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Abstract

Let A be a complex Banach algebra with unit 1. A subset C of A is called a cone if C+C ⊆ C
and λC ⊆ C for all scalars λ ≥ 0. If C satisfies the additional properties that C.C ⊆ C and
1 ∈ C, then it is called an algebra cone. The elements of C are called positive. A Banach
algebra A with an algebra cone C can be ordered by C in the following way: If a, b ∈ A, then
a ≤ b if and only if b − a ∈ C. A Banach algebra ordered by an algebra cone is called an
ordered Banach algebra (OBA).

A non-commutative C∗-algebra cannot be ordered by an algebra cone, since in a C∗-algebra,
the product of positive elements is positive only if the elements commute. Every non-
commutative C∗-algebra however, then does have the property that the product of commuting
positive elements is positive. In this work we define a subset C of a Banach algebra as an
algebra c-cone if C satisfies the following properties: C+C ⊆ C, λC ⊆ C for all scalars λ ≥ 0,
1 ∈ C, ab ∈ C whenever a, b ∈ C and ab = ba. Every algebra cone is an algebra c-cone.
Every Banach algebra (including a non-commutative C∗-algebra) with an algebra c-cone C
can be ordered by C in the usual way and a Banach algebra ordered by an algebra c-cone
is called a commutatively ordered Banach algebra (COBA). Since every algebra cone is an
algebra c-cone, every OBA is a COBA.

Spectral theory in OBAs has been studied for around twenty years. In this work, we general-
ize many of the results in OBAs to the more general setting of COBAs, and then obtain new
results in COBAs and OBAs.
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Opsomming

Laat A ’n komplekse Banach-algebra met eenheidselement 1 wees. ’n Deelversameling C van A
word ’n keël genoem indien C+C ⊆ C en λC ⊆ C vir alle skalare λ ≥ 0. As C die addisionele
eienskappe het dat C.C ⊆ C en 1 ∈ C, dan word dit ’n algebra-keël genoem. Die elemente
van C word positief genoem. ’n Banach-algebra A met ’n algebra-keël C kan soos volg m.b.v.
C georden word: As a, b ∈ A, dan is a ≤ b as en slegs as b − a ∈ C. ’n Banach-algebra wat
deur ’n algebra-keël georden is, word ’n geordende Banach-algebra (GBA) genoem.

’n Nie-kommutatiewe C∗-algebra kan nie m.b.v. ’n algebra-keël georden word nie, omdat die
produk van positiewe elemente in ’n C∗-algebra slegs positief is indien die elemente kommu-
teer. Elke nie-kommutatiewe C∗-algebra het egter dan wel die eienskap dat die produk van
kommuterende positiewe elemente positief is. In hierdie werk definieer ons ’n deelversamel-
ing C van ’n Banach-algebra as ’n algebra-c-keël indien C die volgende eienskappe bevredig:
C + C ⊆ C, λC ⊆ C vir alle skalare λ ≥ 0, 1 ∈ C, ab ∈ C wanneer a, b ∈ C en ab = ba.
Elke algebra-keël is ’n algebra-c-keël. Elke Banach-algebra (insluitende ’n nie-kommutatiewe
C∗-algebra) wat ’n algebra-c-keël C het, kan op die gewone manier m.b.v. C georden word
en ’n Banach-algebra wat deur ’n algebra-c-keël georden is word ’n kommutatief-geordende
Banach-algebra (KGBA) genoem. Omdat elke algebra-keël ’n algebra-c-keël is, is elke GBA
’n KGBA.

Spektraalteorie in GBAs word al vir ongeveer twintig jaar bestudeer. In hierdie werk veralge-
meen ons baie GBA-resultate na die meer algemene konteks van KGBAs, en verkry dan ook
nuwe resultate in KGBAs en GBAs.
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Introduction

A subset C of a complex unital Banach algebra A is called an algebra cone if C contains
the unit and is closed under addition, multiplication and positive scalar multiplication. The
elements of C are called positive. Every Banach algebra with an algebra cone can be or-
dered by the algebra cone. Then it is called an ordered Banach algebra (OBA). Spectral
theory in ordered Banach algebras has been investigated in the papers of S. Mouton and H.
Raubenheimer; H. du T. Mouton and S. Mouton; D. Behrendt and H. Raubenheimer; G.
Braatvedt, R. Brits and H. Raubenheimer; and S. Mouton. However, a non-commutative
C∗-algebra cannot be ordered by an algebra cone since, in a non-commutative C∗-algebra, the
product of positive elements is positive only if the elements commute. Any C∗-algebra, how-
ever, then does have the property that the product of commuting positive elements is positive.

R. Harte mentioned some years ago that certain known results in OBAs possibly still hold true
if the assumption that the algebra cone is closed under multiplication is weakened to closedness
only under multiplication of commuting positive elements. Such results would of course hold
in OBAs, and would also be applicable to non-commutative C∗-algebras. He briefly followed
up this idea in the paper [31], where he defined a partially ordered Banach algebra as a Banach
algebra ordered by a cone that contains the unit and is closed under addition, positive scalar
multiplication and multiplication by commuting positive elements. Every OBA is a partially
ordered Banach algebra. R. Harte generalized two well known results in OBAs to the more
general setting of partially ordered Banach algebras (see [31] theorem 1, theorem 2).

Instead of using R. Harte’s terminology of ‘partially ordered Banach algebra’, we will adopt
the more descriptive term ‘commutatively ordered Banach algebra’ (COBA), which is still de-
fined as a complex unital Banach algebra containing a subset C, called an algebra c-cone,
such that C contains the unit and is closed under addition, positive scalar multiplication and
multiplication by commuting positive elements. Every OBA is a COBA. In this work we will
give a full account of which known results in OBAs can be generalized to COBAs. Generally,
OBA results that can be generalized to COBAs fall into three categories: those that involve
multiplication of positive elements but the product is not required to be positive; those for
which the only multiplication of positive elements involved is taking powers of positive ele-
ments; those that involve multiplication of different positive elements and require the product
to be positive, but will still hold to the full or a lesser extent if we only require that the
product of positive elements is positive if the elements commute. The OBA results in the first
two categories are extended to COBAs with minor or no adjustments to the proofs. Those in
the third category are extended to COBAs by including additional assumptions and making
appropriate modifications to the proofs. After generalizing OBA results to COBAs, we will
proceed to obtain new results in COBAs and OBAs. This will be done by studying a number
of research papers regarding spectral theory of positive operators on Banach lattices, including
the papers of V. Caselles; F. Rábiger and M. Wolff, and then obtaining analogous results in
the setting of COBAs and OBAs.

Research in the broad area of spectral theory in ordered structures dates back to around
1900, when O. Perron and G. Frobenius discovered that the spectrum of a positive matrix had

iv
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certain special features. Since then spectral theory in the more general context of positive
operators on ordered Banach spaces or Banach lattices has been investigated intensively and
several authors have made contributions, including leading mathematicians like H.H. Schaefer
and A.C. Zaanen. Spectral theory in the even more general context of OBAs has only been
studied in the last approximately twenty years.

This thesis is organized into five chapters. Chapter 1 contains all the preliminary mate-
rial that will be needed in the rest of the document. Proofs of well known results that can
be easily obtained from standard literature will generally be omitted. Only those proofs for
which the reader may not easily access the appropriate literature will be included.

In Chapter 2 we introduce COBAs and obtain results giving their fundamental properties,
following the development in [51]. This chapter begins with Section 2.1, where we define
COBAs and the associated basic properties, and also give examples of COBAs. As will be
seen in this section, there are several non-trivial examples of COBAs, some of which were
suggested in [31] and others which are due to the author. Section 2.2 gives properties of
algebra c-cones in different Banach algebras, following the corresponding development in [51]
for algebra cones. The results in this section show that these properties come naturally in a
COBA. Section 2.3 extends the notion of COBA to direct sums of Banach algebras, analogous
to direct sums of OBAs. This section includes example 2.3.4, which shows that the direct
sum of an OBA and a COBA is a COBA. This is an important result because since there are
plenty of examples of OBAs, it shows that there are plenty of examples of COBAs. In Section
2.4 we consider quotient COBAs. It is established in [51] that if (A,C) is an OBA and F is
a closed ideal of A, then (A/F, πC) is also an OBA, where π : A → A/F is the canonical
homomorphism. If (A,C) is a COBA, (A/F, πC) is in general not a COBA. This is because
if C is only an algebra c-cone, the multiplication property required for πC to be an algebra
c-cone is not satisfied. This means that care should be taken when dealing with the ordering
in the structure (A/F, πC). This represents a major difference between OBAs and COBAs.
To handle this issue, we will introduce the concept of a maximal positive commutative subset
(MPCS for short) of a COBA. These are subsets of COBAs with special properties that will
allow us to deal with COBA results that involve quotient algebras. The results in this section
are attributed to the author.

One of the most important properties of COBAs is monotonicity of the spectral radius. Chap-
ters 3, 4 and 5 are organized around this concept. Chapter 3 contains COBA results that
do not rely on this property, while nearly all the results in Chapter 4 involve the property.
Some of the results in Chapter 5 do not use monotonicity of the spectral radius while others do.

We discuss the results in Chapter 3. Let a be a non-zero element of a Banach algebra A.
A point λ in the spectrum of a is called an eigenvalue of a is there exists a non-zero element
u in A such that au = λu or ua = λu. The element u is called the eigenvector correspond-
ing to λ. In Section 3.1 we obtain the important Krein-Rutman theorem in the setting of
COBAs. The OBA version of the Krein-Rutman theorem was proved in [47]. This theorem
gives conditions under which the spectral radius of a positive element is an eigenvalue of that
element, with positive corresponding eigenvector. The Krein-Rutman theorem readily extends
to COBAs, with the same proof as that for OBAs. This is because, in the proof, the only

v
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multiplication of positive elements involved is taking powers.

In Section 3.2 we discuss positive elements and analytic functions. The problem is as fol-
lows: if a is a positive element and f an analytic function, when is f(a) positive? This
problem was considered for OBAs in [42] and in the proofs of most of the results, the only
multiplication of positive elements involved is taking powers. With the same proofs, which
we include because they are generally short, we will extend these results to COBAs.

Section 3.3 is about the problem of unit spectrum. In this problem we seek to determine
when a positive element with spectrum consisting of 1 only is necessarily the unit of the Ba-
nach algebra. In [16], this problem was studied for OBAs. Since in the proofs of the results
taking powers is the only multiplication involving positive elements, corresponding results in
COBAs can be established with the same proofs. The results will therefore be stated without
the proofs given. The problem of unit spectrum was also considered in [34] in the operator
theoretic setting. With similar proofs, some of the results can be obtained in general Banach
algebras. However, by restricting ourselves to positive elements in COBAs and OBAs, we will
establish the results with much simpler proofs, although in certain cases the results become
weaker. The results here are due to the author.

Section 3.4 is basically an extension of the problem of unit spectrum of Section 3.3. The
problem is to determine when a positive element with spectrum consisting of 1 only will be
greater than or equal to 1. This problem was studied in [42] for OBAs and in the proofs of
the results, either there is no multiplication of positive elements or the only multiplication
involving positive elements is taking powers. Therefore the same proofs can be used to estab-
lish the corresponding COBA results. We will state the results without the proofs.

We discuss the results in Chapter 4, which generally rely on monotonicity of the spectral
radius. In Section 4.1 we obtain some fundamental results about monotonicity of the spec-
tral radius in COBAs, following the development in [51]. Some of the results play a crucial
role in further development of a large part of spectral theory in COBAs. The most impor-
tant one is probably theorem 4.1.6, whose proof is the same as that of its OBA counterpart in
([51], theorem 5.2), since the only multiplication of positive elements involved is taking powers.

In Section 4.2 we consider a special class of algebra c-cones called algebra c′-cones. It was
mentioned previously that if (A,C) is COBA and F a closed ideal of A, then (A/F, πC) is
in general not a COBA, where π : A → A/F is the canonical homomorphism. It was also
said that to deal with this issue the concept of an MPCS would be introduced in Chapter
2. In Section 4.2 we will show that if C is an algebra c′-cone, then πC is an algebra c′-cone.
With the resulting structure (A/F, πC), which we will call a C ′OBA, COBA results involving
quotient algebras can be stated and proved. Alongside MPCSs, C ′OBAs will be useful in the
development of the parts of the theory that involve quotient algebras.

