (kN) F(y) (kN) M(z) (kNm) 

Deadload 0 -1000 0 

Windload 200 -850 500 

 

 

1.2 Scope and Limitations of this Study 
 

This study investigates a foundation-soil system typically found in industrial buildings with 

slender columns and large open spans.  The study broadens its scope to include foundations 

under uplifting and compressing wind forces.  It explores the impact of varying subgrade 

materials covering a range of high to low stiffness types.  The foundation size is increased and 

decreased, the grade of concrete used for the slab is lowered and the effect of commonly used 

movement joints and a joint filler material is considered. 

 

Settlement of a foundation is a primary threat to structural instability. This is however not the 

focal point of this study, which rather studies instant rotational rigidity due to wind loads. 

 

Three typical failure possibilities are not included in this study and are considered the 

responsibility of the design engineer to provide for these possible failure patterns.  The first 

requirement of the designer is to be sure that the self weight of the structure and foundation is 

larger than an uplifting wind load.  The foundation should therefore be sufficiently heavy to 

prevent itself from separating from the subgrade directly beneath it.  The point of uplift under 

increasing load increments will be indicated by the delamination of the interface elements 

along the base of the foundation.  The designer should therefore not rely on the slab to offer 

any resistance against overall foundation uplift as this event will in this study represent a 

failure mode (see figure 1.4).   
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Figure 1.4:  Uplifting of foundation causing failure of the structure. 

 

A second condition the designer needs to take into account prior to considering the outcomes 

of this study is to verify the overturning stability of the foundation (see figure 1.5).  The 

foundation needs to be deep enough and have a width capable of withstanding overturning 

forces and moments. 

 
Figure 1.5:  Inefficient overturning stability of the foundation causing failure. 

 

A third a final failure criterion the designer needs to account for is the cracking of the column 

or foundation (see figure 1.6).  These cracks would cause a hinge effect and has the potential 

of greatly increasing displacements and rotations and may overshadow the outcomes of this 

study.  It is therefore assumed in all investigations in this study that column will not tear off 

from the foundation under large moments or that the foundation will split under the same 

loading. 
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Figure 1.6:  Cracking of foundation or column causing severe displacements and rotations. 

 

 

1.3 Objectives of this Study 
 

The overall objective of this investigation is to gain a better understanding of the behaviour of 

fixed concrete foundations and their interaction with their surrounding material under various 

realistic and critical loading situations.  Finite element modelling strategies are to be 

developed that can be used in engineering practices when applied to similar cases.  Alterations 

to the various models studied are done in a specific manner to clearly see changes in 

foundation behaviour and in order to compare the various modelling techniques.  Specific 

focus is placed on calculating the rotation of foundations in all of the models investigated. 

This interest is due to the potential failure caused by lateral displacement at the top of the 

column resulting from a tilting action of the foundation when rotating.  Combined with 

compressive axial loads, increased moments can be experienced within the column and thus 

the foundation.  This can in turn result in overturning moments causing an even more severe 

case of overturning of the column, leading to failure.   

 

Finite element strategies include the development of a conversion method for simplifying a 

three-dimensional model into an accurate two-dimensional model.  Once this method has been 

established and proven, a feasible spring model is developed in which the soil action is 

represented by nonlinear and later by linear springs.  The aim is to given the designer a simple 

and inexpensive yet reliable method to model foundations using common design software 

available in most design offices.  The rotations of the foundation will be used as a criterion in 

determining the accuracy of simplified finite element models. 
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Conclusions are drawn about the findings of the various analyses regarding the behaviour of 

the structure and recommendations are made for the use of the finite element modelling 

strategies. 

 

 

1.4 Method of Investigation 
 

Nonlinear finite element models are evaluated and subsequently used to examine the 

structural behaviour of a foundation under loading and to create interfacial bond elements that 

depict the interaction of the foundation with its surrounding materials.  A sensitivity study is 

performed varying foundation geometry, loading, strength of concrete, and stiffness of the 

subgrades to establish a pattern of behaviour applicable to a broad range of foundation types. 

The contact problem between a concrete foundation and soil is approached by means of a 

DIANA interface model with multi-surface plasticity (DIANA, 2008).  The foundation-soil 

interface has a very low tensile bond/adhesive strength and high compressive strengths. The 

model has the capability to simulate these phenomena and is also capable of simulating 

gradual reduction in resistance, or softening, after the maximum bond strength has been 

exceeded.  Furthermore the model also takes into account friction forces which arise on the 

contact surface between soil and concrete. 

 

Nonlinear analyses of an embedded concrete foundation, based on a finite element model 

capable of simulating evolving behaviour of the foundation and soil, as well as the evaluation 

of ultimate limit state loads, are proposed. 
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2. THE FINITE ELEMENT MODEL 
 

 

As physical experiments fall beyond the scope of the thesis, it is decided in this study to create 

a three-dimensional model of the structure to be used as a reference for a simplified two-

dimensional model.  This is because the three-dimensional model is considered to be a more 

holistic representation of the structure and will therefore more accurately represent its 

behaviour.  The reason for the differing level of accuracy of the models will be discussed in 

chapter four.   

 

The surface between the concrete of the foundation and column, and the soil with which it 

comes into contact, is of particular interest.  The specific characteristics of this surface will 

determine the response of the structure to any and all forms of loading.  An interface element 

is assembled to capture the behaviour of this boundary.  Interface elements are also placed 

along the contact surface between the slab and column and the option is kept to alternate the 

material properties between that of the interface element or the 40 MPa concrete, as illustrated 

in figure 2.1.  No interface elements are positioned between the contact surface of the slab and 

soil.  This is done to simplify the model and thus reduce analysis time as fewer complex 

nonlinear interface elements will lead to more rapid convergence of load increments applied 

to the model.   This design is considered to be acceptably representative of the column-

foundation system as the focal point of this study lies with the displacements and rotations of 

the foundation and column.  For the uplift and separation of the slab from the soil to occur, 

foundation displacements will be of the nature to cause serious concern and will receive 

urgent interest, leaving the slab comparatively overlooked due to its less severe qualities.  A 

layer of interface elements surrounding the foundation and column are therefore sufficient for 

the purposes of this study and elements between the slab and soil deemed unnecessary. 

 

The possibility of a crack forming in the foundation starting at the corner between the column 

and foundation, causing a hinge-effect, is not considered.  It was decided that it would be the 

responsibility of the designing engineer to provide sufficient steel reinforcement to 

accommodate this phenomenon as this is a typical consideration made by the designer and this 

study does not make provision for miscalculations made the engineer.  Rather, the purpose of 

this study is to investigate the intricate interaction between the foundation and the soil as to 

present the design engineer with information and guidelines how to establish the foundation 
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rotation with reasonable accuracy.  It is then the responsibility of the designer to superimpose 

the column deflection. 

  
Figure 2.1:  The column, foundation, soil and interface surface for the 2D and 3D models. 

 

 

2.1 Dimensions 
 

A particular structural design is taken as the starting point for the study, in order to use 

relevant geometrical sizes and loading conditions. Subsequently, parameter studies include 

variation of foundation size and load size to derive a generic approach to modelling the 

foundation-soil interaction.  The dimensions of the reference column, foundation and 

subgrades are obtained from drawings provided by Mr Gerrit Bastiaanse of BKS (Rosochacki, 

2007).   The challenge however is in determining the outer boundaries of the model; that is, it 

had to be decided how far around and below the foundation the soil would react against 

pressures from the structure.  It has to be ensured that the foundation behaviour is not 

subjected to boundary conditions in an unrealistic way.  These boundaries depend on several 

material properties of the soil and the dimensions of the foundation.  This entails the bearing 

capacity of the soil and the type of failure most probable to the type of soil at hand.  A brief 

elucidation of the topic follows in the next section. 

 

2.1.1 Ultimate Bearing Capacity 

 
The ultimate bearing capacity qf is defined as the pressure that would cause shear failure of 

the supporting soil directly beneath and adjacent to a foundation.  In addition to the properties 
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of the soil, both the settlement and the resistance to shear failure depend on the shape and size 

of the foundation and its depth below the surface.  There are three modes of failure, namely: 

local shear failure, punching shear failure, and general shear failure.  In general the failure 

mode depends on the compressibility of the soil and the depth of the foundation relative to its 

breadth.  In the case of general shear failure, continuous failure surfaces develop between the 

edges of the ground surface and the footing, as can be seen in figure 2.2:   

 
Figure 2.2:  General shear failure. 

 

As the pressure increases towards the value qf the state of equilibrium is initially reached in 

the soil around the edges of the footing and gradually spreads downwards and out away from 

the foundation structure.  Heaving of the earth surface occurs on both sides of the foundation 

even though final slip movement will occur only on one side, and is accompanied by tilting of 

the footing.  This mode of failure is typical of soils of low compressibility, i.e. dense or stiff 

soils such as sand or compacted gravel.  A suitable failure mechanism for a strip footing is 

shown in figure 2.3.   

 
Figure 2.3:  Typical patterns of slip-lines in the soil beneath a foundation. 

 

The distance from points P to Q for a known frictional angle 'φ of the soil and for a foundation 

breadth B, can be calculated as follows: 

( )2φ4πtan]φtan
2
π

exp[ += BPQ  2.1 

For a known breadth B, a depth beyond which no further exertions upon the soil are present, 

can also be found as shown in figure 2.4 below.   



  11 

Elsje S. Fraser  University of Stellenbosch 
 

 
Figure 2.4:  Typical patterns of stress distribution in the soil beneath a foundation (Craig). 

 

The geometrical soil boundaries for the numerical investigation of any foundation can 

therefore be determined for a known foundation breadth and angle of shear resistance. 

 

2.1.2 Conclusion on Model Dimensions Adopted 

 
For a known foundation breadth and angle of shearing resistance, a perimeter can be 

calculated that forms the boundary of soil affected by the deformations and displacements of 

the column-foundation system.  The dimensions that follow this particular system are shown 

in figure 2.5 below.  These dimensions apply to the three-dimensional model in both width 

and depth.  The material properties used to determine these dimensions are provided in a 

section to follow.  Later investigations in chapter four will confirm that the bearing capacities 

of the subgrade materials are not exceeded and that the model dimensions used are sufficient 

for the purpose of this study.  The layer of interface elements modelled along the contact 

surface between the column-foundation system and the soil is 1 mm thick.  Ideally the 

interface element would be infinitely thin as it represents only a surface of contact, thus a 

plane of elements.  This is however not possible to model and a compromise of an 

insignificantly thin element, compared to other dimensions in the model, is made instead.  The 

contact surface between the column and slab is also 1 mm thick.  Note that in a parameter 

study, the latter interface size is varied, to consider the influence of a larger joint. 
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Figure 2.5:  The geometrical dimensions of the Finite Element model. 

 

 

2.2 Model Elements 
 

All concrete and soil materials in the structure are modelled with isoparametric continuum 

elements for both two- and three-dimensional investigations.  The boundary where these 

materials meet is modelled with structural interface elements.  The geometrical configuration 

of all elements used is discussed in this section.  The nonlinear material behaviour of the 

interface, which is key to this study, is discussed in detail in the following chapter. 

 

2.2.1 Interface Elements 
 

A structural interface element with basic variables being the nodal displacements ∆ue, and 

derived values the relative displacements ∆u, and tractions t, is needed for the purpose of this 

study.  The structural interface element describes a relation between t and ∆u across the 

boundary of adjacent materials.  The actual set of variables will depend on the particular 

dimensions of the interface element resulting from the mesh density of the models.  Interface 

elements with the qualities prescribed are available in the element library of DIANA (Diana, 
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2008) and were used to construct the finite element models.   DIANA allows the option to 

output the computed values (displacement and tractions) in the integration points.  Both 

elements used are based on linear interpolation and a two-point Lobatto integration scheme 

was used.  For the two-dimensional model, L8IF interface elements were used along the 

contact surfaces between concrete and soil while Q24IF elements served the same purpose in 

the three-dimensional analysis.   

 

In the two-dimensional model the structural interface element is of the configuration of a two-

by-two line between two lines, that is, the interface element is aligned between neighboring 

four noded elements.  The local xy axes for the displacements are evaluated in the first node 

with x from node 1 to node 2.  The configuration of the DIANA L8IF element, the element 

used in this case, is shown in see figure 2.6.   

 
Figure 2.6:  A L8IF element from the DIANA Element Library (Diana, 2008). 

 

Variables are oriented in the xy axes and can be briefly described as follows:  
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The normal traction ty of the required element is normal to the interface and the shear traction 

tx tangential to the interface, as illustrated in figure 2.7.  

 
Figure 2.7:  Variables of two-dimensional structural interfaces (following Diana, 2008). 

 

In the three-dimensional model the structural interface element is of the configuration of a 

four-by-four quadrilateral plane between two planes, that is, the interface element is aligned 

between neighboring eight noded elements.  The local xyz axes for the displacements are 

evaluated in the first node with x from node 1 to node 2 and z perpendicular to the plane.  The 

configuration of the DIANA Q24IF element, the element used in this case, is shown in figure 

2.8.   
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Figure 2.8:  A Q24IF element from the DIANA Element Library (Diana, 2008). 

 

Variables are oriented in the local xyz axes and are, in brief, defined as follows: 
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The normal traction tx of the required element is perpendicular to the interface and the shear 

tractions ty and tz are tangential to the interface, as illustrated in figure 2.9. 

 
Figure 2.9:  Variables of three-dimensional structural interfaces (Diana, 2008). 

 

2.2.2 Continuum Elements 
 

For the purpose of this study an isoparametric element, with translation its basic variable, is 

sufficient to model all concrete and subgrade materials.  The derived variables of the 

translations are Green-Lagrange strains, Cauchy stresses and generalized forces.   Elements 

with these basic prescriptions are available in the element library of DIANA and are used to 

create the finite element models.  Both elements used are based on linear interpolation and 

Gauss integration.  For the two-dimensional model, Q8MEM plane stress elements are used 

for the concrete and soil components of the model while brick-type HX24L elements served 

the same purpose in the three-dimensional analysis.   

 

The four-node quadrilateral isoparametric plane stress element used in the two-dimensional 

model is illustrated in figure 2.10a.  The configuration of the DIANA Q8MEM element, the 

element used in this case, is shown in figure 2.10b.   
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Figure 2.10(a):  Displacement orientation of a regular plane stress element. 

 (b):  A Q8MEM element from the DIANA Element Library (Diana, 2008). 

