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Summary

Metabolic systems are open systems continually subject to changes in the

surrounding environment that cause fluctuations in the state variables and

perturbations in the system parameters. However, metabolic systems have

mechanisms to keep them dynamically and structurally stable in the face of

these changes. In addition, metabolic systems also cope with large changes in

the fluxes through the pathways, not letting metabolite concentrations vary

wildly.

Quantitative measures have previously been proposed for “metabolic regu-

lation”, using the quantitative framework of Metabolic Control Analysis. How-

ever, the term “regulation” is so loosely used so that its content is mostly lost.

These different measures of regulation have also not been applied to a model

and comparably investigated prior to this study. Hence, this study analyses the

usefulness of the different quantitative measures in answering different types

of regulatory questions.

Thus, the aim of this study was to distinguish the above mentioned aspects

of metabolic regulation and to find appropriate quantitative measures for each,

namely dynamic stability, structurally stability, and homeostasis. Dynamic

stability is the property of a steady state to return to its original state after a

perturbation in a metabolite in the system, and can be analysed in terms of self

and internal-response coefficients. Structural stability is concerned with the

change in steady state after a perturbation of a parameter in the system, and

can be analysed in terms of concentration-response coefficients. Furthermore,

it is shown that control patterns are useful in understanding which system

properties determine structural stability and to what degree. Homeostasis is

defined as the change in the steady-state concentration of a metabolite relative

to the change in the steady-state flux through the metabolite pool following a

perturbation in a system parameter, and co-response coefficients are proposed

as quantitative measures of homeostasis. More specifically, metabolite-flux co-

response coefficients allow the definition of an index that quantifies to which
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degree a metabolite is homeostatically regulated.

A computational model of a simple linear metabolic sequence subject to

feedback inhibition with different sets of parameters provided a test-bed for

the quantitative analysis of metabolic regulation. Log-log rate characteristics

and parameter portraits of steady-state variables, as well as response and elas-

ticity coefficients were used to analyse the steady-state behaviour and control

properties of the system.

This study demonstrates the usefulness of generic models based on proper

enzyme kinetics to further our understanding of metabolic behaviour, control

and regulation and has laid the groundwork for future studies of metabolic

regulation of more complex core models or of models of real systems.
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Opsomming

Metaboliese sisteme is oop sisteme wat gedurig blootgestel word aan ‘n fluk-

tuerende omgewing. Hierdie fluktuasies lei tot veranderinge in beide interne

veranderlikes en parameters van metaboliese sisteme. Metaboliese sisteme be-

sit egter meganismes om dinamies en struktureel stabiel te bly. Verder verseker

hierdie meganismes ook dat die konsentrasies van interne metaboliete relatief

konstant bly ten spyte van groot veranderinge in fluksie deur die metaboliese

pad waarvan hierdie metaboliete deel vorm.

Kwantitatiewe maatstawwe is voorheen voorgestel vir “metaboliese reg-

ulering”, gebaseer op die raamwerk van Metaboliese Kontrole Analise. Die

onkritiese gebruik van die term “regulering” ontneem egter hierdie konsep van

sinvolle betekenis. Voor hierdie studie is die voorgestelde maatstawwe van

regulering nog nie toegepas op ’n model ten einde hulle met mekaar te verge-

lyk nie. Die huidige studie ondersoek die toepaslikheid van die verskillende

maatstawwe om verskillende tipe vrae oor regulering te beantwoord.

Die doelwit van hierdie studie was om aspekte van metaboliese reguler-

ing, naamlik dinamiese stabiliteit, strukturele stabiliteit en homeostase, te

onderskei, asook om ’n gepaste maatstaf vir elk van die verskillende aspekte

te vind. Dinamiese stabiliteit is ’n eienskap van ’n bestendige toestand om

terug te keer na die oorspronklike toestand na perturbasie van die konsen-

trasie van ’n interne metaboliet. Hierdie aspek van regulering kan in terme

van interne respons en self-respons koëffisiënte geanaliseer word. Strukturele

stabiliteit van ’n bestendige toestand beskryf die mate van verandering van

die bestendige toestand nadat ’n parameter van die sisteem geperturbeer is, en

kan in terme van konsentrasie-responskoëffisiënte geanaliseer word. Verder wys

hierdie studie dat kontrole patrone van nut is om vas te stel watter eienskappe

van ’n sisteem die strukturele stabiliteit bepaal en tot watter mate. Home-

ostase word gedefiniëer as die verandering in die konsentrasie van ’n interne

metaboliet relatief tot die verandering in die fluksie deur daardie metaboliese

poel nadat ’n parameter van die sisteem verander het. Vir die analise van
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hierdie aspek van regulering word ko-responskoëffisiënte as ’n maatstaf voorge-

stel. Meer spesifiek kan metaboliet-fluksie ko-responskoëffisiënte gebruik word

om ‘n indeks te definieer wat meet tot watter mate ’n metaboliet homeostaties

gereguleer word.

’n Rekenaarmatige model van ’n eenvoudige lineêre metaboliese sekwens

wat onderhewig is aan terugvoer inhibisie is gebruik om die verskillende aspekte

van metaboliese regulering kwantitatief te analiseer met vier verskillende stelle

parameters . Dubbel-logaritmiese snelheidskenmerke en parameter portrette

van bestendige toestandsveranderlikes, asook van respons- en elastisiteit koëff-

isiënte is gebruik om die bestendige toestandsgedrag en kontrole eienskappe

van die sisteem te analiseer.

Hierdie studie demonstreer die nut van generiese modelle wat op korrekte

ensiemkinetika gebaseer is om ons verstaan van metaboliese gedrag, kontrole

en regulering te verdiep. Verder dien hierdie studie as grondslag vir toekom-

stige studies van metaboliese regulering van meer ingewikkelde kernmodelle of

modelle van werklike sisteme.

xii
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Chapter 1

Introduction

Metabolic regulation has been an intensely studied subject since the discovery

of feedback by end-product inhibition in the 1950s [26, 41, 42]. Originally it was

mostly an experimental subject and many of the concepts were formulated ad

hoc without the benefit of a rigorous theoretical and quantitative framework;

some of these concepts, such as the necessity for a so-called “rate-limiting

step” in any pathway, and the so-called “cross-over theorem” later proved to be

fallacious [5, 21]. Such frameworks became available in the late 1960s and early

1970s, notably Metabolic Control Analysis (MCA) [6, 21] and Biochemical

Systems Theory (BST) [37–39]. However, it was only in the late 1980s and

the 1990s in a series of papers by Hofmeyr, Cornish-Bowden and co-workers

[9, 11, 12, 15, 19] that MCA was used to develop a new view of metabolic

regulation that culminated in Supply-Demand Analysis [14, 17, 32].

The rise of computational systems biology and associated computational

tools [2, 18, 20, 25, 35, 36] has boosted the study of metabolic regulation con-

siderably by providing the wherewithal to develop mathematical models of

metabolic systems that can be analysed within the context of MCA. This dis-

sertation provides an example of such an analysis. The formulation of realistic

metabolic models has been aided by the development of an enzyme kinetics

for computational systems biology [4, 13, 30, 31].

The concept of “metabolic regulation” is a very broad one and the term

is so loosely used that it has, to a large extent, lost its content. Instead of

trying to define it rigorously, this study rather distinguishes aspects that are

usually regarded as falling under the rubric of metabolic regulation and treats

them and their quantification individually. The three aspects covered in this

dissertation are dynamical stability, structural stability, and homeostasis. An-

other approach to quantifying regulation, that proposed by Sauro [34], is also

1
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discussed. These different aspects of metabolic regulation can be considered

to arise from the following questions:

• When the metabolites internal to a metabolic system fluctuate, which

are the most important interactions that drive the system back to the

steady state that existed before the fluctuation? This is a question of

the dynamical stability of a steady state [23].

• When a system parameter is perturbed and the system settles into a

new steady state, by how much do the metabolite concentrations change

and what determines these changes? This is a question of the structural

stability of the steady state [40].

• When metabolite concentration(s) are buffered in the face of parameter

changes can the system be described as homeostatically regulated [11]?

Is it enough the consider only the metabolite concentrations or must

fluxes through the metabolite pools also be taken into account?

• When the activity of an enzyme catalysing a reaction in the system is

perturbed, what determines how the steady-state flux through another

reaction (or even the perturbed reaction) changes? This is the question

Sauro [34] asked in his approach to metabolic regulation.

The aim of this study was therefore to tackle each of these “regulation”

questions and find the appropriate quantitative measures for the different as-

pects of metabolic regulation. A computational model of a simple linear meta-

bolic sequence subject to feedback inhibition with different sets of parame-

ters provided a test-bed for the quantitative analysis of metabolic regulation.

This core model is colloquially known as the “Stellenbosch organism” and

has proved extremely useful in the studies by Hofmeyr and his collaborators

mentioned earlier. Its steady-state behaviour is well understood.

Chapter 2 outlines the theoretical framework of MCA [6, 21] that underlies

all of the analyses of the different aspects of regulation described above. The

“Stellenbosch organism” is used to illustrate some of the concepts of MCA.

Chapter 3 introduces the computational model of the “Stellenbosch organ-

ism” that is used for all the numerical simulations (performed with PySCeS

[27]) in this dissertation. Four different parameter sets illustrate different types

of behaviour of the system. Log-log rate characteristics [9] and parameter por-

traits of steady-state variables and of control and elasticity coefficients are

used to analyse the steady-state behaviour of the system.

2
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Chapter 4 discusses the concepts of dynamic and structural stability and

juxtaposes it with homeostasis. Dynamic stability is the property of a steady

state to return to its original state after a perturbation in a metabolite in the

system, and can be analysed in terms of internal response coefficients. Struc-

tural stability is concerned with the change in steady state after a perturbation

of a parameter in the system, and can be analysed in terms of concentration-

response coefficients. Homeostasis is defined as the change in the concentration

of a metabolite relative to the change in the flux through the metabolite pool

following a perturbation in a system parameter, and co-response coefficients

are proposed as quantitative measures of homeostasis. All of these coefficients

of MCA are introduced in Chapter 2.

Chapters 5, 6, and 7 in turn provide the theoretical background to the

analysis of structural stability, homeostasis and dynamical stability and use the

model system introduced in Chapter 3 to exemplify the different quantitative

measures of these aspects of metabolic regulation. In particular, a new measure

for homeostasis, the homeostatic index, is introduced in Chapter 6. In the

discussion of structural stability in Chapter 5, control patterns as defined by

Hofmeyr [8] are used to quantify the different interaction routes that contribute

to the value of the concentration-control coefficients used to quantify structural

stability. Chapter 7 links dynamic stability to the concepts of “regulatory

strength” and “homeostatic strength” introduced by Kahn and Westerhoff

[23].

Sauro [34] proposed so-called “partitioned regulatory coefficients” to quan-

tify another aspect of the response of a steady state to a perturbation in the

activity of one of the enzymes that catalyse a reaction in the metabolic system,

namely how a flux through any step is affected through the metabolites that

interact directly with the enzyme that catalyses that step. Chapter 8 explores

this aspect of the metabolic response to a parameter perturbation.

Chapter 9 summarises, discusses and reflects on the foregoing chapters and

makes some suggestion for future work. The PySCeS model description and

the Python script used to generate the numerical results used in this study is

provided in the Appendices.

3
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Chapter 2

Metabolic control analysis

Metabolic systems are networks of coupled enzyme-catalysed chemical reac-

tions and transport processes. System biologists generally use kinetic models

to investigate quantitatively how the network structure of a metabolic system

and the local properties of the individual enzyme-catalysed steps that consti-

tute the system give rise to the observed dynamic behaviour of the metabolic

system. Metabolic control analysis, the subject of this chapter, can be per-

formed on any kinetic model in steady state in order to study the control prop-

erties of the system. The central questions asked by metabolic control analysis

are how the steady-state variables change when the steady-state changes in re-

sponse to a perturbation in one or more parameters, and how these changes

can be explained in terms of the local kinetic properties of the individual steps

in the system.

Metabolic control analysis in its most general form, i.e., one that caters for

all types of metabolic structures, such as linear, branched, looped and cyclic

structures with moiety conservation, is complex [10]. For the purposes of this

study, which uses a simple linear pathway subject to end-product inhibition as

example, a completely general treatment is unnecessary. This chapter discusses

only that part of MCA that is relevant to this study.

2.1 The kinetic model of a metabolic system

A kinetic model contains both the stoichiometric data that describe the topol-

ogy of the enzyme-catalysed reaction network and the rate equations that

describe the kinetic properties of each of the reactions. The kinetic model for

any metabolic system can be written as a set of nonlinear differential equations

4

Stellenbosch University http://scholar.sun.ac.za



2.2. The steady state

(see e.g., [10, 28]):
ds

dt
= Nv[s,p] (2.1)

where, for a system of n coupled reactions that inter-convert m metabolites, s

is an m-dimensional column vector of metabolite concentrations, N is an m×n-

dimensional matrix of stoichiometric coefficients (the stoichiometry matrix), v

is an n-dimensional column vector of reaction rates, and p is a p-dimensional

column vector of parameters. Vector s contains only variable metabolite con-

centrations; constant external metabolite concentrations are included in the

parameter vector p.

A expressed by eqn. 2.1, reaction rates v are functions of both metabolite

concentrations s and parameters p such as kinetic constants and fixed external

concentrations.

The structure or topology of the reaction network is described by the sto-

ichiometric matrix N, of which any element cij is the number of Si molecules

in the balanced chemical equation for reaction j. If Si is a reactant, cij < 0; if

a product, cij > 0; otherwise, cij = 0.

2.2 The steady state

A chemical reaction network can in principle exist in one of three states: if

closed it tends to chemical equilibrium in which the concentration of all chem-

ical species are constant at their equilibrium values and all net reaction rates

are zero; if open it tends to a steady state in which the concentration of all

chemical species are constant at non-equilibrium concentrations and reaction

rates are non-zero (a point steady state), or oscillate (a limit cycle) or show

deterministic chaos (a strange attractor); while both closed and open systems

are in the process of approaching their final state they are in a transient state

in which the concentrations of all chemical species vary and reaction rates are

non-zero.

Metabolic reaction networks are open systems, hence the study of such sys-

tems is often confined to the behaviour of a system at steady-state conditions.

To ensure that a kinetic metabolic model reaches steady state, the concentra-

tions of external metabolites must be fixed. External metabolites are those

that are either only produced or consumed, in other words, pathway entry and

exit metabolites.

Steady state refers to system dynamics where the concentrations of inter-

nal variable metabolites stay constant over time although rates of production
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2.3. System parameters and variables

and consumption are non-zero. The net rate or the sum of production and

consumption rates at steady state through a system is referred to as system

flux, J.

In the steady state the kinetic model ds/dt = 0, and eqn. 2.1 simplifies to

a system of non-linear equations of the form

Nv[s,p] = 0 (2.2)

The concentrations are now steady-state concentrations and the steady-state

reaction rate vector

J = v[s,p] (2.3)

is now called a steady-state flux vector.

Systems of non-linear differential equations and systems of non-linear equa-

tions usually do not have analytical solutions and have to be solved numerically

for a particular set of parameter values. In this study we used PySCeS, the

Python Simulator for Cellular Systems (pysces.sourceforge.net) [27] to do

these calculations. PySCeS is a Python (www.python.org) package built on

top of the extensions NumPy (www.numpy.org), SciPy (www.scipy.org), and

matplotlib (matplotlib.org).

2.3 System parameters and variables

The parameters of a metabolic system co-determine the state of the system at

any time. System parameters include all chemical species that remain constant

within the timeframe of the wet experiment on or numerical simulation of the

system: initial substrates, final products and external effectors must be con-

stant for the system to attain a steady state; enzyme and membrane translo-

cator concentrations are usually constant unless the system includes their syn-

thesis and degradation. Thermodynamic constants such as the equilibrium

constant and kinetic constants such as rate constants, catalytic constants and

half-saturation constants are also parameters. Where there is moiety conser-

vation the sums of conserved moieties are parameters, as are pH, temperature

and ionic strength (unless they vary).

System variables generally include the steady-state fluxes and the steady-

state concentrations of variable metabolites or derivative functions such as

ratios of metabolite concentrations or mole fractions, chemical and membrane

potentials and Gibbs-energy changes.
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2.4. Elasticity coefficients

System variables can be regarded as the entities that are controlled by the

system parameters. The theory of Metabolic Control Analysis (MCA) origi-

nally developed by Kacser and Burns [21], Kacser et al. [22] and Heinrich and

Rapoport [6] quantifies the degree to which a system variable is controlled by

a system parameter, and hence is a type of sensitivity analysis. The sensitiv-

ities of fluxes and variable concentrations are quantified by the coefficients of

MCA, namely response, elasticity and control coefficients, defined in the next

section. Response and control coefficients are systemic, global entities, the

values of which depend on the properties of all the reactions in the network.

An elasticity coefficient, on the other hand, is a local enzyme property that

can, in principle, be measured with the isolated enzyme using the techniques

of enzyme kinetics.

2.4 Elasticity coefficients

An elasticity coefficient quantifies the sensitivity of an enzyme activity or

rate with respect to a change in the concentration of a specie that directly

modulates the reaction rate, e.g., a substrate, product, effector, or the enzyme

itself.

The elasticity coefficient of a step i with respect to a metabolite Sj can be

defined in three equivalent ways, either as the ratio of the fractional change

in the rate vi of step i to the fractional change in the concentration sj (oper-

ationally, the percentage change in the rate vi for a 1% change in sj), or as

a scaled derivative of vi with respect to sj, or as the derivative of ln vi with

respect to ln sj (which shows that an elasticity coefficients is in essence the

kinetic order of a reaction with respect to a substrate, product or modifier):

εvisj =

(
∂vi/vi
∂sj/sj

)
sk,sl,...

=
sj
vi

(
∂vi
∂sj

)
sk,sl,...

=

(
∂ ln vi
∂ ln sj

)
sk,sl,...

(2.4)

Bracket subscripts sk and sl are the other state variables assumed to be con-

stant during measurement of the elasticity.

An elasticity coefficient can also be defined for a parameter that directly

affects the reaction rate, i.e., occurs in its rate equation:

εvip =

(
∂ ln vi
∂ ln p

)
sj ,sk,sl,...

(2.5)

A typical example of such an elasticity coefficient is that of the enzyme that

catalyses the reaction. Generally, the activity of an enzyme is proportional to
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2.5. Response coefficients

the enzyme concentration, since enzyme concentration is a multiplier of the

rate equation.

As stated in the previous section, elasticity coefficients are measured un-

der isolated conditions where all variables and parameters other than the one

of interest are kept constant. Hence, the elasticity of an enzyme is a local

property.

2.5 Response coefficients

The response coefficient quantifies the sensitivity of any state variable y with

respect to a change in a system parameter p, and is defined as:

Ry
p =

(
∂y/y

∂p/p

)
ss

=
p

y

(
∂y

∂p

)
ss

=

(
∂ ln y

∂ ln p

)
ss

(2.6)

As with the elasticity coefficient, there are three equivalent ways of defining

a response coefficient. The bracket subscript ss denotes that the system is

allowed to attain a steady state after the parameter perturbation.

If parameter p affects more than one step in the system, its overall response

is the sum of a set of partial responses, one for each step affected. Therefore,

the most general definition of any response coefficient is:

Ry
p =

n∑
i=1

iRy
p (2.7)

for all n steps in the system. Each of the right-hand terms is called a partial

response coefficient. Any response coefficient has as many non-zero right-hand

terms as the number of individual enzymes directly affected by the parameter

perturbation.

2.6 Control coefficients

For any system parameter p we can measure a response and an elasticity

coefficient:

Ry
p =

∂ ln y

∂ ln p
and εvip =

∂ ln vi
∂ ln p

(2.8)

The mathematical relation between the response and elasticity coefficients

leads to the definition of the control coefficient :

Ry
p

εvip
=

(
∂ ln y

∂ ln p

)
(
∂ ln vi
∂ ln p

) =
∂ ln y

∂ ln vi
= Cy

i (2.9)
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2.7. The partitioned response property

The vi subscript of the control coefficient is usually abbreviated to i for the

sake of notational simplicity.

Similar to the other coefficients of MCA a control coefficient can be ex-

pressed in three equivalent ways:

Cy
i =

(
∂y/y

∂vi/vi

)
ss

=
vi
y

(
∂y

∂vi

)
ss

=

(
∂ ln y

∂ ln vi

)
ss

(2.10)

Operationally, a control coefficient is the percentage change in a state variable

due to a 1% percent change in the activity of an enzyme, irrespective of how

this change in enzyme activity is brought about.

2.7 The partitioned response property

Rearrangement of eqn. 2.9 gives the partitioned or combined response property

of metabolic control analysis [24]:

Ry
p = Cy

i ε
vi
p (2.11)

The response of a steady-state variable to a parameter perturbation can there-

fore be understood as a combination of a local rate response to the perturbation

(the elasticity coefficient) and the subsequent systemic response to the change

in the rate of the affected reaction (the control coefficient).

It may be that p affects more than one reaction in the system, and in this

case the response coefficient is the sum of the partial responses as given in

eqn. 2.7. The generalised formulation of the partitioned response property is:

Ry
p =

n∑
i=1

Cy
i ε

vi
p (2.12)

where n is the number of enzymes in the system and p the parameter that is

perturbed.

2.8 Summation theorems

The summation theorems show how control over any steady-state variable is

shared among all the enzymes that constitute a metabolic system [6, 21]. They

are completely general and independent of the structure of the network and of

the properties of the enzymes.