In Section 4.3 we discuss the boundary spectrum and continuity of the spectral radius func-
tion. Properties of the boundary spectrum were investigated in [45] and a number of results
involve OBAs. We will obtain the corresponding results in COBAs. An important problem in
Banach algebra theory is that of determining when the spectral radius function is continuous.

vi
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This problem was studied for OBAs in [44] and [46], and the results in [44] require that the
product of positive elements is positive, whether the elements commute or not. So in order
to extend these results to COBAs, the commutativity assumption is required, but this then
means that the ordering is not necessary as we obtain known results in general Banach alge-
bras. Therefore the results in [44] cannot be meaningfully extended to COBAs. On the other
hand, the situation in [44] does not arise in [46] and so we will obtain COBA counterparts of
results in [46]. Since the only multiplication of positive elements involved in the OBA results
in [45] and [46] is taking powers, we will obtain their COBA analogues with the same proofs,
which are included to illustrate how some COBA results obtained earlier are used. The mate-
rial on the boundary spectrum and on continuity of the spectral radius has been put together
in this section because some of the results about the boundary spectrum in [45] are used in
[46] in connection with continuity of the spectral radius.

In Section 4.4 we consider results involving Riesz elements, Riesz points and quasi-inessential
elements. The results obtained are COBA generalizations of OBA results in [42],[43] and [47].
Proofs that are similar to the corresponding OBA ones will be generally omitted. A number
of results here involve quotient algebras and so MPCSs and C ′OBAs are used extensively.

In Section 4.5 we consider properties of the peripheral spectrum of a positive element un-
der perturbation by a positive Riesz element in a COBA. Similar properties were studied in
[21] for certain classes of operators. The results in this section, due to the author, extend the
theory of COBAs and OBAs. One of the main ones is corollary 4.5.8, which shows that if the
peripheral spectrum of a positive element in a COBA has no Riesz points, then one of two
very dissimilar properties holds.

Section 4.6 considers the following problem: if (an) is a sequence of positive elements con-
verging to an element a in a COBA, which properties does the limit a inherit from (an)? The
problem was studied for OBAs in [43] and we obtain COBA counterparts of the results. One
of them is corollary 4.6.6, which is stronger than its OBA counterpart ([43], corollary 4.10)
and is established using C ′OBAs while the proof of its OBA analogue uses different means. It
is results such as ([43], corollary 4.10) that give motivation for the introduction of C ′OBAs.
In this section proofs similar to the corresponding OBA ones will in general be omitted.

Chapter 4 ends with Section 4.7, which is about the trace of a positive element. The problem
here is finding conditions under which the trace of a positive element is necessarily positive.
While results for this problem are obtained trivially for positive elements in a C∗-algebra, it
is not the case in a general COBA or OBA. The results in this section extend the theory of
COBAs and OBAs and are due to the author.

Finally we discuss Chapter 5, which is about domination properties for positive elements
in COBAs. The general problem in this chapter is as follows: if a and b are positive elements
in a COBA such that 0 ≤ a ≤ b and if b has a certain property, under what conditions
does a inherit the property? In the case of positive operators on Banach lattices, this is a
classical problem and has been investigated for various properties by several authors and re-
sults abound (cf. [1], [2], [3], [21], [50], [55], [60]). The vast majority of results in Chapter
5 involve quotient algebras. As such, MPCSs and C ′OBAs are used extensively in this chapter.

vii
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Section 5.1 is on domination by positive elements and the radical. The problem here is to
investigate when a dominated positive element lies in the radical, given that the dominating
element is in the radical. This problem was studied in [41] for positive elements in OBAs. We
generalize the results in this paper to COBAs and will generally omit proofs if they are similar
to the OBA ones. While a number of results are obtainable in COBAs by using MPCSs, such
results are considerable weaker than their OBA counterparts because of restrictive conditions
that come with MPCSs. In fact for some of the results, the restrictions are so severe that the
results become trivial.

Section 5.2 is on domination by Riesz elements in COBAs. Here we will generalize an OBA
result in ([51], theorem 6.2) to COBAs. An examination of instances of ([51], theorem 6.2)
given in ([51], theorem 6.5, corollary 6.6) reveals that these results are actually formulated
and proved in a COBA sense, although COBAs are not introduced in this paper. It is such
results that give motivation for generalization from OBAs to COBAs.

Section 5.3 is about domination by quasi inessential elements in COBAs. We obtain COBA
counterparts of an OBA result in ([47], corollary 5.4). As we prove in this section, some of
the assumptions in ([47], corollary 5.4) can be dropped. In Section 5.4 we deal with the dom-
ination problem for inessential elements. We give COBA generalizations of the OBA results
in [13]. Some of the results are obtained by using MPCSs, although some then become trivial
because of restricting conditions that come with MPCSs. Section 5.5 is about the domination
problem for rank one and finite rank elements. The results here are also COBA generalizations
of the OBA results in [13], and like in Section 5.4 some of the results become trivial because
of the use of MPCSs.

Let (fn) be the sequence of complex valued functions defined by fn(λ) =
∑n−1

k=0
λk

n
. If a

is an element of a Banach algebra, the sequence (fn(a)) is called the sequence of ergodic sums
of a. We say that a is ergodic if its sequence of ergodic sums converges. In Section 5.6 we
consider the domination problem for ergodic elements in a COBA. The corresponding problem
in the operator theoretic setting was studied in [50], and the result obtained relies on a the-
orem of N. Dunford (see [25], theorem 3.16). By obtaining a Banach algebra version of ([25],
theorem 3.16), we will prove our domination results for ergodic elements under conditions
similar to those for the corresponding result in ([50], theorem 4.5). In the process of obtaining
the Banach algebra analogue of ([25], theorem 3.16), we will establish several Banach algebra
results that are of interest in themselves. The results in Section 5.6, due to the author, extend
the theory of COBAs and OBAs.

For a Banach algebra element a, the set of all eigenvalues of a which lie in the peripheral
spectrum of a is called the peripheral point spectrum of a. In Section 5.7 we consider two
problems. The first is that of determining when the spectral radius of a dominated positive
element is an eigenvalue of the element, with positive corresponding eigenvector, given that
the spectral radius of the dominating element is an eigenvalue of the element and has positive
corresponding eigenvector. The second problem is that of determining when the peripheral
point spectrum of a dominated positive element is contained in the peripheral point spectrum
of the dominating element. A slightly more general problem was studied in [50] for positive

viii
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operators on Banach lattices and the results obtained are typically operator theoretic. We
will obtain our results under different conditions and by purely algebraic means. The results
in Section 5.7 extend the theory of COBAs and OBAs and are due to the author.

Definitions, theorems and other results are numbered successively. By theorem 3.2.1 we mean
theorem 1 of Section 2 of Chapter 3. The symbol � indicates the end of a proof.

ix
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Chapter 1

Preliminaries

In this chapter we collect the pre-requisite material and establish the notation that will be
used in the rest of the chapters.

1.1 Spectral theory

Throughout A (or B) will be a complex Banach algebra with unit 1. A linear map π : A→ B
between Banach algebras is said to be a homomorphism if π(ab) = πaπb for all a, b ∈ A
and π1 = 1. The spectrum of a in A is the set σ(a) = {λ ∈ C : λ1 − a is not invertible
in A}. The spectral radius of a in A is the number r(a) = sup{|λ| : λ ∈ σ(a)}. When
it becomes necessary to emphasize the particular Banach algebra, we will write σ(a,A) and
r(a,A) to indicate the spectrum and spectral radius respectively, of a in A. We will de-
note by δ(a) the distance d(0, σ(a)) from 0 to σ(a). The peripheral spectrum of a is the set
psp(a) = σ(a) ∩ {λ ∈ C : |λ| = r(a)}. It is a nonempty closed subset of σ(a).

Let E be a subset of A. Define Ec = {b ∈ A : ba = ab for all a ∈ E} and Ecc = {b ∈ A : ba = ab
for all a ∈ Ec}. The set Ec is called the commutant of E and Ecc is called the second com-
mutant of E.

Proposition 1.1.1. ([15], proposition 2, p.75) Let E be a subset of a Banach algebra A.
Then the following statements hold:

(i) Ec is a closed subalgebra of A containing 1.
(ii) E is a commutative subset if and only if E ⊆ Ec.
(iii) F c ⊆ Ec if E ⊆ F .
(iv) If E is a commutative subset, then Ecc is a commutative subalgebra of A and E ⊆ Ecc ⊆
Ec.
(v) The centre Ac of A is a commutative subalgebra of A.

To prove some results in later chapters, the following results about the spectrum will be useful.

Theorem 1.1.2. ([9], theorem 3.2.8) Let A be a Banach algebra and a ∈ A. Then

1
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(i) λ 7→ (λ1− a)−1 is analytic on C \ σ(a) and goes to 0 at infinity,
(ii) σ(a) is compact and non-empty,

(iii) r(a) = limn→∞ ||an||
1
n .

Theorem 1.1.3. ([9], theorem 3.3.5) Let A be a Banach algebra. Suppose that a ∈ A and
that α /∈ σ(a). Then we have d(α, σ(a)) = 1

r((α1−a)−1)
.

Proposition 1.1.4. Let A be a Banach algebra and B a closed subalgebra of A containing 1.
Then σ(a,A) ⊆ σ(a,B) for all a ∈ B.

Proposition 1.1.5. ([9], corollary 3.2.10) Let A be a Banach algebra and let a, b ∈ A. If
ab = ba, then σ(ab) ⊆ σ(a)σ(b).

Let f be a complex valued function which is analytic on a neighbourhood Ω of the spectrum
of a. Let Γ be a contour in C \ σ(a) surrounding σ(a). The integral 1

2πi

∫
Γ
f(λ)(λ1 − a)−1dλ

is well defined since the map λ 7→ (λ1 − a)−1 is defined and continuous on Γ. Furthermore,
this integral is independent of the contour Γ surrounding σ(a). To see why this true, suppose
that Γ1,Γ2 are two contours in C \ σ(a) surrounding σ(a) such that a1 = 1

2πi

∫
Γ1
f(λ)(λ1 −

a)−1dλ 6= 1
2πi

∫
Γ2
f(λ)(λ1 − a)−1dλ = a2. Then by the Hahn-Banach theorem, there exists a

linear functional φ on A such that φ(a1) 6= φ(a2). Now φ(a1) = 1
2πi

∫
Γ1
h(λ)dλ and φ(a2) =

1
2πi

∫
Γ2
h(λ)dλ, where h(λ) = f(λ)φ((λ1− a)−1)). Since h is analytic on C \ σ(a) by theorem

1.1.2, it follows from Cauchy’s theorem that φ(a1) = 0 = φ(a2), which is a contradiction.
Hence the integral is independent of the contour. Therefore we can define without problems
the element f(a) = 1

2πi

∫
Γ
f(λ)(λ1− a)−1dλ in A ([9], p.43).

Lemma 1.1.6. ([9], lemma 3.3.1) Let a be an element of a Banach algebra A and let Γ be
a smooth contour surrounding σ(a). If s(λ) is a rational function having no poles surrounded
by Γ, then s(a) = 1

2πi

∫
Γ
s(λ)(λ1− a)−1dλ.

Theorem 1.1.7. ([9], theorem 3.3.3) Let A be a Banach algebra and let a ∈ A. Suppose that
Ω is an open set containing σ(a) and Γ a smooth contour included in Ω and surrounding σ(a).
Then the mapping f 7→ f(a) = 1

2πi

∫
Γ
f(λ)(λ1 − a)−1dλ from H(Ω) into A has the following

properties:

(i) (f1 + f2)(a) = f1(a) + f2(a),
(ii) (f1 · f2)(a) = f1(a) · f2(a) = f2(a) · f1(a),
(iii) 1(a) = 1 and I(a) = a (where I(λ) = λ),
(iv) if (fn) converges to f uniformly on compact subsets of Ω, then f(a) = limn→∞ fn(a),
(v) σ(f(a)) = f(σ(a)).

Theorem 1.1.8. ([9], theorem 3.3.4) Let A be a Banach algebra. Suppose that a ∈ A has
a disconnected spectrum. Let U0 and U1 be two open disjoint sets such that σ(a) ⊆ U0 ∪ U1,
σ(a)∩U0 6= ∅ and σ(a)∩U1 6= ∅. Then there exists a non-trivial projection p commuting with
a such that σ(pa) = (σ(a) ∩ U1) ∪ {0} and σ(a− pa) = (σ(a) ∩ U0) ∪ {0}.

Remark 1.1.9. The idempotent p in theorem 1.1.8 is called the spectral idempotent associated
with a and σ(a) ∩ U1, and is of particular importance in the case where σ(a) ∩ U1 = {α}. In
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this case, p is said to be the spectral projection associated with a and α, and p takes the form

p = p(a, α) =
1

2πi

∫
Γ

(λ1 − a)−1dλ, where Γ is a contour around α, separating α from the

remainder of the spectrum of a.