 

The translation variables ux and uy of the plane stress element are oriented in the xy direction 

(see figure 2.10) and can be briefly expressed as follows:   
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The displacement field yields the deformations dux and duy of an infinitesimal part dx dy of 

the element (see figure 2.11). 

 
Figure 2.11:  Deformation on a unit cube (Diana, 2008). 

 

From these deformations the Green-Lagrange strains can be derived and the Cauchy stresses 

calculated as follows: 
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The Cauchy stresses are illustrated in figure 2.12. 

 
Figure 2.12 Tensional stresses on a unit cube in their positive direction (Diana, 2008). 

 

(a) (b) 
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The eight-node isoparametric solid brick element used in the three-dimensional model is 

illustrated in figure 2.13a.  The configuration of the DIANA HX24L element, the element 

used in this case, is shown in see figure 2.13b. 

 
Figure 2.13 (a):  Displacement orientation of a regular solid stress element. 

 (b):  An HX24L element from the DIANA Element Library (Diana, 2008). 

 

The translation variables ux , uy and uz  in the nodes of solid elements are oriented in the local 

element directions (see figure 2.13) and can be expressed in brief as follows:   
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The displacements in the nodes yield the deformations dux, duy and duz of an infinitesimal part 

dx dy dz of the element (see figure 2.14). 

 
Figure 2.14:  Deformation on a unit cube (Diana, 2008). 

 

From these deformations described the Green-Lagrange strains are derived from which the 

Cauchy stresses can then be calculated, as illustrated in figure 2.15.  These can be defined as 

follows: 
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Figure 2.15:  Tensional stresses on a unit cube in their positive direction (Diana, 2008). 

 

 

2.3 Loading 
 

To determine the uplifting and toppling effect of wind loads separately from the settling action 

caused by the dead load of the structure and its subgrades, these forces are applied in 

individual load cases with the option to impose either or both load cases in analyses. 

 

Given the loading pattern described in the previous chapter, a dead load of 1000 kN is applied 

upon the column by the structure, and a horizontal force of 200 kN accompanied by an 

overturning moment force of 500 kNm, as shown in figure 1.3.  The division of these loads on 

models that differ in dimensional and mesh density aspects is explained below. 

 

2.3.1 Loading Division on Two-Dimensional Mesh 
 

It is decided for simplicity reasons to impose wind loads and moment forces only on the edges 

of the column.  In a two-dimensional case, this means that the loads are merely halved and 

applied to the edge nodes of the model.  Gravitational loads are evenly distributed across the 

elements with the outer nodes carrying half the load of the inner nodes.  This method is true 

for all mesh densities.  The moment is converted to a couple-force as the elements used in this 

model cannot depict the effect from a pure moment.  The division is illustrated in figure 2.16.  

Applying the loads on only the edge nodes does however mean that local deformations will be 

more severe.  This is however not of concern as part of the column base above the slab is 

modelled to absorb this deformation and attention is not paid to this particular area, this part 

being the same height as the width of the column. 
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Figure 2.16:  Division of loads on the two-dimensional model on column edges. 

 

2.3.2 Loading Division on Three-Dimensional Mesh 
 

In the three-dimensional case, load case one is divided by the number of elements on the top 

of the column, therefore by thirty-six for the fine mesh.  Corners nodes received this resulting 

load, edge nodes twice the amount calculated and inner nodes four times the amount.  Load 

case two is applied to nodes along the edge of the column in the z-direction.  The results from 

a two-dimensional load division, as described in the above section, are now subdivided 

proportional to the number of elements in the z-direction.  Corner nodes carry half the load of 

inner nodes.  An illustration of this method is given in figure 2.17 where the force shown 

refers to that found in the two-dimensional division and applies to loads in all directions for all 

load case two. 

 
Figure 2.17:  Division of load case two on the three-dimensional model on column edges. 
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2.4 Material Properties 
 

A foundation is the component of a structure which transmits loads directly to the underlying 

soils.  If a soil stratum near the surface is able to adequately bear the structural loading, it is 

possible to use shallow foundations for the transfer of these loads, as is the case in this study.  

It is therefore essential that the soil conditions are known within the significant depth of any 

foundation. 

 

The resistance of a soil to failure in shear is required in analysis of the stability of soil masses.  

Failure will occur when at a point on any plane within a soil mass the shear stress becomes 

equal to the shear strength of the soil at that point.  The shear strength τf of a soil is expressed 

by Coulomb as a linear function of the effective normal stress at failure (σ'
f), as shown in 

figure 2.18 and described as follows: 
''' tanφσ−=τ ff c  2.8 

Here 'φ and 'c  are the shear strength parameters referred to as the angle of shearing resistance 

and the cohesion intercept respectively.  If at a point on a plane within the soil mass the shear 

stress equals the shear strength of the soil, failure will occur at that point.  Failure will thus 

occur anywhere in the soil where a critical combination of effective normal stress and shear 

stress develops. 

 
Figure 2.18:  Coulomb’s expression of shear strength as a linear function. 

 

The column, foundation and slab are comprised of concrete with strength of 40 MPa.  The 

scope of this study does not include the failure possibility of crushing concrete.  As only the 

linear elastic behaviour of the concrete material is considered, the material properties given in 

table 2.1 are sufficient for modelling the concrete components of the structure.  Although soils 

1 to 5 are various forms of G7 compacted gravels, they have similar material properties 

(figure 2.1).  The values of this material model were found in the TRH4 manual for highway 
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construction (TRH4, 1996).  The clay measurement of the subgrade is considered to be 

drained as sufficient time would have elapsed for the process to occur during the compaction 

of the above lying gravels and erection of the structure.  Typical values for drained clay are 

obtained from Craig’s Soil Mechanics (Craig, 2004).  All values of above mentioned materials 

are available in table 2.1.  The material properties of the interface models follow in the next 

chapter. 

Table 2.1:  Material properties of the foundation-subgrade system. 
 Concrete Cemented 

Gravel (C3) 
Compacted 
Gravel (G7) 

In-situ Clay 

Elasticity Modulus (E) 30 GPa 2 GPa 100 MPa 10 MPa 

Poisson (µ) 0.2 0.2 0.35 0.3 

Density (kg/m3) 2400 2000 1650 1900 

Friction Angle (φ) - 0 0 35º 

Shear Strength (kPa) - - 20 10 

 

 

2.5 Boundary Conditions 
 

Given the numerical investigations done and the geometrical boundaries determined in section 

2.1, wherein it is found that exertions beyond the dimensions of the finite element model 

caused by the foundation will not be felt in the soil,  it is concluded that the edges of the 

model will be fixed against translations in all directions.  Edge numbers one to three in figure 

2.19 are therefore pinned against any horizontal and vertical displacements. 

 
Figure 2.19:  Edges one to three of the finite elements models pinned against any translations. 
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These conditions will vary in later investigations as phenomena such as the settlement of the 

subgrades are considered by means of phased analyses to determine the potential effect on the 

structure. 

 

 

2.6 Mesh Density 
 

The geometrical layout given in figure 2.5 is divided into three regions according to areas of 

interest, as shown in figure 2.20.  The mesh density decreases from region 1 to 2, and from 

region 2 to 3.  This is done to economise analysis time of the model.  The mesh is more 

refined directly around the foundation and column areas and less so towards the model 

boundaries.  The layer of clay below the compacted materials is also coarser, comprised of 

larger and more rectangular elements.  For the elements to have reasonable deformation 

behaviour, the ratio of the sides of an element was kept within a one to four relationship.  

These rectangular shaped elements allow the use of larger and thus fewer elements towards 

the edges of the model and in areas of less interest.  Refinement of the mesh is done to find a 

model with suitable accuracy for a given computational time. 

 
Figure 2.20: Division of model into areas of particular interest. 
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2.6.1 Motivation for Refinement 
 

The deliberate geometrical distortion of elements can be beneficial if used with care and 

understanding, as when the sides of an element are kept within a specific ratio.  By reducing 

the number of elements in a model by a given factor, the computational time reduces by the 

square of that factor.  Therefore, if the number of elements of a two-dimensional model is 

halved, the computation time reduces four times while the three-dimensional model will run 

nine to sixteen times faster, depending on the specific area of refinement in the two-

dimensional version.  As will be seen in table 2.3 below, this can reduce the computational 

time for a three-dimensional model from seventy-two hours to only three or four.  A finely 

meshed three-dimensional model can thus be very time consuming and expensive.  When 

multiple loading combinations, boundary constraints, foundation size or material properties 

are to be investigated, as will be done in this study, a highly demanding model becomes 

unreasonable and a simpler yet sufficiently accurate alternative needs to be found.    

 

2.6.2 Refinement of Mesh 
 

A single geometrical model is prescribed various mesh sizes to determine the effect on the 

accuracy and computation time of the model.  This is done in order to find a mesh with the 

most reliable results for a practical analysis period.  Four intensities are chosen and are 

illustrated in a two-dimensional view in figure 2.21.  The same division applies for the three-

dimensional models in the x- and z-directions.  The means that the same division applies to 

the depth of the model as does to its width.   
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Figure 2.21:  A two-dimensional layout of the mesh for the complete model of different mesh 

   densities. 

 

The number of elements of the four mesh densities is given in table 2.2 and the amount of 

time each took to converge for a dozen load increments, is given in table 2.3.  Three-

dimensional models of intermediate and very coarse densities are created but are never 

analysed as the fine and coarse alternatives are deemed sufficiently informative in bridging 

results from three- to two-dimensional analyses.  Further effort to find convergence for 

additional complex models is considered unnecessary.  The conversion from three- to two-

dimensional investigations is discussed in detail in the sections to follow. 

 
Table 2.2:  Number of elements for model of various mesh densities for different dimensions. 

 Fine Intermediate Coarse Very Coarse 

Two-dimensional 1520 758 419 234 

Three-dimensional 62284 20616 7683 3544 
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Table 2.3:  Amount of time for models of various mesh densities to converge. 
 Fine Intermediate Coarse Very Coarse 

Two-dimensional 188 seconds 78 seconds 47 seconds 34 seconds 

Three-dimensional 72 hours - 4 hours - 

 

A tremendous reduction in computation time can be seen in table 2.3 from the fine to coarse 

three-dimensional mesh.  The same is true for two-dimensional analyses and despite the 

analysis time of the coarse mesh being a fraction of the finer option, the little over three 

minutes is a satisfactory amount of time to yield a more accurate end result. 

 

 2.6.3 Comparison of Results 
 

As results can be produced rapidly in two-dimensional analyses, the comparison of results 

between the mesh density alternatives is done with the use of the two-dimensional models 

only.  This is justifiable as all two-dimensional models are calibrated to accurately represent 

the three-dimensional reference models.  This calibration method is described in a later 

section.  As a result it can be accepted that the three-dimensional models will yield good 

correlation with results of the two-dimensional models. 

 

Models of different density are inspected for changes in deformations and rotations at various 

points, particularly those of interest for this study, for several load increments, boundary 

conditions and material properties.   The finest mesh is considered to be the most accurate 

having more and better shaped elements in the model and is found to have the highest 

deformations of the models.  The differences in results from the most to the least dense model 

change at strict increments with very little alteration in these increments for changing 

variables.  The variation in results is accumulated from all the cases and points investigated 

and an average deviation from the fine mesh is determined for each of the other mesh 

densities.  These points and calculation can be seen in further detail in Appendix A.  A graph 

illustrating the average percentage of deviation of each mesh from the fine mesh is shown in 

figure 2.22.  With the magnitude of displacements decreasing along with the number of 

elements in a model, is can be concluded that the fine mesh is the most conservative of the 

investigated options and should therefore be used in further two-dimensional analyses. 
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Figure 2.22:  The average percentage of each mesh of the fine mesh displacement results. 

 

The fine mesh is decided to be sufficiently fine judging from the flattening curve shown in 

figure 2.23, indicating that further refinement would make little or no significant difference to 

the results found and would unnecessarily increase the computation time required for 

analyses.  It is therefore concluded that the fine mesh is amply conservative and accurate for 

further use in this study. 

0

20

40

60

80

100

200 400 600 800 1000 1200 1400 1600
Number of Elements

Pe
rc

en
ta

ge
 o

f F
in

e 
M

es
h

 
Figure 2.23:  The effect of the number of elements in a model on the results obtained. 

 

 

2.7 The Background and Planning to a Finite Element Analysis 
 

Up until this point in this chapter, only the actual finite element model has been described.  

All physical aspects and input gone into creating the model have been discussed and 
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illustrated.  In this final section of this chapter, the thought process and typical hurdles that 

have to be overcome in the analysis of the finite element model are explained and a basic 

background is given to some issues that arose during the process. 

 

2.7.1 Modelling Strategy 
 

In contrast to a linear problem the character of a nonlinear problem may become apparent 

only after trying to solve it.  At the beginning, the types and degree of the nonlinearity may 

not be clear, and even if they are, the appropriate elements, load steps, mesh layout and 

solution algorithm may not be.  Attempting to solve a nonlinear problem in “one go” is likely 

to fail and produces confusion and frustration to the inexperienced analyst.  It is advantageous 

to anticipate finite element results by doing a simplified preliminary analysis.  A linear 

analysis should precede more complex nonlinear analyses.  Linear analyses can identify 

modelling errors that would also cause problems in a nonlinear analysis and can test the 

adequacy of the preliminary discretization.  The initial use of a linear analysis can also 

suggest the location and degree of yielding, what gaps are probable to open or close, or 

estimated load and deformation states at actual collapse.  Nonlinearities produced by different 

sources can be added one at a time, as in a phased analysis, so as to better understand their 

effects on the model and how to treat them.   

 

Trial models in progress to refinement may use a comparatively coarser mesh, larger load 

steps and liberal convergence tolerances.  All of these will be refined in later investigations.  

In most cases a final load must be approached in several small steps.  An overly large step can 

slow convergence or produce an abrupt change in a displacement versus load diagram and can 

be mistaken for actual physical behaviour.  Convergence failure can be a result of a numerical 

difficulty provoked by large load increments or indicate that a condition of collapse has been 

reached and that the structure has failed. 