The flux-summation relationship shows that if all the enzymes of a system

that affects a particular metabolic flux are taken into account and the values
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2.8. Summation theorems

of their control coefficients are added, the sum is one. For any steady-state

flux, J:
n∑

i=1

CJ
i = 1 (2.13)

where n is the number of enzyme-catalysed steps of a system that affects a

particular flux. In other words, flux control can be distributed among all

or many enzymes of a system. The summation relationship showed that the

traditional paradigm of the necessity for one rate-limiting step in a pathway

is a fallacy.

As an example, the summation and other theorems are shown for the meta-

bolic system that is used in this study (Fig. 2.1).

PBAS 4321

Figure 2.1: A linear pathway consisting of four enzyme-catalysed reactions
with feedback inhibition of the committing enzyme 1 by pathway end-product
P. S in an external metabolite to the system, and hence, a parameter.

The flux-summation relationship for the pathway in Fig. 2.1 is:

CJ
1 + CJ

2 + CJ
3 + CJ

4 = 1 (2.14)

The concentration-summation relationship shows that the control coeffi-

cients of all enzymes of a system with respect to the steady-state concentra-

tion of an internal variable metabolite sum to zero [1]. For the steady-state

concentration sj of any internal variable metabolite Sj:
n∑

i=1

C
sj
i = 0 (2.15)

where n is the number of enzyme-catalysed steps that constitute the system.

The summation to zero implies that some concentration-coefficients must be

positive and some negative, i.e., some reactions will increase the steady-state

concentration of the metabolite, while others will decrease it in such a way

that the net positive and negative effects are equal in magnitude.

The concentration-summation relationships for the linear pathway in Fig. 2.1

are:

Ca
1 + Ca

2 + Ca
3 + Ca

4 = 0 (2.16)

Cb
1 + Cb

2 + Cb
3 + Cb

4 = 0 (2.17)

Cp
1 + Cp

2 + Cp
3 + Cp

4 = 0 (2.18)
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2.9. Connectivity theorems

2.9 Connectivity theorems

Whereas the summation theorems provide relationship between control coef-

ficients, the connectivity theorems link control coefficients to elasticity coeffi-

cients. There are two types of connectivity theorems: the flux and concentra-

tion-connectivity relationships [6, 21]. In general, the connectivity relationship

is the sum of all the internal-response coefficients that quantify change in a

specific state variable through different enzymes of a system that are in di-

rect contact with an internal variable metabolite that is perturbed. The flux-

connectivity relationship for any steady-state flux, J, when the concentration

of any internal variable metabolite Sj, sj, is perturbed:

n∑
i=1

CJ
i ε

vi
sj

= 0 (2.19)

where n is the number of enzymes in the system. Any connectivity relationship

has as many non-zero right-hand terms as the number of individual enzymes of

a system directly affected by a perturbation in the concentration of an internal

variable metabolite.

The flux-connectivity relationships for the linear pathway in Fig. 2.1 are:

CJ
1 ε

v1
a + CJ

2 ε
v2
a = 0 (2.20)

CJ
2 ε

v2
b + CJ

3 ε
v3
b = 0 (2.21)

CJ
1 ε

v1
p + CJ

3 ε
v3
p + CJ

4 ε
v4
p = 0 (2.22)

The concentration-connectivity relationship for the steady-state concentra-

tion of any internal variable metabolite Sk, sk, when the concentration of any

internal variable metabolite Sj, sj, is perturbed:

n∑
i=1

Csk
i ε

vi
sj

= −δjk (2.23)

where δjk is the Kronecker delta, which is 0 when j 6= k and 1 if j = k.

The concentration-connectivity relationships for the linear pathway in Fig. 2.1

are:

Ca
1ε

v1
a + Ca

2ε
v2
a = −1 (2.24)

Ca
2ε

v2
b + Ca

3ε
v3
b = 0 (2.25)

Ca
1ε

v1
p + Ca

3ε
v3
p + Ca

4ε
v4
p = 0 (2.26)
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2.9. Connectivity theorems

Cb
1ε

v1
a + Cb

2ε
v2
a = 0 (2.27)

Cb
2ε

v2
b + Cb

3ε
v3
b = −1 (2.28)

Cb
1ε

v1
p + Cb

3ε
v3
p + Cb

4ε
v4
p = 0 (2.29)

Cp
1ε

v1
a + Cp

2ε
v2
a = 0 (2.30)

Cp
2ε

v2
b + Cp

3ε
v3
b = 0 (2.31)

Cp
1ε

v1
p + Cp

3ε
v3
p + Cp

4ε
v4
p = −1 (2.32)

The connectivity theorems show that the system relaxes back to its original

steady state after a perturbation in the concentration of an internal variable

metabolite. Hence, the steady-state values of state variables at any specific

steady state are independent of variation in the concentrations of internal

variable metabolites. The connectivity theorems describe how a system is

dynamically stable (this will be discussed in Chapter 7).

Each term in the connectivity relationships expresses a partitioned re-

sponse, similar to that encountered in the above discussion of response coeffi-

cients in Section 2.5. However, here the response is not towards a parameter,

but towards an internal, variable metabolite. Each of these terms can therefore

be regarded as an internal-response coefficient, and the connectivity theorems

can be recast as:
n∑

i=1

iRJ
sj

= 0 (2.33)

and
n∑

i=1

iRsk
sj

= −δjk (2.34)

The internal-response coefficient of a metabolite quantifies the contribution

to the total response of an internal interaction route through an enzyme that

is directly affected by a perturbation in that metabolite. The connectivity

relationship for the system in Fig. 2.1 can therefore similarly be recast as:

1RJ
a + 2RJ

a = 0 (2.35)

2RJ
b + 3RJ

b = 0 (2.36)

1RJ
p + 3RJ

p + 4RJ
p = 0 (2.37)

1Ra
a + 2Ra

a = −1 (2.38)

1Rb
a + 2Rb

a = 0 (2.39)

1Rp
a + 2Rp

a = 0 (2.40)
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2.10. The control-matrix equation

2Ra
b + 3Ra

b = 0 (2.41)

2Rb
b + 3Rb

b = −1 (2.42)

2Rp
b + 3Rp

b = 0 (2.43)

1Ra
p + 3Ra

p + 4Ra
p = 0 (2.44)

1Rb
p + 3Rb

p + 4Rb
p = 0 (2.45)

1Rp
p + 3Rp

p + 4Rp
p = −1 (2.46)

Both the summation and connectivity theorems have been extended for

systems of arbitrary complexity [3, 16].

2.10 The control-matrix equation

When combined, the summation and connectivity relationships allow the ex-

pression of control coefficients in terms of elasticity coefficients through a vari-

ety of matrix equations. Reder [28] initially derived a control-matrix equation,

describing how the structural characterisations and properties of a system are

only dependent on the structure of the network and not on the reaction kinet-

ics: [
CJ

Cs

] [
K −εsL

]
=

[
K 0

0 L

]
(2.47)

where CJ is a matrix of flux-control coefficients, Cs a matrix of concentration-

control coefficients, and εs a matrix of scaled elasticity coefficients. K is the

scaled kernel matrix that relates all the dependent fluxes to the independent

fluxes. L is a scaled link matrix that relates the time-derivatives of dependent

metabolites to those of the independent metabolites.

Hofmeyr and Cornish-Bowden [12] showed how, by considering only in-

dependent fluxes and concentrations, this equation reduces to a particularly

elegant and useful form:[
CJi

Csi

] [
K −εsL

]
=

[
In−r 0

0 Ir

]
(2.48)

More concisely,

CiE = I (2.49)

where Ci = [CJi Csi ]T is a matrix of independent flux and concentration-

control coefficients, E = [K −εsL] is a matrix with all the structural and

13

Stellenbosch University http://scholar.sun.ac.za



2.10. The control-matrix equation

local properties of the system, n is the number of reactions, and r is the

number of independent metabolites. This control-matrix equation is applicable

to systems of arbitrary complexity.

For a linear network of coupled reactions there is only one flux and no

dependencies between the differential equation for the variable metabolites.

This implies that K is a column vector of ones and that the link matrix L = I.

For the linear pathway in Fig. 2.1 eqn. 2.49 translates to:
CJ

1 CJ
2 CJ

3 CJ
4

Ca
1 Ca

2 Ca
3 Ca

4

Cb
1 Cb

2 Cb
3 Cb

4

Cp
1 Cp

2 Cp
3 Cp

4




1 −εv1a 0 −εv1p
1 −εv2a −εv2b 0

1 0 −εv3b −εv3p
1 0 0 −εv4p

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.50)

Control coefficients can be calculated by inverting the matrix E:

Ci = E−1 (2.51)

For the linear pathway in Fig. 2.1:
CJ

1 CJ
2 CJ

3 CJ
4

Ca
1 Ca

2 Ca
3 Ca

4

Cb
1 Cb

2 Cb
3 Cb

4

Cp
1 Cp

2 Cp
3 Cp

4

 =


1 −εv1a 0 −εv1p
1 −εv2a −εv2b 0

1 0 −εv3b −εv3p
1 0 0 −εv4p


−1

(2.52)

Because both Ci and E are invertible the control-matrix eqn. 2.49 can also

be written as [7, 10]:

ECi = I (2.53)

For the linear pathway in Fig. 2.1 eqn. 2.53 becomes
1 −εv1a 0 −εv1p
1 −εv2a −εv2b 0

1 0 −εv3b −εv3p
1 0 0 −εv4p



CJ

1 CJ
2 CJ

3 CJ
4

Ca
1 Ca

2 Ca
3 Ca

4

Cb
1 Cb

2 Cb
3 Cb

4

Cp
1 Cp

2 Cp
3 Cp

4

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.54)

This form of the equation provides expressions for control coefficients in terms

of concentration-control coefficients and elasticity coefficients. For example,

CJ
4 can be expressed in four ways:

CJ
4 = εv1a C

a
4 + εv1p C

p
4 (2.55)

CJ
4 = εv2a C

a
4 + εv2b C

b
4 (2.56)

CJ
4 = εv3b C

b
4 + εv3p C

p
4 (2.57)

CJ
4 = 1 + εv4p C

p
4 (2.58)
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2.11. Control pattern analysis

Each of these equations described how a perturbation in the activity of re-

action 4, δ ln v4, affects the flux through a particular reaction through changes

in the concentrations of those internal metabolites that interact directly with

the enzyme, be they substrates, products, or effectors. For example, enzyme 1

interacts directly with A and P; the effects on the steady-state concentra-

tion of these metabolites are given by the concentration-control coefficients:

δ ln ā = Ca
4 · δ ln v4 and δ ln p̄ = Cp

4 · δ ln v4. The individual effects of these

concentration changes on the rate, v1, of reaction 1 are δ ln v1 = εv1a · δ ln ā and

εv1a · δ ln ā. Combining these equations yield

δ ln J = εv1a · δ ln ā + εv1p · δ ln p̄ (2.59)

= εv1a C
a
4 · δ ln v4 + εv1p C

p
4 · δ ln v4 (2.60)

Dividing both sides with ln v4 yields eqn. 2.55.

These equations will be analysed in Chapter 8.

2.11 Control pattern analysis

Hofmeyr [8] developed the method of control-pattern analysis to derive al-

gebraic relations between control and elasticity coefficients. Control-pattern

analysis is a non-algebraic diagrammatic technique that generates mathemat-

ical expressions for flux and concentration-control coefficients in terms of elas-

ticity expressions.

Control-pattern analysis has been implemented in the recently developed

symbolic control analysis (SymCA) add-on to PySCeS [29]. SymCA computes

an algebraic solution for eqn. 2.49 by inverting the symbolic representation of

E for systems of arbitrary complexity.

Control coefficient expressions as obtained through SymCA are shown for

the linear pathway in Fig. 2.1:

Flux-control coefficients

CJ
1 = ε2aε

3
bε

4
p/Σ

CJ
2 = −ε1aε3bε4p/Σ

CJ
3 = ε1aε

2
bε

4
p/Σ

CJ
4 = (−ε1aε2bε3p − ε2aε3bε1p)/Σ

a-control coefficients

Ca
1 = (ε3bε

4
p − ε2bε4p + ε2bε

3
p)/Σ

Ca
2 = (−ε3bε4p + ε3bε

1
p)/Σ

Ca
3 = (ε2bε

4
p − ε2bε1p)/Σ

Ca
4 = (−ε2bε3p − ε3bε1p + ε2bε

1
p)/Σ
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2.12. Co-response and co-control coefficients

b-control coefficients

Cb
1 = (ε2aε

4
p − ε2aε3p)/Σ

Cb
2 = (−ε1aε4p + ε1aε

3
p)/Σ

Cb
3 = (−ε2aε4p + ε1aε

4
p + ε2aε

1
p)/Σ

Cb
4 = (ε2aε

3
p − ε1aε3p − ε2aε1p)/Σ

p-control coefficients

Cp
1 = ε2aε

3
b/Σ

Cp
2 = −ε1aε3b/Σ

Cp
p = ε1aε

2
b/Σ

Cp
4 = (−ε2aε3b + ε1aε

3
b − ε1aε2b)/Σ

where the denominator Σ is expressed as

Σ = ε2aε
3
bε

4
p − ε1aε3bε4p + ε1aε

2
bε

4
p − ε1aε2bε3p − ε2aε3bε1p

Each numerator term corresponds to a control pattern and represents a

chain of local effects through which a perturbation in an enzyme activity prop-

agates through a metabolic system to affect a particular steady-state variable.

In such a way the complex systemic response to a perturbation in an enzyme

activity can be dissected into quantifiable contributions through these chains

of local effects, so providing a deep understanding of how a change in the

activity of an enzyme is transmitted to the rest of the system.

2.12 Co-response and co-control coefficients

Of particular interest for this dissertation is the method of co-response analysis

developed by Hofmeyr et al. [15] and Hofmeyr and Cornish-Bowden [12] as

part of metabolic regulation analysis, formalising the ideas developed earlier

[11]. Co-response coefficients can be used to relate simultaneous changes in

any two state variables when a system parameter is perturbed. A co-response

coefficient is the ratio of two response coefficients of metabolic control analysis.

In general, the definition of a co-response coefficient for any state variables yj,

yk and any parameter p is:

Ωyj :yk
p =

R
yj
p

Ryk
p

=

∑n
i=1C

yj
i ε

vi
p∑n

i=1C
yk
i ε

vi
p

(2.61)

where vi is the activity of an enzyme that is directly affected by the parameter

perturbation and n is the number of steps in the reaction network (only those

enzymes directly affected by p can have non-zero elasticity coefficients).

If the parameter p that is perturbed affects the rate of only one step (e.g.,

an enzyme concentration), its co-responses depend only on the relevant control

coefficients of that step, and the coefficients are called co-control coefficients
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2.12. Co-response and co-control coefficients

with symbol O
yj :yk
p . As an example, consider the co-response in yj, yk to a

perturbation in enzyme concentration ei:

Oyj :yk
ei

=
R

yj
ei

Ryk
ei

=
C

yj
i �

�εviei
Cyk

i �
�εviei

=
C

yj
i

Cyk
i

(2.62)

In order to derive an equation for co-control coefficients similar to the

control matrix eqn. 2.49, Hofmeyr et al. [15] defined the diagonal matrices

Dx and (Dx)−1 of control coefficients, the product of which gives the identity

matrix I:

(Dx)−1Dx = I (2.63)

where x is the steady-state variable with respect to which the control coeffi-

cients are defined.

For the linear pathway in Fig. 2.1 eqn. 2.63 translates to:
1/Cx

1 0 0 0

0 1/Cx
2 0 0

0 0 1/Cx
3 0

0 0 0 1/Cx
4



Cx

1 0 0 0

0 Cx
2 0 0

0 0 Cx
3 0

0 0 0 Cx
4

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.64)

These matrices are interposed between the C and E-matrices of the control-

matrix eqn. 2.49 to give

C(Dx)−1DxE = I (2.65)

Using the definitions C(Dx)−1 = O and DxE = R, eqn. 2.65 becomes

OR = I (2.66)

where O is a matrix that contains co-control coefficients, i.e., ratios of control

coefficients that relate simultaneous changes in two state variables when the

activity of a specific enzyme is perturbed. Which variables are in question

depends on the control coefficients in Dx. R is a matrix that contains control

coefficients as well as internal-response coefficients.

For the linear system in Fig. 2.1 eqn. 2.66 translates to:
OJ :p

1 OJ :p
2 OJ :p

3 OJ :p
4

Oa:p
1 Oa:p

2 Oa:p
3 Oa:p

4

Ob:p
1 Ob:p

2 Ob:p
3 Ob:p

4

Op:p
1 Op:p

2 Op:p
3 Op:p

4



Cp

1 −1Rp
a 0 −1Rp

p

Cp
2 −2Rp

a −2Rp
b 0

Cp
3 0 −3Rp

b −3Rp
p

Cp
4 0 0 −4Rp

p

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.67)

An important advantage of co-control analysis is that it is not necessary

to know the exact amount of change in the concentration of an enzyme that is
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2.12. Co-response and co-control coefficients

perturbed for the results to be useful in the analysis of metabolic regulation,

provided that all enzyme components of a system can be perturbed. This

eliminates the need to isolate individual enzymes to determine their individual

kinetic properties and to calculate control coefficients. This advantage does

not imply that studies of enzyme mechanism and properties are not useful. It

depends on the goal of experimentation and the questions asked.

The next chapter introduces the computational model of the metabolic

system that is used as an example in this dissertation.
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Chapter 3

The metabolic system

Throughout this study of the quantification of metabolic regulation we use,

for illustrative purposes, the simple system in Fig. 3.1.

PBAS 4321

Reversible
Hill-eq. with
modifier P

Reversible
Michaelis-Menten
equations

Irreversible
Michaelis-Menten
equation

Keq = 100 Keq = 10 Keq = 10

Equilibrium concentrations

1 102 103 104

Figure 3.1: A metabolic pathway consisting of four enzyme-catalysed reactions
with end-product inhibition of the committing enzyme, E1, by pathway prod-
uct P. The rate equations are discussed in the text. The colours of the steps
are used in graphs to facilitate discussion.

This system has been studied in detail and its steady-state behaviour and

regulation are well understood. The system consists of a biosynthetic pathway

comprising three enzymes that produce a product P from a pathway substrate

S. The first enzyme, E1, in the biosynthetic sequence is allosterically inhibited

by P. Product P links the biosynthetic pathway, i.e., its supply pathway, to a

reaction that consumes P and therefore constitutes the demand for P. The full

supply-demand pathway is colloquially known as the “Stellenbosch organism”

because it has been used by Hofmeyr and collaborators in the development

of the framework of supply-demand analysis [9, 11, 14, 15]. Although this
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is a generic metabolic model that does not correspond to a particular real

metabolic system, the rate equations and parameter values are chosen to be

as realistic as possible. If one wants to keep a metabolic example of such a

pathway in mind then this system could represent the synthesis of an amino

acid P that is consumed by the process of protein synthesis.

The rate equations

The rate equations and parameter values used to construct a kinetic model

for the pathway in Fig. 3.1 are provided in Appendix 10.1 in the form of a

PySCeS-input file.

The committing enzyme to the biosynthetic pathway is modelled with

the reversible Hill-equation for a uni-uni reaction developed by Hofmeyr and

Cornish-Bowden [13]:

v1 =

k1
s0.5

e1

(
s− a

Keq1

)(
s

s0.5
+

a

a0.5

)h−1

(
s

s0.5
+

a

a0.5

)h

+

1 +

(
p

p0.5

)h

1 + α

(
p

p0.5

)h

(3.1)

where s is the substrate concentration, a the product concentration, p the

allosteric modifier concentration; s0.5, a0.5, and p0.5 are the half-saturating

concentrations in the absence of other ligands; h is the Hill coefficient that

describes the degree of cooperativity of binding of S, A and P; α is the in-

teraction factor (inhibitory when 0 < α < 1; activating when α > 1; no

effect when α = 1); k1 and Keq1 are the catalytic and equilibrium constants

respectively, and e1 is the total concentration of the enzyme.

Enzymes 2 and 3 were modelled using the reversible Michaelis-Menten

equation:

v2 =

k2
K2A

e2

(
a− b

Keq2

)
(

1 +
a

K2A

+
b

K2B

) and v3 =

k3
K3B

e3

(
b− p

Keq3

)
(

1 +
b

K3B

+
p

K3P

) (3.2)

where K2A, K2B, K3B, and K3P denote Michaelis constants, k2 and k3 cat-

alytic constants, Keq2 and Keq3 equilibrium constants, and e2 and e3 enzyme

concentrations.
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Because E4 is a sink reaction it is modelled with an irreversible Michaelis-

Menten equation:

v4 =
k4e4p

K4P + p
(3.3)

This is quite realistic since products, such as polypeptides or polynucleotides,

of the processes that consume metabolic end-products, such as amino acids or

nucleotides, generally do not inhibit the processes that produce them.

Four sets of parameters values were chosen to demonstrate different types

of behaviour of the model system. In the rest of this dissertation these four

different parameter sets will be denoted parameter set 1, parameter set 2,

parameter set 3, and parameter set 4. Certain parameters were the same in

all four sets (note that, since this a generic model, no units are assigned to

parameters and variables; they are assumed to be consistent):

• For enzyme 1:

– k1 = 1 and e1 = 200, i.e., the limiting forward rate Vf 1 = 200.

– s = 1 and s0.5 = 1. This implies that E1 is always half-saturated,

so that its maximum flux-carrying capacity is 100. Because in all

parameter sets the Vf-values of E2 and E3 are 1000, except in pa-

rameter set 3 where they are 100, E1 determines the maximum

flux-carrying capacity of the biosynthetic supply.

– Keq1 = 100.