If X is a metric space and E ⊆ X, we write ∂XE (or simply ∂E if it is clear which metric space
is being used) to denote the (topological) boundary of E in X. Let A be a Banach algebra
and let a ∈ A. The resolvent set of a is the set C \ σ(a). The boundary of the unbounded
connected component of the resolvent set of a will be denoted by ∂∞σ(a). The resolvent of a
is the function R(λ, a) = (λ1 − a)−1, where λ ∈ C \ σ(a). A point z ∈ σ(a) is called a pole
of order k of the resolvent of a if z is an isolated point in σ(a) and k is the smallest positive
integer such that (z1 − a)kp(a, z) = 0, where p(a, z) is the spectral projection corresponding

to a and z. The resolvent of a may be represented by a power series R(λ, a) = 1
λ

∞∑
k=0

(a
λ

)k
on the set {λ ∈ C : |λ| > r(a)} ([9], theorem 3.2.1). This is called the Neumann series for
R(λ, a). The following results about the resolvent function will be useful in proving important
results in Chapter 4.

Theorem 1.1.10. ([43], theorem 5.2) Let A be a Banach algebra and (an) a sequence in A
such that an → a ∈ A. Suppose that (αn) is a sequence in C such that, for each n ∈ N, αn is
a pole of the resolvent of an of order kn, and αn → α ∈ C where α is a pole of the resolvent
of a of order k. If

(λ1− a)−1 =
∞∑

j=−∞

(λ− α)jbj, (b−j = 0 for all j > k)

and

(λ1− an)−1 =
∞∑

j=−∞

(λ− αn)jbn,j, (bn,−j = 0 for all j > kn)

are the Laurent series of the resolvents of a and an, then bn,j → bj as n→∞, for all j ∈ Z.

Corollary 1.1.11. ([43], corollary 5.3) Let A be a Banach algebra and (an) a sequence in A
such that an → a ∈ A as n → ∞. Suppose that (αn) is a sequence in C such that, for each
n ∈ N, αn is a pole of the resolvent of an, and αn → α ∈ C where α is a pole of the resolvent
of a. If p = p(a, α) and pn = p(an, αn), then pn → p as n→∞.

Corollary 1.1.12. ([43], corollary 5.4) Let A be a Banach algebra and (an) a sequence in A
such that an → a ∈ A. Suppose that (αn) is a sequence in C such that, for each n ∈ N, αn is
a pole of the resolvent of an of order kn, and αn → α ∈ C where α is a pole of the resolvent
of a of order k. Let the Laurent series of the resolvents of a and an be as in theorem 1.1.10,
and u = b−k, un = bn,−kn (where au = αu = ua and anun = αnun = unan). If there exists an
N ∈ N such that kn ≤ k for all n ≥ N , then un → u as n→∞.
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Let A be a Banach algebra and S the set of all non-invertible elements of A. For any a ∈ A
we define the set S∂(a) = {λ ∈ C : λ1−a ∈ ∂S} (or S∂(a,A) if we need to emphasize the par-
ticular Banach algebra) in the complex plane. The set S∂(a) is called the boundary spectrum
of a in A. It is known that S∂(a) is compact and nonempty, and S∂(a) ⊆ {λ ∈ C : |λ| ≤ r(a)}
([46], p.1779). We also define r1(a) = sup{|λ| : λ ∈ ∂σ(a)} and r2(a) = sup{|λ| : λ ∈ S∂(a)}.

The following results about the boundary spectrum will be useful in chapter 4.

Proposition 1.1.13. ([45], proposition 2.1) Let A be a Banach algebra and a ∈ A. Then
∂σ(a) ⊆ S∂(a) ⊆ σ(a) and therefore r1(a) = r2(a) = r(a).

Proposition 1.1.14. ([45], proposition 2.7) Let a be an invertible element of a Banach algebra
A. Then S∂(a

−1) = (S∂(a))−1.

Let A be a Banach algebra and a ∈ A. Using ∂S we define the set T (a) as follows:
T (a) = {λ ∈ C : |λ|1 − a ∈ ∂S}. It is known that T (a) = {λ ∈ C : |λ| ∈ S∂(a)} =
{λ ∈ C : |λ| ∈ S∂(a) ∩ R+}. Therefore T (a) is compact and T (a) ⊆ {λ ∈ C : |λ| ≤ r(a)}.
Also if λ0 ∈ R+, then S∂(a)∩R+ = {λ0} if and only if T (a) = {λ ∈ C : |λ| = λ0}. If T (a) 6= ∅
and γ(a) = sup{|λ| : λ ∈ T (a)}, then γ(a) ∈ T (a) for all a ∈ A ([46], 1779-1780).

Let K(C) denote the set of compact subsets of C. The following theorem about the set
T (a) will be used in chapter 4.

Theorem 1.1.15. ([46], theorem 4.5) Let A be a Banach algebra. Then the function a 7→ T (a)
from A into K(C) is upper semicontinuous on A.

1.2 Ideals and inessential elements

In this section and the rest of the document, every ideal in a Banach algebra will be assumed
to be two-sided. Also, if S is a subset of a normed space X, we write clX(S) to denote the
closure of S in X. If it is clear which normed space is involved, we omit X and just write cl(S).

A Banach algebra A is said to be semiprime if aAa = {0} implies a = 0, where a ∈ A.
An element a in A is said to be quasi nilpotent if r(a) = 0. The set of quasi nilpotent elements
of A is denoted by QN(A). The radical of A is the set Rad(A) = {a ∈ A : aA ⊆ QN(A)}.
If Rad(A) = {0}, then A is said to be semisimple. Every semisimple Banach algebra is
semiprime.

Let A be a Banach algebra and a ∈ A. If J is an ideal of A, an isolated point λ ∈ σ(a)
is called a Riesz point of σ(a) relative to J if the corresponding spectral projection p(a, λ)
belongs to J . An ideal I of A is said to be inessential if the spectrum of every element in
I is either finite or a sequence converging to zero. We define the set kh(A, I) = {a ∈ A :
a+ clA(I) ∈ Rad(A/clA(I))} of inessential elements of A. It is well known that kh(A, I) is a
closed ideal of A and I ⊆ clA(I) ⊆ kh(A, I) ([9], p.106). An element a in A is said to be Riesz
relative to a closed ideal F of A if the spectrum of the element a+ F in the quotient algebra
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A/F consists of zero. We will use R(A,F ) to denote the set of all Riesz elements of A rela-
tive to F . For a closed inessential ideal I of A, the inclusion kh(A, I) ⊆ R(A, I) is well known.

We define the set DI(a,A) as follows:

λ /∈ DI(a,A)⇔


λ /∈ σ(a)
or
λ is a Riesz point of σ(a) relative to I.

The following results will be used to prove some important results in Chapter 3 and Chapter
4.

Theorem 1.2.1. ([47], theorem 3.11) Let A be a semisimple Banach algebra, a ∈ A and I a
closed inessential ideal of A such that a is Riesz w.r.t. I. If 0 6= α ∈ σ(a) then α is a pole of
the resolvent of a.

Lemma 1.2.2. ([43], lemma 4.1) Let A be a Banach algebra and J an ideal of A. Suppose
that (an) is a sequence in A such that an → a ∈ A.

(1) If (αn) is a sequence such that αn ∈ σ(an) for all n ∈ N and αn → α, then α ∈ σ(a).

(2) If psp(a) consists of Riesz points of σ(a) relative to J , then the following properties hold:
(a) There are finitely many (Riesz) points in psp(a).
(b) r(an)→ r(a) as n→∞.
(c) If (αn) is a sequence such that αn ∈ psp(an) for all n ∈ N and αn → α, then α ∈ psp(a).

Lemma 1.2.3. ([43], lemma 2.1) Let A be a semisimple Banach algebra, I an inessential
ideal of A, and a ∈ A. Then a point α in σ(a) is a Riesz point of σ(a) relative to I if and
only if α is a pole of the resolvent of a and p = p(a, α) ∈ I.

In later chapters, the following spectral result will be applied in several proofs.

Proposition 1.2.4. Let A be a Banach algebra and F a closed ideal in A. If a ∈ A then
σ(a+ F,A/F ) ⊆ σ(a,A). Therefore r(a+ F,A/F ) ≤ r(a,A).

Let I be a closed inessential ideal in a Banach algebra A. An element a in A is called quasi
inessential (relative to I) if there exist k ∈ I and n ∈ N such that ||an − k|| < 1. The set
of quasi inessential elements relative to I will be denoted by qkh(A, I). It well known that
kh(A, I) ⊆ R(A, I) ⊆ qkh(A, I).

Proposition 1.2.5. ([47], proposition 5.1) Let I be a closed inessential ideal in a Banach
algebra A. An element a in A is quasi inessential relative to I if and only if r(a+I, A/I) < 1.

Proof. Suppose that a is quasi inessential relative to I. Then there exists a k ∈ I and n ∈ N
such that ||an − k|| < 1. Therefore r(an + I, A/I) ≤ ||an + I|| = inf

b∈I
||an − b|| ≤ ||an − k|| < 1.

From the spectral mapping theorem, it follows that (r(a + I, A/I))n = r(an + I) < 1.
This implies that r(a + I, A/I) < 1. Conversely suppose that r(a + I, A/I) < 1. Then

5

Stellenbosch University  http://scholar.sun.ac.za



r(a + I, A/I) = lim
n→∞

||an + I||
1
n < 1. This implies that there exist m ∈ N such that

||am + I|| 1m < 1, so that ||am + I|| < 1. Since ||am + I|| = inf
b∈I
||am − b||, it follows that

||am − b|| < 1 for some b ∈ I. Hence a is quasi inessential. �

Proposition 1.2.5 is established in [47] with a rather subtle proof, different from ours.

Let K be a compact subset of C. A hole of K is a bounded component of C \ K. We
denote by ηK the union of K and all the holes of K. The following theorem will be required
in proving several results in later chapters.

Theorem 1.2.6. ([9], theorem 5.7.4) Let I be an inessential ideal of a Banach algebra A.
For a ∈ A and b ∈ I we have the following properties:

(i) if G is a connected component of C\DI(a,A) intesecting C\σ(a+b) then it is a component
of C \DI(a+ b),
(ii) the unbounded connected components of C \ DI(a,A) and C \ DI(a + b, A) coincide, in
particular DI(a,A) and DI(a+ b, A) have the same external boundaries,
(iii) σ(a+ I, A/clA(I)) ⊆ DI(a,A) and ηDI(a,A) = ησ(a+ I, A/clA(I)).

Theorem 1.2.7. ([48], theorem 5.5) Let I be a closed inessential ideal of a Banach algebra
A and let a ∈ A. If b is a Riesz element of A relative to I and ab = ba, then DI(a,A) =
DI(a+ b, A).

1.3 Rank one and finite rank elements

Following [49], we call a non-zero element x of a semisimple Banach algebra A a rank one
element if there exists a (unique) linear functional fx on A such that xax = fx(a)x for all
a ∈ A. The set of all rank one elements of A will be denoted by F1(A). If x ∈ F1(A), the trace
of x, denoted by tr(x), is the number defined by x2 = tr(x)x. If fx is the linear functional such
that xax = fx(a)x for all a ∈ A, then we see that tr(x) = fx(1). With the spectral mapping
theorem, it can be shown that σ(x) ⊆ {0, tr(x)}.

In Chapter 4, we will refer to the following examples of rank one elements.

Example 1.3.1. ([12], example 3.4.3) The Banach algebra A = M2(C) is semisimple and the
rank one elements of A are the non-invertible matrices.

Example 1.3.2. Let A = `∞ be the Banach algebra of all bounded sequences of complex
numbers. Then the rank one elements of A are the sequences with one non-zero term and
zeroes elsewhere, and the non-zero term equals the trace of the element.

Proof. It is well known that `∞ is a semisimple Banach algebra. Let x = (0, 0, ..., tr(x), 0, 0, ...)
be a sequence in A with the ith term tr(x) and zeroes elsewhere. We show that x ∈ F1(A). Let
a = (α1, α2, ..., αi, ...) be an arbitrary element in A. Then xax = (0, 0, ..., αitr(x)2, 0, 0, ...) =
αitr(x)x. Let fx : A → C be the map defined by fx(a) = αitr(x). Clearly, fx is a linear
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functional on A. Therefore x ∈ F1(A).