 

Once past the preliminary trial stages, the remainder of the analysis should be considered in 

specific detail as to optimise time expenditure.  Each load step in a nonlinear investigation can 

produce as much or more output than an entire linear analysis.  It is therefore essential to 

anticipate which output to request and to consider the process with which it will be examined. 
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2.7.2 Nonlinear problems 
 

To recognize behaviour as nonlinear is only to realise what the behaviour is not.  The term 

“nonlinearity” by definition implies that a response is not directly proportional to the action 

that produced it.  In reality nonlinearity is always present; in most common problems however 

these nonlinearities are small enough to be ignored.  Software can unfortunately not detect 

when nonlinearity is important and to consequently take it into account.  It is therefore up to 

the analyst to recognise important nonlinearities and intelligently supply additional data and 

activate the nonlinear processes.   

 

In linear structural analyses deformations are small compared to the overall dimensions of the 

structure.  Equilibrium equations are written with respect to undeformed configurations and 

deflections calculated are regarded to not affect the equilibrium of the structure.  This is 

referred to as an elementary or a first-order analysis.  Linear models provide reasonable 

approximations for many problems of practical interest, although the substantial removal from 

linearity is common.   

 

Nonlinearity admits a wide range of phenomena, each potentially difficult to formulate and 

possibly interacting with one another.  Materials can creep, fracture or yield, local buckling 

could occur and gaps may open or close.  Under ultimate or abnormal loading conditions, 

linear analysis is unable to reflect the real behaviour of a structure.  Under large deflections 

nonlinear behaviour changes the stiffness of a structure even when the material shows a 

purely linear elastic behaviour.  An analysis taking these deformations into account is termed 

a geometric nonlinear or a second-order elastic analysis.  The nonlinear nature of second-

order inelastic analyses requires an incremental-iterative numerical method to be used to map 

the load-deflection behaviour of the structure.  The implementation of second-order inelastic 

analysis therefore requires major computational effort. 

 

In structural mechanics different types of nonlinearity can be categorised as material, contact 

or geometrical nonlinearities.  Yielding, nonlinear elasticity, plasticity, fracture and creep are 

included in material nonlinearity in which material properties are a function of the state of 

stress or strain.  In contact nonlinearity a gap between adjacent parts may open or close, the 

contact area between components changes as contact forces change, or sliding contact with 

frictional forces may occur.  The calculation of contact forces gained or lost is needed in order 

to determine structural behaviour.  In the case of geometrical nonlinearity deformation is of 
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the proportion that equilibrium equations need to be revised and written with respect to the 

deformed structural geometry.  Another example of geometrical nonlinearity is a load 

changing direction as it increases as in the case of pressure inflating a membrane.  Problems in 

these categories are nonlinear because stiffness, and occasional loads, become functions of 

deformation or displacement. 

 

In the sections following brief explanations of the solution procedures for nonlinear analysis 

that economizes the computation of finite element models, such as the Newton-Raphson 

Method, are discussed (Cook, 2002). 

 

2.7.3 Newton-Raphson Method 
 

In finite element methods the nonlinear global displacement stiffness equations are solved 

using an array of incremental-iterative methods.  Incremental methods solve global equations 

by treating them as a set of ordinary differential equations, using a series of linear steps.  

Iterative schemes treat the principal relations as nonlinear equations and iterate within each 

load increment until a predetermined tolerance is larger than the unbalanced forces, 

incremental dissipated energy variation, and/or incremental displacement variation. 

 

The Newton–Raphson method solves the global equations by applying the unbalanced forces, 

calculating the consequent displacements and then iterating until the deviation from 

equilibrium is tolerably small.  Advantages of this method are its accuracy and speedy 

convergence.  A disadvantage is that it may not always converge, particularly when the 

problem or material is strongly nonlinear.  To conquer this drawback, various techniques have 

been developed to steady and accelerate the convergence of Newton-Raphson methods.  Such 

techniques include line search or arc length control procedures (see figure 2.24).    

 

Line search methods attempt to steady Newton-Raphson iterations by expanding or shrinking 

current displacement increment, minimizing the resulting unbalanced forces.  When the 

search direction is poor or when the unbalanced forces are unsmooth displacement function 

line searches may however be of limited use.  

 

Arc length methods attempt to force the Newton-Raphson iterations to stay within the vicinity 

of the last converged equilibrium point.  The applied load must be thus reduced as the 

iterations proceed, greatly reducing the risk of divergence for strongly nonlinear problems. 
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Figure 2.24 (a):  Newton-Raphson line search approach for incremental load-steps;  

(b):  Newton-Raphson iterations to convergence for incremental arc-lengths. 
 

2.7.4 Convergence 
 

Equilibrium conditions become satisfied only once convergence is reached.  Sluggish 

convergence or failure to converge may have various roots.  In an attempt to resolve these 

conditions, the algorithm may use many iterations, a waste if the area of interest lies 

elsewhere.  Convergence failure may also indicate that loading on the structure has reached its 

capacity due to the exhaustion of the strain-hardening capacity in plasticity, buckling, or a gap 

that opens permanently allowing part of the structure to “float away” or undergo a significant 

displacement without significant increase in resistance, or with reduced resistance.  When 

approaching such a state of collapse or a limit point, displacement becomes large.  During 

these states, and for some distance beyond it, the tangent stiffness matrix is negative definite, 

provoking software to halt execution and issue an error message unless appropriate numerical 

procedures are invoked.  The use of arc-length controlled steps can find the solution despite 

negative pivots.  Also, if there is no snap-back, displacement control can prevent the load step 

process from terminating. 

 

A range of tactics are possible when convergence fails.  The amount of iterations allowed per 

load step or for a gap or contact problem can be increased.  The load increment size can be 

reduced.  An examination for poorly shaped elements can be carried out or the convergence 

tolerance can be relaxed. 
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If convergence is eventually achieved, results must be examined to determine that the given 

problem has not been altered by the computational tactics.  Convergence may not be a 

physically realistic solution.  For a single load, several equilibrium configurations may exist 

and a numerical solution may converge to any of them, even if the configuration is unstable 

(Cook, 2002). 
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3. THE MATERIAL LAW OF THE INTERFACE ELEMENT 
 

 

Associated with computational investigations of the interaction between a soil mass and 

components of engineering structures, are the modelling of non-linear processes such as slip 

or separation, on the interface between the structure and soil.  The analysis of a soil-concrete 

system is complicated by the interface between the structure and soil.  To simulate the 

interaction between the soil and foundation under the application of various loads, the 

appropriate characteristics of an interface element needed to be captured.  Three types of 

interface elements are available in DIANA and are considered before being chosen to meet 

with specified criteria discussed below.  A plasticity based multi-surface interface model, also 

known as the ‘Composite Interface model’ or combined cracking-shearing-crushing interface 

model, the Friction interface model and the Nonlinear Elastic interface model are studied and 

tested in this chapter.  

 

 

3.1 Background 
 

The forces carried from the column due to wind and self weight cause downward or upward 

pressures and overturning moments on the foundation and soils below.  This will in turn result 

in deflections, stresses and strains due to compression, shearing and tension.  

 
Figure 3.1: The deformation pattern of a column-foundation structure under typical loading. 

 

Processes and mechanisms of contact interaction are modelled numerically, approximating the 

interface with finite elements of a minimal thickness.  Since these elements should define the 
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shear and normal stresses on the boundary of the dissimilar materials, their mechanical and 

strength characteristics should reflect the properties along the slip boundary and not 

necessarily correspond to those of the adjacent materials. 

 

 

3.2 Shear-slipping of Concrete and Soil 
 

Residual deformations of the concrete and soil mass of the structure along the contact 

boundary are expressed by the effect of two processes, namely compaction, the closure of 

cracks and pores, caused by hydrostatic pressure, and plastic deformations which accumulate 

during slip along the contact surface due to shear stresses.  Modelling of these deformations 

will make it possible to obtain results of the interaction between a soil mass and structure 

form a computed prediction of processes that approximate actual phenomena more closely.  

 
Figure 3.2: The plastic deformation and compaction that occur during shear forces. 

 

Concrete and soil particles in contact with one another may need an initial force to induce 

slipping, after which only a small amount of force is needed to maintain slipping.  Upon the 

application of an additional critical compressive force, the particles may first crush before 

continuing to slip/grind.  An interface model appropriate to simulate fracture, frictional slip as 

well as crushing along interfaces is needed. 

 

 

3.3 The Cohesive Crack Model and Softening Curve 

 

In the interface model types to follow, an exponential softening curve depicts many parts of 

their material laws.  A brief explanation to the source of this curve is explained in this section 

by the help of a cohesive crack model. 
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The formulation of a cohesive crack model is characterised by the use of linear elasticity to 

determine the response of the structure on either side of the crack, while nonlinearity 

describes the boundary conditions along the crack line.  The load-elongation curve for a 

tensile specimen in which a stable crack has evolved, including the post-peak region known as 

the softening curve, is illustrated in figure 3.3.  Gf is called the specific fracture energy, or 

fracture energy for short.  It is the critical energy release-rate referring to the cracked surface 

area due to a material property not dependant on the cracking history.  The tensile, or 

cohesive, fracture energy I
fG geometrically coincides with the area under the softening curve 

(see figure 3.3). 

'
tf

'
tf

 
Figure 3.3:  The stress elongation curve and softening curve for a stable tensile test (Bažant,  

 1998). 
 

The softening curve σ = f(w) is the fundamental component of the cohesive crack model.  The 

two properties of greatest importance to the softening curve are the tensile strength '
tf and the 

tensile fracture energy I
fG .  For the tensile strength being the stress at which a crack starts to 

open, it can be written for the softening curve that 

( ) '0 tff = . 3.1 

The tensile fracture energy I
fG is the external energy required to first create a cohesive crack 

and then fully break free the unit surface area.  Consider a thin element of initial length h 

located at the cohesive crack, and stress σ acting on the faces of this thin element transmitted 

by rest of the specimen (see figure 3.4). 

 
Figure 3.4:  Thin strip containing the cohesive crack (Bažant, 1998). 
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The total work on this thin element of length h with specimen cross section S, is then 

formulated as the following: 

∫∫ σ+εσ= dwSdhSW  3.2 

The energy required to deform the bulk material inelastically is expressed by the first term 

while the second term describes the energy required to open the crack.  If the element 

thickness was of the nature that h → 0, the first term, the bulk energy, becomes infinitely 

small and only the second term remains.  By dividing this remaining term by the crack surface 

it is found that 

( )∫ ∫
∞ ∞

=σ=
0 0

dwwfdwG f . 3.3 

From an analytical perspective, exponential softening is of the simpler softening types.  The 

general expression for exponential softening is σ = c1 exp(-c2w), with material constants c1 

and c2.  These constants are related to '
tf  and Gf.  It follows directly from equation 3.1 that    

c1 = '
tf , and equation 3.3 can be rewritten as shown in equation 3.4 below. 

( )∫
∞

=−=
0 2

'

2
' exp

c
f

dwwcfG t
tf  3.4 

Therefore with ft Gfc '
2 = , the exponential softening can be rewritten in the form shown in 

equation 3.5, revealing that the exponential softening is completely determined by '
tf  and Gf. 
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t

'
' exp  3.5 

 

 

3.4 Interface Models 
 

Each interface model available in the DIANA Material Library (Diana, 2008) captures 

features unique to its own material law.  Among these features there is the ability to define 

tensile bond failure and shear-slipping along the contact areas, while enforcing a compressive 

limit function.  The abilities of each of the three individual interface material models used in 

investigations in this study are discussed in this section.  Plane stress is assumed for the two-

dimensional interface models employed for analysis of in-plane behaviour of the dissimilar 

adjacent materials.  Plane interaction is assumed for three-dimensional analysis.  The element 

types used are described in the previous chapter (see figure 2.6 and figure 2.8). 
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3.4.1 Multi-surface Plasticity 
 

This plane stress interface model was developed and formulated by Lourenço and Rots 

(1997).  It is based on multi-surface plasticity, consisting of a Coulomb friction model 

combined with a tension cut-off and an elliptical compression cap (see figure 3.5). The elastic 

domain is bounded by a composite yield surface that includes compression, tension and shear 

failure.  Softening acts in all three modes.  This softening is governed by tensile fracture 

energy I
fG , shearing fracture energy II

fG , and compressive fracture energy III
fG .  Hardening of 

the cap precedes softening degradation.   

 
Figure 3.5: Composite yield surface. 

 

Exponential tension and shear softening curves with a Mode I fracture energy I
fG   and Mode 

II fracture energy II
fG respectively, depict the material law described.   For compression, the 

fracture energy is the geometrical area found under the softening curve.  It is only the area 

illustrated by plastic deformation and does not include the elastic deformation.  The same 

applies for shear.  If there is however a confining pressure on the element, there will be a peak 

resistance of c – φσ and a residual resistance equal to – φσ.  The fracture energy will exclude 

this residual stress level.  Both fracture energies are shown in figure 3.6 below.  Note that, for 

computational convenience, DIANA uses a small residual compressive resistance, as shown 

in figure 3.6.  Also in this case the energy excludes the residual value.  The tensile fracture 

energy I
fG  is as illustrated in figure 3.3 in the previous section. 

cuf

 
Figure 3.6:  Interface traction-displacement behaviour in various stress states. 
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3.4.2 Nonlinear Elasticity 
 

The available nonlinear elastic interface model allows the user to create multi-linear diagrams 

of tension-compression and shear behaviours.  The relation between normal traction ty and 

normal relative displacement ∆uy, illustrated in figure 2.7, or between the tangential traction tx 

and the tangential relative displacement ∆ux (shear slip), can be defined as coordinates on 

these multi-linear diagrams.  DIANA then interpolates for values between assigned 

coordinates.  Exponential softening curves and a high compressive strength can therefore be 

assigned to this model by allocating the appropriate coordinates to each graph.  A 

shortcoming of this model type is however that it is not able to represent the effect of friction 

on the structure.  This means that if a normal pressure were to be experienced by an interface 

element, it would not behave any differently from that of no normal pressure, or that of 

normal tension.  This inability to differentiate between the possible loading conditions is an 

inaccuracy that must be taken note of as a significant variation from the more accurate multi-

surface plasticity material law, which considers Coulomb-friction type behaviour as described 

in the previous section.  This interface model does have the advantage of easy convergence 

versus that of the combined cracking-shearing-crushing or friction models.  It is therefore 

used largely as a tool in this study to indicate the behavioural tendencies of a model which can 

after initial trials be subjected to more accurate investigations. 