– a0.5 = 105. The combination of a large equilibrium constant of

100 and extremely weak binding of product A to enzyme 1 ensures

that, for the whole range of steady states under consideration, en-

zyme 1 is always far from equilibrium and never subject to direct

product inhibition, although at near-equilibrium concentration it is

of course inhibited by A through mass-action. This means that E1

controls the flux local to the supply pathway (unless, as is the case

in parameter set 3 described below, enzymes 2 and 3 have effective

limiting rates comparable or lower than Vf 1).

– p0.5 = 1. This determines the p-region in which the allosteric effec-

tor P can inhibit the rate of E1.

– α = 0.001. This determines the limit below which v1 cannot be

further inhibited by P.

• For enzymes 2 and 3:
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3.1. Supply-demand rate characteristic analysis

– k2 = k3 = 1.

– K2A = K2B = K3B = K3P = 1.

– Keq2 = Keq3 = 10. As shown in Fig. 3.1, when s is fixed at a con-

centration of 1, the equilibrium constants of the three biosynthetic

enzymes determine the equilibrium concentrations that a, b, and p

would reach in the absence of a demand reaction for P.

• For enzyme 4:

– k4 = 1.

The parameters that were varied in the four parameter sets were the Hill

coefficient of enzyme 1, h, the concentrations of enzymes 2 and 3, and the

Michaelis constant of enzyme 4 for its substrate P.

1. Parameter set 1: h = 4, e2 = e3 = 1000, K4P = 0.01. This set of param-

eters defines the reference system, which, as explained in Section 3.1, has

excellent regulatory properties. The small Michaelis constant of E4 for

P ensures that the enzymes is easily saturated by P.

2. Parameter set 2: h = 1, e2 = e3 = 1000, K4P = 0.01. The degree of

cooperativity of the binding of P to E1 is decreased by changing h from

4 to 1.

3. Parameter set 3: h = 4, e2 = e3 = 100, K4P = 0.01. Here the three

biosynthetic enzymes effectively have the same limiting rates of 100 (al-

though Vf 1 = 200 it is half saturated with S).

4. Parameter set 4: h = 4, e2 = e3 = 1000, K4P = 100.0. P binds weakly

to E4, which affects the elasticity of E4 for P and, thereby, the degree of

flux-control exerted by E4 (discussed in Section 3.1).

3.1 Supply-demand rate characteristic

analysis

The metabolic system in Fig. 3.1 can be divided into two conversion blocks,

with E1, E2, and E3 acting as the supply of P and E4 as the demand for P.

The flux, J , and p-control coefficients of the supply are simply the sum of the

individual control coefficients:

CJ
supply = CJ

1 + CJ
2 + CJ

3 and Cp
supply = Cp

1 + Cp
2 + Cp

3 (3.4)
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3.1. Supply-demand rate characteristic analysis

while the control coefficients for the demand are:

CJ
demand = CJ

4 and Cp
demand = Cp

4 (3.5)

As discussed in Chapter 2 flux-control and concentration-control coeffi-

cients obey the following summation relationships:

CJ
supply + CJ

demand = 1 (3.6)

Cp
supply + Cp

demand = 0 (3.7)

While flux-control is distributed over the supply and the demand, p-control is

not because Cp
supply is always equal to −Cp

demand. Therefore only the magnitude

of the variation in p is of interest.

The sensitivity of the flux local to the supply block, or to rate in the case of

the single demand reaction, is quantified by the relevant elasticity coefficient:

ε
vsupply
p =

d ln vsupply
d ln p

, εvdemand
p =

d ln vdemand

d ln p
(3.8)

Note that εvdemand
p is typically positive because P is a substrate of the demand;

an increase in substrate concentration typically increases the reaction rate.

The product elasticity coefficient ε
vsupply
p is typically negative because P is a

product of the supply that inhibits the supply rate through product inhibition

and mass action.

The connectivity theorems relate control coefficients to elasticity coeffi-

cients as follows:

CJ
supplyε

vsupply
p + CJ

demandε
vdemand
p = 0 (3.9)

Cp
supplyε

vsupply
p + Cp

demandε
vdemand
p = −1 (3.10)

Together, the summation and connectivity theorems allow the expression

of control coefficients in terms of elasticities of supply and demand [11]. The

flux-control coefficients are

CJ
supply =

εvdemand
p

εvdemand
p − εvsupplyp

(3.11)

and

CJ
demand =

−εvsupplyp

εvdemand
p − εvsupplyp

(3.12)

and the concentration-control coefficients:

Cp
supply = −Cp

demand =
1

εvdemand
p − εvsupplyp

(3.13)
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3.1. Supply-demand rate characteristic analysis

From eqns. 3.12 and 3.13 it follows that the ratio of elasticities deter-

mines the distribution of flux-control between supply and demand [14]. If

|εvsupplyp /εvdemand
p | > 1 the demand has more control over the flux than the sup-

ply; if |εvsupplyp /εvdemand
p | < 1 the demand has less control over the flux than the

supply. On the other hand it is the sum of the absolute values of the elasticities

that determines the magnitude of the variation in p and, therefore, the degree

to which it is buffered: the larger |εvdemand
p − εvsupplyp |, the smaller the absolute

values of both Cp
supplyand Cp

demand, and the better the buffering of p.

The behaviour of a supply-demand system around a steady state can be

visualised with combined rate characteristics. A rate characteristic is a graph

that shows how the rate through a reaction (or the flux local to a reaction

block) varies with the concentration of a chemical species that affects that

reaction (such as a substrate, a product, or an effector). If the rate character-

istic is plotted in double logarithmic space the slope of the tangent to the rate

characteristic at a particular species concentration is equal to the elasticity

coefficient that obtains at that concentration [9].

If the rate characteristics for the supply and demand blocks are plotted on

the same graph they intersect at a point that represents the steady state, which

is characterised by the flux, J , and concentration p̄.1 Rate characteristics

therefore also illustrate the result from control analysis that the response in

the steady state to small perturbations in the activities of supply or demand

depends completely on the slopes of the tangents to the rate characteristics at

the steady-state point, i.e., their elasticity coefficients [14].

The log-log rate characteristics of supply and demand for the four param-

eter sets are shown in Fig. 3.2. They were calculated with PySCeS by fixing

the concentration of P (making it a parameter) and varying it over a large

concentration range that extends up to the equilibrium concentration of P at

104.

Parameter set 1—Fig. 3.2-1

The black supply rate characteristic is compared to the red demand rate char-

acteristics for four different demand activities. The four steady states are

numbered and describe different situations:

1. Steady state 1: |εvsupplyp /εvdemand
p | � 1, so that supply controls the flux.

The steady-state concentration of P is lower than its E4-Michaelis con-

1Steady-state concentrations of metabolites a, b, and p will be denoted by ā, b̄, and p̄.

24

Stellenbosch University http://scholar.sun.ac.za



3.1. Supply-demand rate characteristic analysis
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Figure 3.2: Combined rate characteristics around regulatory metabolite P for
the supply and for four different Vf-values of the demand (130, 80, 0.25, 0.1).
The numbering of the four graphs corresponds to parameter sets 1 to 4.

stant so that E4 is not saturated with P, as it is at the other steady

states.

2. Steady state 2: |εvsupplyp /εvdemand
p | � 1, so that demand controls the flux.

This is the top limit (determined by Vf 1) of the region in which the supply

flux responds sensitively to p orders of magnitude away from equilibrium.

3. Steady state 3: |εvsupplyp /εvdemand
p | � 1, so that demand controls the flux.

This is the bottom limit (determined by α) of the region in which the

supply flux responds sensitively to p orders of magnitude away from

equilibrium.

4. Steady state 4: |εvsupplyp /εvdemand
p | � 1, so that demand controls the flux,

but here at a near-equilibrium concentration of P (determined by Keq1 ·
Keq2 ·Keq3 = 104).
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3.1. Supply-demand rate characteristic analysis

There are two distinct P-concentration regions in which p is buffered with

respect to changes in the flux caused by changes in the demand activity, namely

the region between steady states 2 and 3—the region of kinetic regulation—

and the region above steady state 4;—the region of thermodynamic regulation.

Where in the concentration range the region of kinetic regulation occurs de-

pends on p0.5 = 1, while the steepness of supply flux response to p (degree of

cooperativity) is determined by the Hill coefficient of E1. The range of possible

supply-flux response to p depends on the difference between Vf 1 (the plateau

between steady states 1 and 2) and α (the plateau between steady states 3

and 4).

Parameter set 2—Fig. 3.2-2

The decrease in the Hill coefficient from h = 4 to h = 1 (non-cooperative

binding by P) decreases the supply slope between steady states 2 and 3 so

that in the kinetic regulation region p now varies over a concentration range

of approximately 2000 instead of 10.

Parameter set 3—Fig. 3.2-3

Superficially, this graph appears to be identical to Fig. 3.2-1, although close

inspection reveals that the steady states at 1 and 2 are slightly lower. In this

parameter set the concentrations of enzymes 2 and 3 are 10-fold lower than

in parameter sets 1, 2 and 4 so that the three biosynthetic enzymes have the

same flux-carrying capacity. The effect of this on flux control by the three

supply enzymes is discussed at the end of this chapter.

Parameter set 4—Fig. 3.2-4

The supply the identical to that in Fig. 3.2-1. Here the demand binds its

substrates very weakly (K4P is now 100 instead of 0.01). At steady states 1,

2 and 3 the elasticities of supply and demand have similar magnitudes, which

results in sharing of flux control between supply and demand. In steady state

4 demand regains flux control.
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3.2. Parameter portraits for E4 (a demand scan)

3.2 Parameter portraits for E4 (a demand

scan)

Whereas rate characteristics provide insight into the response of metabolic

subsystems to a metabolite that links them, a parameter portrait shows how

steady-state variables and other derived entities such as the coefficients of

MCA vary over a range of values of one of the system parameters. In Fig. 3.2

the steady states corresponding to four different demand-values were shown.

In this section the demand for P is now continuously scanned by changing the

concentration of E4. The E4-parameter portraits of concentrations and fluxes

in Fig. 3.3-A are plotted in double logarithmic space; the slopes of these curves

are equal to the response coefficients of E4 that are plotted in Fig. 3.3-B. Since

the elasticity coefficient of v4 with respect to its enzyme concentration e4 is 1,

these response coefficients are equal to their respective control coefficients.

First, the general features of the parameter plots are discussed. For param-

eter sets 1, 2 and 3 the flux J is fully controlled by E4, i.e., RJ
4 = 1, in that part

of the E4-range that corresponds to the demands that yield steady states 2 and

4 in Fig. 3.2-1–3. In this range two distinct regions are discernible in which

the steady-state concentrations of the internal metabolite are buffered: at low

e4 they are buffered near equilibrium (below steady state 4 in Fig. 3.2), while

in the adjacent region they are buffered at concentrations orders of magni-

tude away from equilibrium. At e4 > 102 flux control shifts abruptly to the

supply (the region around steady state 1 in Fig. 3.2). These three regions

will be denoted the NE-region (near equilibrium region), the FFE-region (far

from equilibrium region), and the SC-region (region where supply controls the

flux). In the NE-region the high metabolite concentrations would interfere

with optimal cellular function as the solvent capacity of the cell is limited.

In the SC-region, on the other hand, the supply is incapable of matching the

high demand and cannot fulfil its function of supplying P fast enough. The

FFE-region is therefore the region in which supply can fulfil its physiological

function of supplying P while keeping p̄ far from equilibrium.

An observation that will be important for the discussion of homeostasis

in Chapters 4 and 6 is that in the NE and FFE-regions the metabolite con-

centrations are kept within a narrow range despite a proportional change in

flux J with E4. Exceptions include the FFE-region of parameter set 2 where

all metabolite concentrations vary over a much larger range of approximately

2000 instead of 10, and the higher e4 range in the FFE-region of parameter
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3.2. Parameter portraits for E4 (a demand scan)
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Figure 3.3: E4-parameter portraits of the flux and steady-state concentrations
(A) and corresponding E4-response coefficient plots (B) for parameter sets 1
to 4. Colours are used here only to distinguish the lines and not to refer to
the steps of the system.

sets 3 where a and b no longer track p and obtain much greater steady-state

values. In the SC-region only p̄ changes while ā and b̄ remain constant. Unlike

the thermodynamic buffering in the NE-region and the kinetic buffering in the

FFE-region, here the constancy in ā and b̄ is due to the fact that the flux does

not change with a change in e4 and not to any regulatory mechanism. That
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3.2. Parameter portraits for E4 (a demand scan)

p̄ is required to decrease with an increase in e4 is obvious if the rate equation

for E4 is re-arranged as follows:

p̄ =
J ·K4P

k4e4 − J
(3.14)

with v4 now equal to the constant flux, J.

The differences between parameter sets 1, 2 and 3 mostly affect the con-

centration profiles. While with parameter set 1 the transition between the NE

and FFE-regions is very steep and separates two regions of excellent concen-

tration buffering, this transition is more gradual with parameter set 2 and the

buffering of all metabolites is much less effective, as can also be seen by com-

paring the concentration-control coefficients of these two parameter sets. In

the FFE-region with parameter set 3 the lower activities of E2 and E3 cannot

keep ā and b̄ at near-equilibrium concentrations relative to p̄ at the higher e4

end of the region, so that ā and b̄ stabilise at much higher concentrations than

that for the other three parameter sets and, as Ra
4 and Rb

4 in Fig. 3.3-3B show,

become much more sensitive to changes in e4 as compared to parameter set 1.

Parameter set 4 presents a scenario that differs from the other sets in that

here the demand is 104 times less sensitive to its substrate P. The first conse-

quence is that e4-values of up to 106 are needed to present a response profile

similar to that of the other parameter sets. As is clear from the flux-response

coefficients and concentration-response coefficients, the main difference is that

the demand has full flux control only in the NE-region. During the transition

to the FFE-region the demand loses flux control completely, and regains it

partially in the FFE-region. Why the demand loses flux-control during the

transition from NE to FFE can be understood by examining the slopes of the

rate characteristics for this parameter set at steady state 3 in Fig. 3.2-4: dur-

ing the transition the demand elasticity exceeds the supply elasticity, which

approaches zero, shifting flux control to the supply. The other marked differ-

ence is that the transition from the FFE to the SC-region at the end of which

ā and b̄ become constant and Ra
4 and Rb

4 become zero is not as abrupt as with

the other parameter sets.

The concentration-response coefficients—how they change with e4 and how

these changes can be understood in terms of chains of local effects that rever-

berate through the system—are the subject of Chapter 5, which discusses the

relationship of these coefficients with structural stability, a concept introduced

in the next chapter.
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3.2. Parameter portraits for E4 (a demand scan)
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Figure 3.4: E4-parameter portrait of flux-response coefficients for parameter
sets 1 to 4.

We now consider in more detail the control of flux by the supply and

demand enzymes for the four parameter sets. Whereas Fig. 3.3 showed only

how RJ
4 responded to e4, Fig. 3.4 also shows the response in the flux-control

coefficients of the three supply enzymes.

First, it is clear that in all parameter sets except in parameter set 3 the

control of flux is shared between E1 and E4 only. In parameter sets 1 and 2

E1 gains full control in the SC-region, while having no control in the other

two regions. Why parameter set 4 differs from parameter set 1 and 2 has been

discussed above.

Parameter set 3 differs markedly from the others in the SC-region: the

control of flux is now nearly evenly shared between the three supply enzymes,

instead of fully residing in E1. As mentioned earlier in this chapter, in pa-

rameter set 3 the concentration of enzymes 2 and 3 are 10-fold lower than in

parameter sets 1, 2, and 4 so that the three biosynthetic enzymes have the

same flux-carrying capacity. This and the associated increase in the ā and b̄ in

the SC-region (at least two orders of magnitude higher that in the other cases)
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3.2. Parameter portraits for E4 (a demand scan)

results in sharing of flux control between E1, E2 and E3 in the SC-region. We

shall return to this in Chapter 6.

In later chapters we shall also need to know how the concentration-control

coefficients of E1, E2, and E3 vary with e4, so we also provide these parameter

portraits in Figs. 3.5–3.7, but without discussion.

To conclude this chapter the elasticity coefficient profiles for the four pa-

rameter sets in Fig. 3.8 are discussed because we shall need this information

in subsequent chapters.

For all four parameter sets the substrate and product elasticities of en-

zymes 2 and 3 veer off to ±∞ in the NE and FFE-regions. The product

elasticity εv1a is zero in the FFE and SC-regions due to extremely weak binding

of A to E1. Only in the NE-region where ā increases sharply does εv1a fall away

to −∞. Because of the lower e2 and e3 in parameter set 3 the concentrations

of A and B do not track that of P in the FFE-region, but actually increase (see

Fig. 3.3-3A), so that the elasticity coefficients start increasing at much lower

values of the scan parameter e4. The other effect of the increased ā and b̄ in

the SC-region is that εv2a and εv3b are less than 1 because of partial saturation

of these enzymes with their substrates.

In the NE and FFE-regions E4 is saturated with its substrate P and εv4p = 0.

In the SC-region p̄ decreases sharply and εv4p increases to its maximum value

of 1.

The feedback elasticity εv1p is zero in the NE and SC-regions and only

reaches its maximum value of −4 (or −1 in the case of parameter set 2 where

the Hill coefficient is 1 instead of 4) in the FFE-region where it regulates the

rate of E1.

The next chapter introduces three important concepts for the treatment of

metabolic regulation, namely structural and dynamic stability of steady states

and homeostasis.
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3.2. Parameter portraits for E4 (a demand scan)
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Figure 3.5: E4-parameter portrait of concentration-control coefficients for A

for parameter sets 1 to 4.
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Figure 3.6: E4-parameter portrait of concentration-control coefficients for B

for parameter sets 1 to 4.
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3.2. Parameter portraits for E4 (a demand scan)
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Figure 3.7: E4-parameter portrait of concentration-control coefficients for P

for parameter sets 1 to 4.
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Figure 3.8: E4-parameter portrait of elasticity coefficients for parameter sets 1

to 4.
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Chapter 4

Interlude: The meaning of

“metabolic homeostasis”

In general, an analysis of metabolic regulation is concerned with the responses

of a steady state to perturbations. Whereas metabolic control analysis provides

a way of quantifying these responses, metabolic regulation analysis seeks to

understand which properties of the system determine these responses, and

often, how these responses serve a particular metabolic function [9].

Consider a metabolic system in steady state. One can envisage two ways

in which the system can be perturbed: either by a change in the activity of

a particular step through a parameter such as enzyme concentration, or by

a perturbation (or fluctuation) of a variable metabolite concentration. How

does the system respond? In the case of a parameter change one wants to

know to what degree the new steady state differs from the original one, i.e.,

how structurally stable1 the system is. In the case of a variable metabolite

change one wants to explain what drives the system back to the original steady

state, i.e., what determines the dynamic stability of the system (the concepts of

dynamic and structural stability are compared in Fig. 4.1). These questions are

important for any inquiry into metabolic regulation, because both structural

and dynamic stability have been linked to that of homeostasis [23, 33], causing

much confusion in discussions of metabolic regulation.

In the first of a series of papers on metabolic regulation and supply-demand

1In dynamical systems theory a system is structurally stable if small changes in its
parameters do not change the geometric type and stability of its steady states, be they
fixed points or limit cycles [40], i.e. a system becomes structurally unstable at bifurcation
points. The steady states of the system in this study are all structurally stable—for an
understanding of metabolic regulation the degree of structurally stability is of importance,
i.e., by how much the steady-state variables change relative to the parameter perturbation.
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perturbation of a
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such as the
concentration of an
enzyme or an
external metabolite.

Figure 4.1: The difference between the concepts of dynamic and structural
stability.

analysis, Hofmeyr and Cornish-Bowden [11] considered the relationship be-

tween metabolic regulation and homeostasis on the one hand, and regulation

of technological systems such as a thermostatted water bath on the other:

“In the technological systems that biochemists are fond of using

as analogies for metabolic systems, the concept of regulation is

intimately linked with the function for which such systems have

been designed; it usually entails constancy of some property of the

regulated system, such as the temperature in a thermostatically

controlled water bath, in the face of external changes (this fea-

ture is equivalent to homeostasis in biological systems). Regulation

is therefore evaluated in terms of the performance of the system,

not in terms of the existence of specific mechanisms. Likewise,

in metabolic systems, our interpretation of regulation of a steady

state should be linked to our perception of the function of a spe-

cific pathway and, therefore, to certain measurable performance

characteristics. With regard to choosing a suitable performance
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characteristic there is a marked difference between treatments of

technological and metabolic regulation. Rates seldom enter the dis-

cussion of technological systems, e.g., the rate at which heat flows

from the heating element through the water and out through the

container walls of a thermostatted water bath; the focus is usually

on the constancy of some property such as temperature. However,

for the biochemist the primary result of metabolic regulation is sen-

sitive adjustment of the rates of processes, i.e., the adaptation of

metabolic fluxes to changing external conditions. Various designs

which achieve this goal efficiently have evolved; all of these designs

automatically feature some degree of homeostasis of certain key

metabolite concentrations. Nevertheless, despite the difference in

emphasis, we think there is a reasonably exact parallel: In a wa-

ter bath we do want to allow for variation in the flux of heat, but

we do not want the “concentration” of heat (i.e., the temperature)

to vary; an effectively regulated metabolic system must likewise al-

low the flux of matter to vary with the least possible variation in

metabolic concentrations. We judge the success of the design by

how much the first can vary without variation in the second (my

italics).

The above considerations suggest which entities are appropriate for a quan-

titative analysis of metabolic regulation:

• Response coefficients quantify the sensitivity of the steady-state variables

with respect to parameter perturbations and are therefore the appropri-

ate measures of structural stability.