Conversely, suppose that x = (ξ1, ξ2, ..., ξi, ...) ∈ F1(A). Then x 6= 0. Without loss of
generality we assume for fixed i that ξi 6= 0 but the other terms may or may not be equal
to zero. Since x ∈ F1(A), there is a linear functional fx : A → C such that xax = fx(a)x
for all a ∈ A. Take a = (0, 0, ..., 1, 0, 0, ...), a sequence with 1 in the ith position and zeroes
elsewhere. Then xax = (0, 0, ..., ξ2

i , 0, 0, ...), which has one non-zero term ξ2
i in the ith position

and zeros elsewhere. But xax = fx(a)x = (fx(a)ξ1, fx(a)ξ2, ..., fx(a)ξi, ...). Suppose that x
has more than one non-zero term. If fx(a) = 0, then fx(a)x = xax = 0, which contradicts
the fact that xax has only one non-zero term ξ2

i . If fx(a) 6= 0, then fx(a)x = xax has more
than one non-zero term, which contradicts the fact that xax has only one no-zero term ξ2

i .
Therefore x must have one non-zero term and zeroes elsewhere. To prove the second part,
let x = (0, 0, ..., ξi, 0, 0, ...) ∈ F1(A), ξi 6= 0. Then x2 = (0, 0, ..., ξ2

i , 0, 0, ...) = ξix. Since
x2 = tr(x)x, it follows that tr(x)x = ξix. Hence tr(x) = ξi. �

Example 1.3.3. ([49], p. 658) Let K be a completely regular Hausdorff space and Cb(K)
be the Banach algebra of all complex valued bounded continuous functions on K with the
supremum norm. Then the rank one elements of Cb(K) are elements of the form

fs(t) =

{
β if t = s
0 if t 6= s

where β ∈ C is fixed and s is an isolated point of K.

Let A be a semisimple Banach algebra. An element x in A is said to be a finite rank element
if x =

∑n
i=1 xi, where xi ∈ F1(A). The set of all finite rank elements of A is denoted by F(A).

By convention, 0 ∈ F(A). It is well known that F(A) is an ideal of A and if Soc(A) exists,
then F(A) = Soc(A) (cf. [49], p.659). The trace of x ∈ F(A) is defined by tr(x) =

∑n
i=1 tr(xi).

The following theorem gives some of the basic properties of the trace.

Theorem 1.3.4. ([49], theorem 4.5) Let A be a semiprime Banach algebra. Then the trace
satisfies the following properties:

(i) The trace is a linear functional on F .
(ii) If x ∈ F(A) and x is nilpotent, then tr(x) = 0.

In [10], Aupetit and Mouton defined the trace in Banach algebras in terms of the spectrum
of an element. After the following discussion, we will give this definition of the trace.

If S is any set, we denote by #S the number of elements in S. Let A be a Banach algebra and
a an element of A. The spectral rank of a is the number rank(a) = supx∈A #(σ(xa)\{0}) ≤ ∞
([10], p. 117). If rank(a) is finite, then a is said to be a spectrally finite rank element. There-
fore if a is spectrally of finite rank, the set E(a) = {x ∈ A : #(σ(xa) \ {0}) = rank(a)} is
non-empty. It is well known that in a semisimple Banach algebra, the set of spectrally finite
rank elements coincides with the socle ([10], corollary 2.9).
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Let A be a semisimple Banach algebra and a ∈ Soc(A). Let Γ be an oriented smooth contour
not intersecting σ(a) and denote by ∆0 the interior of Γ. Then there exists a ball U in A
centered at 1, such that σ(xa) ∩ Γ = ∅ for x ∈ U , and for x, y ∈ U ∩ E(a) we have that
#(σ(xa) ∩∆0) = #(σ(ya) ∩∆0) ([10], theorem 2.4). The number #(σ(xa) ∩∆0) is denoted
by m(Γ, a). For any isolated point α in σ(a), the number m(α, a) is defined to be m(Γ, a),
where Γ is taken to be a small circle centered at α and separating α from the rest of σ(a).
The number m(α, a) satifies m(α, a) ≥ 1 and turns out to be algebraic multiplicity of α for a
([10], p.120). For an element a in Soc(A), we define the trace ([10], p. 130) of a by

tr(a) =
∑

λ∈σ(a) λm(λ, a).

The trace is a linear functional on Soc(A) ([10], theorem 3.3). In chapter 4, we will need the
following result about the trace.

Theorem 1.3.5. ([10], theorem 3.5) Let A be a semisimple Banach algebra and a ∈ Soc(A).

Then r(a) = limk→∞|tr(ak)|
1
k . Moreover, if r(a) 6= 0, the number of spectral values of a with

modulus r(a) is given by limk→∞
|tr(ak)|
r(a)k

.

1.4 Operator theory

Let T : H1 → H2 be a bounded linear operator between Hilbert spaces. Then the adjoint
operator T ∗ of T is the operator T ∗ : H2 → H1 such that for all x ∈ H1 and y ∈ H2,
〈Tx, y〉 = 〈x, T ∗y〉. If T = T ∗, then T is said to be self-adjoint . A bounded self-adjoint linear
operator T on a Hilbert space H is said to be positive, written T ≥ 0, if 〈Tx, x〉 ≥ 0 for all
x ∈ H.

Theorem 1.4.1. ([37], theorem 9.3-1, p.470) If S and T are positive bounded linear operators
on a Hilbert space and if they commute, then their product is positive.

Proposition 1.4.2. ([22], proposition 2.13, p.34) If H is a Hilbert space and T a bounded
self-adjoint linear operator on H, then ||T || = sup{| 〈Tx, x〉 | : ||x|| = 1}.

Theorem 1.4.3. ([54], theorem 12.32) If H is a Hilbert space and T ∈ L(H), then the fol-
lowing statements are equivalent:

(i) 〈Tx, x〉 ≥ 0 for every x ∈ H,
(ii) T ∗ = T and σ(T ) ⊆ [0,∞).

Let E be a Banach lattice and x ∈ E. We say that x ≥ 0 if x = |x|, and then we define
E+ = {x ∈ E : x = |x|}. A linear operator T : E → E is positive if T (E+) ⊆ E+. An
operator T : E → E is called regular if it can be written as a linear combination over C
of positive operators. The set of all regular operators on E is denoted by Lr(E) and it is a
subspace of L(E). If we define the r-norm

||T ||r = inf{||S|| : S ∈ L(E), |Tx| ≤ S|x| for all x ∈ E}
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on Lr(E), then Lr(E) is a Banach algebra which contains the unit of L(E) (cf. [56], [7]). For
more on positive operators on Banach lattices (cf. [55]).

An operator T on a Hilbert space H is said to be of finite rank if the range of T is finite
dimensional. The set of all finite rank operators on H is denoted by F(H). An operator T on
H is called compact if the closure of the image of the closed unit ball in H is compact. The
set of all compact operators of H will be denoted by K(H). Clearly, F(H) ⊆ K(H).

Let T be bounded linear operator on a normed space X. A point λ ∈ C is called an eigenvalue
of T if there an x ∈ X, with x 6= 0, such that Tx = λx. The following proposition will be
useful in Chapter 5.

Proposition 1.4.4. If T is a bounded linear operator on a normed space X, then every pole
of the resolvent of T is an eigenvalue of T .

Proof. Suppose that λ0 is a pole of the resolvent of T . Then (λ0I − T )−1 does not exist,
where I is the identity operator on X. This means that λ0I − T is not injective, so that
N (λ0I − T ) 6= {0}, where N (λ0I − T ) is the null space of λ0I − T . Thus there is an
0 6= x ∈ X such that (λ0I − T )x = 0. �

1.5 C∗-algebras

In this section we present some results on the theory of C∗-algebras that will be used in later
chapters.

Example 1.5.1. ([22], example 1.2, p.238) If H is a Hilbert space, then A = L(H) is a
C∗-algebra, where for each T ∈ A, T ∗ is the adjoint of T .

Proposition 1.5.2. ([22], proposition 1.11 (e), p.239) If A is a C∗-algebra and if a ∈ A is
such that a∗ = a, then r(a) = ||a||.

Proposition 1.5.3. ([22], proposition 3.7, p.247) Let A be a C∗-algebra and C = {a ∈ A :
a = a∗ and σ(a) ⊆ [0,∞)}. Then C is a closed subset of A and λa, a+ b ∈ C for all a, b ∈ C
and for all λ ≥ 0.

Theorem 1.5.4. ([22], theorem 4.6, p.252) Let A be a C∗-algebra and F a closed ideal in A.
If for each a+F in A/F , we define (a+F )∗ = a∗+F , then A/F with its quotient norm is a
C∗-algebra.

Proposition 1.5.5. ([23], proposition 12.8) Let A be a C∗-algebra and C = {a ∈ A : a = a∗

and σ(a) ⊆ [0,∞)}. If a, b ∈ C and b− a ∈ C then ||a|| ≤ ||b||.

1.6 Analysis

Let K be a subset of the complex plane C. We use acc K to denote the set of accumulation
points of K and iso K to denote the set of isolated points of K.
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In Chapter 4, we will make use of corollary 1.6.3 to prove an important result. To prove
corollary 1.6.3, we need lemma 1.6.1 and theorem 1.6.2.

Lemma 1.6.1. ([52], lemma 1.9.1) Let (an), (bn) and (cn) be sequences of positive real numbers
such that an < bn for all n ∈ N, bn

an
→ ∞ and bn

cn
→ 1 as n → ∞. Then an < cn for n large

enough.

Proof. Since bn
an
→∞ and bn

cn
→ 1 as n→∞, we have that an

cn
= bn/cn

bn/an
→ 0 as n→∞. This

implies that an
cn
< 1 for n large enough. Therefore an < cn for n large enough. �

Theorem 1.6.2. (Stirling’s formula) ([59], p.331) If n is a large positive integer, then
n! ≈

√
2πnnne−n.

Corollary 1.6.3. ([52], lemma 1.9.2) If 0 < α < 1, then en <
nn

αnn!
for n large enough.

Proof. If α < 1 then 1
αn → ∞ as n → ∞. From the fact that 1

αn grows faster than
√

2πn,
it follows that 1

αn
√

2πn
→ ∞ as n → ∞. Let M > 1. Then there exists an N ∈ N such that

1
αn
√

2πn
> M for all n > N . Therefore en

αn
√

2πn
> Men > en for all n > N .

Let an = en, bn = en

αn
√

2πn
and cn = nn

αnn!
. Then, by Stirling’s formula, bn

cn
= enn!√

2πnnn → 1 as

n → ∞. Since bn
an

= 1
αn
√

2πn
→ ∞ as n → ∞, by the previous lemma, an < cn for n large

enough. Therefore en < nn

αnn!
for n large enough. �

The following results about real and complex numbers will be useful in the next chapter.

Lemma 1.6.4. If (xn) is a sequence of non-negative real numbers and if x ∈ R is such that
xn → x as n→∞, then x is non-negative.

Corollary 1.6.5. Let Cn be the normed space of all ordered n-tuples of complex numbers. If
(zn) is a sequence in Cn with all the components real and non-negative and if z ∈ Cn is such
that zn → z as n→∞, then all the components of z are real and non-negative.

Corollary 1.6.6. Let Mn(C) denote the normed space of all n by n complex matrices. If (An)
is a sequence in Mn(C) with all entries real and non-negative, and if A ∈Mn(C) is such that
An → A as n→∞, then A has only non-negative, real entries.

Corollary 1.6.7. Let `∞ be the normed space of all bounded sequences of complex numbers.
If (xn) is a sequence in `∞ such that all the components of all the terms xn are real and
non-negative, and if x ∈ S is such that xn → x as n → ∞, then all the components of x are
real and non-negative.
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Chapter 2

Commutatively ordered Banach
algebras

In this chapter commutatively ordered Banach algebras will be introduced and discussed. In
[51] basic properties of ordered Banach algebras are given. We will develop corresponding
properties compatible with the structure of commutatively ordered Banach algebras. Follow-
ing the development in [51] and partly in [42], further properties involving different Banach
algebras, direct sums of Banach algebras and quotient algebras will be presented.

2.1 Definitions and examples

In this section, commutatively ordered Banach algebras and associated basic properties are
defined. As we will see, there are several non-trivial examples of commutatively ordered
Banach algebras.

Definition 2.1.1. A nonempty subset C of a Banach algebra A is called a cone if C satisfies
the following:

(i) C + C ⊆ C,
(ii) λC ⊆ C for all λ ≥ 0.

If C also satisfies the property C ∩−C = {0}, then it is called a proper cone. We say that C
is closed if it a closed subset of A.