 

3.4.3 Friction 
 

The friction interface model available incorporates Coulomb-friction type behaviour, similar 

to the multi-surface plasticity model of section 3.4.1. However, it has no compression limit, as 

shown in figure 3.7.  Another difference with the multi-surface plasticity model lies in the 

coupled shear-tension behaviour. The user has the option to simulate brittle cracking where 

once the tensile strength of the interface is exceeded, the tensile strength drops to zero.  For 

this phenomenon the shear stiffness can then be adjusted to a condition of zero shear retention 

or constant shear retention.  An option to alter the shear retention according to aggregate 

interlocking is available but is very specific relation of Walraven and Reinhardt (1981) and is 

not discussed in any detail in this study.  A multi-linear cohesion hardening diagram can be 

assigned to the model.  Once tensile normal forces that exceed a prescribed tensile resistance 

are applied, the behaviour is governed by the user prescribed condition of shear retention. The 

specific behaviour of the model developed for this study will be described by means of 

verification tests in the next section. 
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Figure 3.7:  The Coulomb friction criterion of the friction interface model (Diana, 2008). 

 

 

3.5 Verification of Interface Element Model Parameters 
 

In typical concrete-soil interaction, and especially when the soil is of a sandy or gravel 

composition as in this case study, the soil will separate from the concrete under a very low 

tensile force, resulting in de-bonding and consequently, under lateral loading, shear-slipping.   

The material properties of the interface model are chosen in a manner in which the tensile 

forces the structures can exert on one another are negligible compared to their compressive 

strengths.  This means that a low amount of fracture energy is required and would be 

characterised by an exponential softening curve with a sudden drop after the tensile strength is 

reached.  As illustration, the effect of several fracture energies is shown in figure 3.8, as found 

in simple, single element tests.  For lack of experimental data, a suitable fracture energy value 

is chosen from these for the purpose of modelling the soil-structure interaction in footings.   
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Figure 3.8:  The effect of decreasing fracture energy on the softening curve. 

 

Elementary tests are carried out on the two- and three-dimensional interface elements.  

Simulations of ten-by-ten-by-ten millimetre specimens under compressive, tensile and shear 

loads are created in order to provide insight into the behaviour of the proposed model for all 

material descriptions. 
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3.5.1 Combined Cracking-Shearing-Crushing  
 

To allow the numerical overlapping of neighbouring particles to be negligible, high stiffness 

values of for the normal modulus kn and shear modulus ks are chosen (refer to figures 3.3 and 

3.6).  The inelastic properties of the interface are shown in table 3.1 and the tensile and shear 

fracture energies, I
fG and II

fG  respectively, are chosen by observing the effect on the softening 

curve through an iterative process.   

Table 3.1:  Inelastic properties of the interface model. 
Values determined through simulations on a single interface element 

Normal modulus kn 2×105 N/mm3 

Shear modulus ks 2×104 N/mm3 

Compressive strength   fcu 1.0×1010 N/mm2 

Tensile strength   ft 0.01 N/mm2 

Cohesion  c 0.02 N/mm2 

Friction coefficient  φ 0.5 

 

As a very low tensile strength is expected in a soil-concrete system, especially when sand or 

gravel is present as in this case, a small amount of fracture energy will be required for failure, 

or separation.  The appropriate stress-displacement plot is chosen for a tensile fracture energy 

value of 0.1 N/mm.  Values ten times more or less than this amount showed the behaviour of 

the softening curve to be too stiff or too limp respectively. These behaviours can be seen in 

figure 3.9. 

Tensile Behaviour for Various Fracture Energies

0.0E+00

2.5E-03

5.0E-03

7.5E-03

1.0E-02

0 20 40 60 80 100
Displacement Controlled Load Increments

σ  
(M

Pa
)

 
Figure 3.9:  Stress-displacement plots of a single element test for tension. 
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As in the case of tensile strength, for a soil-concrete system with sand or gravel present, a low 

amount of shear resistance is expected to be characteristic of the system and should be 

represented in the interface model.  From the single element test a shear fracture energy of 0.1 

N/mm reveals a softening curve as desired.  This can be seen in figure 3.10.  Again values ten 

times more or less this amount showed the behaviour of the softening curve to be too stiff or 

too limp respectively. 

Shear Behaviour for Various Fracture Energies
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Figure 3.10:  Stress-displacement plots of a single element test for shear. 

 

These plots resulted in the decision to use the following fracture energies shown in table 3.2. 

 

Table 3.2:  Fracture energies of the Crushing-Shearing-Cracking interface model. 
Values determined through simulations on a single interface element 

Mode I fracture energy I
fG  0.1 N/mm 

Mode II fracture energy II
fG  0.1 N/mm 

 

In the presence of a normal pressure, a peak shear resistance equal to c – φσ is expected as 

discussed in section 3.3.  The shape of the softening curve should remain the same.  The 

effect of a 1 MPa and 2 MPa normal pressure is tested on a single element and it is found that 

the element behaved accordingly.  Identical tests are done on a three-dimensional model and 

indistinguishable plots are found for these tests.  It is therefore concluded that the numerical 

interface model is capable of predicting the response required based on the response of its 

basic constituents.  
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Predetermined Shear + Additional Normal Pressure
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Figure 3.11:  Stress-displacement plots for shear in the presence of a confining pressure. 

 

 

3.5.2 Nonlinear Elastic 
 

To construct the diagrams for compression-tension and shear behaviour, values are taken from 

the softening curves of corresponding graphs from the cracking-shearing-crushing model 

illustrated in figures 3.9 and 3.10.  These graphs are therefore not as smooth as those above 

due to the piece-wise linear interpolation between softening coordinate points.  The same tests 

are performed on a single element as described above and the tensile and shear softening 

curves are shown in figures 3.12 and 3.13 respectively.   
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Figure 3.12:  Stress-displacement plots of a single element test for tension. 
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NONLINEAR ELASTIC: Shear Behaviour
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Figure 3.13:  Stress-displacement plots of a single element test for shear. 

 

The addition of a normal force to the single element does not change the shear response as in 

the other models.  Instead, the softening curve for shear will remain exactly as seen in figure 

3.13.  Provision is made for negative shear and a high compression strength is prescribed for 

this model (see figure 3.14).  The latter simulates a contact problem, but incorporates the 

limited tensile resistance.  Three-dimensional tests give identical results. 
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Figure 3.14: Complete stress-displacement plots to incorporate negative shear and  

 compression. 

 

3.5.3 Friction 
 

The inelastic properties of the friction interface model are shown in table 3.3. 
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Table 3.3:  Inelastic properties of the friction interface model. 
Normal modulus kn 2×105 N/mm3 

Shear modulus ks 2×104 N/mm3 

Cohesion c0 0.02 N/mm2 

Friction coefficient φ 0.5 

Dilatancy angle ψ 0 

Tensile strength ft 0.01 N/mm2 

 

The cohesion hardening diagram is described by equation 3.5 and has been rewritten in the 

form found in equation 3.6.  This equation will describe softening of the cohesion.  The term 

“hardening” used in DIANA to name the diagram does not necessarily imply that only the 

option of cohesion hardening exists, but indeed softening, or reduced resistance can also be 

prescribed.  This model therefore behaves in pure shear as do the two previous models that 

were described.  For an initial cohesion c0 prescribed in table 3.1 and shear fracture 

energy II
fG  determined through a single element test described in a section above and given in 

table 2.2, a value of cohesion can be found for increments of displacement u.  A diagram of 

corresponding values is shown in figure 3.15 and is therefore also the plot found when 

subjecting a single element friction model to a pure shearing force.   
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Figure 3.15:  The cohesion hardening diagram of the Friction interface model. 

 

In this particular interface model, the option exists to create a brittle material.  This means that 

once the tensile strength of the material is exceeded the tensile strength drops immediately to 
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zero, as shown in figure 3.16.   This tensile behaviour is prescribed to the friction model in the 

absence of a softening curve alternative.  Once such brittle behaviour in tension has been 

activated, the user must prescribe what the shearing resistance is. Physically, once two bodies 

previously in contact have been moved far enough away from each other, zero 

friction/shearing resistance exists between them.  However, if the bodies have not been moved 

far enough apart, some shearing resistance may remain. This can be simulated by the user 

prescribing a reduced shear, or shear retention value.  Figure 3.17 shows the effect of this 

factor on shear behaviour after the tensile strength of the interface element has been exceeded.  

A tensile force was applied to a single element test which was larger than its tensile strength, 

after which displacement controlled increments of a shear force was loaded.  The friction 

interface model used in further analyses behaves as would a brittle material shown in figure 

3.16.  This would be the same behaviour as a model with a shear resistance factor of zero. 

 
Figure 3.16:  Tensile behaviour of the Friction interface model. 
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Figure 3.17:  Shear behaviour after tensile strength exceeded for various shear retention 

 values. 
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3.6 Chapter Summary 
 

The described models and simple single element analyses results presented above serve to 

illustrate the capabilities, but also shortfalls of the three available interface models. The multi-

surface plasticity model incorporates crushing, Coulomb-shearing and de-lamination/limited 

tensile resistance.  However, the physical interaction between separation and shearing 

resistance is not directly incorporated.  This is more directly considered in the friction model, 

at the cost of simplified modelling of tensile post-peak behaviour, the only possibility being 

brittle, abrupt loss of tensile strength. Also, crushing is not included in the friction model.  

The most simple of the three models, namely the nonlinear elastic model, does not consider 

friction (pressure-dependence), or coupling between de-lamination and shearing resistance. 

The effect of these simplifications will be shown in a later chapter by finite element analysis 

of the problem at hand with all three these interface models.   

 



  45 

4. FOUNDTION ROTATIONAL RIGIDITY: Computational Response 
 

 

4.1 Areas of Interest 
 

Lateral displacement at the top of the column is undesired from a structural perspective.  

Larger steel beams are required to prevent movement and may significantly increase the cost 

of the structure.  With a column height of eleven meters, a small rotation of the foundation 

will cause a large deformation at the top of the column.  A one degree rotation to the 

foundation yields a 192 mm horizontal deflection, as calculated below: 

m0.192      
tan(1)11      

1θ and  m11L where,tanθL    δ

=
⋅=

°==⋅=
 

 
Figure 4.1:  The effect of rigid foundation rotation on lateral deflection of tall column. 

 

To not be influenced by the bending of the column when deformed, the rotation of the 

foundation is not determined from the relative displacements of the foundation corners but 

instead in the area of the foundation below the column. Exaggerated deformations are found 

in the modelled portion of the column.  The overstated deformations that cause concern are 
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those where the foundation and column meet.  The model is simplified to have only enough 

volume above the slab which to apply loads to, leaving the possibility that the small local 

inaccuracies may occur directly around the loaded areas.  The more probable cause for higher 

deformations where the column and foundation meet is however not inadequacies of the finite 

element model, but because of enormity of the foundation itself relative to the column section.    

From preliminary tests it is concluded that for this particular set of structural dimensions, the 

column will fail at the connection to the foundation before toppling of the foundation occurs.  

Note that this is a column design matter, which must be dealt with by the designer.  To 

overcome the exaggeration of foundation rotation due to such local deformation, 

measurements are taken at increasing depths through the column until the effect of the column 

is no longer felt in the foundation.  This would thus be when the rotation remains constant for 

increasing depths of the column.  This method is illustrated and labelled in figure 4.2 below. 
 

 
Figure 4.2:  Method to exclude effect of column when determining foundation rotation. 

 

 

4.2 The Conversion from Three- to Two-Dimensional Analyses 
 

As reflected in table 2.3, the drop in analysis time from three- to two-dimensional models is 

of such significant proportions that further investigations are made into evaluating the 

differences between the models to find a bridging method from three- to two-dimensional 

modelling. 
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4.2.1 Shortcomings of the Two-Dimensional Model 
 

Without specific detailing in a third direction, it is not possible to accurately represent a three-

dimensional problem with a two dimensional analysis.  This because all components of the 

column-foundation-soil system viewed from in a two-dimensional perspective, as in figure 

2.5, are assigned an in-plane depth.  These depths vary from component to component.  The 

depth of the column for example is only six hundred millimetres while the soil and slab are 

ten meters deep.  Material can be piled, from an in-plane view, in front and behind the column 

by defining elements on top of each other.  The stiffness and self weights of these materials 

will be added correctly but no eccentricity can be modelled.  All additions will be centred 

along the middle plane and not be off-set in the thickness direction.  This will however not 

allow the two-dimensional model to govern the interaction between the foundation and soil in 

these areas using the interface material law.  This is because the interface elements are not on 

the surface of the column and slab adjacent to the piled on materials and is unaware of 

behaviour it should be defining.  The same applies for the areas in front and behind the 

foundation (see figure 4.3). 

 
Figure 4.3:  Omission of soil and slab masses in the two-dimensional model. 

 

The shortage of soil mass directly around the focal areas of the model along with reduced 

interface stiffness may cause the two-dimensional model to be overly conservative or un-

conservative, producing more expensive structural designs than would be necessary or 

structures that will fail sooner than anticipated.  These soil and slab masses are included in the 
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three-dimensional model and the effects of complete contact surface between them and the 

structure is therefore included in the results.  The three-dimensional model is consequently 

considered a realistic and accurate representation of the entire physical body of material and 

will hence be used as a reference model in the development of a more representative two-

dimensional model. 

 

4.2.2 A Conversion Method  
 

As the rotation of the foundation is the main concern in this study, the most important areas to 

find correlation of results between models are the foundation and interface surrounding it.  

The aim is therefore to find similar deflections in the foundation and surrounding soil for both 

models.  If comparatively higher deformations occur in the lower subgrades it should be of 

little concern as this is not the focal area.  Deformations in the soil and slab directly around 

the column and foundation should however not be less than those of the three-dimensional 

results.  This would make the investigation unconservative and could lead to structural failure 

due to inadequate structural design.  

 

To compensate for missing soil volumes, the missing percentage is calculated per soil level 

and the depth of the relevant soil was increased by that percentage.  The original depth of soil 

one for example is ten meters.  The omitted percentage of this soil for a column of a 600 mm 

depth and foundation of 3.5 meters is 5.6 percent.  Therefore the new soil depth is 10.56 

meters.  The balance of lost soil is therefore distributed evenly across the model avoiding any 

concentrated stiffness or stress that may occur if the material is lumped upon the model 

instead.  The same method is used to recover the absent slab.  Table 4.1 below shows the new 

depths of the slab and soil levels affected. 