• The change in a metabolite concentration relative to the change in the

flux through that metabolite pools is quantified by a co-response coeffi-

cient, and is therefore an appropriate measure of homeostasis.

• The connectivity relationships of MCA describe the stability of a steady

state with respect to fluctuations in the internal metabolites. Internal-

response coefficients are therefore the appropriate measures of dynamic

stability.

The next three chapters explore these three aspects of metabolic regulation

using the metabolic system in Fig. 3.1 with its four parameter sets as model

system.
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Chapter 5

Structural stability and

response coefficients

As noted in the previous chapter the change in the steady-state concentrations

of internal metabolites caused by a change in a system parameter is quantified

by the set of concentration-response coefficients with respect to that parameter.

Consider again a perturbation δ ln e4 in the concentration of enzyme E4 of

the system in Fig. 3.1. The E4 perturbation causes a change in the rate

δ ln v4 = εv4e4 · δ ln e4 (5.1)

This increase in rate decreases the concentration of P, which initiates a chain

of local effects through the rest of the system that culminates in a new steady

state in which the concentrations of A, B, and P have changed by δ ln a, δ ln b,

and δ ln p respectively. The magnitude of these changes depend on the respec-

tive concentration-control coefficients:

δ ln a = Ca
4 · δ ln v4 = Ca

4ε
v4
e4
· δ ln e4 (5.2)

δ ln b = Cb
4 · δ ln v4 = Cb

4ε
v4
e4
· δ ln e4 (5.3)

δ ln p = Cp
4 · δ ln v4 = Cp

4ε
v4
e4
· δ ln e4 (5.4)

The partitioned-response equations follow:

Ra
4 =

δ ln a

δ ln e4
= Ca

4ε
v4
e4

(5.5)

Rb
4 =

δ ln b

δ ln e4
= Cb

4ε
v4
e4

(5.6)

Rp
4 =

δ ln p

δ ln e4
= Cp

4ε
v4
e4

(5.7)
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5.1. Control-pattern analysis of response coefficients

which, because of the proportionality of rate to enzyme concentration, which

implies that εv4e4 = 1, reduce to:

Ra
4 = Ca

4 (5.8)

Rb
4 = Cb

4 (5.9)

Rp
4 = Cp

4 (5.10)

How these concentration-response coefficients of E4 change when e4 is

scanned has already been shown in the parameter portraits in Fig. 3.3 for

the four parameter sets. However, the question is not just how they change,

but especially how the interactions in the system contribute to these changes.

It is here where the control patterns discussed in Section 2.11 come into play.

5.1 Control-pattern analysis of response

coefficients

Any control coefficient can be expressed as a function of elasticity coefficients.

In section 2.11 these expressions were given for the system in Fig. 3.1. The

three concentration-control coefficients for E4 are:

Ca
4 = (−ε2bε3p − ε3bε1p + ε2bε

1
p)/Σ (5.11)

Cb
4 = (ε2aε

3
p − ε1aε3p − ε2aε1p)/Σ (5.12)

Cp
4 = (−ε2aε3b + ε1aε

3
b − ε1aε2b)/Σ (5.13)

where

Σ = ε2aε
3
bε

4
p − ε1aε3bε4p + ε1aε

2
bε

4
p − ε1aε2bε3p − ε2aε3bε1p

Each numerator term, a product of elasticity coefficients with its associated

sign, is called a control pattern, which, when scaled by the denominator, can

be assigned a numerical value. The scaled control patterns then sum to the

control coefficient. A control pattern represents a chain of local effects from the

perturbed step to the metabolite with respect to which the control coefficient is

defined. Consider, for example, the three control patterns in Ca
4 and remember

that substrate elasticities are positive, product elasticities are negative, and

the feedback elasticity ε1p is negative:

• −ε2bε3p: The immediate effect of an increase in v4 is a decrease in p. The

sequence of events that follow can be chased through the elasticities in
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5.1. Control-pattern analysis of response coefficients

the pattern—the chain of local effects is by mass action up the reaction

sequence, ↑ v4 ↓ p ↑ v3 ↓ b ↑ v2 ↓ a. This pattern therefore decreases a

and agrees with sign of the pattern −(−)(−).

• −ε3bε1p and +ε2bε
1
p: in both of these control patterns the chain of local

effects is via the feedback loop ↑ v4 ↓ p ↑ v1 ↑ a. This part of the pattern

is represented by −ε1p which is positive −(−). B does not participate

in the chain of local effects from E4 to A, but must nevertheless be

represented in the control pattern: either by ε3b , a positive elasticity, or

by −ε2b , which is also positive −(−1)). Both these patterns are therefore

positive. What happens here is that the effect on a via this chain of local

effects is modified by what happens in that part of the system that does

not form part of the chain of local effects, i.e., −ε1p(ε3b − ε2b). The term

in brackets is the denominator of expressions for control coefficients in

the isolated subsystem from A to P that falls outside the chain of local

effects (this aspect of the analysis of concentration-control patterns is

fully discussed by Hofmeyr [8]).

In the case of Cb
4 there are also two chains of local effects: up the chain from

P, ↑ v4 ↓ p ↑ v3 ↓ b (which is the ε3b part of the two negative patterns ε2aε
3
p and

−ε1aε3p) and the positive pattern via the feedback loop ↑ v4 ↓ p ↑ v1 ↑ a ↑ v2 ↑ b.
In the case of Cp

4 there is only one direct local effect, namely ↑ v4 ↓ p
and that can only be represented by −1. What happens in the rest of the

system from S to P falls outside this local effect and must be represented by

the denominator of control coefficients local to the isolated supply subsystem,

which is (ε2aε
3
b − ε1aε3b + ε1aε

2
b), all positive patterns, which are multiplied with

−1 to give the negative control patterns for Cp
4 .

Therefore, whereas Cp
4 is always negative, Ca

4 and Cb
4 can be positive or

negative, depending on the relative contribution of their control patterns.

Let us now consider the quantitative behaviour of Ra
4, Rb

4, R
p
4 and their re-

spective control patterns for our system with the four parameter sets. Figs. 5.1–

5.3 show the response coefficients in the A-panel and the corresponding control

patterns in the B-panel (note again that, although we continue to use the term

response coefficients for E4 they are in our system equivalent to control coef-

ficients of E4).

To reiterate, concentration-response coefficients quantify the sensitivities

of the state variables to changes in a parameter. The greater the magnitude of

these sensitivities, the less structurally stable the system is. A concentration-
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5.1. Control-pattern analysis of response coefficients

response coefficient of zero indicates perfect structural stability with respect

to the metabolite in question. However, it is possible that while the steady

state is structurally stable with respect to one or more metabolites it is less

stable with respect to others.

In general, in the discussion that follows, we shall regard a metabolite to

be structurally stable with respect to a particular perturbation when it has a

concentration-response coefficient between −1 and 1.

The one common feature of the response coefficient profiles for all three

metabolites and all four parameter sets is that the system is much less struc-

turally stable at the transitions between the regions than in the regions them-

selves, although the degree of instability differs markedly. Very near equi-

librium and in the FFE-region P is structurally the most stable of the three

metabolites. In the FFE-region Ca
4 and Cb

4 can change sign and vary more

than Cp
4 , especially with parameter set 3 where the weaker activity of E2 and

E3 fail to keep ā and b̄ in sync with p̄ causing very large values of Ca
4 and Cb

4.

What is of even more interest here is to analyse the contributions of the

control patterns to the control coefficients, because that provides insight into

which chains of local effects determine the structural stability of a particular

metabolite with respect to, in this case, a perturbation in e4. For A and

B the mass-action control pattern −ε2bε3p up the chain dominates the control

coefficient in the NE-region and at least in the lower part of the FFE-region.

In the SC-region all the control patterns are zero. Only in the upper part of

the FFE-region do the other control patterns via the feedback loop contribute

substantially to the control coefficients. For Ca
4 , it actually makes more sense

to add the two εv1p -containing patterns together since they represent the same

chain of local effects from E4 to A; the same holds for the two εv3p -containing

patterns of Cb
4. In the case of Cb

4 only one of these feedback control patterns

operate since the other one contains εv1a which is zero in the NE and FFE-

regions.

In the NE and FFE-regions of Fig. 5.3 Cp
4 is completely determined by one

of the control patterns (−ε2aε3b) in the upstream pathway. Note again that the

chain of local effects in this case is a direct one from E4 to P with a value of

−1. The three patterns are terms in the control coefficient denominator of the

subsystem outside the chain of local effects, i.e., from P up the chain to S. Two

of these patterns contain the elasticity coefficient εv1a , which is zero in the FFE

and SC-regions. Furthermore, even though εv1a becomes large in the NE-region

causing −ε1aε2b and ε1aε
3
b to increase dramatically, the combined effect of two
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5.1. Control-pattern analysis of response coefficients

−1

0

1
C

a 4

−1

0

1

−ε2bε
3
p

−ε3bε
1
p

ε2bε
1
p

E
4
a
-c
o
n
tr
o
l
p
a
tt
er
n
s

−2

−1

0

1

C
a 4

−2

−1

0

1

−ε2bε
3
p

−ε3bε
1
p

ε2bε
1
p

E
4
a
-c
on

tr
ol

p
at
te
rn
s

10−2 10−1 100 101 102 103

−1

0

1

C
a 4

10−2 10−1 100 101 102 103

−1

0

1

−ε2bε
3
p

−ε3bε
1
p

ε2bε
1
p

E
4
a
-c
on

tr
ol

p
a
tt
er
n
s

10−1 101 103 105

−1

0

1

e4

C
a 4

10−1 101 103 105

−1

0

1

−ε2bε
3
p

−ε3bε
1
p

ε2bε
1
p

e4

E
4
a
-c
on

tr
ol

p
at
te
rn
s

1A. 1B.

2A. 2B.

3A. 3B.

4A. 4B.

Figure 5.1: E4-parameter portrait of Ca
4 (A) and its control patterns (B) for

parameter sets 1 to 4.
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4 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.3: E4-parameter portrait of Cp
4 (A) and its control patterns (B) for

parameter sets 1 to 4.
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5.1. Control-pattern analysis of response coefficients

even larger elasticities in the −ε2aε3b pattern makes their contribution to the

control coefficient negligible. In the next pages the concentration-response

coefficients and their control patterns of E1 (Figs. 5.4–5.6), E2 (Figs. 5.7–5.9),

and E3 (Figs. 5.10–5.12) are given. Cp
1 , Cp

2 , and Cp
3 in Fig. 5.6, Fig. 5.9, and

Fig. 5.12 respectively have only one control pattern which is of course identical

to the response coefficient.

The a-concentration-response coefficient profile of E1 in Fig. 5.4-A is a

mirror around the horizontal of that of E4 in Fig. 5.1-A. A is structurally

stable with respect to changes in e1 in the NE and FFE-regions, except for the

highly unstable transition between regions. The profiles of Ca
1 , Cb

1, and Cp
1 in

Figs. 5.4–5.6 are qualitatively the same, only differing around the FFE to SC

transition. In the NE and FFE-regions the determining control pattern is the

one via the the chain (ε2bε
3
p, −ε2aε3p, and ε2aε

3
b for Ca

1 , Cb
1, and Cp

1 respectively). In

the SC region the control patterns that contain ε4p determine the concentration

response.

The trend in the concentration-response coefficients profiles of E2 and E3

is that, for metabolites that lie upstream from the enzyme, the coefficients

are zero in the NE-region and start increasing in the FFE-region towards

a constant value in the SC-region. In the FFE-region the feedback control

pattern containing ε1p is determining while in the SC-region the mass-action

pattern up the chain is determining. For the metabolites that lie downstream

the response coefficients are either very small (Cb
2 in Fig. 5.8) or zero (Cp

2 in

Fig. 5.9 and Cp
3 in in Fig. 5.12).

An important general conclusion to be made from all these results is that

what makes a control pattern determining is usually not due to the values

of the elasticity coefficients that make up the pattern, but because the other

patterns are zero because they contain a zero elasticity coefficient. In our

system these elasticity coefficients are εv1a , εv1p , and εv4p .

With regard to the overall structural stability of the system the generalisa-

tion can be made that near equilibrium all metabolites are stable to perturba-

tions of any reaction in the system. This should be obvious, since any system

in equilibrium is structurally perfectly stable to perturbations in any reaction.

In the FFE-region the metabolites are also structurally stable, but much less

so with parameter set 2 where the Hill-coefficient and therefore the sensitivity

of feedback to changes in P is less than with the other parameter sets where

the Hill coefficient is 4.

44

Stellenbosch University http://scholar.sun.ac.za



5.1. Control-pattern analysis of response coefficients

0

0.5

1

1.5

2
C

a 1

0

0.5

1

1.5

2

ε3bε
4
p

−ε2bε
4
p

ε2bε
3
p

E
1
a
-c
o
n
tr
ol

p
a
tt
er
n
s

0

0.5

1

1.5

2

C
a 1

0

0.5

1

1.5

2

ε3bε
4
p

−ε2bε
4
p

ε2bε
3
p

E
1
a
-c
on

tr
ol

p
at
te
rn
s

10−2 10−1 100 101 102 103
0

0.5

1

1.5

2

C
a 1

10−2 10−1 100 101 102 103
0

0.5

1

1.5

2

ε3bε
4
p

−ε2bε
4
p

ε2bε
3
p

E
1
a
-c
on

tr
ol

p
at
te
rn
s

10−1 101 103 105
0

0.5

1

1.5

2

e4

C
a 1

10−1 101 103 105
0

0.5

1

1.5

2

ε3bε
4
p

−ε2bε
4
p

ε2bε
3
p

e4

E
1
a
-c
o
n
tr
ol

p
at
te
rn
s

1A. 1B.

2A. 2B.

3A. 3B.

4A. 4B.

Figure 5.4: E4-parameter portrait of Ca
1 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.5: E4-parameter portrait of Cb
1 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.6: E4-parameter portrait of Cp
1 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.7: E4-parameter portrait of Ca
2 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.8: E4-parameter portrait of Cb
2 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.9: E4-parameter portrait of Cp
2 (A) and its control patterns (B) for

parameter sets 1 to 4.

50

Stellenbosch University http://scholar.sun.ac.za



5.1. Control-pattern analysis of response coefficients

−1.5

−1

−0.5

0
C

a 3

−1.5

−1

−0.5

0

ε2bε
4
p

−ε2bε
1
p

E
3
a
-c
o
n
tr
o
l
p
a
tt
er
n
s

−1.5

−1

−0.5

0

C
a 3

−1.5

−1

−0.5

0

ε2bε
4
p

−ε2bε
1
p

E
3
a
-c
o
n
tr
ol

p
at
te
rn
s

10−2 10−1 100 101 102 103
−1.5

−1

−0.5

0

C
a 3

10−2 10−1 100 101 102 103
−1.5

−1

−0.5

0

ε2bε
4
p

−ε2bε
1
p

E
3
a
-c
on

tr
o
l
p
at
te
rn
s

10−1 101 103 105
−1.5

−1

−0.5

0

e4

C
a 3

10−1 101 103 105
−1.5

−1

−0.5

0

ε2bε
4
p

−ε2bε
1
p

e4

E
3
a
-c
on

tr
ol

p
at
te
rn
s

1A. 1B.

2A. 2B.

3A. 3B.

4A. 4B.

Figure 5.10: E4-parameter portrait of Ca
3 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Figure 5.11: E4-parameter portrait of Cb
3 (A) and its control patterns (B) for

parameter sets 1 to 4.

52

Stellenbosch University http://scholar.sun.ac.za



5.1. Control-pattern analysis of response coefficients

0

0.5

1

1.5

2
C

p 3

0

0.5

1

1.5

2

ε1aε
2
bE

3
p
-c
o
n
tr
o
l
p
a
tt
er
n
s

0

0.5

1

1.5

2

C
p 3

0

0.5

1

1.5

2

ε1aε
2
bE

3
p
-c
on

tr
o
l
p
at
te
rn
s

10−2 10−1 100 101 102 103
0

0.5

1

1.5

2

C
p 3

10−2 10−1 100 101 102 103
0

0.5

1

1.5

2

ε1aε
2
bE

3
p
-c
o
n
tr
ol

p
at
te
rn
s

10−1 101 103 105
0

0.5

1

1.5

2

e4

C
p 3

10−1 101 103 105
0

0.5

1

1.5

2

ε1aε
2
b

e4

E
3
p
-c
o
n
tr
ol

p
a
tt
er
n
s

1A. 1B.

2A. 2B.

3A. 3B.

4A. 4B.

Figure 5.12: E4-parameter portrait of Cp
3 (A) and its control patterns (B) for

parameter sets 1 to 4.
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Chapter 6

Homeostasis and co-response

coefficients

The analysis of the model system up to now has provided us with two views of

structural stability. First, the parameter portrait in Fig. 3.3 showed how the

steady-state concentrations of the internal metabolites ā, b̄, and p̄ change with

e4, which allowed us to partition the response into three distinct regions where

concentrations were buffered to some degree; this provided a qualitative view

of structural stability. Second, concentration-response coefficients profiles in

Figs. 5.1–5.12 allowed us to quantify the sensitivity of ā, b̄, and p̄ towards

changes in e4 in any steady state and thereby gave us a quantitative measure

for structural stability of the steady state with respect to a particular internal

metabolite; the lower the value, the more structurally stable the system with

regard to that metabolite. However, as argued in Chapter 4, just knowing

that a concentration-response coefficient is small does not necessarily imply

that that concentration is homeostatically regulated. For that one needs to

relate the concentration change to the concomitant flux change through the

metabolite pool. The lower the ratio of the relative change in concentration

to the relative change in flux the better the degree of homeostasis in that

metabolite. Note that the use of relative rather that absolute changes makes

the measure independent of units and allows comparison between systems.

6.1 The homeostatic index

With respect to a quantitative measure for homeostasis in terms of relative

concentration and flux changes it is clear that co-response coefficients are the
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Figure 6.1: Comparison between flux-to-concentration (A) and concentration-
to-flux (B) co-response coefficients of E4 for parameter set 1.

appropriate entities. The question is, however, whether one should use the flux-

to-concentration or the concentration-to-flux co-response coefficients. Fig. 6.1

compares these two types of co-response profiles for ā, b̄ and p̄ with respect to

e4. Note that because parameter e4 affects only one reaction its co-response

coefficients actually reduce to co-control coefficients (see Section 2.12), but we

shall continue to refer to them as co-response coefficients. Whereas an increase

in the value of a flux-to-concentration co-response coefficients indicates an in-

crease in homeostasis (with an infinitely large value corresponding to “perfect”

homeostasis), the opposite holds for concentration-to-flux co-response coeffi-

cients: a decrease indicates an increase in homeostasis (“perfect” homeostasis

obtaining at a value of zero).

Consider ΩJ :p
4 and Ωp:J

4 in Fig. 6.1A and B respectively. One could argue

that there is little to choose between the two pictures—they of course repre-

sent the same information: both clearly show the regions in which there is

homeostatic regulation of p̄ (in the NE and FFE-regions where |ΩJ :p
4 | > 1 and

|Ωp:J
4 | < 1) and those where there is not (in the transition between the NE and

FFE-regions and in the SC-region where ΩJ :p
4 → 0 and Ωp:J

4 → −∞). ΩJ :a
4 and

ΩJ :b
4 , however, point to a problem with the picture in A: both these co-response

coefficients change signs twice in the FFE-region and their values go through

discontinuities where they approach −∞ and ∞. The Ωa:J
4 and Ωb:J

4 profiles

just go smoothly through zero at these points and therefore provide a much

simpler and satisfying view.

There is, however, a more compelling reason to prefer concentration-to-flux

co-response coefficients as a measure of the degree of homeostatic regulation.

To explain this we first need to decide on a reference point for homeostatic
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6.2. Analysis of homeostasis

regulation. Consider the supply-demand system described in Section 3.1. From

eqns. 3.11–3.13 we can derive expressions for the two types of co-response

coefficients. For the supply

ΩJ :p
supply =

CJ
supply

Cp
supply

= εvdemand
p and Ωp:J

supply =
Cp

supply

CJ
supply

=
1

εvdemand
p

(6.1)

and for the demand

ΩJ :p
demand =

CJ
demand

Cp
demand

= ε
vsupply
p and Ωp:J

demand =
Cp

demand

CJ
demand

=
1

ε
vsupply
p

(6.2)

Values of 1 for εvdemand
p and −1 for ε

vsupply
p would indicate a proportional, non-

cooperative response of the supply and demand rate to P and are the maximum

values the elasticities of a far-from-equilibrium Michaelis-Menten enzyme (Hill

coefficient of 1) can attain. An enzyme with these elasticity values can be

regarded as unregulated. We therefore choose 1 and −1 as suitable reference

values for the co-response coefficients (an obvious advantage being that all four

permutations of the co-response coefficients in eqns. 6.1 and 6.2 have a value

of either 1 or −1 in this reference state. Better homeostasis would be expected

when εvdemand
p and ε

vsupply
p have larger values, i.e., when supply and/or demand

are more sensitive to changes in P; J:p co-response coefficients would become

larger, and p:J co-response coefficients would become smaller. It is here that

the biggest advantage of p:J co-response coefficients becomes apparent: their

use establishes a scale or index for the degree of homeostatic regulation that

ranges between the reference values of 1 and −1, with “perfect” homeostasis

(where there is no change in concentration for any finite flux change) obtaining

at 0. The equivalent scale based on J : p co-response coefficients would range

from 1 to∞ (or from −1 to −∞). From an operational point of view a p:J co-

response coefficient also has a intelligible interpretation as the %-change in the

steady-state concentration of a metabolite that accompanies 1% change in the

flux through the metabolite pool following a perturbation in some parameter.