Let X be a nonempty set. A relation ≤ is said to be an ordering on X if one or more
of the following conditions are satisfied:

(i) x ≤ x for every x ∈ X (reflexivity),
(ii) x ≤ y and y ≤ x imply that x = y (antisymmetry),
(iii) x ≤ y and y ≤ z imply that x ≤ z (transitivity).
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The set X with an ordering ≤ is called an ordered set. If the relation ≤ satisfies only (i)
and (iii), then ≤ is said to be a partial order on X.

Every cone C in a Banach algebra A induces an ordering ≤ defined by a ≤ b if and only
if b− a ∈ C, for a, b ∈ A. It can easily be verified that:

Proposition 2.1.2. If ≤ is an ordering induced by a cone C in a Banach algebra A, then the
ordering ≤ is reflexive and transitive. Therefore it is a partial order on A. Moreover, C is a
proper cone if and only if ≤ is antisymmetric on A.

In view of the fact that C induces a partial order on A, we find that C = {a ∈ A : a ≥ 0}.
Therefore the elements of C are called positive.

We define a special class of cones that in effect forms the basis of our work.

Definition 2.1.3. A cone C in a Banach algebra A is called an algebra c-cone if it satisfies
the following:

(i) ab ∈ C for all a, b ∈ C such that ab = ba,
(ii) 1 ∈ C, where 1 is the unit of A.

Following [51], we call a cone C that satisfies the stronger conditions ab ∈ C for all a, b ∈ C
and 1 ∈ C an algebra cone. Obviously, every algebra cone is an algebra c-cone.

Definition 2.1.4. A Banach algebra A is called a commutatively ordered Banach algebra
(COBA) if A is ordered by a relation ≤ in such a way that for a, b ∈ A and λ ∈ C

(i) a, b ≥ 0⇒ a+ b ≥ 0,
(ii) a ≥ 0, λ ≥ 0⇒ λa ≥ 0,
(iii) a, b ≥ 0 and ab = ba⇒ ab ≥ 0,
(iv) 1 ≥ 0.

Considering that any algebra c-cone C in A defines a partial ordering satisfying these prop-
erties, we find that (A,C) is a COBA. If C is an algebra cone, then following [51], we say
that (A,C) is an ordered Banach algebra (OBA). Clearly, every OBA is a COBA. Note that
what we have defined as a COBA is what R. Harte in ([31], definition 1) defined as a partially
ordered Banach algebra.

The properties of algebra c-cones we have discussed so far reconcile the algebraic structure
of the Banach algebra with the order structure. We define a property of algebra c-cones that
reconciles the topological structure of the Banach algebra with the order structure.

Definition 2.1.5. An algebra c-cone C in a Banach algebra A is said to be c-normal if there
exists a constant α > 0 such that 0 ≤ a ≤ b and ab = ba in A imply that ||a|| ≤ α||b||.

If the algebra c-cone C has the stronger property that there exists an α > 0 such that 0 ≤ a ≤ b
w.r.t. C implies that ||a|| ≤ α||b|| then we say that C is normal. Therefore every normal
algebra c-cone is c-normal. It is easy to establish that a c-normal algebra c-cone of a Banach
algebra satisfies the following:
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Proposition 2.1.6. Every c-normal algebra c-cone in a Banach algebra A is proper.

From the definition of an algebra c-cone, it is clear that every subalgebra B of a Banach
algebra A is an algebra c-cone, so that (A,B) is a COBA. Since B ∩−B = B, we get that B
is not a proper (and hence non-c-normal) algebra c-cone of A.

An important concept in the theory of OBAs is that of monotonicity of the spectral ra-
dius (function) (see [51]). Following is a definition of monotonicity of the spectral radius
compatible with the COBA stucture.

Definition 2.1.7. Let (A,C) be a COBA and let a, b ∈ A. If 0 ≤ a ≤ b w.r.t. C and ab = ba
imply that r(a) ≤ r(b), then we say that the spectral radius (function) is c-monotone w.r.t. C.

When we have the stronger property r(a) ≤ r(b) whenever 0 ≤ a ≤ b w.r.t. C, then following
[51], we say that the spectral radius is monotone w.r.t. C. Therefore monotonicity implies
c-monotonicity.

Another property that an algebra c-cone may possess is that of inverse-closedness, which
we define as follows:

Definition 2.1.8. If an algebra c-cone C in a Banach algebra has the property that if a ∈ C
and a is invertible, then a−1 ∈ C, then C is said to be inverse-closed.

For properties of inverse-closed algebra cones we refer to, for instance, [58].

Consider A as a Banach space and let C ⊆ A be a cone in A. Then A can be ordered
by C in the usual way, and (A,C) is called an ordered Banach space (OBS). The terms closed,
proper and normal apply to C in the usual sense. We will refer to ordered Banach spaces
from time to time. Clearly, every COBA is an OBS. The following is an example of an OBS.

Example 2.1.9. ([52], example 2.2.5) Consider the Banach space `p (1 ≤ p <∞), with norm

defined by ||(xi)i∈N|| = (
∑∞

i=1 |xi|p)
1
p , where (xi)i∈N ∈ `p. The set

C = {(xi)i∈N ∈ `p : xi ≥ 0 for all i ∈ N}

is a closed, normal cone of the Banach space `p. Therefore (`p, C) is an OBS.

If we take p = ∞ and consider the Banach space `∞, with norm defined by ||(ai)i∈N|| =
sup{|xi| : i ∈ N}, then it can easily be shown that the set C as defined in the above example,
is a closed, normal cone in `∞. This means that (`∞, C) is an OBS.

The following proposition shows how some of the most common OBAs and COBAs arise.

Proposition 2.1.10. Let X be an OBS with a closed cone C ′ and A = L(X) the Banach
algebra of all bounded linear operators on X, with norm ||T || = sup{||Tx|| : ||x|| = 1}. Let
C = {T ∈ L(X) : Tx ≥ 0 for all x ∈ X such that x ≥ 0}. Then (A,C) is an OBA with C
closed.
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Proof. Clearly, C is an algebra cone in A. To show that C is closed, let T ∈ cl(C). Then
there is a sequence (Tn) in C such that Tn → T as n→∞. Therefore Tnx→ Tx for x ∈ X. If
x ≥ 0, then Tnx ∈ C ′ for all n ∈ N. Since C ′ is closed, Tx ≥ 0. Thus T ∈ C, and C is closed. �

In view of example 2.1.9, an immediate application of proposition 2.1.10 is the following:

Corollary 2.1.11. ([52], example 2.2.8) Let 1 ≤ p < ∞ and consider the Banach algebra
L(`p). The set C = {T ∈ L(`p) : Tx ≥ 0 for all x ∈ `p such that x ≥ 0} is a closed algebra
cone of A. Therefore (L(`p), C) is an OBA.

Another application of proposition 2.1.10, together with other facts, is the following:

Corollary 2.1.12. ([51], p.499) Let E be a Banach lattice and let C = {x ∈ E : x ≥ 0}.
If K = {T ∈ L(E) : TC ⊆ C}, then K is a closed, normal algebra cone of both L(E) and
Lr(E). Therefore (L(E), K) and (Lr(E), K) are both OBAs.

We give more examples of OBAs as well as examples of COBAs that are not OBAs.

Example 2.1.13. Let C be the Banach algebra of all complex numbers with norm ||z|| = |z|
and R+ the subset of C of all non-negative real numbers. Then R+ is a closed, normal algebra
cone of C. So (C,R+) is an OBA.

Example 2.1.13 is easily proved considering properties of real numbers. The next example is
a generalization of example 2.1.13.

Example 2.1.14. Consider the Banach algebra Cn with norm ||a|| = max{|ai| : i = 1, ..., n}.
Define C = {a = (a1, ..., an) ∈ Cn : ai ≥ 0 for i = 1, ..., n}. Then C is a closed, normal
algebra cone of Cn. Therefore (Cn, C) is an OBA.

Proof. Since the operations on Cn are componentwise addition, scalar multiplication and
multiplication, it is clear that C is an algebra cone of Cn. Closedness of C follows from
corollary 1.6.5. By direct computation, we can easily establish normality of C. �

Example 2.1.15. Let A = Mn(C) be the Banach algebra of all n× n complex matrices with
norm

||A|| = max
j

n∑
k=1

|αjk|, where A = (αjk) ∈Mn(C).

Let C be the subset of Mn(C) consisting of matrices with only non-negative, real entries. Then
C is a closed, normal algebra cone of Mn(C). Therefore (Mn(C), C) is an OBA.

Proof. That C is an algebra cone in A follows from properties of matrices. Closedness of C
follows from corollary 1.6.6. Normality of C can be established by direct computation. �

Since the inverse of a positive real number is also positive, the algebra cones in examples
2.1.13 and 2.1.14 are also inverse-closed. If C in example 2.1.15 is the set all diagonal ma-
trices with only non-negative real entries, then C is a closed, normal algebra cone of Mn(C).
Moreover, C is inverse-closed.
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Example 2.1.16. Consider the Banach algebra A = `∞ with norm ||a|| = sup{|ai| : i ∈ N},
where a = (a1, a2, ...) ∈ `∞. Define C = {(a1, a2, ...) ∈ `∞ : ai ≥ 0 for i ∈ N}. Then (A,C) is
an OBA with C closed and normal.

Proof. Since the operations on A are componentwise addition, scalar multiplication and mul-
tiplication, it is clear that C is an algebra cone in A. Closedness of C follows from corollary
1.6.7. By routine computation, normality of C is easily established. �

The next example demonstrates how a simple algebra cone arises in an arbitrary Banach
algebra.

Example 2.1.17. ([52], example 2.2.3) Let A be a Banach algebra and C = {α1 : α ≥ 0}.
Then C is a closed, normal algebra cone of A. Therefore (A,C) is an OBA.

In an OBA, normality of the algebra cone implies monotonicity of the spectral radius (see
[51], theorem 4.1). Therefore the spectral radius is monotone in the OBAs in corollary 2.1.12
through example 2.1.17. Also, considering how the cones were defined and the definition of
multiplication on the Banach algebra, we find that the cones in example 2.1.16 and example
2.1.17 are inverse-closed.

The examples we have given so far are those of COBAs that are OBAs. The next four
are examples of COBAs that are not OBAs.

Example 2.1.18. Let H be a Hilbert space and A = L(H). The subset C = {T ∈ A : T ≥ 0}
of A is a closed, normal algebra c-cone of A and the spectral radius in (A,C) is monotone.
Hence (A,C) is a COBA.

Proof. Using theorem 1.4.1, it is clear that C is an algebra c-cone in A. Closedness of
C follows from continuity of the inner product. Let 0 ≤ S ≤ T . Then 〈Tx, x〉 ≥ 〈Sx, x〉
for all x ∈ H. It follows from proposition 1.4.2 that ||S|| = sup{| 〈Sx, x〉 | : ||x|| = 1} ≤
sup{| 〈Tx, x〉 | : ||x|| = 1} = ||T ||, so that C is normal. Since 0 ≤ S ≤ T , we have that S = S∗

and T = T ∗ by theorem 1.4.3, so that r(S) = ||S|| and r(T ) = ||T || by proposition 1.5.2.
Monotonicity then follows from normality of C. �

Example 2.1.19. Let A be a C∗-algebra and let C = {a ∈ A : a = a∗ and σ(a) ⊆ [0,∞)}.
Then C is a closed, normal algebra c-cone of A and the spectral radius in (A,C) is monotone.
Hence (A,C) is a COBA.

Proof. By proposition 1.5.3, C is closed under addition and positive scalar multiplication.
Clearly, 1 ∈ C. If a, b ∈ C such that ab = ba, then (ab)∗ = b∗a∗ = ab and σ(ab) ⊆ [0,∞)
by proposition 1.1.5, so that ab ∈ C. This proves that C is an algebra c-cone of A. By
proposition 1.5.3, C is closed. That C is normal follows from proposition 1.5.5. To show that
the spectral radius in (A,C) is monotone, suppose that a, b ∈ C such that 0 ≤ a ≤ b w.r.t. C.
Then r(a) = ||a|| and r(b) = ||b|| by proposition 1.5.2, monotonicity follows from normality
of C. �
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Example 2.1.19 is a prototype of a COBA. If A is not commutative, then (A,C) is not an
OBA. If T is an operator on a Hilbert space H, then 〈Tx, x〉 ≥ 0 if and only if T = T ∗ and
σ(T ) ⊆ [0,∞) by theorem 1.4.3. Consequently, example 2.1.18 is a special case of example
2.1.19.

While example 2.1.19 (and consequently example 2.1.18) was suggested by Harte in [31],
the next two examples are attributed to the author.

Example 2.1.20. Let A = M2(C) and C =

{(
a b
b c

)
∈ A : a, b, c ≥ 0

}
. Then C is a closed,

normal algebra c-cone of A and the spectral radius in (A,C) is monotone. Hence (A,C) is a
COBA.