 
Table 4.1:  Revised slab and subgrade depths, for the given structural dimensions, to 

  accommodate for missing material masses. 
 Slab Soil 1 Soil 2 Soil 3 

Original Depth (m) 10 10 10 10 

Revised Depth (m) 10.564 10.564 11.859 10.674 

 

To account for the lost stiffness in the subgrade directly around the foundation the soil 

stiffness is increased in the mesh elements bordering the foundation and column.  All slab and 

soil elements in contact with the column have their stiffness increased.  Only the soil elements 

along the top and bottom of the foundation have their stiffness altered.  This is done to 
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prevent a “stiff box” of soil surrounding the foundation which would prevent the natural 

rotation of the foundation. By using strips of a higher stiffness instead of a box, elements at 

the corner edges of the foundation are not subjected rotational constraints that would 

effectively form in the latter case.  This constraint is proved to be a valid concern in earlier 

trials to find an effective yet simple solution.  The elements that are stiffened are done so 

proportionately to their size and that of the column and foundation.  The amount of contact 

area lost in the two-dimensional model between the concrete and subgrades is calculated and 

the stiffness of the most local element to the void is increased by the missing factor.  The blue 

elements in figure 4.4 along side the column for example contain their own stiffness and that 

of three of the column elements beside them.  In the case of the corner where the column and 

foundation meet, coloured red in figure 4.4, elements contain their own stiffness, that of the 

neighbouring column, the foundation directly below, and the area diagonally across from it as 

shown by the dashed line.   

 
Figure 4.4:  Diagram of adjusted stiffness values of two-dimensional model. 

 

In later investigations when the dimensions of the foundation are changed, the above steps 

need to be revised in order for the new two-dimensional models to yield credible results. 

 

4.2.3 The Evaluation of the Conversion Method 
 

As it is of utmost importance that the two-dimensional model closely resembles the behaviour 

of its reference three-dimensional model and that future results can be trusted, results 

delivered by the conversion method are scrutinized to be sure that the method is reliable.  As 
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the rotation of the foundation is considered the main threat to structural failure, this 

correlation between models is the most important measure by which the conversion method is 

evaluated.   

 

Two- and three-dimensional models with identical boundary conditions, loads, mesh division 

and material properties are compared.  An alteration to the stiffness of certain elements as 

discussed in the previous section is done in the two-dimensional model.  Points of maximum 

deflections in elements in each level of soil, the slab, column, foundation and interface are 

inspected.  The two-dimensional model provided more conservative results, particularly in the 

lower levels of subgrade.  Fortunately these areas are not of great interest and results similar 

to the reference three-dimensional model are found in areas that are.  Table 4.2 shows an 

average deflection percentage of the two-dimensional model relative to that of the reference 

model.  The average is determined from various points investigated in each area.  

 

Table 4.2:  The percentage of two-dimensional deflections in terms of the reference model. 
2D 

Model 
Column Foundation Slab Interface Soil1 Soil2 Soil3 Soil4 Soil5 Soil6

Old 121 172 141 151 150 160 160 160 162 121 

New 100 125 103 110 110 115 125 140 140 120 

 

The reason for the large difference between the foundation deflections in the revised two-

dimensional model versus the three-dimensional model is because even though the omitted 

soil masses have been added to the model and the stiffness of some elements increased, it is 

still only a method to approximate the physical problem.  It is not a true representation of the 

structure.  The alterations to the model have greatly improved the agreement between the 

models, as reflected in table 4.2, but there will always be shortcomings when moving from a 

three- to a two-dimensional analysis, for example, the higher percentage difference between 

the two models when comparing the deflections of the foundation.  This is due to higher 

displacement in the lower lying subgrade levels, namely soils four to six.  This causes the 

higher deflections found in soil three and the foundation and is an inadequacy of the 

conversion method used.  The deflection patterns of the foundation for both models are 

however similar.  An image of the deflected two-dimensional model in figure 4.5 shows the 

foundation ends curving upward as does the deflected three-dimensional model, shown in a 

similar image in figure 4.5.     
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Figure 4.5:  The deflected two- and three-dimensional model of the column and foundation  

 under ultimate loading. 
 

It is found that for the suggested method of stiffness modification, rotation of the foundation 

is of near identical amounts.  The two-dimensional model gives a rotation estimation three 

percent more conservative than the reference three-dimensional model.  As rotation is the 

main focus and primary concern, this is considered a satisfactory outcome for the proposed 

conversion method. 

 

Overall the method suggested has greatly improved the compatibility of the model results.  

The two-dimensional model is in all cases the more conservative alternative and given the 

immense reduction in analysis time and that behaviour in areas of interest is found to be very 

similar, the goals of the conversion method are achieved. 
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4.3 Confirmation of Modelling Decisions 
 

Before continuing with further investigations, some assumptions made in the modelling of 

this structure are verified next.  The decision to exclude soil and subgrade settlement and 

plasticity is scrutinized in this section to be sure that their absence would not affect the 

accuracy and reliability of this study.  This section contains the findings of either more 

complex analyses or the complete examination of current models in the quest to validate the 

assumptions made. 

 

4.3.1 Phased Analysis 
 

A phased analysis of the structure is performed to scrutinize the assumptions of the described 

boundary conditions described in chapter two.  The settlement of soil and subgrade prior to 

the presence of a wind load is investigated to determine the effect, if any, on the rotation of 

the foundation.  In this analysis the loading on the finite element model is divided into three 

phases.  An initial settlement of the soil is allowed without the restriction of vertical 

displacements.  In phase one the boundary conditions of edges one and three illustrated in 

figure 2.19, are therefore only pinned against translation in the x-direction.  In the second 

phase all edges of the model are again pinned against all translations.  The dead weight of the 

structure and own weight of the slab and foundation are applied in this phase.  In the third and 

final phase the boundary conditions remain as in phase two and the loads and moments 

caused by wind are imposed on the model.   

 

As can be seen in figure 4.6, a large amount of settlement takes place in the absence of the 

vertical constraints.  The settlement of soil directly above the foundation is fractionally less 

than towards the edges.  This difference is due to the presence of the foundation, the self 

weight of which is only included in the second phase.  If there is soil in place of the concrete, 

uniform displacement would be found.  This inadequacy of the model is however negligible 

and is not of concern as the aim of the phased analysis is not to determine subgrade 

settlement, but rather the effect it has on foundation rotation.  As this fractional difference 

remains symmetrical about the column, it will have no effect on the rotation of the foundation. 
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Figure 4.6: The total deformation of the model for phase one at a magnification factor of 100. 

 

In phase two the own weight of the structure is added to the model and the deformation of the 

foundation-column system is illustrated in figure 4.7.  The delamination of the interface in a 

phased analysis will not be comparable to that of a single phase analysis, that is, an analysis 

of one set of boundary conditions.  This is due to entirely different deformation patterns 

between models, as will later be seen in figure 4.9.  In the single phased analysis the pinning 

of the edges of the model causes a “pulling away” effect of the foundation from the soil at its 

top corners.  This does however not effect the rotation of the foundation. 

 
Figure 4.7:  The delamination of the interface elements for phase two at a magnification 

factor of 500. 
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In the third phase it can be seen in figure 4.8 that the rotation of the foundation, despite 

different delamination of the interface elements, remains very similar to that of a single phase 

analysis later shown in figure 4.10.  

 
Figure 4.8:  The delamination of the interface elements for phase three at a magnification 

factor of 500. 
 

With a difference in rotation of between two and three percent between a three-phased and 

single phase analysis, the latter being the more conservative, it can be concluded that the 

settlement of soil plays no significant role in the mechanics that prevent or cause rotation of 

the foundation.  As the phased analysis is considerably more time consuming due to 

convergence difficulties, the single phase analysis of the model described in chapter two will 

be used for all further investigations. 

 

4.3.2   Testing of Soil Capacity 
 

The decision to use linear elastic modelling for the soil is validated here by confirming that 

the bearing capacity of the soil is not exceeded.  If a slip plane were to develop, the rotation of 

the foundation could potentially increase drastically.  As the heavy structure offers more 

downward pressure on the subgrades, it would test the bearing capacity of the soil more 

severely than the lighter structure and is therefore the model used in the examinations in this 

section.  The bearing capacities of the materials used in the model are given in table 4.3 below 

(Craig, 2004).   

Table 4.3:  Bearing capacities of materials used. 
 Concrete Cemented 

Gravel (C3) 
Compacted 
Gravel (G7) 

In-situ Clay 

Bearing Capacity (kPa) 40000 2000 200-600 75-150 
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In the case of the compacted gravel and in-situ clay where there is a large difference between 

the upper and lower limits, the more conservative value is used.  Contours of compressive 

stresses with values up till the bearing capacity of the compacted gravel are illustrated in 

figure 4.9.  Values in the legend are negative as they are given in terms of global σy in Mega 

Pascal.  From the sketch it is seen that for the ultimate limit load the bearing capacity of the 

compacted gravel is never exceeded except for local high stresses in the direct vicinity of the 

rotating column.  This failure will however not be able to induce slip failure due to its local 

confinement.  The overestimation of lateral resistance by linear elastic modelling in this 

regime is considered negligible, especially in the light of the presence of the significantly 

stiffer concrete floor.  In figure 4.10, contours in the range of the bearing capacity of the in-

situ clay are sketched and it can be seen that at no point is this capacity exceeded. 

 
Figure 4.9:  The vertical pressure (MPa) on the C3 and G7 materials at load factor one. 
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Figure 4.10:  The vertical pressure (MPa) on all subgrade materials at load factor one. 
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At twelve times the ultimate limit load the bearing capacity of the soil is not yet exceeded.  In 

the following chapter, various combinations of subgrade materials are investigated.  The 

bearing capacity of the subgrade with the lowest stiffness is not exceeded for one times the 

ultimate load and only at seven times the ultimate load is the upper limit exceeded.  As will be 

explained in the next chapter, this subgrade combination is an extreme case and is not 

commonly found in reality.  All other subgrade combinations were confirmed capable of 

bearing the loaded foundation for twelve times the ultimate limit load. 

 

It is therefore concluded that the decision to exclude the plasticity of the soil in investigations 

is acceptable for the purposes of this study. 

 

 

4.4 Ultimate Limit Loading on the Heavy Structure 

 

In this section the results are shown for the finite element model described in chapter two 

using interface elements as described by a multi-surface plasticity, under the loading assigned 

in chapter one.  In figure 4.11 a contour diagram is shown of total displacements in 

millimetres of elements at one times the ultimate limit factor.  The deformed shape of the 

model is shown at a factor two-hundred times that of actual displacement.  The highest 

deformations take place in the vicinity of compression by the column overturning.   

 
Figure 4.11:  Total deformation for an ultimate limit load at a magnification  factor of 200. 
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These high values are a local occurrence and global values decrease incrementally around and 

beneath the foundation.  The delamination of the interface is shown for increasing steps of the 

limit load in figure 4.12.  The total dead load and self weight of the foundation are applied in 

an initial load step and the wind load is enforced in load step increments.  The portion of the 

ultimate wind load applied is indicated in the diagrams below.  No rotation can be seen in the 

foundation before the inclusion of the wind forces.  Once the effect of the wind has been 

imposed on the structure the foundation starts to rotate.  This rotation increases as the load 

factor increases, as can be seen in figure 4.12 at a magnification factor of 500.  

 

  
Figure 4.12:  The delamination of the interface elements at a magnification factor of 500. 

 

The wind load is applied to the structure up to twelve times that of the ultimate load.  The 

rotation of the foundation is plotted against the corresponding load factor in figure 4.13.   
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Figure 4.13:  Rotation of foundation versus ultimate load factor for the heavy structure. 
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If failure of the structure were to occur due to the rotation of the foundation, the gradient of 

the rotation-load plot would start to increase rapidly as the foundation would become 

unstable.  The uniform gradient of the line indicates that this state has not been reached, even 

at twelve times the wind load for this particular foundation size.  It can therefore be concluded 

that this structure will not fail due to foundation rotation.  The lateral displacement at the top 

of the column due to the rotation of the foundation causes no concern at the low levels of 

rotation experienced here.  For one times the ultimate limit load the column is expected to 

translate laterally by less than a millimetre, as shown below. 

mm0.7027      
)1066.tan(311      

1066.3θ and  m11L where,tanθL    δ
3
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=
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4.5 Ultimate Limit Loading on the Light Structure 
 

As for the heavy structure above, results for the light structure model described in chapter two 

using interface elements of a multi-surface plasticity under normal loading, are shown in this 

section.  Figure 4.14 shows a contour diagram of total displacement for the ultimate load at a 

factor two-hundred times that of actual displacement.   

 
Figure 4.14:  Total deformation for an ultimate limit load at a magnification factor of 200. 
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The delamination of the interface is shown for increasing steps of the limit load in figure 4.15.  

As was done for the heavy structure, the total dead load and self weight of the foundation are 

applied in an initial load step and the wind load is enforced in load step increments, causing 

rotation.  This rotation increases as the load factor increases, as can be seen in figure 4.15 at a 

magnification factor of 500.   

  

  
Figure 4.15:  The delamination of the interface elements at a magnification factor of 500. 

 

Under the application of the dead loads, no rotating of the foundation takes place.  The 

foundation experiences compression into the subgrade below.  Once wind forces are included, 

the foundation begins to experience both rotation and uplifting.  The effect of this uplifting 

does not surpass the dead weight of the structure until twice the ultimate wind load.  When 

this happens, the foundations starts to lift up off the subgrade below itself and starts pressing 

upwards causing undesirable stresses on the slab.  The wind load is applied to the structure up 

to nine times that of the ultimate load.  The rotation of the foundation is plotted against the 

corresponding load factor in figure 4.16.  As there are no interface elements between the slab 

and soil, the finite element model is not adequate to represent the uplifting of the foundation 

and slab at excessive upward wing loading.  This is because once the foundation starts to 

press against the slab, the slab elements will not be able to pull away from the soil beneath it, 

as would be the true sequence of events.  This causes inaccurate results for the load-rotation 

plot outside this critical area.  This phenomena does however fall outside the scope of this 

thesis, as described in chapter one, as this presents a whole new failure criterion and is the 
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responsibility of the design engineer to ensure that the self weight of the foundation is 

sufficient restraint against uplifting. 
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Figure 4.16:  Rotation of foundation versus ultimate load factor for the light structure. 