From here on we shall refer to the absolute value of Ω
sj :J
i as the homeostatic

index of metabolite Sj with respect to a change in the activity of step i.

6.2 Analysis of homeostasis

Consider now Fig. 6.2-1A, 3A and 4A, which show in panel A how Ωa:J
4 , Ωb:J

4 ,

and Ωp:J
4 for the four parameter sets and in panel B how the corresponding
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Figure 6.2: Metabolite:flux co-response coefficient profiles of E4 (A) compared

with the corresponding flux-response and concentration-response coefficient

profiles of E4 (B) for parameter sets 1 to 4.
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flux and concentration-response coefficients vary with e4. As mentioned above

p̄ is homeostatically regulated in the NE and FFE-regions. In the NE-region

ε
vsupply
p is extremely large so that the homeostatic index of P tends to zero.

Although this seems to be excellent near-perfect homeostasis it must be re-

membered that it occurs at extremely high near-equilibrium concentrations of

P, a condition that may not be physiological. In the FFE-region the homeo-

static index of P decreases to a value of 0.25 (which is the inverse of the Hill

coefficient of 4 for P binding to E1). In 1A and 4A ā and b̄ are also homeostatic

because they are kept near equilibrium with p̄. In 3A ā and b̄ are much more

sensitive and less homeostatically regulated because of the lower activities of

E2 and E3. In the FFE-region of 2B, where the Hill coefficient of E1 is 1 instead

of 4 the homeostatic index of P is more than 1 and p̄ is much less homeostatic

compared to the other parameter sets.

If one compares panel A with panel B then at first glance it may seem

that the concentration-response profiles give the same information as the co-

response profiles and that therefore the use of co-response coefficients appears

to be an overkill. Closer inspection, however, reveals a number of crucial

differences. In the NE and FFE-regions of parameter set 1, 2, and 3 there

is very little difference between A and B (the obvious exception being Ωa:J
4

and Ra
4 in 2) because here RJ

4 = 1 and, therefore, Ωa:J
4 = Ra

4. However,

in the SC-region there is a huge difference: the homeostatic index for A, B,

and P is extremely large, approaching −∞ (because RJ
4 is zero), while Ra

4

and Rb
4 tends to zero and Rp

4 to −1. This means that in the SC-region the

system is structurally very stable with respect to changes in e4, but not at all

homeostatically regulated.

Fig. 6.2-4A and B provide the best examples of the difference between co-

response coefficients and concentration-response coefficients, because here RJ
4

varies in the FFE-region instead of having a value of 1 as is the case for the

other parameter sets. This means that the concentration-response profiles in

the FFE-region do not match the co-response profiles as they do for the other

parameter sets. Therefore, from 1A and 4A one would conclude that there is

virtually no difference in the homeostatic regulation for these two parameter

sets, whereas one would not come to this conclusion from 1B and 4B.

Up to now we have only considered the structural stability and homeostatic

regulation of the system with respect to a perturbation in e4, the parameter

that has been scanned. However, we can also ask, for the same range of steady

states obtained in the e4 scan-range, how structurally stable or homeostatically

58

Stellenbosch University http://scholar.sun.ac.za



6.2. Analysis of homeostasis

regulated the system is with respect to perturbations in the other three en-

zymes. Figs. 6.3–6.5 show the co-response coefficient and response coefficient

profiles for these three enzymes.

Here, in all three figures, the differences between structural stability and

homeostatic regulation are far more pronounced than in Fig. 6.2. In general,

for parameter sets 1, 2 and 4 the system is structurally stable with respect

to all three metabolites for perturbations in E2 and E3. For parameter set 3

the system is less structurally stable with respect to E2 and E3, especially

around the transition from the FFE to the SC-region (graph 3B in Figs. 6.4

and 6.5). Again this is due to the fact that the lower activities of E2 and E3

fail to keep ā and b̄ near-equilibrium with p̄. To a large extent, the response

coefficient profile for E1 in Fig. 6.3 is qualitatively a mirror-image around the

horizontal of that of E4 in Fig. 6.2, the most prominent difference being the a

and b-response coefficients in the SC-region, which cluster around a value of 1

instead of zero, the exception again being parameter set 3.

In the FFE-region of parameter sets 1, 2 and 3 there is no homeostatic

regulation of a, b or p with regard to perturbation in any of the three enzymes

because their flux-control coefficients are zero and the co-response coefficients

therefore tending to infinity. The best they can do in the SC-region is a

homeostatic index of 1. The thermodynamic homeostasis in the NE-regions

seen in the co-response coefficient profiles for E2 and E3 are due to differences

in very small values of the concentration and flux-control coefficients.

For parameter set 4, because the flux-response and concentration-response

coefficients of E1 vary with nearly the same values in the FFE and SC-regions

(except around the transition between the two regions—see Fig. 6.3-4B), the

co-response coefficients Ωp:J
1 , Ωa:J

1 , and Ωb:J
1 are 1 or just above to 1. The reason

is of course that CJ
1 attains non-zero values in the FFE-region, in contrast to

the other parameter sets where it is zero. Here the degree of homeostatic reg-

ulation of A, B, and P therefore hovers around the homeostatic index baseline

of 1. For E2 with parameter set 4 only B and P (its downstream metabo-

lites) (Fig. 6.4-4B)) and for E3 with parameter set 4 only P (its downstream

metabolite) have the same homeostatic index profile around 1. The upstream

metabolites are not homeostatically regulated.

The analysis of homeostasis in this chapter shows that, while homeostasis

is closely related to structural stability, an analysis of metabolite concentration

changes on their own could give a misleading picture of homeostatic regulation

and that, when related to concomitant changes in flux through the metabolite
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pools, a different picture emerges.
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Figure 6.3: Metabolite:flux co-response coefficient profiles of E1 (A) compared

with the corresponding flux-response and concentration-response coefficient

profiles of E1 (B) for parameter sets 1 to 4.
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Figure 6.4: Metabolite:flux co-response coefficient profiles of E2 (A) compared

with the corresponding flux-response and concentration-response coefficient

profiles of E2 (B) for parameter sets 1 to 4.
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Figure 6.5: Metabolite:flux co-response coefficient profiles of E3 (A) compared

with the corresponding flux-response and concentration-response coefficient

profiles of E3 (B) for parameter sets 1 to 4.
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Chapter 7

Dynamic stability and

internal-response coefficients

Metabolic systems are continually subject to perturbations in the concentra-

tions of their internal metabolites so that their steady states are continually

fluctuating. Dynamic stability of these systems means that the interactions

within the system counteract these perturbations and continuously drive the

system towards the steady state. The internal-response coefficients that form

the terms of the connectivity theorems of metabolic control analysis (Sec-

tion 2.9), provide one way of quantitatively describing the behaviour of the

system as it responds to fluctuations in internal metabolite concentrations.

The internal-response coefficients quantify the contributions of internal inter-

action routes that fan out from the perturbed metabolite through enzymes

that are directly affected by the perturbation, as explained by the following

thought experiment.

Consider a perturbation δ ln a in the concentration of internal metabolite

A of the pathway in Fig. 3.1. This change in a directly affects v1 by (using

the definition of the elasticity coefficient)

δ ln v1 = εv1a · δ ln a (7.1)

If this were the only effect of δ ln a then the steady-state variables would be

affected as follows (using the definition of control coefficients):

δ ln J = CJ
1 · δ ln v1 = CJ

1 ε
v1
a · δ ln a (7.2)

δ ln a = Ca
1 · δ ln v1 = Ca

1ε
v1
a · δ ln a (7.3)

δ ln b = Cb
1 · δ ln v1 = Cb

1ε
v1
a · δ ln a (7.4)

δ ln p = Cp
1 · δ ln v1 = Cp

1ε
v1
a · δ ln a (7.5)
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However, δ ln a also affects v2 directly by

δ ln v2 = εv2a · δ ln a (7.6)

which, if this were the only effect of δ ln a, would affect the steady state by:

δ ln J = CJ
2 · δ ln v2 = CJ

2 ε
v2
a · δ ln a (7.7)

δ ln a = Ca
2 · δ ln v2 = Ca

2ε
v2
a · δ ln a (7.8)

δ ln b = Cb
2 · δ ln v2 = Cb

2ε
v2
a · δ ln a (7.9)

δ ln p = Cp
2 · δ ln v2 = Cp

2ε
v2
a · δ ln a (7.10)

However, if the system is asymptotically stable it relaxes back to its original

steady state after the perturbation in a, which implies that the effects of δ ln a

on v1 and v2 must cancel:

(CJ
1 ε

v1
a + CJ

2 ε
v2
a ) · δ ln a = 0 (7.11)

(Ca
1ε

v1
a + Ca

2ε
v2
a ) · δ ln a = −δ ln a (7.12)

(Cb
1ε

v1
a + Cb

2ε
v2
a ) · δ ln a = 0 (7.13)

(Cp
1ε

v1
a + Cp

2ε
v2
a ) · δ ln a = 0 (7.14)

Note that the combined effects of changes in v1 and v2 on a itself must be

−δ ln a if they are to drive a back to its original steady-state value.

The above thought experiment therefore leads directly to the connectivity

equations for A, namely:

CJ
1 ε

v1
a + CJ

2 ε
v2
a = 0 (7.15)

Ca
1ε

v1
a + Ca

2ε
v2
a = −1 (7.16)

Cb
1ε

v1
a + Cb

2ε
v2
a = 0 (7.17)

Cp
1ε

v1
a + Cp

2ε
v2
a = 0 (7.18)

or, in terms of internal-response coefficients:

1RJ
a + 2RJ

a = 0 (7.19)

1Ra
a + 2Ra

a = −1 (7.20)

1Rb
a + 2Rb

a = 0 (7.21)

1Rp
a + 2Rp

a = 0 (7.22)

Kahn and Westerhoff [23] proposed the use of internal-response coefficients

of metabolic control analysis to quantify regulation that ensures dynamic sta-

bility in state variables when an internal variable metabolite is perturbed.
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7.1. Self-response coefficients

They used the term “regulatory strengths” for what are here termed internal-

response coefficients, in particular for those internal-response coefficients where

the state variable under consideration is not the same as the concentration

that is perturbed; in our example these would be 1RJ
a , 2RJ

a , 1Rb
a,

2Rb
,

1Rp
a, and

2Rp
a. For internal-response coefficients such as 1Ra

a,
2Ra

a,
2Rb

b,
3Rb

b,
1Rp

p,
3Rp

p, and
4Rp

p where the responding variable is the perturbed variable itself they used

the term “homeostatic strength”, although they preferred to use the absolute

values of 1Ra
a and 2Ra

a.

In general, we prefer the use of the term internal-response coefficient to the

terms “regulatory strength” and “homeostatic strength”, because, as already

discussed in Chapter 4, our concept of homeostasis has nothing to do with

dynamic stability. It is not even clear that dynamic stability forms part of what

most systems biologists understand under the umbrella term “regulation”,

although we would argue that it should. But, as we shall soon see, the two

types of coefficient behave quite differently and we do need to distinguish them.

We shall therefore call “homeostatic strengths” self-response coefficients and

reserve internal-response coefficients for “regulatory strengths”.

We first discuss the use of self-response coefficients to analyse the dynamic

stability of the model system for the four parameter sets.

7.1 Self-response coefficients

Since the set of self-response coefficients for a metabolite sum to −1 it fol-

lows that negative self-response coefficients are stabilising, while positive self-

response coefficients are destabilising [23]. The summation to −1 has another

pleasing property, and that is if the experimentally determined self-response

coefficients do not sum to −1 it means that there is a missing interaction route

in need of discovery.

Figs. 7.1–7.3 show how the self-response coefficients of A, B and P vary with

e4. For A and B in the NE-region the interaction that drives the metabolite

back to its value before it was perturbed is via the enzyme that lies upstream

from the metabolite in question, i.e., for which it is a product (1Ra
a and 2Rb

b

for A and B respectively). The reason for this is that the concentration-

control coefficient of the downstream enzyme, i.e., for which the metabolite is

a substrate (2Ra
a and 3Rb

b for A and B respectively), is zero in the NE-region (Ca
2

in Fig. 3.5 and Cb
3 in Fig. 3.6). Ca

1 and Cb
2, on the other hand, have non-zero

values coupled to extremely large elasticity coefficients (εv1a and εv2b in Fig. 3.8
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Figure 7.1: Self-response coefficients for A for parameter sets 1 to 4.
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Figure 7.2: Self-response coefficients for B for parameter sets 1 to 4.
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Figure 7.3: Self-response coefficients for P for parameter sets 1 to 4.

in the NE-region. For A and B in the FFE and SC-regions the self-response

profiles switches in the sense that now the interaction that drives the metabo-

lite back to its value before it was perturbed is via the enzyme that lies down-

stream from the metabolite in question, i.e., for which it is a substrate. For A

this because εv1a , the elasticity component of 1Ra
a, is zero in this region. For B it

is because Cb
2, concentration-control coefficient component of 2Rb

b, is zero. The

more gradual transition from the NE to the FFE-region in parameter set 2 is

due to the smaller Hill coefficient of 1 compared to 4 in the other parameter

sets.

In the SC-region, parameter set 3 differs from the other sets in that the

self-response in A and B is shared between the two coefficients instead of being

fully located in one or the other. Here the reason is mainly that, unlike for

the other parameter sets, εv1a is not zero in the SC-region (see Fig. 3.8-3),

and therefore does allow an upstream effect of a perturbation in A or B. The

degree of sharing of self-response between the two coefficients depends on the

values of the elasticity and concentration-control coefficients that make up the
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self-response coefficients, which in the SC-region of parameter set 3 is quite

complicated.

By now it should be clear that the regulation of dynamic stability revolves

around P and not A and B (note that neither the feedback elasticity εv1p nor

the demand elasticity εv4p have been explicitly implicated in the self-response

of A and B). Accordingly, the self-response profile of P differs from that of A

and B in important respects. However, as one would expect, they all agree

in the NE-region where only upstream communication via the reaction chain

takes place (εv1p and εv4p are both zero in the NE-region, which eliminates the

feedback loop and the downstream effect). For the same reason, i.e., that

εv4p = 0 because P saturates E4,
4Rp

p = 0 in the FFE-region. Because, as

discussed above, εv1a is also zero in the FFE-region, it is only 1Rp
p, which has

the feedback elasticity εv1p as component, that is non-zero and therefore fully

determines the self-response of P in the FFE-region. In the SC-region both

εv1a = 0 and εv1p = 0, which eliminates the upstream and the feedback effect of

P and allows only the downstream effect via εv4p .

In the FFE and SC-regions of the self-response profile of P the most impor-

tant determinants are clearly the feedback and downstream elasticities εv1p and

εv4P . For parameter sets 1, 2, and 3 the situation is clear-cut: when εv1p = −1,

εv4p = 0; when εv1p = 0, εv4p → 1. In parameter set 4, however, εv4p already

attains a value of 1 within the FFE-region so that the downstream effect com-

petes with the feedback effect, leading to sharing of self-response of P between

the two routes.

From the above it should be clear that self-response coefficients provide

an extremely useful view on the factors that determine what drives metabo-

lite back to the steady-state value that obtained before the metabolite was

perturbed, in other words, its dynamic stability.

Self-responses can be regarded as “primary” effects that follow a perturba-

tion in a metabolite. However, a perturbation can also be considered to have

“secondary” effects on other steady-state variables such as flux and other in-

ternal metabolites. Clearly these effects must cancel if the original steady state

is to obtain after the perturbation. The use of internal-response coefficients to

study these effects is the subject of the next section.
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7.2 Internal-response coefficients

Figs. 7.4–7.9 shows the effects of a perturbation in one metabolite concentra-

tion on another metabolite in terms of the internal-response coefficients.

The first obvious observation is that where there are only two interaction

routes the internal-response coefficients must have the same absolute values,

but differ in sign because they must cancel. This is the situation for the

internal-response coefficients of A and of B.

A perturbation in A (Figs. 7.4 and 7.5) affects B and P in the NE-region but

not in the other two regions where εv1a = 0 (except for parameter set 3 where

εv1a 6= 0—as discussed above—and combine with large concentration-control co-

efficients to give the spiked transition between the FFE and SC-regions). One

would expect both the B and P responses to be qualitatively similar because

both metabolites lie downstream from A. Note that any differences in these

internal-response profiles can only be due to differences in the concentration-

control coefficients, since in all of the internal-response coefficients with respect

to a particular metabolite the elasticity coefficients are the same, e.g., both
1Rb

a and 1Rp
a contain εv1a and both 2Rb

a and 2Rp
a contain εv2a .

A perturbation in B (Figs. 7.6 and 7.7) gives radically different internal-

response coefficient profiles for A and P, which is not too surprising because

A lies upstream from B while P lies downstream from B. Accordingly, the

internal response of P to B looks the same as the responses of B to A and P

to A just discussed. As noted above, any differences between the A to B and

P to B internal-response profiles must be due to differences in concentration-

control coefficients involved. Accordingly, we have to compare Ca
2 and Ca

3 (in

Fig. 3.5) with Cp
2 and Cp

3 (in Fig. 3.7). Whereas Ca
2 and Ca

3 are both zero in the

NE-region they become non-zero in the FFE-region and couple to extremely

large elasticity coefficients, which accounts for the sharp transition observed

between the NE and FFE-regions in Fig. 7.6. As the elasticity coefficients

decrease in the FFE-region the internal-response coefficients decrease accord-

ingly. Although on the scale of Fig. 7.7 it looks as if Cp
2 and Cp

3 are zero they

have in fact small non-zero values of 10−4 which combined with extremely

large elasticity coefficients is enough to account for internal-response profile

observed.

The internal-response coefficient profiles for P (Figs. 7.8 and 7.9) have three

components corresponding to an upstream effect via the chain (3Ra
p,

3Rb
p), a

downstream effect via the demand for P (4Ra
p,

4Rb
p), and an effect via the
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Figure 7.4: Internal-response coefficients for B with respect to a change in A

for parameter sets 1 to 4.
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Figure 7.5: Internal-response coefficients for P with respect to a change in A

for parameter sets 1 to 4.
71

Stellenbosch University http://scholar.sun.ac.za



7.2. Internal-response coefficients

10−2 10−1 100 101 102 103
−1

−0.5

0

0.5

1
2Ra

b

3Ra
b

i R
a b

10−2 10−1 100 101 102 103
−1

−0.5

0

0.5

1
2Ra

b

3Ra
b

i R
a b

10−2 10−1 100 101 102 103
−1

−0.5

0

0.5

1
2Ra

b

3Ra
b

e4

i R
a b

10−1 101 103 105
−1

−0.5

0

0.5

1
2Ra

b

3Ra
b

e4

i R
a b

1. 2.

3. 4.

Figure 7.6: Internal-response coefficients for A with respect to a change in B

for parameter sets 1 to 4.
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Figure 7.7: Internal-response coefficients for P with respect to a change in B

for parameter sets 1 to 4.
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Figure 7.8: Internal-response coefficients for A with respect to a change in P

for parameter sets 1 to 4.
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Figure 7.9: Internal-response coefficients for B with respect to a change in P

for parameter sets 1 to 4.
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feedback loop (1Ra
p,

1Rb
p). For parameter sets 1, 2 and 3 the upstream and

feedback effects dominate and give profiles that are qualitatively the same as

those for B on A in Fig. 7.6, the reasons being the same. In the NE and

FFE-regions the effect via E4 is zero because εv4p is zero. The reason why 4Ra
p

and 4Rb
p are also zero in the SC-region while here εv4p is not zero, is that the

concentration-control coefficients Ca
4 and Cb

4 are both zero in the SC-region.

As expected, parameter set 4 gives different results in the FFE and SC-

regions mainly because εv4p is 1 instead of 0, thereby allowing Ca
4 and Cb

4 (see

Fig. 3.5-4 and Fig. 3.6-4) to determine 4Ra
p and 4Rb

p.

Lastly, because there are connectivity relationships for flux-control coef-

ficients with corresponding internal flux-response coefficients, one could also

consider the dynamic stability of flux. Figs. 7.10–7.12 show the internal flux-

response coefficient profiles for the four parameter sets. The obvious feature

of all of these profiles is that the internal-response coefficients are extremely

small (note that the y-axis scale if from 10−2 to 102) and probably impossible

to directly determine by experiment. The reason is of course that for E1, E2,

and E3 the flux-control coefficient component of the internal-response coeffi-

cients are effectively zero in the NE and FFE-regions for parameter sets 1, 2

and 3. Even in parameter set 4, where this is not true in the FFE-region, the

internal-response coefficients are still small. The same generalisation holds for

the internal-response coefficient profiles of P, except for parameter set 4 where

the flux-control is shared between E1 and E4 in the FFE-region and gives larger

internal-response coefficient values.

In retrospect, we believe our analysis shows that the self-responses and

the internal responses of one metabolite with respect to another provides the

most interesting view of dynamic stability, self-responses in particular. Flux

responses to perturbations in internal metabolite concentrations probably give

less insight.
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7.2. Internal-response coefficients

10−2 10−1 100 101 102 103
−2

−1

0

1

2
·10−2

1RJ
a

2RJ
a

i R
J a

10−2 10−1 100 101 102 103
−2

−1

0

1

2
·10−2

1RJ
a

2RJ
a

i R
J a

10−2 10−1 100 101 102 103
−2

−1

0

1

2
·10−2

1RJ
a

2RJ
a

e4

i R
J a

10−1 101 103 105
−2

−1

0

1

2
·10−2

1RJ
a

2RJ
a

e4

i R
J a

1. 2.