Proof. Clearly, C is a closed algebra c-cone of A. From direct calculation we get that
||a|| ≤ ||b|| whenever a, b ∈ A and 0 ≤ a ≤ b w.r.t. C. Thus C is normal. To show that the
spectral radius in (A,C) is monotone, we first note that C ⊆ {a ∈ A : a = a∗}, where a∗

denotes the complex conjugate transpose of a. Since a 7→ a∗ is an involution on A, it follows
from proposition 1.5.2 that r(a) = ||a|| for all a ∈ C, so that by normality of C, the spectral
radius in (A,C) is monotone. �

In example 2.1.20 we noted that C ⊆ {a ∈ A : a = a∗}. However, the elements of C in
general satisfy σ(a) ⊆ R, rather than σ(a) ⊆ [0,∞). So example 2.1.20 is different from
example 2.1.19. Also, since in general, a, b ∈ C implies ab ∈ C only if ab = ba, (A,C) is not
an OBA.

We generalize example 2.1.20 to obtain an infinite dimensional Banach algebra, as follows:

Example 2.1.21. Let A and C be as in example 2.1.20. Let `∞(A) = {(a1, a2, ...) : ai ∈ A
for all i ∈ N} and `∞(C) = {(c1, c2, ...) : ci ∈ C for all i ∈ N} ⊆ `∞(A). Then `∞(A) is a
Banach algebra and `∞(C) is a closed, normal algebra c-cone of `∞(A) and the spectral radius
in (`∞(A), `∞(C)) is monotone. Hence (`∞(A), `∞(C)) is a COBA.

Proof. If we define addition, scalar multiplication and vector multiplication componentwise,
and norm ||(a1, a2, ...)| = supi∈N ||ai|| (where ||ai|| is the norm of the matrix ai in A), it can
be shown that `∞(A) is a normed algebra with unit (I2, I2, ...) (I2 is the identity matrix on
A). Completeness can be shown as for `∞. Using example 2.1.20, it can be shown by direct
calculation that `∞(C) is a closed algebra c-cone of `∞(A) and that C is normal in A, with
||a|| ≤ ||b|| whenever a, b ∈ `∞(A) and 0 ≤ a ≤ b w.r.t. `∞(C). We show that the spectral
radius in (`∞(A), `∞(C)) is monotone. Let a, b ∈ `∞(C) such that 0 ≤ a ≤ b w.r.t. `∞(C).
For any x = (x1, x2, ...) ∈ `∞(A), we define x∗ = (x∗1, x

∗
2, ...), where x∗i is the complex conju-

gate transpose of xi in A. It can easily be verified that x 7→ x∗ is an involution on `∞(A).
If x ∈ `∞(C), we see from example 2.1.20 that x = x∗. Thus a = a∗ and b = b∗, so that
r(a) = ||a|| and r(b) = ||b|| by proposition 1.5.2. Since ||a|| ≤ ||b||, we have that r(a) ≤ r(b). �

More examples of COBAs will be given in Section 2.3.

Positive elements in a COBA satisfy the following:
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Proposition 2.1.22. Let (A,C) be a COBA and let a, b ∈ A. If 0 ≤ a ≤ b w.r.t. C and
ab = ba, then 0 ≤ an ≤ bn for any n ∈ N.

Proof. We prove the result by mathematical induction. For n = 1, the inequality obviously
holds. Suppose that 0 ≤ ak ≤ bk for k > 1. If ab = ba then from 0 ≤ a ≤ b and the induction
hypothesis, we have that ak+1 = aak ≤ abk ≤ bbk = bk+1, and the result follows. �

Since ab = ba in proposition 2.1.22 is required only to get the product ab to be positive,
in an OBA the condition can be dropped. The next counter example shows however that in
a COBA which is not an OBA, it cannot in general be dropped.

Example 2.1.23. Let A = M2(C) and C = {a ∈ A : a = a∗ and σ(a) ⊆ [0,∞)}, where a∗

denotes the complex conjugate transpose of a. Then C is a closed, normal algebra c-cone of

A. If a =

(
1 −1
−1 1

)
, b =

(
2 −1
−1 1

)
∈ A then 0 ≤ a ≤ b but a2 ≤ b2 does not hold.

Proof. That C is a closed, normal algebra c-cone of A follows from example 2.1.19. We

see that a = a∗, b = b∗, σ(a) = {0, 2}, σ(b) = {3
2
−
√

5
2
, 3

2
+
√

5
2
} and b − a =

(
1 0
0 0

)
, so

that 0 ≤ a ≤ b. We have that b2 =

(
5 −3
−3 2

)
and a2 =

(
2 −2
−2 2

)
, so that b2 − a2 =(

3 −1
−1 0

)
. It follows that σ(b2−a2) = {3

2
−
√

13
2
, 3

2
+
√

13
2
}, so that σ(b2−a2) ⊆ [0,∞) is not

satisfied and a2 ≤ b2 does not hold. We note that ab =

(
3 −2
−3 2

)
and ba =

(
3 −3
−2 2

)
,

so that ab 6= ba. �

2.2 Cones in different Banach algebras

In the previous section we established that an algebra c-cone in a Banach algebra may have
the properties of being closed, inverse-closed, proper, c-normal (or normal) or that the spectral
radius in the COBA may be c-monotone (or monotone). In this section we discuss algebra
c-cones in relation to different Banach algebras and the properties of algebra c-cones that are
preserved under homomorphisms.

If A and B are Banach algebras such that 1 ∈ B ⊆ A and C is an algebra cone of A,
then C ∩ B is an algebra cone of B and under suitable conditions, properties of C are inher-
ited by C ∩ B ([51], p.492). For COBAs, we have the following corresponding result, which
can be established by routine computation:

Theorem 2.2.1. Let A and B be Banach algebras such that 1 ∈ B ⊆ A. If C is an algebra
c-cone in A then we have the following:

(i) C ∩B is an algebra c-cone in B,
(ii) if C is a proper algebra c-cone in A, then C ∩B is a proper algebra c-cone in B,
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(iii) if B has finer norm than A and if C is closed in A, then C ∩B is closed in B,
(iv) if B is a closed subalgebra of A, then c-normality (normality) of C in A implies c-normality
(normality) of C ∩B in B.

In ([42], p.134) it is remarked that if π : A→ B is a homomorphism and C is an algebra cone
of A, then πC is an algebra cone of B, and under certain conditions, properties of C carry
over to πC. For COBAs we have

Proposition 2.2.2. Let A and B be Banach algebras and π : A→ B a homomorphism. Then
we have the following:

(i) if π is injective and if C is an algebra c-cone of A, then πC is an algebra c-cone of
B,
(ii) if π is injective and C is proper, then πC is proper,
(iii) if π is continuous and bijective, and if C is closed, then πC is closed.

Proof. (i) Let a1, b1 ∈ πC and let λ ≥ 0. Then there exist a, b ∈ C such that πa = a1 and
πb = b1. Since C is an algebra c-cone, a + b, λa ∈ C and if ab = ba then ab ∈ C. Therefore
a1 + b1 = πa+ πb = π(a+ b) ∈ πC and λa1 = λπa = π(λa) ∈ πC. Suppose that a1b1 = b1a1.
Then πaπb = πbπa, so that π(ab) = π(ba). Since π is injective, ab = ba. Therefore, ab ∈ C,
so that a1b1 = πaπb = π(ab) ∈ πC. Furthermore, since π1 = 1, we have that 1 ∈ πC. Hence
πC is an algebra c-cone of B.

(ii) If C is proper then C ∩ −C = {0}. Since π is injective, πC ∩ −πC = πC ∩ π(−C) =
π(C ∩ −C) = π({0}) = {0}.

(iii) If π is continuous and bijective, then it is a closed map. Therefore if C is closed, then πC
is closed. �

In (i) above, since injectivity of π is used only to guarantee the commutativity ab = ba,
we find that if C is an algebra cone of A then injectivity of π is not necessary for πC to be
an algebra cone of B.

2.3 Direct sums

Given any finite number of algebras, we can define their direct sum in the usual way. If these
algebras are normed, then using their norms, we can define a norm on the direct sum. The
direct sum then becomes a normed algebra. If the algebras are normed and ordered by cones,
the cones on the algebras give rise to a cone on the direct sum. Then the direct sum becomes
an ordered normed algebra. In this section we extend this idea to COBAs.

The following lemma will be required in proving results in this section.

Lemma 2.3.1. Let n ∈ N and Ai a Banach algebra, for i = 1, ..., n. Let A = A1 ⊕ · · · ⊕ An

and let a = (a1, ..., an) ∈ A. Then σ(a) =
n⋃
i=1

σ(ai).
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Proof. Let λ ∈ C. Then λ1 − a is invertible in A if and only if λ1i − ai in invertible in Ai,
for all i = 1, ..., n, where 1i is the unit element of Ai. This implies that λ /∈ σ(a) if and only

if λ /∈ σ(ai) for all i = 1, ..., n. Therefore σ(a) =
n⋃
i=1

σ(ai). �

Proposition 2.3.2. Let n ∈ N and Ai a COBA with an algebra c-cone Ci, for i = 1, ..., n. Let
A = A1⊕· · ·⊕An and C = {(c1, ..., cn) ∈ A : ci ∈ Ci for i = 1, ..., n}. Then (A,C) is a COBA
and if Ci is closed (inverse-closed, c-normal or normal) for all i = 1, ..., n then C is closed
(inverse-closed, c-normal or normal). If the spectral radius is c-monotone (or monotone) in
(Ai, Ci) for all i = 1, ..., n, then the spectral radius in (A,C) is c-monotone (or monotone).

Proof. By direct computation, it can easily be shown that C is an algebra c-cone of A and if Ci
is closed (inverse-closed) for i = 1, ..., n, then C is closed (inverse-closed). To prove c-normality
of C, suppose that Ci is c-normal for all i = 1, ..., n. Let a = (a1, ..., an), b = (b1, ..., bn) ∈ A
with ab = ba and 0 ≤ a ≤ b w.r.t. C. Then 0 ≤ ai ≤ bi and aibi = biai for all i = 1, ..., n.
If Ci is c-normal for all i = 1, ..., n, we have that ||ai||i ≤ αi||bi||i, where αi > 0 for all
i = 1, ..., n. Let ||a|| = max{||a1||1, ..., ||an||n} and ||b|| = max{||b1||1, ..., ||bn||n} and let
α = max{α1, ..., αn}, where || · ||i is the norm on Ai. Then α > 0 and ||a|| ≤ α||b||, so that C
is c-normal. In a similar way, we can show that if Ci is normal in Ai for all i = 1, ..., n, then
C is normal in A.

To prove the last part, let a = (a1, ..., an), b = (b1, ..., bn) ∈ A be such that 0 ≤ a ≤ b
w.r.t. C and ab = ba. Then 0 ≤ ai ≤ bi w.r.t. Ci and aibi = biai for i = 1, ..., n. If the spectral
radius is c-monotone in (Ai, Ci) for i = 1, ...., n, we have that r(ai) ≤ r(bi) for i = 1, ..., n.
It follows from lemma 2.3.1 that r(a) ≤ r(b). We apply a similar argument for monotonicity. �

In view of example 2.1.15 and the OBA version of proposition 2.3.2 ([42], example 3.6),
we get the following:

Example 2.3.3. ([42], example 3.7) Let n, k1, ..., kn ∈ N and A = Mk1(C)⊕· · ·⊕Mkn(C). Let
C = {(a1, ..., an) ∈ A : ai is a ki×ki matrix with only non-negative entries, for all i = 1, ..., n}
and C ′ = {(a1, ..., an) ∈ A : ai is a diagonal ki × ki matrix with only non-negative entries, for
all i = 1, ..., n}. Then both C and C ′ are closed, normal algebra cones of A. Therefore (A,C)
and (A,C ′) are OBAs.

The following is an important example: it shows that the direct sum of any COBA and any
OBA is a COBA. Since there are many examples of OBAs, some of which were given in Section
2.1, the result shows that there are plenty of examples of COBAs.