 

As the rotations from figure 4.16 can be trusted only up to twice the amount of the ultimate 

limit load (equalling the total downward structural self weight), figure 4.17 details a closer 

inspection of the valid area.  The same foundation will rotate less if it formed part of a heavy 

structure, seen in figure 4.17.  These rotations are still very low and less than a millimetre of 

lateral displacement will occur at the top of the column for the ultimate load and is therefore 

not a threat to structural stability. 
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Figure 4.17:  Rotation of foundation versus ultimate load factor for both structures. 
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5.    FACTORS CONTRIBUTING TO FOUNDATION ROTATION 
 

 

As seen in the previous chapter, for the given loading conditions, foundation size, soil types and 

concrete strengths, neither the heavy or light structures are nearing instability due to the rotation 

of the foundation.  The results are however the outcome of a specific case study.  This chapter 

aims to generalise the behaviour of such structures by investigating factors that effect the 

rotation of the foundation.  Such factors included the material properties of the subgrades 

present, the size of the foundation, and more that will be discussed in the sections to follow.  

Investigations in this chapter are carried out on the heavy structure using the multi-plastic 

interface element, unless otherwise stated, and the behaviour found is confirmed briefly for the 

light structure for some factors studied. 

 

 

5.1 A Variation of Subgrade Materials 
 

Few elements of a foundation-soil system would effect deformations and displacements as much 

as the material properties of the subgrade.  Three alternatives to the subgrade layout previously 

described and illustrated in figure 2.5, are chosen and are discussed in this section.  Two models 

with considerably higher or lower soil stiffness are considered.  The case of lower stiffness is 

illustrated in figure 5.1.  In this case there is no G7 compacted gravel present but instead only 

the in-situ clay subgrade.  The C3 cemented layer directly below the slab is still considered for 

this case. 

 
Figure 5.1:  Layout and dimensions of subgrade with low stiffness. 
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The case of a higher stiffness is illustrated in figure 5.2  Again there is no G7 compacted gravel 

present, but in this case the void is filled with C3 cemented gravel which lies three meters deep 

starting directly below the slab.  The actual construction of such a subgrade would be very 

expensive but the purpose of the investigation is to consider the effect of a more stiff material 

than currently prescribed. 

 
Figure 5.2:  Layout and dimensions of subgrade with a high stiffness. 

 

The third alternative investigated has subgrade specifications similar to the original subgrade 

specifications, but with an additional 200 mm layer of C3 cemented gravel directly beneath the 

foundation. 

 
Figure 5.3:  Layout and dimensions of an alternative subgrade stiffness. 
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The wind load is applied to structure up to nine times that of the ultimate load.  The rotation of 

the foundation is plotted against the corresponding load factor in figure 5.4 for all the subgrade 

variations discussed.  The most apparent change in foundation behaviour in terms of rotation is 

the enormous increase in rotation found when replacing the G7 compacted gravel with in-situ 

clay.  This drop in stiffness causes rotation of the foundation that is five times higher than that 

of the original soil stiffness.  By adding a layer of C3 cemented gravel to lie directly below the 

foundation, the rotation of the foundation is halved.  With the expensive alternative of using 

only C3 cemented gravel instead of G7 compacted gravel, the rotation can be reduced six times.  

It can be concluded that in a case where rotation of the foundation may lead to structural 

instability, a thin layer of stiff material directly below the foundation is a cost-effective way to 

significantly reduce rotation. 
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Figure 5.4:  Rotation versus ultimate load factor for a variation of subgrade stiffness. 

 

Further investigations in this chapter will show results for the original subgrade composition 

and the compositions of subgrade alternatives.  In all cases the type of composition will refer to 

those described in this section. 

 

 

5.2 Changes in Foundation Size 
 

One of the factors influencing the rotation of the foundation under a constant load is its size.  A 

smaller foundation is expected to rotate more than a larger one. This is due to the decrease in the 

contact area between the concrete and soil providing less frictional resistance, and the reduction 

of resistance to a constant moment carried to the foundation via the column.  The latter can be 
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illustrated by means of a simple calculation and is shown in figure 5.5.  A moment is applied to 

a column and in a very simplified approximation of the problem, the soil resists against the 

moment at the two corners shown.  It is deduced here that if the foundation width are halved, 

resistance forces at the corners will need to be larger to prevent more rotation than before.  As 

the subgrade is not infinitely stiff, larger deformations than before will be a result and more 

rotation will therefore occur.  

 
Figure 5.5:  A simple rotation resistance problem for a changing foundation width. 

 

5.2.1 Original Subgrade 
 

The theoretical calculation above is confirmed by examining figure 5.6.  It can clearly be seen 

how the delamination of the interface elements increases from a foundation of a four meter 

width to one of one-point-seven-five meters.  The increase in delamination of the interface is 

due to a larger vertical downward displacement of the foundation under the compressive dead 

weight of the structure above, and less resistance to rotation as the foundation decreases in size.   

 4 m footing 1.75 m footing 

 
Figure 5.6:  Delamination of interface elements for the ultimate load viewed at a factor of 500. 

 

The rotation angle versus factor of ultimate limit loading is plotted in figure 5.7 for the original 

foundation width of 3.5 meters, and is accompanied by the plots of a 4 meter and a 1.75 meter 

foundation.  For every new width of the foundation chosen, a new set of soil depth dimensions 
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and locally increased stiffness around the foundation, as described in section 4.2.2, has to be 

determined.  In addition, a new finite element model boundary perimeter has to be calculated for 

each new foundation using equation 2.1. 
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Figure 5.7:  Rotation versus ultimate load factor for a variation of foundation widths. 

 

It can clearly be seen how the rotation decreases for a larger foundation and increases for a 

smaller one.  The upward curling plot of the smallest foundation shows that it increases more 

rapidly than the larger foundations with linearly increasing plots.  This behaviour is confirmed 

for the light structure as a rotation-load plot similar to that of the heavy structure, shown above, 

is constructed using test results for foundations of various sizes under uplifting wind forces.  

The factor of the ultimate load is limited to the region just after the foundation starts to lift up 

off the subgrade below, indicated by the black dots on the plot in figure 5.8.  The finite element 

model in not sufficiently designed to consider uplifting and further results would be inaccurate.  

It is also a scenario which must be prevented by the designer; the footing weight together with 

other permanent loading must provide sufficient anchorage to prevent uplift. 
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Figure 5.8:  Rotation versus ultimate load factor for a variation of foundation widths. 
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It can also be concluded that not only does a smaller foundation rotate more; it will lift up 

earlier under an uplifting wind load, as can be seen in the figure 5.8.  The opposite is also true 

for a compressive load where it was found that the smaller foundation sinks into the subgrade 

sooner than a larger one.  This could be seen in figure 5.6 above judging from the delamination 

of the interface and gradient of the slab. 

 

The effect of the foundation sizes is investigated for all three types of interface models 

discussed in chapter three.  The amount of rotation for each foundation at one times the ultimate 

wind load is plotted in figure 5.9.  The effect of a difference in the material laws of nonlinear 

elastic interface element versus the combined crushing-shearing-cracking and friction interfaces 

can clearly be seen in the graph shown in figure 5.9.  The reasonable agreement between the 

responses predicted by the friction model and those predicted by the crushing-shearing-cracking 

graphs can be attributed to the fact that both capture the main mechanisms.  The sudden drop in 

tensile and shear resistances of the friction model versus the softening curves of the crushing-

shearing-cracking model would cause small dissimilarities as the fracture energies under the 

softening curves are small and resistances drop to zero very quickly.  The absence of a 

compression strength limit in the friction model should also not come into play as the limit 

prescribed to the other interface models is never reached.  The predictions by the simpler 

nonlinear elastic model differ significantly from the other two models.  The major deficiency of 

this model is that it does not incorporate pressure-dependent friction increase.  For the 

investigations done in this study, the nonlinear elastic interface has proven capable of 

inexpensively predicting trends in behaviour of the structure as it does resemble, though 

inaccurately, the results of the other two interface types.   
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Figure 5.9:  Rotation of various foundation sizes for all three interface elements. 
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From the above it is clear that the foundation rotation increases more rapidly as the foundation 

size decreases.  It is therefore concluded that the reduction of foundation size causes more and 

more rapid rotation and that a smaller foundation will rotate sooner and more extensively as the 

ultimate load is increased.  

 

5.2.2 Other Subgrade Combinations 
 

The same tests of varied foundation size, described in the above section, are done for the other 

soil subgrade combinations identified in section 5.1.  For these analyses the inaccurate nonlinear 

elastic interface model is used to predict structural behaviour and these tests are followed by the 

problem prone convergence of the crushing-shearing-cracking and friction interface models.  

The same behaviour is found for all other subgrade combinations as for the original subgrade.  

A reduction in foundation size means an increase in the rotation of the foundation.  Smaller 

foundations rotate sooner and more rapidly and the reduction of foundation size leads to 

speedier rotations.  The difference between subgrade combinations for the accurate interface 

models are only as a result of the soil stiffness used in each case.  As shown by figure 5.4, a 

foundation surrounded by soil of a low stiffness will rotate more than one in soil of a higher 

stiffness.  Therefore a small foundation in soil of low stiffness will rotate several times more 

than a large foundation in stiff soil.  The rotation of each individual foundation at one times the 

ultimate load is given in table 5.1 for all subgrade combinations for the combined crushing-

shearing-cracking model.  It can be determined from this table what the relation between 

foundation rotation is for all variations investigated.  This is done in table 5.2 where rotations of 

all foundations are given as a percentage of that of the original foundation size and subgrade. 

 
Table 5.1:  Rotation of all foundations investigated at one times the ultimate load. 

Soil Stiffness Types (Degrees) High Combination Original Low 

4 m 4.46 x10-04 1.46 x10-03 3.01 x10-03 1.15 x10-02 

3.5 m 4.77 x10-04 1.56 x10-03 3.66 x10-03 1.50 x10-02 

1.75 m 6.37 x10-04 2.23 x10-03 5.44 x10-03 3.49 x10-02 

 

Table 5.2:  Rotation of all foundations investigated as a percentage of the original rotation. 
(Percentage) High Stiffness Combination Original Low 

4 m 12.19 39.89 82.24 314.21 

3.5 m 13.03 42.62 100 409.84 

1.75 m 17.40 60.93 148.63 953.55 
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Plots for all the other subgrade combinations are given in Appendix B.1.  This includes plots of 

rotation versus foundation width for one times the ultimate load and rotation versus an 

increasing factor of the ultimate for various foundation sizes, as shown in figures 5.7 and 5.9. 

 

 

5.3 Changes in Elasticity Modulus and Presence of the Slab 
 

The elasticity modulus used for the slab, as given in table 2.1, is in many cases much lower as 

designers may use concrete of a lower strength than that of structural elements, for economical 

reasons.  The elasticity modulus of the slab is reduced for the original subgrade combination and 

foundation dimensions and the new rotation plotted on the graph in figure 5.10. 
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Figure 5.10:  The effect of changing the elasticity modulus of the slab on rotation. 

 

Halving the elasticity modulus of the slab only increased the rotation of the foundation by six 

percent.  Using a layer of C3 cemented gravel instead of concrete increased rotation by 160 

percent.  A further reduction of the elasticity modulus to that of G7 compacted gravel increased 

rotation twofold.  A slab of this type of material does start to become unrealistic as it would not 

be used in practice.  The influence area of the slab and C3 cemented layer under most stress 

shown in figure 4.9 on rotation is investigated.  The total absence of a slab and C3 cemented 

layer is also considered.  These results are shown in figure 5.11.  The complete absence of the 

slab and C3 cemented layer causes rotations four times higher than the original model.  The 

partial removal results in a 260 percent increase.  This large increase of the latter is because of 

the resistance the slab gives against the overturning column.  By removing this part of the slab, 
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greater column rotation leads to higher levels of foundation rotation.  This information will 

prove to be valuable in the next chapter when modelling the subgrades and supporting 

components with springs instead of continuum elements. 

 
Figure 5.11:  The effect of total and partial removal of the slab on rotation. 

 

The same tests are done for the other subgrade combinations.  The same behaviour described 

above is found for the all subgrade combinations (see figure 5.12).  An initial decrease in 

stiffness of the slab does not effect the rotation of the slab.  Halving the elasticity modulus of 

the slab influences the rotation by a fraction.  Slabs of lower stiffness are not commonly used in 

practice.  It can therefore be concluded that by using a concrete of a lower grade will not 

drastically increase rotation of the foundation.  The absence of the concrete material or slab 

entirely could however cause structural instability as large increases in rotation are found. 
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Figure 5.12:  The effect of changing the elasticity modulus of the slab for alternative subgrades. 



  70 

Elsje S. Fraser  University of Stellenbosch 
 

5.4 The Presence of Expansion Joints 
 

The presence of relatively small gaps at the base of the column to allow for expansion joints, 

commonly used in the industry, have the potential to significantly effect the rotation of the 

foundation.  These joints are filled with material of relatively low stiffness which can effectively 

be considered as zero.  This would mean that should the filler material be compressed, its 

thickness would deform from typically ten millimetres, to zero; its presence can be ignored and 

only a physical gap between column and slab need be included in investigations to study its 

effect.   Provided the soil surrounding the foundation is sufficiently stiff to prevent the 

foundation from “drifting away”, it is assumed the foundation will rotate about its centre of 

gravity.  In a worst case scenario, an infinitely stiff column-foundation element, allowing no 

bending or local deformations, is used to determine the upper limit of the rotation possibilities 

due to a gap.  This allows for maximum rotation and therefore lateral displacement at the top of 

the column.  This displacement would be in addition to that caused by the deformations due to 

loading.  Figure 5.13 shows how to determine this rotation. 

l

( )lb1tan−=θ

 
Figure 5.13:  The rotation of a stiff column-foundation system in the presence of joints. 

 

 ( )lb1tan−=θ  5.1 

where  l = distance from the top of the slab to the centroid of the foundation, 

and b = thickness of the gap of rubber. 

 

In the case of the originally prescribed foundation and model dimensions, the following is 

found: 
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b = 10 mm,  l = 1000mm 

°=θ∴ 573.0  

 ∴lateral displacement at the top of the column = 110 mm 

 

If however the centre of gravity of foundation is shallower, say half the depth of the case study 

above, it is found the lateral displacement increases to 220 mm. 

  l = 500mm, ∴ lateral displacement = 220 mm 

If the thickness of the gap is also halved, the lateral displacement will remain at 110mm. 

  l = 500mm and b = 5 mm, ∴ lateral displacement = 110 mm 

 

It is therefore concluded from the simple geometrical study above that for an infinitely stiff 

column-foundation element, the depth of the foundation below the slab and the width of the 

expansion joint may be the biggest factors contributing to rotation of the foundation and 

ultimately the cost of the structure. 