3. 4.

Figure 7.10: Internal-response coefficients for J with respect to a change in A

for parameter sets 1 to 4.
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Figure 7.11: Internal-response coefficients for J with respect to a change in B

for parameter sets 1 to 4.
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7.2. Internal-response coefficients
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Figure 7.12: Internal-response coefficients for J with respect to change in P
for parameter sets 1 to 4.
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Chapter 8

Sauro’s partitioned regulatory

coefficients

Consider a perturbation in the activity of a particular step through a param-

eter such as its enzyme concentration. Ask the question: For each step in a

pathway, what is the contribution to the flux-response in that step through

each of the metabolites that directly affects the activity of that enzyme? Sauro

[34] suggested a way of quantifying this response in term of what he termed

“partitioned regulatory coefficients”. Whether this is what most biochemists

would understand under the umbrella term “regulation” is questionable. Ac-

cordingly, this chapter while reviewing the theory behind Sauro’s analysis and

suggesting a modified version, does not intend to provide too detailed a treat-

ment.

8.1 Background

The background theory that underlies the relationship between partitioned

regulatory coefficients has already been explained in Section 2.10. For a per-

turbation in, say, v4 of the reaction scheme in Fig. 3.1, the flux-control coeffi-

cient CJ
4 can be expressed in four ways, each corresponding to the flux response

at a particular reaction:

CJ
4 = εv1a C

a
4 + εv1p C

p
4 (8.1)

CJ
4 = εv2a C

a
4 + εv2b C

b
4 (8.2)

CJ
4 = εv3b C

b
4 + εv3p C

p
4 (8.3)

CJ
4 = 1 + εv4p C

p
4 (8.4)
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8.1. Background

These equations can be understood in terms of the simple thought experiment

described in Section 2.10.

If both sides in these equations are divided by CJ
4 they yield the following:

1 = εv1a
Ca

4

CJ
4

+ εv1p
Cp

4

CJ
4

= εv1a O
a:J
4 + εv1p O

p:J
4 (8.5)

1 = εv2a
Ca

4

CJ
4

+ εv2b
Cb

4

CJ
4

= εv2a O
a:J
4 + εv2b O

b:J
4 (8.6)

1 = εv3b
Cb

4

CJ
4

+ εv3p
Cp

4

CJ
4

= εv3b O
b:J
4 + εv3p O

p:J
4 (8.7)

1 =
1

CJ
4

+ εv4p
Cp

4

CJ
4

=
1

CJ
4

+ εv4p O
p:J
4 (8.8)

Sauro [34] named the right-hand terms partitioned regulatory coefficients

(although he did not reframe the equations in terms of co-control coefficients,

which had not yet been defined at that time). Following Sauro [34], we shall use

the symbol skP
Jj
vi to denote a partitioned regulatory coefficient that describes

how a perturbation in rate vi of reaction i affects the flux Jj through reaction

rj via a change in the concentration sk of a metabolite that interacts directly

with enzyme Ej
1.

Using this symbolism, eqns. 8.5–8.8 become

1 = aP 1
4 + pP 1

4 (8.9)

1 = aP 2
4 + bP 2

4 (8.10)

1 = bP 3
4 + pP 3

4 (8.11)

1 = v4P 4
4 + pP 4

4 (8.12)

Note in particular the use of v4P 4
4 to denote 1/CJ

4 , the coefficient that describes

the direct effect of the perturbation on the flux through reaction 4 that is not

mediated by a metabolite.

On reflection, it is not clear what Sauro gained by scaling with the flux-

control coefficient. One obvious problem arises when the scaling flux-control

coefficient approaches zero so that the partitioned regulatory coefficients be-

come extremely large. In fact, one loses information by scaling in this way and

in our opinion it makes sense to also use the unscaled eqns. 8.1–8.4. We there-

fore propose to rewrite eqns. 8.1–8.4 using skπ
Jj
vi as a symbol for the right hand

1Sauro used a different configuration of subscripts and superscripts, namely viP
Jj
sk , but

we prefer our configuration because it follows the same convention as the other coefficients
of MCA, in that the subscript refers to the perturbation, the superscript to the variable
affected and the pre-superscript to the route through which the effect is mediated
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8.2. Analysis using π-coefficients

terms, which we shall just call, for want of a better term, π-coefficients (since

regulation is a general concept, we prefer not to link the notion of regulation

directly to these coefficients, the same reasoning why we preferred “internal-

response coefficients” to Kahn and Westerhoff’s “regulatory strengths” and

“self-response coefficients” to “homeostatic strengths”).

CJ
4 = aπ1

4 + pπ1
4 (8.13)

CJ
4 = aπ2

4 + bπ2
4 (8.14)

CJ
4 = bπ3

4 + pπ3
4 (8.15)

CJ
4 = v4π4

4 + pπ4
4 (8.16)

Here v4π4
4 = 1 by definition and reflects the fact that the perturbation in the

local v4 has a direct proportional effect on the flux through reaction 4.

Fig. 8.1 compares the two incarnations of Sauro’s coefficients for a per-

turbation in v4, with panel A depicting the partitioned regulatory coefficients

for the four reactions in Fig. 3.1, and panel B the corresponding π-coefficients

together with the flux-control coefficient that they sum to. In the NE and

FFE-regions where CJ
4 = 1, the two types of coefficients are of course identi-

cal, while in the SC-region where CJ
4 = 0, the partitioned response coefficients

approach ±∞, while the π-coefficients are zero. The exception is the SC-region

in 1A, where the partitioned regulatory coefficients are different (showing that

the effect on reaction 1, such as it is, is via A and not via P), while the

π-coefficients are both zero. How useful this is, is however debatable, since

the actual flux change through reaction 1 is zero. In the rest of this chap-

ter we therefore prefer to use π-coefficients instead of partitioned regulatory

coefficients to illustrate Sauro’s approach, albeit in a modified form.

8.2 Analysis using π-coefficients

As an example of what one can learn from Sauro’s approach, Figs. 8.2–8.5

compare the π-coefficients of all four reactions with respect to a perturbation

in v4 for parameter sets 1 to 4.

Fig. 8.2 shows that in the NE-region the flux response in reaction 1 is solely

via A, while in the FFE-region it is via P. This is due to εv1p , which is 0 in

both the NE and the SC-regions, forming part of pπ1
4, and εv1a , which is 0 in

the FFE and SC-regions, forming part of aπ1
4.

For reactions 2 and 3 in Figs. 8.3 and 8.4 the π-coefficients are both very

large and of opposite sign in the NE-region and most of the FFE-region;
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8.2. Analysis using π-coefficients
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Figure 8.1: Sauro’s partitioned regulatory coefficients (A) vs. π-coefficients

(B) of E1–E4 with respect to a perturbation in v4 for parameter set 1.
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8.2. Analysis using π-coefficients

the reason for this is that here these reactions are near-equilibrium due to the

high activity of their enzymes and therefore have extremely large elasticity

coefficients that dominate the π-coefficients. In that part of the FFE-region

closest to the SC-region the π-coefficients deviate from the elasticity profiles in

Fig. 3.8; here the π-coefficients are determined by their concentration-control

coefficients components (see the profiles of Ra
4 and Rb

4 in Fig. 3.3-B). In this

region most of the response in the flux through reaction 2 is via A. For

reaction 3 this is less pronounced.

For reaction 4 in Fig. 8.5, since the v4π4
4 term is 1, the π-coefficient pπ4

4

tracks CJ
4 with a fixed difference of 1, so that one cannot learn anything more

from these profiles than is already provided by CJ
4 .

As stated in the beginning of this chapter, we are of the opinion that the

information gained by Sauro’s analysis, while interesting in itself, is not what

one would usually classify as telling one much about regulation and we have

accordingly not attempted a detailed investigation.
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8.2. Analysis using π-coefficients
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Figure 8.2: π-coefficients of E1 with respect to a perturbation in v4 for param-

eter sets 1 to 4.
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Figure 8.3: π-coefficients of E2 with respect to a perturbation in v4 for param-

eter sets 1 to 4.
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8.2. Analysis using π-coefficients
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Figure 8.4: π-coefficients of E3 with respect to a perturbation in v4 for param-

eter sets 1 to 4.
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Figure 8.5: π-coefficients of E4 with respect to a perturbation in v4 for param-

eter sets 1 to 4.
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Chapter 9

Discussion

Metabolic systems are thermodynamically open systems continually subject

to changes in the surrounding environment that cause fluctuations in the state

variables and perturbations in the system parameters. It is therefore impor-

tant that metabolic systems have mechanisms to keep them dynamically and

structurally stable in the face of these changes. In addition, metabolic sys-

tems should also be able to cope with large changes in the fluxes through

the pathways, not letting metabolite concentrations vary wildly. Consider, for

example, that human metabolism manages to keep the blood glucose concen-

tration within a narrow range when the flux through the glucose pool increases

drastically when going from the fasting to the fed state, an example of meta-

bolic homeostasis.

Metabolic regulation studies often fall into the trap of trying to locate

regulation in a few mechanisms such as feedback or feedforward effects, thereby

losing sight of the fact to regulation is a systemic property. In the study

presented in this dissertation metabolic regulation was approached from such a

systemic point of view, using the quantitative framework of Metabolic Control

Analysis.

The system chosen to serve as an example had the advantage that its

regulatory properties were well understood. The four parameters sets were

chosen to illustrate different behavioural aspects of the system. Parameter

set 1 defined a system in which the demand is saturated with its substrate

P throughout most of the scan range of the demand, and therefore has an

elasticity coefficient of zero in this range and has full flux control. Only when

demand is so high that the supply becomes limiting does the demand elasticity

increase to its limiting value of 1 (typical for an irreversible Michaelis-Menten

enzyme). The supply flux itself is controlled by the first enzyme since it was
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defined to be virtually insensitive to its immediate product A. This means

that in the FFE-region E1 determines how the steady-state concentration of

P changes with demand. In which concentration range and how steeply it

changes is determined by how strongly it binds to E1 and the degree of binding

cooperativity. The intermediary supply enzymes E2 and E3 were set to be

very active and keep the steady-state concentrations of A and B linked in

near-equilibrium with P as it varies.

Parameter set 2 demonstrated that when the cooperativity of binding of

P to E1 decreases, the concentration of P varies over a much larger range in

the FFE-region. Parameter set 3 showed that when the intermediary supply

enzymes E2 and E3 are less active they cannot keep A and B in near-equilibrium

with P so that their concentrations varies much more with the demand. In

parameter set 4 P binds four orders of magnitude less strongly to the demand

so that the demand does not have full control over the flux in the FFE-region.

Throughout the study the system was subjected to a wide variation in

demand that took it from very low demand, where metabolite concentration

tends to near equilibrium with the fixed pathway substrate, to very high de-

mand, where the supply cannot match it. The parameter portraits of steady-

state flux and metabolite concentrations (Fig. 3.3) for the four parameter sets

clearly delineates three regions as the demand varied from low to high: one

near equilibrium, one far from equilibrium, and one where the supply takes

over the control of flux completely (the demand having full flux control in

the other two regions). In the old parlance the demand is rate-limiting in

the NE and FFE regions, while the supply is rate-limiting in the SC-region.

From these parameter portraits one could already see that, while qualitatively

they give the same profile, quantitatively the metabolite concentrations behave

quite differently with the different parameter sets, especially in the FFE region:

with parameter set 1 A, B, P remains relatively constant, with parameter set 2

they vary much more, with parameter set 3 P remains relatively constant but

A and B do not, with parameter set 4 they give a profile similar to parameter

set 1 but the transitions between the regions are much less abrupt.

The study then investigated the use of Metabolic Control Analysis for

studying particular aspects of metabolic regulation, namely the regulation of

structural stability using concentration-response coefficients, of homeostasis

using co-response coefficients, and of dynamic stability using self-response and

internal response coefficients. However, just knowing the values of these coef-

ficients was only half of the story. The other half was understanding quanti-
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tatively which interactions in the system determine the value of one of these

coefficients in a particular steady state. It was shown that control patterns

allow the dissection of a control coefficient into chains of local effects that

emanate from the perturbation and are therefore valuable in understanding

which system properties determine structural stability and to what degree.

Similarly, self-response and internal response coefficients give the same type

of quantitative insight into dynamic stability, especially self-response coeffi-

cients that describe which routes from the perturbed metabolite drive it back

to its steady-state value before the perturbation. Metabolite-flux co-response

coefficients allow the definition of an index that quantifies to which degree a

metabolite is homeostatically regulated. It must be stressed that, although

these measures have been proposed before in the literature, they have to our

knowledge never been investigated and compared before in the way that this

study did.

One of the main insights gained from this study is the importance of elas-

ticity coefficients that tend to zero. In our system these were the elasticity

of E1 to its immediate product A, which ensures that E1 controls the flux in

the supply subsystem in the FFE and SC-regions, and the elasticity of E4 to

its substrate P, which ensures that the demand controls the flux in the NE

and FFE-regions. The fact that the feedback elasticity εv1p is zero in the SC-

region also played an important role in determining which other interactions

contributed to regulation.

In the regulation of both structural and dynamic stability it was evident

that the main factors were interactions up and down the reaction sequence in

the NE-region, the feedback loop in the FFE-region, and the demand elasticity

in the SC-region.

Although Sauro’s [34] approach to metabolic regulation did not originally

form part of this investigation, it was felt that at least an explanation and

example would be useful and was therefore included. What did come out of

this is that the scaled partitioned regulatory coefficients that sum to one may

not be the most informative measures, and that the unscaled coefficients, that

we called π-coefficients may be more useful.

Although the metabolic system used to demonstrate the concepts devel-

oped in this study is rather simple, the analysis is valid for systems of ar-

bitrary complexity. This study has therefore laid the groundwork for future

studies of metabolic regulation of more complex core models or of models of

real systems such as the ones archived in model databases such as JWS On-
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line (http://jjj.biochem.sun.ac.za/) and BioModels (http://www.ebi.

ac.uk/biomodels-main/). It also demonstrates the importance of such mod-

els to further our understanding of metabolic behaviour, control and regu-

lation. The experimental implementation of the analyses described in this

dissertation is probably to a large degree unfeasible at present, but if one has

a good model then this is what one could use it for. Too often metabolic mod-

els are constructed without ever being interrogated and here one such way of

doing it was demonstrated. It is not even necessary to analyse real models. As

shown here, much can be learnt from generic models based on proper enzyme

kinetics.

Although Sauro’s [34] approach to metabolic regulation did not originally

form part of this investigation, it was felt that at least an explanation and

example would be useful and was therefore included. What did come out

of this is that the scaled partitioned regulatory coefficients that sum to one

may not be the most informative measures, and that the unscaled coeffi-

cients, that we called π-coefficients may be more useful. This study has laid

the groundwork for future studies of metabolic regulation of more complex

core models or of models of real systems such as the ones archived in model

databases such as JWS Online (http://jjj.biochem.sun. ac.za/) and BioMod-

els (http://www.ebi.ac.uk/biomodels-main/). It also demonstrates the impor-

tance of such models to further our understanding of metabolic behaviour,

control and regulation. The experimental implementation of the analyses de-

scribed in this dissertation is probably to a large degree unfeasible at present,

but if one has a good model then this is what one could use it for. Too often

metabolic models are constructed without ever being interrogated and here

one such way of doing it was demonstrated. It is not even necessary to analyse

real models. As shown here, much can be learnt from generic models based on

proper enzyme kinetics.
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Chapter 10

Appendices

10.1 PySCeS input file for the pathway in

Fig. 3.1

# A linear pathway consisting of four enzyme-catalysed reactions

# with end-product inhibition of the committing enzyme by the

# pathway product.

# S --E1--> A --E2--> B --E3--> P --E4--> dummy

|_________________________|

FIX: S dummy

R1: S = A

(kcat1*E1/K1s)*(S - A/Keq1)*(S/K1s + A/K1a)**(h-1)/

((S/K1s + A/K1a)**h + (1 + (P/K1p)**h)/(1 + alpha*(P/K1p)**h))

R2: A = B

(kcat2*E2/K2a)*(A - B/Keq2)/(1 + A/K2a + B/K2b)

R3: B = P

(kcat3*E3/K3b)*(B - P/Keq3)/(1 + B/K3b + P/K3p)

R4: P > dummy

kcat4*E4*P/(K4p + P)

# Initialise internal metabolite concentrations

A = 0.001

B = 0.001

P = 0.001
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10.2. Python script used to generate all the simulation results

# Initialise external metabolite concentrations

S = 1.0

dummy = 0.0

# Initialise enzyme parameters

# E1

Keq1 = 100.0

kcat1 = 1.0

E1 = 200.0

K1s = 1.0

K1a = 1.0e5

h = 4.0

K1p = 1.0

alpha = 0.001

# E2

Keq2 = 10.0

kcat2 = 1.0

E2 = 1000.0

K2a = 1.0

K2b = 1.0

# E3

Keq3 = 10.0

kcat3 = 1.0

E3 = 1000.0

K3b = 1.0

K3p = 1.0

# E4

kcat4 = 1.0

E4 = 50.0

K4p = 0.01

10.2 Python script used to generate all the

simulation results

# E4-parameter scans

import pysces, scipy

m = pysces.model(’lin4fb’)

m.doState()

m.doMca()

output_dir = ’data/’

m.scan_in = ’E4’
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m.scan_out = [’J_R1’,’A’,’B’,’P’,

’ecR1_A’,’ecR2_A’,’ecR2_B’,’ecR3_B’,

’ecR1_P’,’ecR3_P’,’ecR4_P’,

’ccJR1_R1’,’ccJR1_R2’,’ccJR1_R3’,’ccJR1_R4’,

’ccA_R1’,’ccA_R2’,’ccA_R3’,’ccA_R4’,

’ccB_R1’,’ccB_R2’,’ccB_R3’,’ccB_R4’,

’ccP_R1’,’ccP_R2’,’ccP_R3’,’ccP_R4’]

def create_data_arrays(mod, par_set):

mod.Scan1(scan_range)

E4 = mod.scan_res[:,0]

# Steady-state variables

J_R1 = mod.scan_res[:,1]

A = mod.scan_res[:,2]

B = mod.scan_res[:,3]

P = mod.scan_res[:,4]

# Elasticities

ec_R1_A = mod.scan_res[:,5]

ec_R2_A = mod.scan_res[:,6]

ec_R2_B = mod.scan_res[:,7]

ec_R3_B = mod.scan_res[:,8]

ec_R1_P = mod.scan_res[:,9]

ec_R3_P = mod.scan_res[:,10]

ec_R4_P = mod.scan_res[:,11]

# Control Coefficients

cc_J_R1 = mod.scan_res[:,12]

cc_J_R2 = mod.scan_res[:,13]

cc_J_R3 = mod.scan_res[:,14]

cc_J_R4 = mod.scan_res[:,15]

cc_A_R1 = mod.scan_res[:,16]

cc_A_R2 = mod.scan_res[:,17]

cc_A_R3 = mod.scan_res[:,18]

cc_A_R4 = mod.scan_res[:,19]

cc_B_R1 = mod.scan_res[:,20]

cc_B_R2 = mod.scan_res[:,21]

cc_B_R3 = mod.scan_res[:,22]

cc_B_R4 = mod.scan_res[:,23]

cc_P_R1 = mod.scan_res[:,24]

cc_P_R2 = mod.scan_res[:,25]

cc_P_R3 = mod.scan_res[:,26]

cc_P_R4 = mod.scan_res[:,27]

ss_var_list = [’E4’] + mod.scan_out

# Sauro’s scaled partitioned regulatory coefficients for E1
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# through E1

E1_prc_E1_J_via_a = (ec_R1_A * cc_A_R1) / cc_J_R1

E1_prc_E1_J_via_p = (ec_R1_P * cc_P_R1) / cc_J_R1

E1_prc_E1_J_via_v1 = 1 / cc_J_R1

# through E2

E1_prc_E2_J_via_a = (ec_R2_A * cc_A_R1) / cc_J_R1

E1_prc_E2_J_via_b = (ec_R2_B * cc_B_R1) / cc_J_R1

# through E3

E1_prc_E3_J_via_b = (ec_R3_B * cc_B_R1) / cc_J_R1

E1_prc_E3_J_via_p = (ec_R3_P * cc_P_R1) / cc_J_R1

# through E4

E1_prc_E4_J_via_p = (ec_R4_P * cc_P_R1) / cc_J_R1

E1_prc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’, ’E1_J_via_v1’,

’E2_J_via_a’, ’E2_J_via_b’,

’E3_J_via_b’, ’E3_J_via_p’,

’E4_J_via_p’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E1_prc_E1_J = E1_prc_E1_J_via_a + E1_prc_E1_J_via_p + E1_prc_E1_J_via_v1

sum_E1_prc_E2_J = E1_prc_E2_J_via_a + E1_prc_E2_J_via_b

sum_E1_prc_E3_J = E1_prc_E3_J_via_b + E1_prc_E3_J_via_p

sum_E1_prc_E4_J = E1_prc_E4_J_via_p

sum_E1_prc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Sauro’s Partitioned regulatory coefficients for E2