Example 2.3.4. Let A1 be a COBA with an algebra c-cone C1 and let A2 be an OBA with
an algebra cone C2. If A = A1 ⊕ A2 and C = {(c1, c2) ∈ A : c1 ∈ C1, c2 ∈ C2}, then (A,C)
is a COBA. If C1 is closed (c-normal or normal) and C2 is closed (normal), then C is closed
(c-normal or normal). If the spectral radius in (A1, C1) is c-monotone (or monotone) and the
spectral radius in (A2, C2) is monotone, then the spectral radius in (A,C) is c-monotone (or
monotone).
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Proof. By routine computations, we get that C is an algebra c-cone of A and if C1 and
C2 are closed, then C is closed. To show that C is c-normal in A if C1 is c-normal in
A1 and C2 is normal in A2, suppose that 0 ≤ a ≤ b w.r.t C and ab = ba. We have
that ||a|| = ||(a1, a2)|| = max{||a1||, ||a2||} and ||b|| = ||(b1, b2)|| = max{||b1||, ||b2||}. Since
ab = ba, a1b1 = b1a1. It follows from c-normality of C1 that there exists an α > 0 such that
||a1|| ≤ α||b1||. Since C2 normal, there exists a β > 0 such that ||a2|| ≤ β||b2||. Therefore
||a|| ≤ γmax{||b1||, ||b2||} = γ||b||, where γ = max{α, β}. Thus C is c-normal. In a similar
way we can prove that if C1 is normal in A1 and C2 is normal in A2 then C is normal in A.

To show the last part, let a = (a1, a2), b = (b1, b2) ∈ A such that 0 ≤ a ≤ b and ab = ba. Then
a1b1 = b1a1 and a2b2 = b2a2. If the spectral radius in (A1, C1) is c-monotone and in (A2, C2)
is monotone, we have that r(a1) ≤ r(b1) and r(a2) ≤ r(b2). It follows from lemma 2.3.1 that
r(a) ≤ r(b). Similarly, if the spectral radius in (A1, C1) and in (A2, C2) is monotone, then the
spectral radius in (A,C) is monotone. �

If in example 2.3.4 the spectral radius in the OBA (A2, C2) is not monotone, then the spectral
radius in the COBA (A,C) is not monotone. We verify this in the next proposition.

Proposition 2.3.5. If (A1, C1) is a COBA and (A2, C2) is an OBA in which the spectral
radius is not monotone, then the spectral radius in the COBA (A,C) = (A1 ⊕A2, C1 ⊕C2) is
not monotone.

Proof. By example 2.3.4, (A,C) is a COBA. If a2, b2 ∈ A2 such that 0 ≤ a2 ≤ b2 w.r.t. C2 and
r(a2) > r(b2), then the result follows by considering (a1, a2) and (b1, b2), where a1 = r(b2)1,
b1 = 1

2
(r(a2) + r(b2))1 ∈ A1. �

The next example illustrates proposition 2.3.5. It gives us an example of a COBA (which
is not an OBA) where the spectral radius is not monotone.

Example 2.3.6. Consider a non-commutative C∗-algebra A1 ordered by the algebra c-cone
C1 = {a1 ∈ A1 : a1 = a∗1 and σ(a1) ⊆ [0,∞)}. Let L(`2) denote the real Banach algebra of
bounded linear operators on `2 and N = {0, 1, 2, ...}. Take C = {(xk)k∈N ∈ `2 :

∑n
k=0 xk ≥ 0

for all n ∈ N} and K = {T ∈ L(`2) : TC ⊆ C}. Let A2 be the complex Banach algebra L(`2)C
and C2 = K. Then (A1, C1) is COBA and (A2, C2) is an OBA in which the spectral radius in
not monotone. Therefore the spectral radius in the COBA (A,C) = (A1⊕A2, C1⊕C2) is not
monotone.

Proof. That (A1, C1) is a COBA and (A2, C2) is an OBA in which the spectral radius is
not monotone follow from example 2.1.19 and ([51], example 4.3) respectively. By example
2.3.4, (A,C) is a COBA. We show that the spectral radius in this COBA is not monotone.
Let e0 = (1, 0, 0, ...), e1 = (0, 1, 0, ...), ... and S, T ∈ L(`2) be defined as follows: S(xk)k∈N =∑∞

n=0 xne2n and T (xk)k∈N = x0e1 +
∑∞

n=2(1/2j(n))(xj(n) + xj(n)+1)en, where j(n) ∈ N is such
that 2j(n) + 1 ≤ n ≤ 2j(n)+1 for n ≥ 2. Then by ([51], example 4.3), 0 ≤ S ≤ T in (A2, C2),
r(S) > 0 and r(T ) = 0. It follows that 0 ≤ (r(T )I, S) ≤ (1

2
r(S)I, T ) in (A,C), and

r((r(T )I, S) = max{r(T ), r(S)} = r(S) > 1
2
r(S) = max{1

2
r(S), r(T )} = r((1

2
r(S)I, T )). �
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In the following proposition we prove that if C2 in example 2.3.4 is not normal, then C1 ⊕C2

in the COBA A1 ⊕ A2 is not normal.

Proposition 2.3.7. If (A1, C1) is a COBA and (A2, C2) an OBA such that C2 is not normal
(not proper) in A2 then C1 ⊕ C2 is not normal (not proper) in the COBA A1 ⊕ A2.

Proof. Let α > 0 and a2, b2 ∈ A2 such that 0 ≤ a2 ≤ b2 w.r.t. C2, but ||a2|| > α||b2||. Take
r = min{r(a2), r(b2)}. Then it follows that C1 ⊕ C2 is not normal in A1 ⊕ A2 by considering
(a1, a2) and (b1, b2), where a1 = r1 = b1. It is trivial to show that if C2 is not proper in A2,
then C1 ⊕ C2 is not proper in A1 ⊕ A2. �

The next example illustrates the previous proposition. It gives a COBA (which is not an
OBA) in which the algebra c-cone is not normal.

Example 2.3.8. Consider a non-commutative C∗-algebra A1 ordered by the algebra c-cone
C1 = {a1 ∈ A1 : a1 = a∗1 and σ(a1) ⊆ [0,∞)}. Let E be the Banach lattice `1 ⊕ L2[0, 1]⊕ `∞,
C be the positive cone in E and let K = {T ∈ Lr(E) : TC ⊆ C}. Also let π : Lr(E) →
Lr(E)/Kr(E) be the canonical homomorphism. Then (A1, C1) is a COBA and (A2, C2) is an
OBA such that C2 is not normal in A2, where A2 = Lr(E)/Kr(E) and C2 = πK. Therefore
(A1 ⊕ A2, C1 ⊕ C2) is COBA such that C1 ⊕ C2 is not normal in A1 ⊕ A2.

Proof. By example 2.1.19, (A1, C1) is a COBA and by ([51], example 4.2), (A2, C2) is an
OBA such that C2 is not normal in A2. That (A1 ⊕ A2, C1 ⊕ C2) is a COBA follows from
example 2.3.4. In ([51], example 4.2), it is shown that C2 is not even proper in A2. This
implies that C1 ⊕ C2 is not proper in A1 ⊕ A2, and so it not normal. �

2.4 Quotient algebras

Let A and B be Banach algebras and π : A→ B a homomorphism. If C is an algebra cone of
A, then πC = {πc : c ∈ C} is an algebra cone in B. In particular, if F is a closed ideal in the
OBA (A,C) and if π : A→ A/F is the canonical homomorphism, then πC is an algebra cone
of A/F , although normality or closedness of πC cannot be deduced from the corresponding
properties of C ([51], p.492). In our current setting, if C is an algebra c-cone of A, then πC
is in general not an algebra c-cone of A (see proposition 2.2.2), since π is not injective and so
the multiplication property for an algebra c-cone is not satisfied.

In order to work with quotient algebras for COBAs, we will need the following definition
and results, which are due to the author.

Definition 2.4.1. Let (A,C) be a COBA. A subset M of A is called a maximal positive
commutative set (MPCS) in A if M is a commutative subset of C and it is not a proper subset
of another commutative subset of C.

Theorem 2.4.2. Let A be a COBA with an algebra c-cone C and let M be an MPCS in A.
Suppose that F is a closed ideal of A and π : A→ A/F is the canonical homomorphism. Then
we have the following:
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(i) M is an algebra cone of A,
(ii) M is contained in a closed commutative subalgebra of A containing the unit of A,
(iii) if C is a closed (proper, c-normal or normal) cone of A, then M is a closed (proper,
normal) cone of A,
(iv) πM is an algebra cone of A/F .

Proof. (i) Let a, b ∈ M and λ ≥ 0. Then for any c ∈ M , we have that c(a + b) = (a + b)c,
c(λa) = (λa)c and c(ab) = (ab)c. Now since M ⊆ C and C is an algebra c-cone, a+ b, λa, ab ∈
C. Since also 1 commutes with every element of A, all the elements of the set {a+ b, λa, ab, 1}
commute with one another and with all the elements of M . Therefore M ∪{a+ b, λa, ab, 1} is
a commutative subset of C. Maximality of M then implies that M = M ∪ {a + b, λa, ab, 1},
so that a+ b, λa, ab, 1 ∈M . Hence M is an algebra cone of A.

(ii) Follows from proposition 1.1.1.

(iii) Let (an) be a sequence in M and a ∈ A such that an → a as n→∞. Since M ⊆ C and
C is closed, a ∈ C. Now for any b ∈ M , we have that ban = anb for all n ∈ N. This implies
that ab = ba, so that M ∪ {a} is a commutative subset of C. Maximality of M then implies
that M = M ∪{a}, so that a ∈M . Hence M is closed. If C is proper, it follows from M ⊆ C
and −M ⊆ −C that M ∩ −M ⊆ C ∩ −C = {0}, so that M is proper. If C is c-normal (or
normal), then normality of M follows from the fact that the norm of an element of C does
not change if the element is considered as a member of M .

(iv) Using the fact that 1 ∈M and if a+F, b+F ∈ πM , then there exist a1, b1 ∈M such that
a+F = a1+F and b+F = b1+F , it can easily be shown that πM is an algebra cone of A/F . �

Closedness or c-normality of πM can not be deduced from the corresponding properties of M .

The next result shows that every positive element in an algebra c-cone is contained in an
MPCS.

Proposition 2.4.3. Let A be a COBA with an algebra c-cone C and let a ∈ C. Then there
exists an MPCS M in A such that a ∈M .

Proof. Let a ∈ C. We show that a is contained in a commutative subset of C. Since 0 and 1
are in C and they commute with every element of A, we have that {0, 1, a} is a commutative
subset of C containing a. Let P = {M : M is a commutative subset of C containing a}.
Then P is nonempty. We show that P contains a maximal element. Consider the inclusion
relation ⊆ on P . By definition, the relation ⊆ has the reflexive, antisymmetry and transitive
properties on P . Now let P0 = {Mα ∈ P : α ∈ I} be a chain in P , where I is an indexing

set. We show that P0 has an upper bound. Define M∗ =
⋃
α∈I

Mα. Then Mα ⊆ M∗ for all

α ∈ I. Therefore M∗ is an upper bound for P0. By Zorn’s lemma, P has a maximal element. �

We end this chapter with the following observation: When we defined COBAs, it appeared
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that c-normality and c-monotonicity are the natural COBA analogues of normality and mono-
tonicity of OBAs. However, in all the examples known to us so far where the algebra c-cone
is c-normal (or the spectral radius c-monotone), it is in fact normal (or the spectral radius
is monotone). As we will see in the rest of the document, most results are still obtainable
under the weaker assumptions of c-normality and c-monotonicity, although in certain cases
we have to make a corresponding commutativity assumption. It is for this reason that in
the remaining chapters, in COBAs, we will generally assume c-normality or c-monotonicity,
rather than normality or monotonicity.
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Chapter 3

Cones and spectral theory

In the previous chapter we saw that algebra c-cones may have the properties of being closed,
proper, c-normal (or normal), inverse-closed and the spectral radius c-monotone (or mono-
tone). In this chapter we will give results in COBAs that do not rely on the property of the
spectral radius being c-monotone (or monotone). As we will see, these results include the
important Krein-Rutman thorem, which is discussed in the first section of the chapter.

3.1 Krein-Rutman theorem

Let a be a non-zero element of a Banach algebra A. A point λ in σ(a) is called an eigenvalue
of a if there exists a non-zero element u in A such that au = λu or ua = λu. The element u
is called the eigenvector corresponding to λ.

This section deals with the Krein-Rutman theorem, which generally describes conditions un-
der which the spectral radius of a positive element will be an eigenvalue of that element, with
positive corresponding eigenvector. The original result was proved in 1948 by M.G. Krein and
M.A. Rutman in the operator-theoretic context (cf. [36]). For more on the Krein-Rutman
theorem see [57], [60]. In [47], S. Mouton and H. Raubenheimer proved several versions of
the result in the OBA setting. Two of their results use purely algebraic methods. One of
the two results is the basic form from which the other one is obtained. In this section we
adapt the proof and give the basic form of the Krein-Rutman theorem in the COBA setting.
We will defer the other version of the Krein-Rutman theorem to Chapter 4, as it relies on
monotonicity of the spectral radius.