 

As an infinitely stiff column-foundation element is neither likely nor possible, a rubber is 

included in the finite element model and its presence is investigated.  The material and 

geometrical properties are given in table 5.3. 

 
Table 5.3:  Material and geometrical properties of the joint filler material. 

Elasticity Modulus Normal Modulus (kn) Shear Modulus (ks) Bond strength Thickness

0.5 GPa 50 N/mm3 5 N/mm3 0.01 N/mm2 10 mm 

 

These values indicated a much lower stiffness for the filler material than that of the interface or 

slab materials.  The bond strength however remains the same as in table 3.1.  This means that to 

represent the joint behaviour with the nonlinear elastic model the gradient of the compression-

tensile curve between the compressive and tensile strengths, shown in figure 3.14, will be much 

lower.  The nonlinear elastic interface model is again used to initially indicate the behaviour of 

foundation.  For neither the combined crushing-shearing-cracking nor the nonlinear elastic 

models is there any significant difference in the rotation of the foundation over increasing 

increments of the ultimate wind load when the expansion joint is included in the design (see 

figure 5.14).  The same is found for the subgrade of a higher stiffness and the combination 

alternative.  Their plots are given in Appendix B.2. 
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Figure 5.14:  Rotation versus the factor of ultimate load for the inclusion of an expansion joint. 

 

It can be concluded that for the given column-foundation material properties, an expansion joint 

of ten millimetre thickness will not cause the increase in rotation as predicted by the worst-case 

scenario or the order of rotation in the partial absence of the slab as found in the previous 

section.  This is due to the column not being infinitely stiff; instead the column rotation 

increases locally (see figure 5.15).  With the remainder of the slab still present in addition to the 

whole C3 cemented layer as in figure 5.11, there is ample resistance to prevent further 

overturning of the column.  The addition of a ten millimetre rubber around the column will 

therefore not affect structural stability unless the conditions start to approach those of a worst-

case scenario.   

 
Figure 5.15:  The delamination of the interface at a magnification factor of 500 with and 

without expansion joints. 
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5.5 The Effect of Connection Joints 
 

In a structure of the magnitude as for this case study with floor spans 100 by 80 metres, the slab 

is made up of smaller segments which are practically possible to build, but also allow 

expansion/shrinkage movement.  These units are connected at movement joints by metal joints 

or other forms of shear interlocking which are meant to transfer stresses from one to another 

(see figure 5.16).   

 
Figure 5.16:  Structural connection joint used to combine segments of the slab. 

 

The event of failure of the connection joints to transfer stresses or hold the slab in place is 

investigated in this section.  To simulate this phenomenon, the boundary conditions of both 

edges slab of the slab were released and the slab set free to move in all directions without 

translational constraint.  It is therefore assumed that such joints are located far from areas 

experiencing compression or rotation while the structure is under ultimate loading.  The original 

foundation and subgrade combination is used in this investigation.  The ability of the slab to 

move freely at the edges can be seen in the deformed view of the model in figure 5.17. 

 
Figure 5.17:  A deformed view of the free ended slab for ultimate limit loading at a 

magnification factor 500. 
 



  74 

Elsje S. Fraser  University of Stellenbosch 
 

Although the slab edges are free from constraints and the connection joints had therefore failed, 

there is no increase found for the rotation of the foundation.  It is concluded that if connection 

joints are positioned in non-critical areas, their failure will not affect structural stability. 

 

 

5.6 Conclusions 
 

It can be concluded from the investigations carried out in this chapter that several factors can 

greatly influence the behaviour of the structure while others do not at all. 

 

As expected, subgrade materials of a higher stiffness offer more resistance to the displacements 

of foundations than materials of a lower stiffness.  This means that higher levels of rotation will 

occur in a subgrade comprised of clay than would have in compacted or cemented gravel.  

Changing the size of the foundation has the same effect on the behaviour of the foundation 

where a small foundation rotates more than a large one under the same loading.  Combining 

these factors gives a whole range of behaviours.  An example is that a small foundation of 

one1.75 meters with a thin layer of C3 cemented gravel directly beneath it rotates about the 

same as a large four meter foundation would without the presence of a stiff layer of subgrade 

material beneath it.  Another example is that for the same loading a small foundation embedded 

in clay will rotate eighty times more than a large foundation surrounded by C3 compacted 

material. 

 

The grade of concrete used for the slab need not be a high standard to prevent rotation but a slab 

must however be present to offer resistance to the overturning of the column.  A concrete 

strength sufficient to carry this compression should be used. 

 

Neither the use of expansion joints in close vicinity of the column nor movement joints to allow 

free movement of slab segments will cause a significant increase of the rotation of the 

foundation, provided they are used sensibly.  
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6. DESIGNING A TWO-DIMENSIONAL LINEAR SPRING MODEL 
 

 

Ultimately the goal of this study is to design a two-dimensional linear spring model that can 

be assembled using software commonly available in engineering design offices.  This model 

must provide the user a simple method to predict, with reasonable accuracy, the rotations that 

can be expected from a foundation under various loading or subgrade conditions.  This 

chapter details the method recommended to the user to craft such a spring model. 

 

 

6.1 Literature Study 
 

Several methods exist which makes it is possible to represent the soil mass with linear 

springs.  A method which includes soil properties, the composition of the subgrade structure, 

the dimensions of the foundation and the depth of the foundation below the surface is 

considered in this study.  This method makes use of the modulus of subgrade reactions. 

 

6.1.1 The Modulus of Subgrade Reaction 
 

The modulus of subgrade reaction is widely used in the structural analysis of continuous 

footings, mats and pilings.  Here it is applied to the foundation members investigated in this 

study.  It is the conceptual relationship between soil pressure and deflection and is defined by 

the basic equation kS = q/δ, where q is the average measured pressure and δ the average 

measured displacement under a load P for a stacked plate test.  A direct relationship between 

ES and kS, where ES is the elasticity modulus of the soil, can be found and is given in 

equations 6.1 to 6.3.  The discussion of this process can be found in chapter 9.6 of Foundation 

Analysis and Design (Bowles, 1996). 
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From equations 6.1 and 6.2, the stiffness of a spring representing a soil mass is as defined in 

equation 6.3 below. 
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and  IF can be obtained from figure 6.1: 

 
Figure 6.1:  The influence factor IF for footings at a depth D (Bowles, 1996). 
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As can be seen in figure 6.2, the substructure below the foundation does not contribute equal 

amounts of resistance.  For the most of the substructure combinations discussed in chapter 

five, using a weighted average to determine ES would give an overly conservative 

approximation of the soil stiffness.  This is because the soil directly below the foundation, the 

soil offering the most resistance, according to figure 6.2 and as seen in figure 4.10, has a 

much higher elasticity modulus than the in-situ clay further below the foundation.  To account 

for the larger contribution of the soil closer to the foundation base, the author proposes the 

modification of the stiffness by consideration of soil layer position according to equation 6.4. 

This equation uses figure 6.2 to determine the piecewise contribution of each layer of 

subgrade.  The calculation of ES for the original subgrade combination is given in Appendix C. 
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Figure 6.2:  The pressure bulbs for square and long footings (Bowles, 1996). 
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6.1.2 Support of the Column 
 

As seen in chapter four in figure 4.9, high stresses occur in the slab and C3 cemented layer 

adjacent to the overturning column.  Figure 5.11 shows the importance of this area in 

preventing rotation of the foundation.  Misinterpretations of contributions to the stiffness 

value for these two layers at this crucial point of rotation prevention can lead to inaccurate 

results.  The area of slab resisting the deforming of the column is not considered as merely a 

straight strip from the column edge to the model boundary, but instead as a larger area as 

shown in figure 6.3.  This area depends on the angle θ chosen by the user.   

 
Figure 6.3:  The plan view of a spring representing an area resisting the deforming column. 

 

The deflection ∆ of a spring representing an area loaded under an overturning force P, for 

dimensions given in figure 6.3, can be determined for a constant strain ε as follows: 
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From this the stiffness k of this area is given in equation 6.5 below. 
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6.2 Calculation and Application of Stiffness Values 
 

The springs representing the soil masses are connected to the edges of the column and 

foundation.  As discussed above, the stiffness values can be determined for each side, centres 

and corners, of the foundation.  A layout of these areas is given in figure 6.4.  The end zones 

(corner areas) are taken as B/6 as done in chapter nine of Seismic Design for Buildings 

(HQUSACE, 1998).  

Figure 6.4:  Layout of spring stiffness areas. 

 

The stiffness values for the areas above, on the side and below the foundation are calculated 

using equations 6.1 and 6.2 and the values of the original subgrade combination are given in 

table 6.1.  Note that these values are per cubic millimetre and they are multiplied by the 
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contact area they represent.  Detailed calculations of these stiffness values are given in 

Appendix C. 

Table 6.1:  Stiffness values of springs connected to the foundation. 
kS Above Sides Below 

Centre  9.2276 x105 N/mm3 8.788 x104 N/mm3 6.5793 x104 N/mm3

Corners 1.1096 x106 N/mm3 1.0568 x105 N/mm3 7.9118 x104 N/mm3

 

The stiffness values of the slab and C3 cemented gravel are calculated using equation 6.3.  

For areas with a sudden drop in horizontal displacement with an increase in distance from the 

source, a parameter γ which represents the rate of decrease of the displacement, the stiffness 

of that area can be increased by a factored γ (Badie, 1995). The factor γ can be determined 

using figure 6.5. 

 
Figure 6.5:  The rate of decrease γ of horizontal displacement (Badie, 1995). 

 

Displacements are different for each combination of subgrade materials.  Horizontal 

displacement decreases more rapidly for soils of a higher stiffness than for low stiffness soils.  

The parameter γ representing the rate of decrease will therefore be a higher value when C3 

cemented gravel is present and lower in the case of in-situ clay.  Judging from the 

deformation in the x-direction of the original subgrade combination, shown in figures 6.6 and 

6.7 for the slab and C3 cemented gravel respectively, parameter value five is chosen for the 

slab a value of three for the cemented gravel layer.  The final stiffness values of these layers 

for the original subgrade combination are given in table 6.2. 
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Figure 6.6:  Deformed shape of the slab in the x-direction at a magnification factor of 1000. 

 

 
Figure 6.7:  Deformed shape of the C3 cemented gravel in the x-direction at a 

magnification factor of 1000.  
 

Table 6.2:  Stiffness and parameter γ values of column support springs for the original model. 
 Concrete Slab C3 Cemented Gravel 

γ 5 3 

kS 2.133·107 N/mm 8.531·105 N/mm 
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6.3 Modelling Strategies and Limitations of the Spring Model 
 

To capture the behaviour of a foundation-soil system under loading patterns expressed in 

chapter one, a nonlinear spring is needed that has zero resistance in tension but will offer 

immediate resistance when the spring is compressed, even if the spring is at that point 

elongated past its original length.  This material law is shown in figure 6.8. 

 
Figure 6.8:  The displacement/force behaviour of a nonlinear spring. 

 

This law is applicable when soils settle under the self weight of the structure, at first offering 

no resistance, but once the wind loads are applied, these soils do resist rotation.  A linear 

spring is however not able to model this behaviour.  As it is the aim of this study to model a 

foundation-soil system using the simplest method capable of yielding accurate results, and 

considering that many widely available analysis packages do not offer nonlinear springs, 

further investigations are done using linear springs only.  This means though that springs will 

resist displacements whether in tension or compression.  To overcome this liberal prevention 

of rotation, an initial analysis can indicate all springs in tension and their stiffness can be 

turned to zero in a second, more accurate analysis.  The effect of a dead load elongating 

certain springs, which consequents zero stiffness, is still felt as some of these springs 

represent soil that offers resistance to rotation.  In the absence of the dead load, purely 

rotating wind forces cause compression in areas that do in reality offer resistance and tension 

in areas that do not.  This is in exception to the springs along the base of the foundation in the 

case of the heavy structure, and along the top of the foundation for the light structure.   

 

It is therefore concluded that to predict the rotation of a foundation only the wind loads are 

applied to the model and springs in tension receive a zero stiffness value.  In the case of a 

heavy structure all the springs along the base of the foundation retain their calculated stiffness 

values, as do the spring elements along the top of the foundation in the case of a light 

structure.  The two-dimensional linear spring model is therefore unable to predict the vertical 
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and horizontal displacements of the foundation.  The linear model is purely designed to 

deliver reliable values of foundation rotation.  The user may use superposition to predict a 

complete rotation-translation pattern of the foundation.  A spring model that can predict the 

effect of dead loads is however not investigated or assembled in this study. 

 

 

6.4 Results 
 

A two-dimensional linear spring model is assembled using stiffness values as calculated using 

equations 6.1 to 6.3.  Five springs models are investigated.  This includes models of a heavy 

and light structure loading pattern for the original subgrade combination, and a heavy loading 

pattern for the high stiffness, low stiffness and combination subgrade compositions described 

in chapter five.  No investigations into the role of the foundation size are done in this chapter.  

Factors influencing rotation are discussed in chapter five.  Here the two-dimensional linear 

spring model is verified.  

 

6.4.1 DIANA Spring Model 
 

The possibility to model a foundation-soil system using two-dimensional linear springs is 

confirmed here judging from the results obtain using the stiffness values prescribed and 

modelling strategies explained in the sections above.  The results of the five models discussed 

above, are given in table 6.3 along with the rotations found for each similar model using 

continuum and interface elements.  In all cases the spring models yield more conservative 

rotation figures than the continuum-interface element models.  The spring model results are 

written as a percentage of the original results in table 6.3. 

 
Table 6.3: Rotations obtained from the spring models and the percentage of the spring model  
 in terms of the reference two-dimensional model. 

Original Stiffness 
Rotation (Degrees) Heavy Structure Light Structure

High 
Stiffness 

Combined 
Stiffness 

Low 
Stiffness 

2D Model 3.66 x10-03 3.72 x10-03 4.77 x10-4 2.34 x10-3 1.5 x10-2

Spring Model 4.57 x10-03 4.20 x10-03 5.10 x10-4 2.61 x10-3 1.78x10-2

% of Reference Result 124 113 107 117 119 
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interface elements for phase three is shown.  In the case of phased analysis, the dead loads did 

not leave a convex bending pattern on the foundation as in figure 4.12 as a result of the 

chosen boundary conditions for the phased analysis.  The absence of a dead load in the spring 

model therefore gives a similar deformation outline.  The deformation of the light structure 

spring model resembles the delaminated interface elements in figure 4.15 and is shown in 

figure 6.10. 