# through E1

E2_prc_E1_J_via_a = (ec_R1_A * cc_A_R2) / cc_J_R2

E2_prc_E1_J_via_p = (ec_R1_P * cc_P_R2) / cc_J_R2

# through E2

E2_prc_E2_J_via_a = (ec_R2_A * cc_A_R2) / cc_J_R2

E2_prc_E2_J_via_b = (ec_R2_B * cc_B_R2) / cc_J_R2

E2_prc_E2_J_via_v2 = 1 / cc_J_R2

# through E3

E2_prc_E3_J_via_b = (ec_R3_B * cc_B_R2) / cc_J_R2

E2_prc_E3_J_via_p = (ec_R3_P * cc_P_R2) / cc_J_R2

# through E4

E2_prc_E4_J_via_p = (ec_R4_P * cc_P_R2) / cc_J_R2

E2_prc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’,

’E2_J_via_a’, ’E2_J_via_b’, ’E2_J_via_v2’,

’E3_J_via_b’, ’E3_J_via_p’,
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’E4_J_via_p’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E2_prc_E1_J = E2_prc_E1_J_via_a + E2_prc_E1_J_via_p

sum_E2_prc_E2_J = E2_prc_E2_J_via_a + E2_prc_E2_J_via_b + E2_prc_E2_J_via_v2

sum_E2_prc_E3_J = E2_prc_E3_J_via_b + E2_prc_E3_J_via_p

sum_E2_prc_E4_J = E2_prc_E4_J_via_p

sum_E2_prc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Sauro’s Partitioned regulatory coefficients for E3

# through E1

E3_prc_E1_J_via_a = (ec_R1_A * cc_A_R3) / cc_J_R3

E3_prc_E1_J_via_p = (ec_R1_P * cc_P_R3) / cc_J_R3

# through E2

E3_prc_E2_J_via_a = (ec_R2_A * cc_A_R3) / cc_J_R3

E3_prc_E2_J_via_b = (ec_R2_B * cc_B_R3) / cc_J_R3

# through E3

E3_prc_E3_J_via_b = (ec_R3_B * cc_B_R3) / cc_J_R3

E3_prc_E3_J_via_p = (ec_R3_P * cc_P_R3) / cc_J_R3

E3_prc_E3_J_via_v3 = 1 / cc_J_R3

# through E4

E3_prc_E4_J_via_p = (ec_R4_P * cc_P_R3) / cc_J_R3

E3_prc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’,

’E2_J_via_a’, ’E2_J_via_b’,

’E3_J_via_b’, ’E3_J_via_p’, ’E3_J_via_v3’,

’E4_J_via_p’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E3_prc_E1_J = E3_prc_E1_J_via_a + E3_prc_E1_J_via_p

sum_E3_prc_E2_J = E3_prc_E2_J_via_a + E3_prc_E2_J_via_b

sum_E3_prc_E3_J = E3_prc_E3_J_via_b + E3_prc_E3_J_via_p + E3_prc_E3_J_via_v3

sum_E3_prc_E4_J = E3_prc_E4_J_via_p

sum_E3_prc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Sauro’s Partitioned regulatory coefficients for E4

# through E1

E4_prc_E1_J_via_a = (ec_R1_A * cc_A_R4) / cc_J_R4

E4_prc_E1_J_via_p = (ec_R1_P * cc_P_R4) / cc_J_R4

# through E2

E4_prc_E2_J_via_a = (ec_R2_A * cc_A_R4) / cc_J_R4

E4_prc_E2_J_via_b = (ec_R2_B * cc_B_R4) / cc_J_R4
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# through E3

E4_prc_E3_J_via_b = (ec_R3_B * cc_B_R4) / cc_J_R4

E4_prc_E3_J_via_p = (ec_R3_P * cc_P_R4) / cc_J_R4

# through E4

E4_prc_E4_J_via_p = (ec_R4_P * cc_P_R4) / cc_J_R4

E4_prc_E4_J_via_v4 = 1 / cc_J_R4

E4_prc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’,

’E2_J_via_a’, ’E2_J_via_b’,

’E3_J_via_b’, ’E3_J_via_p’,

’E4_J_via_p’, ’E4_J_via_v4’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E4_prc_E1_J = E4_prc_E1_J_via_a + E4_prc_E1_J_via_p

sum_E4_prc_E2_J = E4_prc_E2_J_via_a + E4_prc_E2_J_via_b

sum_E4_prc_E3_J = E4_prc_E3_J_via_b + E4_prc_E3_J_via_p

sum_E4_prc_E4_J = E4_prc_E4_J_via_p + E4_prc_E4_J_via_v4

sum_E4_prc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Unscaled partitioned regulatory coefficients for E1 (from EC = I)

# through E1

E1_pc_E1_J_via_a = (ec_R1_A * cc_A_R1)

E1_pc_E1_J_via_p = (ec_R1_P * cc_P_R1)

E1_pc_E1_J_via_v1 = cc_J_R1 / cc_J_R1

# through E2

E1_pc_E2_J_via_a = (ec_R2_A * cc_A_R1)

E1_pc_E2_J_via_b = (ec_R2_B * cc_B_R1)

# through E3

E1_pc_E3_J_via_b = (ec_R3_B * cc_B_R1)

E1_pc_E3_J_via_p = (ec_R3_P * cc_P_R1)

# through E4

E1_pc_E4_J_via_p = (ec_R4_P * cc_P_R1)

E1_pc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’, ’E1_J_via_v1’,

’E2_J_via_a’, ’E2_J_via_b’,

’E3_J_via_b’, ’E3_J_via_p’,

’E4_J_via_p’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E1_pc_E1_J = E1_pc_E1_J_via_a + E1_pc_E1_J_via_p + E1_pc_E1_J_via_v1

sum_E1_pc_E2_J = E1_pc_E2_J_via_a + E1_pc_E2_J_via_b

sum_E1_pc_E3_J = E1_pc_E3_J_via_b + E1_pc_E3_J_via_p

sum_E1_pc_E4_J = E1_pc_E4_J_via_p
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sum_E1_pc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Unscaled partitioned regulatory coefficients for E2 (from EC = I)

# through E1

E2_pc_E1_J_via_a = (ec_R1_A * cc_A_R2)

E2_pc_E1_J_via_p = (ec_R1_P * cc_P_R2)

# through E2

E2_pc_E2_J_via_a = (ec_R2_A * cc_A_R2)

E2_pc_E2_J_via_b = (ec_R2_B * cc_B_R2)

E2_pc_E2_J_via_v2 = cc_J_R2 / cc_J_R2

# through E3

E2_pc_E3_J_via_b = (ec_R3_B * cc_B_R2)

E2_pc_E3_J_via_p = (ec_R3_P * cc_P_R2)

# through E4

E2_pc_E4_J_via_p = (ec_R4_P * cc_P_R2)

E2_pc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’,

’E2_J_via_a’, ’E2_J_via_b’, ’E2_J_via_v2’,

’E3_J_via_b’, ’E3_J_via_p’,

’E4_J_via_p’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E2_pc_E1_J = E2_pc_E1_J_via_a + E2_pc_E1_J_via_p

sum_E2_pc_E2_J = E2_pc_E2_J_via_a + E2_pc_E2_J_via_b + E2_pc_E2_J_via_v2

sum_E2_pc_E3_J = E2_pc_E3_J_via_b + E2_pc_E3_J_via_p

sum_E2_pc_E4_J = E2_pc_E4_J_via_p

sum_E2_pc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Unscaled partitioned regulatory coefficients for E3 (from EC = I)

# through E1

E3_pc_E1_J_via_a = (ec_R1_A * cc_A_R3)

E3_pc_E1_J_via_p = (ec_R1_P * cc_P_R3)

# through E2

E3_pc_E2_J_via_a = (ec_R2_A * cc_A_R3)

E3_pc_E2_J_via_b = (ec_R2_B * cc_B_R3)

# through E3

E3_pc_E3_J_via_b = (ec_R3_B * cc_B_R3)

E3_pc_E3_J_via_p = (ec_R3_P * cc_P_R3)

E3_pc_E3_J_via_v3 = cc_J_R3 / cc_J_R3

# through E4

E3_pc_E4_J_via_p = (ec_R4_P * cc_P_R3)
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E3_pc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’,

’E2_J_via_a’, ’E2_J_via_b’,

’E3_J_via_b’, ’E3_J_via_p’, ’E3_J_via_v3’,

’E4_J_via_p’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E3_pc_E1_J = E3_pc_E1_J_via_a + E3_pc_E1_J_via_p

sum_E3_pc_E2_J = E3_pc_E2_J_via_a + E3_pc_E2_J_via_b

sum_E3_pc_E3_J = E3_pc_E3_J_via_b + E3_pc_E3_J_via_p + E3_pc_E3_J_via_v3

sum_E3_pc_E4_J = E3_pc_E4_J_via_p

sum_E3_pc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Unscaled partitioned regulatory coefficients for E4 (from EC = I)

# through E1

E4_pc_E1_J_via_a = (ec_R1_A * cc_A_R4)

E4_pc_E1_J_via_p = (ec_R1_P * cc_P_R4)

# through E2

E4_pc_E2_J_via_a = (ec_R2_A * cc_A_R4)

E4_pc_E2_J_via_b = (ec_R2_B * cc_B_R4)

# through E3

E4_pc_E3_J_via_b = (ec_R3_B * cc_B_R4)

E4_pc_E3_J_via_p = (ec_R3_P * cc_P_R4)

# through E4

E4_pc_E4_J_via_p = (ec_R4_P * cc_P_R4)

E4_pc_E4_J_via_v4 = cc_J_R4 / cc_J_R4

E4_pc_list = [’E4’,

’E1_J_via_a’, ’E1_J_via_p’,

’E2_J_via_a’, ’E2_J_via_b’,

’E3_J_via_b’, ’E3_J_via_p’,

’E4_J_via_p’, ’E4_J_via_v4’]

# Sum of partitioned regulatory coefficients: Theory check

sum_E4_pc_E1_J = E4_pc_E1_J_via_a + E4_pc_E1_J_via_p

sum_E4_pc_E2_J = E4_pc_E2_J_via_a + E4_pc_E2_J_via_b

sum_E4_pc_E3_J = E4_pc_E3_J_via_b + E4_pc_E3_J_via_p

sum_E4_pc_E4_J = E4_pc_E4_J_via_p + E4_pc_E4_J_via_v4

sum_E4_pc_list = [’E4’,

’J_E1’, ’J_E2’, ’J_E3’, ’J_E4’]

# Internal response coefficients

irc_J_a_R1 = ec_R1_A * cc_J_R1

irc_J_a_R2 = ec_R2_A * cc_J_R2

irc_a_a_R1 = ec_R1_A * cc_A_R1

irc_a_a_R2 = ec_R2_A * cc_A_R2
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irc_b_a_R1 = ec_R1_A * cc_B_R1

irc_b_a_R2 = ec_R2_A * cc_B_R2

irc_p_a_R1 = ec_R1_A * cc_P_R1

irc_p_a_R2 = ec_R2_A * cc_P_R2

irc_J_b_R2 = ec_R2_B * cc_J_R2

irc_J_b_R3 = ec_R3_B * cc_J_R3

irc_a_b_R2 = ec_R2_B * cc_A_R2

irc_a_b_R3 = ec_R3_B * cc_A_R3

irc_b_b_R2 = ec_R2_B * cc_B_R2

irc_b_b_R3 = ec_R3_B * cc_B_R3

irc_p_b_R2 = ec_R2_B * cc_P_R2

irc_p_b_R3 = ec_R3_B * cc_P_R3

irc_J_p_R1 = ec_R1_P * cc_J_R1

irc_J_p_R3 = ec_R3_P * cc_J_R3

irc_J_p_R4 = ec_R4_P * cc_J_R4

irc_a_p_R1 = ec_R1_P * cc_A_R1

irc_a_p_R3 = ec_R3_P * cc_A_R3

irc_a_p_R4 = ec_R4_P * cc_A_R4

irc_b_p_R1 = ec_R1_P * cc_B_R1

irc_b_p_R3 = ec_R3_P * cc_B_R3

irc_b_p_R4 = ec_R4_P * cc_B_R4

irc_p_p_R1 = ec_R1_P * cc_P_R1

irc_p_p_R3 = ec_R3_P * cc_P_R3

irc_p_p_R4 = ec_R4_P * cc_P_R4

irc_list = [’E4’,

’J_a_R1’,’J_a_R2’,’a_a_R1’,’a_a_R2’,’b_a_R1’,’b_a_R2’,’p_a_R1’,’p_a_R2’,

’J_b_R2’,’J_b_R3’,’a_b_R2’,’a_b_R3’,’b_b_R2’,’b_b_R3’,

’p_b_R2’,’p_b_R3’,

’J_p_R1’,’J_p_R3’,’J_p_R4’,

’a_p_R1’,’a_p_R3’,’a_p_R4’,

’b_p_R1’,’b_p_R3’,’b_p_R4’,

’p_p_R1’,’p_p_R3’,’p_p_R4’]

# Connectivities: Sum of internal response coefficients: Theory check

sum_irc_J_a = irc_J_a_R1 + irc_J_a_R2

sum_irc_a_a = irc_a_a_R1 + irc_a_a_R2

sum_irc_b_a = irc_b_a_R1 + irc_b_a_R2

sum_irc_p_a = irc_p_a_R1 + irc_p_a_R2

sum_irc_J_b = irc_J_b_R2 + irc_J_b_R3

sum_irc_a_b = irc_a_b_R2 + irc_a_b_R3

sum_irc_b_b = irc_b_b_R2 + irc_b_b_R3

sum_irc_p_b = irc_p_b_R2 + irc_p_b_R3

sum_irc_J_p = irc_J_p_R1 + irc_J_p_R3 + irc_J_p_R4

sum_irc_a_p = irc_a_p_R1 + irc_a_p_R3 + irc_a_p_R4

sum_irc_b_p = irc_b_p_R1 + irc_b_p_R3 + irc_b_p_R4

sum_irc_p_p = irc_p_p_R1 + irc_p_p_R3 + irc_p_p_R4

sum_irc_list = [’E4’,
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’J_a’, ’a_a’, ’b_a’, ’p_a’,

’J_b’, ’a_b’, ’b_b’, ’p_b’,

’J_p’, ’a_p’, ’b_p’, ’p_p’]

# Regulatory potential

rp_J_p_pos = irc_J_p_R4

rp_J_p_neg = irc_J_p_R1 + irc_J_p_R3

rp_list = [’E4’, ’rp_J_p_pos’, ’rp_J_p_neg’]

# Co-control coefficients

coc_a_J_R1 = cc_A_R1 / cc_J_R1

coc_a_J_R2 = cc_A_R2 / cc_J_R2

coc_a_J_R3 = cc_A_R3 / cc_J_R3

coc_a_J_R4 = cc_A_R4 / cc_J_R4

coc_J_a_R1 = cc_J_R1 / cc_A_R1

coc_J_a_R2 = cc_J_R2 / cc_A_R2

coc_J_a_R3 = cc_J_R3 / cc_A_R3

coc_J_a_R4 = cc_J_R4 / cc_A_R4

coc_abs_J_a_R1 = scipy.absolute(cc_J_R1 / cc_A_R1)

coc_abs_J_a_R2 = scipy.absolute(cc_J_R2 / cc_A_R2)

coc_abs_J_a_R3 = scipy.absolute(cc_J_R3 / cc_A_R3)

coc_abs_J_a_R4 = scipy.absolute(cc_J_R4 / cc_A_R4)

coc_b_J_R1 = cc_B_R1 / cc_J_R1

coc_b_J_R2 = cc_B_R2 / cc_J_R2

coc_b_J_R3 = cc_B_R3 / cc_J_R3

coc_b_J_R4 = cc_B_R4 / cc_J_R4

coc_J_b_R1 = cc_J_R1 / cc_B_R1

coc_J_b_R2 = cc_J_R2 / cc_B_R2

coc_J_b_R3 = cc_J_R3 / cc_B_R3

coc_J_b_R4 = cc_J_R4 / cc_B_R4

coc_abs_J_b_R1 = scipy.absolute(cc_J_R1 / cc_B_R1)

coc_abs_J_b_R2 = scipy.absolute(cc_J_R2 / cc_B_R2)

coc_abs_J_b_R3 = scipy.absolute(cc_J_R3 / cc_B_R3)

coc_abs_J_b_R4 = scipy.absolute(cc_J_R4 / cc_B_R4)

coc_p_J_R1 = cc_P_R1 / cc_J_R1

coc_p_J_R2 = cc_P_R2 / cc_J_R2

coc_p_J_R3 = cc_P_R3 / cc_J_R3

coc_p_J_R4 = cc_P_R4 / cc_J_R4

coc_J_p_R1 = cc_J_R1 / cc_P_R1

coc_J_p_R2 = cc_J_R2 / cc_P_R2

coc_J_p_R3 = cc_J_R3 / cc_P_R3

coc_J_p_R4 = cc_J_R4 / cc_P_R4

coc_abs_J_p_R1 = scipy.absolute(cc_J_R1 / cc_P_R1)

coc_abs_J_p_R2 = scipy.absolute(cc_J_R2 / cc_P_R2)

coc_abs_J_p_R3 = scipy.absolute(cc_J_R3 / cc_P_R3)

coc_abs_J_p_R4 = scipy.absolute(cc_J_R4 / cc_P_R4)

coc_list = [’E4’,

’a_J_R1’,’a_J_R2’,’a_J_R3’,’a_J_R4’,
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’abs_J_a_R1’,’abs_J_a_R2’,’abs_J_a_R3’,’abs_J_a_R4’,

’b_J_R1’,’b_J_R2’,’b_J_R3’,’b_J_R4’,

’abs_J_b_R1’,’abs_J_b_R2’,’abs_J_b_R3’,’abs_J_b_R4’,

’p_J_R1’,’p_J_R2’,’p_J_R3’,’p_J_R4’,

’abs_J_p_R1’,’abs_J_p_R2’,’abs_J_p_R3’,’abs_J_p_R4’,

’J_a_R1’,’J_a_R2’,’J_a_R3’,’J_a_R4’,

’J_b_R1’,’J_b_R2’,’J_b_R3’,’J_b_R4’,

’J_p_R1’,’J_p_R2’,’J_p_R3’,’J_p_R4’]

# Control patterns

# Flux-control patterns

ConPat_J_R1 = ec_R2_A * ec_R3_B * ec_R4_P

ConPat_J_R2 = -ec_R1_A * ec_R3_B * ec_R4_P

ConPat_J_R3 = ec_R1_A * ec_R2_B * ec_R4_P

ConPat_J_R4a = -ec_R1_A * ec_R2_B * ec_R3_P

ConPat_J_R4b = -ec_R2_A * ec_R3_B * ec_R1_P

# a-control patterns

ConPat_a_R1a = ec_R3_B * ec_R4_P

ConPat_a_R1b = -ec_R2_B * ec_R4_P

ConPat_a_R1c = ec_R2_B * ec_R3_P

ConPat_a_R2a = ec_R3_B * ec_R1_P

ConPat_a_R2b = -ec_R3_B * ec_R4_P

ConPat_a_R3a = ec_R2_B * ec_R4_P

ConPat_a_R3b = -ec_R2_B * ec_R1_P

ConPat_a_R4a = -ec_R2_B * ec_R3_P

ConPat_a_R4b = -ec_R3_B * ec_R1_P

ConPat_a_R4c = ec_R2_B * ec_R1_P

# b-control patterns

ConPat_b_R1a = ec_R2_A * ec_R4_P

ConPat_b_R1b = -ec_R2_A * ec_R3_P

ConPat_b_R2a = ec_R1_A * ec_R3_P

ConPat_b_R2b = -ec_R1_A * ec_R4_P

ConPat_b_R3a = -ec_R2_A * ec_R4_P

ConPat_b_R3b = ec_R1_A * ec_R4_P

ConPat_b_R3c = ec_R2_A * ec_R1_P

ConPat_b_R4a = ec_R2_A * ec_R3_P

ConPat_b_R4b = -ec_R1_A * ec_R3_P

ConPat_b_R4c = -ec_R2_A * ec_R1_P

# p-control patterns

ConPat_p_R1 = ec_R2_A * ec_R3_B

ConPat_p_R2 = -ec_R1_A * ec_R3_B

ConPat_p_R3 = ec_R1_A * ec_R2_B

ConPat_p_R4a = -ec_R2_A * ec_R3_B

ConPat_p_R4b = ec_R1_A * ec_R3_B

ConPat_p_R4c = -ec_R1_A * ec_R2_B

denominator = ConPat_J_R1 + ConPat_J_R2 + ConPat_J_R3

+ ConPat_J_R4a + ConPat_J_R4b

conpat_list = [’E4’,
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’J_R1’,’J_R2’,’J_R3’,’J_R4a’,’J_R4b’,

’a_R1a’,’a_R1b’,’a_R1c’,’a_R2a’,’a_R2b’,’a_R3a’,’a_R3b’,

’a_R4a’,’a_R4b’,’a_R4c’,

’b_R1a’,’b_R1b’,’b_R2a’,’b_R2b’,’b_R3a’,’b_R3b’,’b_R3c’,

’b_R4a’,’b_R4b’,’b_R4c’,

’p_R1’,’p_R2’,’p_R3’,’p_R4a’,’p_R4b’,’p_R4c’,

’Denom’]