 
Figure 6.9:  The deformed shape of the heavy structure spring model at a magnification 

factor of 500. 

 
Figure 6.10:  The deformed shape of the light structure spring model at a magnification 

factor of 500. 
 

 

6.4.2 PROKON Spring Model 
 

The results found in DIANA are confirmed using software available in most engineering 

offices.  A well known design and structural analysis package, namely PROKON, is used for 

this purpose. 
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A two-dimensional spring model is assembled using stiffness values for the original subgrade 

combination and the loading pattern of the heavy structure is applied to the model.  All 

dimensions, material properties, load and stiffness values remain as they are for the DIANA 

models.  The two-dimensional spring model is shown in figure 6.11. 

 
Figure 6.11:  The two-dimensional spring model assembled in PROKON. 

 

As for the DIANA spring models, the stiffness of springs in tension is turned to zero after an 

initial trial analysis.  The deformation pattern closely resembles that of the DIANA model 

shown in figure 6.9.  The rotation value differs by a percentage and is accounted to the larger 

number of elements used in the PROKON model.  The PROKON model therefore gives a 

rotation value 123 percent of that obtained from the continuum-interface element model. 

 
Figure 6.12:  The deformed shape of the PROKON spring model at a magnification 

factor of 200. 
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6.5 Conclusion 
 

Under the application of only the wind loads and by following the modelling strategies 

described in the sections above, two-dimensional linear spring models can offer a simple 

modelling approach to obtain reasonably accurate rotation predictions.  The stiffness values 

obtained from equation 6.1 to 6.3 resemble the present soil masses with enough accuracy to 

obtain realistic results from an analysis testing for foundation rotation.  A two-dimensional 

linear spring model can be assembled using a widely available structural analysis package, 

such as PROKON, with reasonable accuracy.  A simple alternative to complex nonlinear 

analyses is available to predict the rotation of foundations provided the user is certain the 

bearing capacities of the subgrades are not exceeded. 
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7. CONCLUSIONS AND RECOMMENDATIONS 
 

 

The aim of this research is to use comprehensive numerical investigations to predict and detail 

the behaviour of large foundations under loading and the interaction with its soil 

surroundings.  The case study used in this study and the alterations made to the structure in 

further investigations are concluded to be relevant and the results useful to common 

engineering practice.  The software used for the nonlinear finite element analysis, namely 

DIANA, proved adequate to simulate nonlinear material behaviour.  The outcomes of this 

study and conclusions drawn are described in this chapter along with several 

recommendations made to the user. 

 

 

7.1 Finite Element Modelling Strategies 
 

Material properties and foundation size can be used to determine adequate finite element 

model boundaries.  If the user finds that the bearing capacity of the subgrade defined by the 

model is exceeded, the use of nonlinear soil models is recommended.  The model boundaries 

must also be reconsidered according to the type of failure event, such as the possible 

development of a slip-plane.  In this study the bearing capacities of the subgrade materials are 

never exceeded except when several times the load factor is applied to a subgrade compilation 

of exceptionally low stiffness.   

 

A reduction in mesh size can reduce analysis times tenfold without a significant loss in 

accuracy, if the reduction process is considered carefully.  Elements in areas of less interest 

can have a side length to side length aspect ratio of 1:4 while regions more closely scrutinized 

retain elements closer to a 1:1 side ratio.  The reduction in analysis time from the fine to very 

coarse mesh investigated in this study is apparent for the three-dimensional models, and 

especially so when converting from three- to two-dimensional models.  It is recommended to 

the user to plan the finite element mesh carefully before undertaking complex analyses.  The 

design of an efficient mesh layout can repay the user several times over if many analyses are 

planned. 

 

The reduction in load step sizes and the use of arc-length control may lead to faster 

convergence in complex models.  Tolerances can also be increased if convergence failure 
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reoccurs, but it is suggested that this action be cautiously used as too great a decrease in 

tolerance values may lead to inaccurate solutions. 

 

 

7.2 Interface Material Law 
 

The software used in this study, DIANA, offers the user several possible approaches to define 

the concrete-soil interface material law.  Of the three models investigated in this study, the 

multi-surface plasticity interface model which combines material behaviours in crushing, 

shearing and cracking states is considered the most accurate representation of actual 

occurrences along this contact surface.  The physical interaction between separation and 

shearing resistance is considered in the friction model.  This model does however define a 

simplified post-peak tensile behaviour as this interface is considered to be brittle resulting in 

an abrupt loss of tensile strength.  The simplest of the three models, the nonlinear elastic 

model, does not consider friction resulting from pressure, or coupling between de-lamination 

and shearing resistance.  The differences between these interface models are apparent when 

comparing the results under the application of each to a single case study.  The user is 

recommended to consider which interface model best defines the material law at hand before 

assigning one or the other.  Each interface element is unique and will describe the same 

physical behaviour of a structure in different ways.  However, for concrete footing-soil 

interaction along interfaces as considered in this study, pressure dependence, included in the 

crushing, shearing, cracking model as well as the friction model, is essential.  In this particular 

series of analyses the incorporation of accurate tensile softening or coupling between shear 

and cracking does not have significant influence on the global results.  Thus, the most 

convenient of these two mentioned models may be chosen by the analyst. 

 

 

7.3 The Computational Response of the Foundation-Soil System 
 

The rotation of the foundation is of particular interest in this study.  In this case study tall 

columns are present making large lateral displacements at the top of the column possible as a 

result of a small foundation rotation.   

 

It is possible to assemble a two-dimensional model that corresponds closely with the 

displacement values of an accurate three-dimensional model.  A method by which to include 
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the presence of the volume and stiffness of otherwise omitted soil and slab masses, has been 

developed and is deemed successful.  This conversion method enables the user to model 

nonlinear interactions between the soil and concrete materials far more economically than 

when using the three-dimensional alternative.  This is as a result of a reduction in both 

assembly and analysis times. 

 

It is found through the use of phased analysis that the uniform settlement of soils prior to the 

application of wind loads or after, does not influence foundation rotation.  The subgrade 

found in the case study is sufficient to carry the foundation in excess of twelve times the 

ultimate limit load and at no point is the stability of the structure threatened.  Of course, if 

orthogonal wind loads must be considered, three-dimensional modelling may be required. 

However, for design purposes it may be sufficient to evaluate the responses in one-direction at 

a time and select appropriate footing dimensions and/or subgrade and cemented layer layouts 

to prevent excessive slab rotation.  It must be born in mind that, due to nonlinear behaviour 

(delamination and slip) these responses may not be superposed.  This means that, a 

conservative approach will be required, or else a full three-dimensional modelling must be 

performed. 

 

 

7.4 Generalization of the Case Study 
 

It is concluded from investigations carried out that some factors can greatly influence the 

behaviour of the structure and others do not. 

 

Variations in the stiffness of the subgrade materials and the size of the foundation can have 

significant impacts on the foundation response to ultimate loading.  Less rotation occurs in 

subgrade materials of a higher stiffness than in materials of a lower stiffness.  Increasing the 

size of the foundation has the same effect on the behaviour of the foundation.  A large 

foundation rotates less than a small one under the same loading.  Combining these factors 

gives the user a range of alternatives to ensure structural stability.  The user might find that 

designing a larger foundation will offer sufficient stability and expensive soil-works and 

compactions will not be necessary to prevent rotations.  The user might also find that a 

smaller foundation is adequate for his/her current subgrade compilation. 

 

Elsje S. Fraser  University of Stellenbosch 
 



  90 

Realistically lower grades of concrete for the slab will not noticeably effect the rotation of the 

foundation, but a slab must be present to prevent overturning of the column.  The user must 

take note of the forces acting on the column at the level of the slab.  If crushing of the column 

or slab may occur at this level it is the responsibility of the designers to take adequate action 

to prevent this phenomenon. 

 

The sensible use of expansion joints in close vicinity of the column or movement joints to 

allow free movement of slab segments, will not cause a significant increase of the rotation of 

the foundation.  The user should however confirm the design of these joints if they differ 

significantly from those investigated in this study.  In addition, it is also the responsibility of 

the designer to prevent the uplifting of the foundation under wind loads, provided sufficient 

shearing capacity to prevent the forming of hinges in the structure, and to be sure that the 

foundation is stable against toppling over. 

 

 

7.5 The Use of Spring Elements 
 

The user is able to predict foundation rotations with reasonable accuracy when following the 

modelling strategies described by the author.  The method suggested includes soil properties, 

the composition of the subgrade structure, the dimensions of the foundation and the depth of 

the foundation below the surface.  It is possible to attain these results using a widely available 

structural analysis package, such as PROKON, to assemble a two-dimensional linear spring 

model.  The user is therefore provided with a simple alternative to complex nonlinear analyses 

to predict the rotation of foundations provided the bearing capacities of the subgrades are not 

exceeded. 

 

A possible extension of the simplified modelling strategy is to allow full three-dimensional 

analysis when orthogonal loads and moments act simultaneously. The same principles as 

applied in the case of the two-dimensional model will prevail, but three-dimensional 

modelling of the footing, and three-dimensional arrangement of springs representing soil 

structure interaction will be required. This falls beyond the scope of the current study, but 

may be confirmed in a follow-up study. 
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APPENDIX A 
 

 

As discussed in chapter four, the primary areas of interest lie with the rotational behaviour of 

the foundation and the materials directly surrounding it.  It can therefore be said that the 

deformation of the interface model needs to be considered in conjunction with the rotation of 

the foundation.  As results can be produced rapidly in two-dimensional analyses, the 

comparison of results between the mesh density alternatives is done with the use of the two-

dimensional models only.  This is justified in chapter two. 

 

The maximum and minimum displacements of the interface, slab, C3 cemented gravel, 

column and foundation elements are measured.  In addition, displacements in focal areas are 

measured and the rotation of the foundation is calculated.  This is done for all the mesh 

densities at increasing load steps for the original and high stiffness subgrade combinations (as 

described in chapter five).  The weighted average of these measured points and rotations is 

used to determine a percentage of deviation between results.  These are the results given in 

figures 2.22 and 2.23.  Figure A.1 details the points in focal areas that are used to determine 

the weighted average.  These points are indicated on the deformed column and foundation of 

the fine mesh.  These nodes occur in all the mesh density layouts and are therefore good 

reference points.  The effect of column rotation and the reason for the importance of this 

effect is discussed in section 4.1. 

 

 
Figure A.1:  Areas of interest in determining the average percentage of deviation between  

 mesh densities. 
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Small differences are found between the results of the various mesh densities.  Their 

deformation patterns are also very similar, as can be seen in figure A.2 where the interface 

delamination of each mesh is shown for one times the ultimate load at a magnification factor 

of 250.  These differences are however significant enough to cause possible concern in later 

investigations at several times the ultimate load.  The most conservative of the mesh densities, 

the fine mesh, is therefore used in further investigations.  For two-dimensional analyses the 

increase in analysis time is small and trivial in comparison with the reassurance the user 

receives from a more accurate solution. 

 
 Fine Mesh  Intermediate Mesh 

 

 
 Coarse Mesh Very Coarse Mesh 

Figure A.2:  The interface delamination of each mesh at one times the ultimate load at a 
 magnification factor of 250. 
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APPENDIX B 
 

 

The amount of rotation for each foundation size at one times the ultimate wind load is plotted 

in figures B.1, B.3 and B.5 below for the various subgrade combinations.  Figures B.2, B.4 

and B.6 show the rotation versus factor of ultimate limit loading plots for these subgrade 

combinations.   

 

 

B.1 Plots for the Low Stiffness Subgrade Compilation 
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Figure B.1:  Rotation of various foundation sizes for two interface elements (low stiffness). 
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Figure B.2:  Rotation versus ultimate load factor for a variation of foundation widths (low  

 stiffness). 
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B.2 Plots for the Combined Stiffness Subgrade Compilation 
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Figure B.3:  Rotation of various foundation sizes for all three interface elements (combination  
 stiffness). 

 

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0 2 4 6 8 10 12
Factor of Ultimate Load Applied

R
ot

at
io

n 
of

 F
ou

nd
at

io
n 

(D
eg

re
es

)

1.75m
3.5m
4m

 
Figure B.4:  Rotation versus ultimate load factor for a variation of foundation widths  

 (combination stiffness). 
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B.3 Plots for the High Stiffness Subgrade Compilation 
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Figure B.5:  Rotation of various foundation sizes for all three interface elements (high 

  stiffness). 
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Figure B.6:  Rotation versus ultimate load factor for a variation of foundation widths (high 

  stiffness). 
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APPENDIX C 
 

 

The stiffness of the springs used in the DIANA and PROKON two-dimensional models for 

the original subgrade combination, is calculated as follows using the equations discussed in 

chapter six: 

 

FSS
s IIBE

k '

1
=  6.1 

 

B = 3.5 m 

 

Determining ES

ES1 = 2000 MPa  H1 = 0.2 m 

ES2 = 100 MPa  H2 = 1 m above; H2 = 1.8 m below 

ES3 = 10 MPa   H3 = 1.5 · 3.5 – 1.8 = 3.45 m 

 

Above foundation: 
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Below foundation (using equation 6.2): 

( )
( ) MPa        

05.01.02.03.04.05.06.07.08.09.00.1
)05.01.02.03.04.05.0(106.07.08.09.00.1100   ES 74.865=

++++++++++
++++++++++

=  

 

( )

( )

( ) 2

3

4

101.1721

108.775

108.3571

−

−

−

⋅=
−

=

⋅=
−

=

⋅=
−

=∴

     
865.74
35.01   E   

     
100

35.01   E   

     
1050

35.01   E

2
'
S(below)

2
'
S(sides)

2
'
S(above)

 

 

Elsje S. Fraser  University of Stellenbosch 
 



  98 

Determining IS

B = 3.5 m L = 3.5 m H = 3.25B 

For centres:  
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For corners:   
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Determining IF

B = 3.5 m L = 3.5 m H = 1.4 m µ = 0.35 

10.4 ===∴ BLBD 5.34.1  

 
So from the figure above, IF = 0.78 
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Now, using the variables above, the stiffness of springs of each area is given as follows: 
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These values are multiplied by the amount of surface area of soil that comes into contact with 

the foundation that each individual spring represents.  

 

The springs supporting the column are calculated as follows using equation 6.3: 
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