# Scaled control patterns

ScConPat_J_R1 = ConPat_J_R1 / denominator

ScConPat_J_R2 = ConPat_J_R2 / denominator

ScConPat_J_R3 = ConPat_J_R3 / denominator

ScConPat_J_R4a = ConPat_J_R4a / denominator

ScConPat_J_R4b = ConPat_J_R4b / denominator

ScConPat_a_R1a = ConPat_a_R1a / denominator

ScConPat_a_R1b = ConPat_a_R1b / denominator

ScConPat_a_R1c = ConPat_a_R1c / denominator

ScConPat_a_R2a = ConPat_a_R2a / denominator

ScConPat_a_R2b = ConPat_a_R2b / denominator

ScConPat_a_R3a = ConPat_a_R3a / denominator

ScConPat_a_R3b = ConPat_a_R3b / denominator

ScConPat_a_R4a = ConPat_a_R4a / denominator

ScConPat_a_R4b = ConPat_a_R4b / denominator

ScConPat_a_R4c = ConPat_a_R4c / denominator

ScConPat_b_R1a = ConPat_b_R1a / denominator

ScConPat_b_R1b = ConPat_b_R1b / denominator

ScConPat_b_R2a = ConPat_b_R2a / denominator

ScConPat_b_R2b = ConPat_b_R2b / denominator

ScConPat_b_R3a = ConPat_b_R3a / denominator

ScConPat_b_R3b = ConPat_b_R3b / denominator

ScConPat_b_R3c = ConPat_b_R3c / denominator

ScConPat_b_R4a = ConPat_b_R4a / denominator

ScConPat_b_R4b = ConPat_b_R4b / denominator

ScConPat_b_R4c = ConPat_b_R4c / denominator

ScConPat_p_R1 = ConPat_p_R1 / denominator

ScConPat_p_R2 = ConPat_p_R2 / denominator

ScConPat_p_R3 = ConPat_p_R3 / denominator

ScConPat_p_R4a = ConPat_p_R4a / denominator

ScConPat_p_R4b = ConPat_p_R4b / denominator

ScConPat_p_R4c = ConPat_p_R4c / denominator

sc_conpat_list = [’E4’,

’J_R1’,’J_R2’,’J_R3’,’J_R4a’,’J_R4b’,

’a_R1a’,’a_R1b’,’a_R1c’,’a_R2a’,’a_R2b’,’a_R3a’,’a_R3b’,

’a_R4a’,’a_R4b’,’a_R4c’,

’b_R1a’,’b_R1b’,’b_R2a’,’b_R2b’,’b_R3a’,’b_R3b’,’b_R3c’,

’b_R4a’,’b_R4b’,’b_R4c’,

’p_R1’,’p_R2’,’p_R3’,’p_R4a’,’p_R4b’,’p_R4c’]

# Data arrays
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E1_prc_data = scipy.hstack((E4.reshape(steps,1),

E1_prc_E1_J_via_a.reshape(steps,1), E1_prc_E1_J_via_p.reshape(steps,1),

E1_prc_E1_J_via_v1.reshape(steps,1),

E1_prc_E2_J_via_a.reshape(steps,1), E1_prc_E2_J_via_b.reshape(steps,1),

E1_prc_E3_J_via_b.reshape(steps,1), E1_prc_E3_J_via_p.reshape(steps,1),

E1_prc_E4_J_via_p.reshape(steps,1)))

sum_E1_prc_data = scipy.hstack((E4.reshape(steps,1),

sum_E1_prc_E1_J.reshape(steps,1),

sum_E1_prc_E2_J.reshape(steps,1),

sum_E1_prc_E3_J.reshape(steps,1),

sum_E1_prc_E4_J.reshape(steps,1)))

E2_prc_data = scipy.hstack((E4.reshape(steps,1),

E2_prc_E1_J_via_a.reshape(steps,1), E2_prc_E1_J_via_p.reshape(steps,1),

E2_prc_E2_J_via_a.reshape(steps,1), E2_prc_E2_J_via_b.reshape(steps,1),

E2_prc_E2_J_via_v2.reshape(steps,1),

E2_prc_E3_J_via_b.reshape(steps,1), E2_prc_E3_J_via_p.reshape(steps,1),

E2_prc_E4_J_via_p.reshape(steps,1)))

sum_E2_prc_data = scipy.hstack((E4.reshape(steps,1),

sum_E2_prc_E1_J.reshape(steps,1),

sum_E2_prc_E2_J.reshape(steps,1),

sum_E2_prc_E3_J.reshape(steps,1),

sum_E2_prc_E4_J.reshape(steps,1)))

E3_prc_data = scipy.hstack((E4.reshape(steps,1),

E3_prc_E1_J_via_a.reshape(steps,1), E3_prc_E1_J_via_p.reshape(steps,1),

E3_prc_E2_J_via_a.reshape(steps,1), E3_prc_E2_J_via_b.reshape(steps,1),

E3_prc_E3_J_via_b.reshape(steps,1), E3_prc_E3_J_via_p.reshape(steps,1),

E3_prc_E3_J_via_v3.reshape(steps,1),

E3_prc_E4_J_via_p.reshape(steps,1)))

sum_E3_prc_data = scipy.hstack((E4.reshape(steps,1),

sum_E3_prc_E1_J.reshape(steps,1),

sum_E3_prc_E2_J.reshape(steps,1),

sum_E3_prc_E3_J.reshape(steps,1),

sum_E3_prc_E4_J.reshape(steps,1)))

E4_prc_data = scipy.hstack((E4.reshape(steps,1),

E4_prc_E1_J_via_a.reshape(steps,1), E4_prc_E1_J_via_p.reshape(steps,1),

E4_prc_E2_J_via_a.reshape(steps,1), E4_prc_E2_J_via_b.reshape(steps,1),

E4_prc_E3_J_via_b.reshape(steps,1), E4_prc_E3_J_via_p.reshape(steps,1),

E4_prc_E4_J_via_p.reshape(steps,1), E4_prc_E4_J_via_v4.reshape(steps,1)))

sum_E4_prc_data = scipy.hstack((E4.reshape(steps,1),

sum_E4_prc_E1_J.reshape(steps,1),

sum_E4_prc_E2_J.reshape(steps,1),

sum_E4_prc_E3_J.reshape(steps,1),

sum_E4_prc_E4_J.reshape(steps,1)))

E1_pc_data = scipy.hstack((E4.reshape(steps,1),

E1_pc_E1_J_via_a.reshape(steps,1), E1_pc_E1_J_via_p.reshape(steps,1),

E1_pc_E1_J_via_v1.reshape(steps,1),
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E1_pc_E2_J_via_a.reshape(steps,1), E1_pc_E2_J_via_b.reshape(steps,1),

E1_pc_E3_J_via_b.reshape(steps,1), E1_pc_E3_J_via_p.reshape(steps,1),

E1_pc_E4_J_via_p.reshape(steps,1)))

sum_E1_pc_data = scipy.hstack((E4.reshape(steps,1),

sum_E1_pc_E1_J.reshape(steps,1),

sum_E1_pc_E2_J.reshape(steps,1),

sum_E1_pc_E3_J.reshape(steps,1),

sum_E1_pc_E4_J.reshape(steps,1)))

E2_pc_data = scipy.hstack((E4.reshape(steps,1),

E2_pc_E1_J_via_a.reshape(steps,1), E2_pc_E1_J_via_p.reshape(steps,1),

E2_pc_E2_J_via_a.reshape(steps,1), E2_pc_E2_J_via_b.reshape(steps,1),

E2_pc_E2_J_via_v2.reshape(steps,1),

E2_pc_E3_J_via_b.reshape(steps,1), E2_pc_E3_J_via_p.reshape(steps,1),

E2_pc_E4_J_via_p.reshape(steps,1)))

sum_E2_pc_data = scipy.hstack((E4.reshape(steps,1),

sum_E2_pc_E1_J.reshape(steps,1),

sum_E2_pc_E2_J.reshape(steps,1),

sum_E2_pc_E3_J.reshape(steps,1),

sum_E2_pc_E4_J.reshape(steps,1)))

E3_pc_data = scipy.hstack((E4.reshape(steps,1),

E3_pc_E1_J_via_a.reshape(steps,1), E3_pc_E1_J_via_p.reshape(steps,1),

E3_pc_E2_J_via_a.reshape(steps,1), E3_pc_E2_J_via_b.reshape(steps,1),

E3_pc_E3_J_via_b.reshape(steps,1), E3_pc_E3_J_via_p.reshape(steps,1),

E3_pc_E3_J_via_v3.reshape(steps,1),

E3_pc_E4_J_via_p.reshape(steps,1)))

sum_E3_pc_data = scipy.hstack((E4.reshape(steps,1),

sum_E3_pc_E1_J.reshape(steps,1),

sum_E3_pc_E2_J.reshape(steps,1),

sum_E3_pc_E3_J.reshape(steps,1),

sum_E3_pc_E4_J.reshape(steps,1)))

E4_pc_data = scipy.hstack((E4.reshape(steps,1),

E4_pc_E1_J_via_a.reshape(steps,1), E4_pc_E1_J_via_p.reshape(steps,1),

E4_pc_E2_J_via_a.reshape(steps,1), E4_pc_E2_J_via_b.reshape(steps,1),

E4_pc_E3_J_via_b.reshape(steps,1), E4_pc_E3_J_via_p.reshape(steps,1),

E4_pc_E4_J_via_p.reshape(steps,1), E4_pc_E4_J_via_v4.reshape(steps,1)))

sum_E4_pc_data = scipy.hstack((E4.reshape(steps,1),

sum_E4_pc_E1_J.reshape(steps,1),

sum_E4_pc_E2_J.reshape(steps,1),

sum_E4_pc_E3_J.reshape(steps,1),

sum_E4_pc_E4_J.reshape(steps,1)))

irc_data = scipy.hstack((E4.reshape(steps,1),

irc_J_a_R1.reshape(steps,1), irc_J_a_R2.reshape(steps,1),

irc_a_a_R1.reshape(steps,1), irc_a_a_R2.reshape(steps,1),

irc_b_a_R1.reshape(steps,1), irc_b_a_R2.reshape(steps,1),

irc_p_a_R1.reshape(steps,1), irc_p_a_R2.reshape(steps,1),

irc_J_b_R2.reshape(steps,1), irc_J_b_R3.reshape(steps,1),
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irc_a_b_R2.reshape(steps,1), irc_a_b_R3.reshape(steps,1),

irc_b_b_R2.reshape(steps,1), irc_b_b_R3.reshape(steps,1),

irc_p_b_R2.reshape(steps,1), irc_p_b_R3.reshape(steps,1),

irc_J_p_R1.reshape(steps,1), irc_J_p_R3.reshape(steps,1),

irc_J_p_R4.reshape(steps,1),

irc_a_p_R1.reshape(steps,1), irc_a_p_R3.reshape(steps,1),

irc_a_p_R4.reshape(steps,1),

irc_b_p_R1.reshape(steps,1), irc_b_p_R3.reshape(steps,1),

irc_b_p_R4.reshape(steps,1),

irc_p_p_R1.reshape(steps,1), irc_p_p_R3.reshape(steps,1),

irc_p_p_R4.reshape(steps,1)))

sum_irc_data = scipy.hstack((E4.reshape(steps,1),

sum_irc_J_a.reshape(steps,1), sum_irc_a_a.reshape(steps,1),

sum_irc_b_a.reshape(steps,1), sum_irc_p_a.reshape(steps,1),

sum_irc_J_b.reshape(steps,1), sum_irc_a_b.reshape(steps,1),

sum_irc_b_b.reshape(steps,1), sum_irc_p_b.reshape(steps,1),

sum_irc_J_p.reshape(steps,1), sum_irc_a_p.reshape(steps,1),

sum_irc_b_p.reshape(steps,1), sum_irc_p_p.reshape(steps,1)))

rp_data = scipy.hstack((E4.reshape(steps,1),

rp_J_p_pos.reshape(steps,1),

rp_J_p_neg.reshape(steps,1)))

coc_data = scipy.hstack((E4.reshape(steps,1),

coc_a_J_R1.reshape(steps,1), coc_a_J_R2.reshape(steps,1),

coc_a_J_R3.reshape(steps,1), coc_a_J_R4.reshape(steps,1),

coc_abs_J_a_R1.reshape(steps,1), coc_abs_J_a_R2.reshape(steps,1),

coc_abs_J_a_R3.reshape(steps,1), coc_abs_J_a_R4.reshape(steps,1),

coc_b_J_R1.reshape(steps,1), coc_b_J_R2.reshape(steps,1),

coc_b_J_R3.reshape(steps,1), coc_b_J_R4.reshape(steps,1),

coc_abs_J_b_R1.reshape(steps,1), coc_abs_J_b_R2.reshape(steps,1),

coc_abs_J_b_R3.reshape(steps,1), coc_abs_J_b_R4.reshape(steps,1),

coc_p_J_R1.reshape(steps,1), coc_p_J_R2.reshape(steps,1),

coc_p_J_R3.reshape(steps,1), coc_p_J_R4.reshape(steps,1),

coc_abs_J_p_R1.reshape(steps,1), coc_abs_J_p_R2.reshape(steps,1),

coc_abs_J_p_R3.reshape(steps,1), coc_abs_J_p_R4.reshape(steps,1),

coc_J_a_R1.reshape(steps,1), coc_J_a_R2.reshape(steps,1),

coc_J_a_R3.reshape(steps,1), coc_J_a_R4.reshape(steps,1),

coc_J_b_R1.reshape(steps,1), coc_J_b_R2.reshape(steps,1),

coc_J_b_R3.reshape(steps,1), coc_J_b_R4.reshape(steps,1),

coc_J_p_R1.reshape(steps,1), coc_J_p_R2.reshape(steps,1),

coc_J_p_R3.reshape(steps,1), coc_J_p_R4.reshape(steps,1)))

conpat_data = scipy.hstack((E4.reshape(steps,1),

ConPat_J_R1.reshape(steps,1), ConPat_J_R2.reshape(steps,1),

ConPat_J_R3.reshape(steps,1), ConPat_J_R4a.reshape(steps,1),

ConPat_J_R4b.reshape(steps,1), ConPat_a_R1a.reshape(steps,1),

ConPat_a_R1b.reshape(steps,1), ConPat_a_R1c.reshape(steps,1),

ConPat_a_R2a.reshape(steps,1), ConPat_a_R2b.reshape(steps,1),

ConPat_a_R3a.reshape(steps,1), ConPat_a_R3b.reshape(steps,1),

ConPat_a_R4a.reshape(steps,1), ConPat_a_R4b.reshape(steps,1),

ConPat_a_R4c.reshape(steps,1), ConPat_b_R1a.reshape(steps,1),

ConPat_b_R1b.reshape(steps,1), ConPat_b_R2a.reshape(steps,1),
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ConPat_b_R2b.reshape(steps,1), ConPat_b_R3a.reshape(steps,1),

ConPat_b_R3b.reshape(steps,1), ConPat_b_R3c.reshape(steps,1),

ConPat_b_R4a.reshape(steps,1), ConPat_b_R4b.reshape(steps,1),

ConPat_b_R4c.reshape(steps,1), ConPat_p_R1.reshape(steps,1),

ConPat_p_R2.reshape(steps,1), ConPat_p_R3.reshape(steps,1),

ConPat_p_R4a.reshape(steps,1), ConPat_p_R4b.reshape(steps,1),

ConPat_p_R4c.reshape(steps,1), denominator.reshape(steps,1)))

sc_conpat_data = scipy.hstack((E4.reshape(steps,1),

ScConPat_J_R1.reshape(steps,1), ScConPat_J_R2.reshape(steps,1),

ScConPat_J_R3.reshape(steps,1), ScConPat_J_R4a.reshape(steps,1),

ScConPat_J_R4b.reshape(steps,1), ScConPat_a_R1a.reshape(steps,1),

ScConPat_a_R1b.reshape(steps,1), ScConPat_a_R1c.reshape(steps,1),

ScConPat_a_R2a.reshape(steps,1), ScConPat_a_R2b.reshape(steps,1),

ScConPat_a_R3a.reshape(steps,1), ScConPat_a_R3b.reshape(steps,1),

ScConPat_a_R4a.reshape(steps,1), ScConPat_a_R4b.reshape(steps,1),

ScConPat_a_R4c.reshape(steps,1), ScConPat_b_R1a.reshape(steps,1),

ScConPat_b_R1b.reshape(steps,1), ScConPat_b_R2a.reshape(steps,1),

ScConPat_b_R2b.reshape(steps,1), ScConPat_b_R3a.reshape(steps,1),

ScConPat_b_R3b.reshape(steps,1), ScConPat_b_R3c.reshape(steps,1),

ScConPat_b_R4a.reshape(steps,1), ScConPat_b_R4b.reshape(steps,1),

ScConPat_b_R4c.reshape(steps,1), ScConPat_p_R1.reshape(steps,1),

ScConPat_p_R2.reshape(steps,1), ScConPat_p_R3.reshape(steps,1),

ScConPat_p_R4a.reshape(steps,1), ScConPat_p_R4b.reshape(steps,1),

ScConPat_p_R4c.reshape(steps,1)))

res_file = open(output_dir + par_set + ’_ss’ + ’.dat’, ’w’)

mod.Write_array(mod.scan_res, res_file, Col = ss_var_list, close_file=1)

res_file = open(output_dir + par_set + ’_E1_prc’ + ’.dat’, ’w’)

mod.Write_array(E1_prc_data, res_file, Col = E1_prc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E1_prc’ + ’.dat’, ’w’)

mod.Write_array(sum_E1_prc_data, res_file, Col = sum_E1_prc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E2_prc’ + ’.dat’, ’w’)

mod.Write_array(E2_prc_data, res_file, Col = E2_prc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E2_prc’ + ’.dat’, ’w’)

mod.Write_array(sum_E2_prc_data, res_file, Col = sum_E2_prc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E3_prc’ + ’.dat’, ’w’)

mod.Write_array(E3_prc_data, res_file, Col = E3_prc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E3_prc’ + ’.dat’, ’w’)

mod.Write_array(sum_E3_prc_data, res_file, Col = sum_E3_prc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E4_prc’ + ’.dat’, ’w’)

mod.Write_array(E4_prc_data, res_file, Col = E4_prc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E4_prc’ + ’.dat’, ’w’)
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10.2. Python script used to generate all the simulation results

mod.Write_array(sum_E4_prc_data, res_file, Col = sum_E4_prc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E1_pc’ + ’.dat’, ’w’)

mod.Write_array(E1_pc_data, res_file, Col = E1_pc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E1_pc’ + ’.dat’, ’w’)

mod.Write_array(sum_E1_pc_data, res_file, Col = sum_E1_pc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E2_pc’ + ’.dat’, ’w’)

mod.Write_array(E2_pc_data, res_file, Col = E2_pc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E2_pc’ + ’.dat’, ’w’)

mod.Write_array(sum_E2_pc_data, res_file, Col = sum_E2_pc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E3_pc’ + ’.dat’, ’w’)

mod.Write_array(E3_pc_data, res_file, Col = E3_pc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E3_pc’ + ’.dat’, ’w’)

mod.Write_array(sum_E3_pc_data, res_file, Col = sum_E3_pc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_E4_pc’ + ’.dat’, ’w’)

mod.Write_array(E4_pc_data, res_file, Col = E4_pc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_E4_pc’ + ’.dat’, ’w’)

mod.Write_array(sum_E4_pc_data, res_file, Col = sum_E4_pc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_irc’ + ’.dat’, ’w’)

mod.Write_array(irc_data, res_file, Col = irc_list, close_file=1)

res_file = open(output_dir + par_set + ’_sum_irc’ + ’.dat’, ’w’)

mod.Write_array(sum_irc_data, res_file, Col = sum_irc_list,

close_file=1)

res_file = open(output_dir + par_set + ’_rp’ + ’.dat’, ’w’)

mod.Write_array(rp_data, res_file, Col = rp_list, close_file=1)

res_file = open(output_dir + par_set + ’_coc’ + ’.dat’, ’w’)

mod.Write_array(coc_data, res_file, Col = coc_list, close_file=1)

res_file = open(output_dir + par_set + ’_conpat’ + ’.dat’, ’w’)

mod.Write_array(conpat_data, res_file, Col = conpat_list, close_file=1)

res_file = open(output_dir + par_set + ’_sc_conpat’ + ’.dat’, ’w’)

mod.Write_array(sc_conpat_data, res_file, Col = sc_conpat_list,

close_file=1)

return

steps = 501
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10.2. Python script used to generate all the simulation results

scan_min = 0.01

scan_max = 1.0e6

scan_range = scipy.logspace(scipy.log10(scan_min),scipy.log10(scan_max), steps)

#-------------------------------------------------------------

# Parameter set 1: Strong p-homeostasis, tight P-binding by E4,

# E2 and E3 near equilibrium

#-------------------------------------------------------------

m.K4p = 0.01

m.h = 4.0

m.E2 = 1000.0

m.E3 = 1000.0

parameter_set = ’lin4fb_E4_K4p=0.01_h=4’

data = create_data_arrays(m, parameter_set)

#------------------------------------------------------------

# Parameter set 2: Weak p-homeostasis, tight P-binding by E4,

# E2 and E3 near equilibrium

#------------------------------------------------------------

m.K4p = 0.01

m.h = 1.0

m.E2 = 1000.0

m.E3 = 1000.0

parameter_set = ’lin4fb_E4_K4p=0.01_h=1’

data = create_data_arrays(m, parameter_set)

#-------------------------------------------------------------

# Parameter set 3: Strong p-homeostasis, tight P-binding by E4,

# E2 and E3 further away from equilibrium

#-------------------------------------------------------------

m.K4p = 0.01

m.h = 4.0

m.E2 = 100.0

m.E3 = 100.0

parameter_set = ’lin4fb_E4_K4p=0.01_h=4_E2E3=100’

data = create_data_arrays(m, parameter_set)

#------------------------------------------------------------

# Parameter set 4: Strong p-homeostasis, weak P-binding by E4,

# E2 and E3 near equilibrium

#------------------------------------------------------------

m.K4p = 100.0

m.h = 4.0

m.E2 = 1000.0

m.E3 = 1000.0

scan_max = 1.0e6
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10.2. Python script used to generate all the simulation results

scan_range = scipy.logspace(scipy.log10(scan_min),scipy.log10(scan_max), steps)

parameter_set = ’lin4fb_E4_K4p=100_h=4’

data = create_data_arrays(m, parameter_set)
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