Before proceeding we first establish some notation. Let A be a Banach algebra and a ∈ A. If
λ0 is a pole of order k of the resolvent R(λ, a) of a, then R(λ, a) has a Laurent series expansion
in a deleted neighbourhood of λ0. In this section, a−k will denote the coefficient of (λ− λ0)−k

in the Laurent series expansion of R(λ, a).

The basic form of the Krein-Rutman theorem in OBAs is ([47], theorem 3.2). Before we
prove its COBA version, we first note that in the proof of ([47], theorem 3.2), the ordering in
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the Banach algebra is used only to get the eigenvector u to be positive. In the general setting
of Banach algebras, we have the following result:

Theorem 3.1.1. ([43], theorem 3.1) Let A be a Banach algebra and let 0 6= a ∈ A. If λ0

is a pole of order k of the resolvent of a, then λ0 is an eigenvalue of a with corresponding
eigenvector a−k. Moreover, aa−k = a−ka and aa−ka = λ0

2a−k.

With theorem 3.1.1, we prove the basic form of the Krein-Rutman theorem, which is the
COBA version of ([47], theorem 3.2).

Theorem 3.1.2. Let A be a COBA with a closed algebra c-cone C and let 0 6= a ∈ C such
that r(a) > 0. If r(a) is a pole of the resolvent of a, then there exists 0 6= u ∈ C such that
au = ua = r(a)u and aua = r(a)2u.

Proof. By theorem 3.1.1, we have that r(a) is an eigenvalue of a with corresponding eigen-
vector a−k that satisfies aa−k = a−ka and aa−ka = r(a)2a−k. Since r(a) is a pole of order k of
the resolvent of a, we have that R(λ, a) = a−k

(λ−r(a))k
+ a−k+1

(λ−r(a))k−1 + · · ·+ a0 + a1(λ− r(a)) + · · ·
(where ai ∈ A for i = −k,−k + 1, ...) in a deleted neighbourhood of r(a). Multiplying both
sides of the Laurent expansion by (λ − r(a))k and then taking limits as λ → r(a)+, we have
that a−k = limλ→r(a)+(λ − r(a))kR(λ, a). Since C is a closed algebra c-cone and a ∈ C,

from the Neumann series R(λ, a) =
∑∞

j=i
aj

λj+1 (λ > r(a)) for R(λ, a) and the fact all powers

aj are in C, it follows that R(λ, a) ∈ C. Hence a−k ∈ C. Taking u = a−k, the result follows. �

Note that the proof of theorem 3.1.2 is the same as in the OBA case; the only multipli-
cation of positive elements involved is taking powers.

From the proof of theorem 3.1.2 we can deduce the following important result, which will
be used in Chapter 5 in connection with an ergodicity problem.

Proposition 3.1.3. Let A be a COBA with a closed algebra c-cone C and let 0 6= a ∈ C
such that r(a) > 0. If r(a) is a simple pole of the resolvent of a, then p = p(r(a), a) ∈ C,
ap = pa = r(a)p and apa = r(a)2p.

The following result is a consequence of theorem 3.1.1. It provides a spectral characterization
of the rank one idempotents. We will refer to this result in Chapter 4.

Proposition 3.1.4. Let A be a semiprime Banach algebra and let x ∈ F1(A). Then x is an
idempotent if and only if r(x) = 1 and r(x) is a pole of the resolvent of x.

Proof. Since x ∈ F1, we have that x 6= 0. Thus if x is an idempotent, then r(x) = 1. It is
well known that p(e, 1) = e for every non zero idempotent e. Therefore p(x, r(x)) = x, which
implies that r(x) is a simple pole of the resolvent of x. Conversely, suppose that r(x) = 1 and
r(x) is a pole of the resolvent of x. Then by theorem 3.1.1, there exists a 0 6= u ∈ A such
that xu = ux = u. Therefore xux = u. Since x ∈ F1(A), there exists 0 6= λ ∈ C such that
xux = λx. From xux = u it follows that u = λx. Using ux = u we obtain that λx2 = λx, so
that x2 = x. �

Note: it is well known that if x is a rank one element which is not quasinilpotent, then
tr(x) 6= 0. In this case it can be shown by direct calculation that tr(x)−1x is an idempotent.
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3.2 Positive elements and analytic functions

Let A be a Banach algebra, a ∈ A and let f be a complex valued function analytic on a
neighbourhood Ω of the spectrum σ(a) of a. Suppose that C is an algebra c-cone of A. We
consider the problem of finding conditions under which a ∈ C implies f(a) ∈ C. This problem
was investigated for OBAs in [42]; we will extend the results to COBAs. The proofs of the
results are similar to the proofs of the corresponding OBA results. We include them for the
sake of completeness since they are short.

For polynomial and exponential functions, we have proposition 3.2.1. Note that in this result,
we define ea =

∑∞
n=0

1
n!
an ([15], definition 1, p.38).

Proposition 3.2.1. Let A be a COBA with an algebra c-cone C and let a ∈ C.

(i) If p(λ) = αnλ
n + · · ·+ α1λ+ α0 with αn, ..., α0 real and positive, then p(a) ∈ C.

(ii) If C is closed and if f(λ) = eλ, then f(a) ∈ C.

Proof. Since a ∈ C, the multiplicative property of C implies that an ∈ C for all n ∈ N.
Since C is closed under addition and positive scalar multiplication, we obtain (i) and since in
addition C is a closed subset of A, we obtain (ii). �

Corollary 3.2.2. Let (A,C) be a COBA with C inverse-closed and let a ∈ C. Let p(λ) =
αnλ

n + · · · + α1λ + α0 and q(λ) = βmλ
m + · · · + β1λ + β0 with αn, ..., α0, βm, ..., β0 real and

positive. Suppose that q(λ) has no zeroes in σ(a) and let s(λ) = p(λ)
q(λ)

. Then s(a) ∈ C.

Proof. From proposition 3.2.1 we obtain that p(a), q(a) ∈ C. Now, the spectral mapping theo-
rem implies that q(a) is invertible. Since C is inverse-closed, this implies that (q(a))−1 ∈ C. By
lemma 1.1.6, s(a) = p(a)(q(a))−1. Since lemma 1.1.6 implies that p(a)(q(a))−1 = (q(a))−1p(a),
we obtain that s(a) ∈ C. �

For the resolvent function, we have:

Proposition 3.2.3. Let (A,C) be a COBA with C closed and let a ∈ C. If λ > r(a), then
(λ1− a)−1 ∈ C.

Proof. Since λ > r(a), the resolvent of a has a Neumann series representation (λ1− a)−1 =
1
λ

(∑∞
n=0( a

λ
)n
)
. Since C is an algebra c-cone and a ∈ C, all the powers an of a are in C. Also

since λ > r(a) ≥ 0, we have that ( a
λ
)n ∈ C for all n ∈ N. Since C is closed, this implies that

1
λ

(∑∞
n=0( a

λ
)n
)
∈ C. Hence (λ1− a)−1 ∈ C. �

The original OBA results corresponding to proposition 3.2.1, corollary 3.2.2 and proposi-
tion 3.2.3 are ([42], proposition 4.10, 4.20, 4.6) respectively.

Let A be a Banach algebra. A subset I of A is called a multiplicative ideal of A if IA ⊆ I
and AI ⊆ I. Recalling that Ic denotes the commutant of the set I, we prove the following
corollary, which is a consequence of proposition 3.2.3.

26

Stellenbosch University  http://scholar.sun.ac.za



Corollary 3.2.4. Let (A,C) be a COBA with C closed and let I be a non-trivial multiplicative
ideal in A. For every element a in A, there exists 1 6= c ∈ A such that ac− a ∈ I. Moreover,
if a ∈ C ∩ Ic and I ∩ C 6= {0}, then ac− a ∈ C.

Proof. Let 0 6= b ∈ I and λ /∈ σ(b). Then (λ1 − b)−1 exists. Take c = λ(λ1 − b)−1.
Since b 6= 0, we have that c 6= 1. Now by ([13], (3), p.929), with p = 1, we have that
ac− a = aλ(λ1− b)−1 − a = a(1 + b

λ
· λ(λ1− b)−1)− a = a(λ1− b)−1b ∈ I. This proves the

first part.

To prove the second part, let a ∈ C ∩ Ic. If I ∩ C 6= {0}, take 0 6= b ∈ I ∩ C with λ /∈ σ(b)
such that λ > r(b). Then with c defined as before, ac − a = a(λ1 − b)−1b. Since a ∈ Ic and
b ∈ I, we have that a(λ1− b) = (λ1− b)a and consequently, a(λ1− b)−1 = (λ1− b)−1a. From
ac− a = a(λ1− b)−1b and proposition 3.2.3, it follows that ac− a ∈ C. �

The original OBA result corresponding to corollary 3.2.4 is ([13], theorem 2.1).

In theorem 3.2.6, we give a generalization of proposition 3.2.1. In order to prove it, the
following lemma will be required.

Lemma 3.2.5. Let A be a Banach algebra and a ∈ A such that r(a) is a pole of order k of
the resolvent of a. Suppose that f is a complex valued function, analytic at least on an open
disk of the form D(r(a), R). Let g(λ) = f(λ)(λ1 − a)−1 and let an denote the coefficient of
(λ− r(a))n in the Laurent series expansion of g around r(a) for all n ∈ Z.

(i) If f(r(a)) = 0 and the order of f at r(a) is k, then a−1 = 0.

Moreover, if (A,C) is a COBA with C closed, a ∈ C and f(λ) > 0 for all λ in the real
interval (r(a), r(a) +R), then
(ii) if f(r(a)) > 0 then a−k ∈ C,
(iii) if f(r(a)) = 0 and the order of f at r(a) is k − 1, then a−1 ∈ C.

Proof. (i) This is ([42], theorem 4.11 (1)).

(ii) If f(r(a)) > 0, then the order of g at r(a) is −k. Therefore a−k = lim
λ→r(a)

(λ−r(a))kg(λ). Re-

stricting λ to the interval (r(a), r(a)+R), we have that a−k = lim
λ→r(a)+

(λ−r(a))kf(λ)(λ1−a)−1.

Since C is closed, it follows from proposition 3.2.3 and the assumption on f that a−k ∈ C.

(iii) Suppose that f(r(a)) = 0 and the order of f at r(a) is k − 1. Then the order of g
at r(a) is −1. Therefore a−1 = lim

λ→r(a)
(λ − r(a))g(λ) = lim

λ→r(a)+
(λ − r(a))f(λ)(λ1 − a)−1.

Proposition 3.2.3 and the assumptions on f then imply that a−1 ∈ C. �

Theorem 3.2.6. Let A be a Banach algebra and a ∈ A such that σ(a) = {λ1, ..., λm} (m ≥ 1)
where λ1 = r(a) and λj is a pole of order kj of the resolvent of a (j = 1, ...,m). Let f be any
complex valued function, analytic at least on a neighbourhood of σ(a), such that f has a zero
of order kj at λj (j = 2, ...,m).
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(i) If f(r(a)) = 0 and the order of f at r(a) is k1, then f(a) = 0.

In addition, suppose that (A,C) is a COBA with C closed, a ∈ C and f(λ) > 0 for all λ
in a real interval of the form (r(a), r(a) +R). Then

(ii) if f(r(a)) > 0 and k1 = 1, then f(a) ∈ C,
(iii) if f(r(a)) = 0 and the order of f at r(a) is k1 − 1, then f(a) ∈ C.

Proof. From the proof of ([42], theorem 4.14), we have that f(a) = a−1. From lemma 3.2.5,
we obtain the results. �

Lemma 3.2.5 and theorem 3.2.6 were originally proved in the OBA case in ([42], theorem
4.11, theorem 4.14) respectively.

By application of theorem 3.2.6, COBA analogues of ([42], corollary 4.16, 4.17, 4.18, 4.19) can
be obtained.

We prove theorem 3.2.8 about invertible positive elements. The following lemma will be
needed:

Lemma 3.2.7. Let (A,C) be a COBA with a and b invertible elements of A such that 0 ≤
a ≤ b, ab = ba and a−1, b−1 ≥ 0. Then 0 ≤ b−1 ≤ a−1.

Proof. Suppose that 0 ≤ a ≤ b and ab = ba. Then 0 ≤ a−1a ≤ a−1b, that is, 0 ≤ 1 ≤ a−1b.
Therefore 0 ≤ b−1 ≤ a−1bb−1 = a−1. �

In a C∗-algebra, lemma 3.2.7 holds without the assumptions ab = ba and a−1, b−1 ≥ 0, if
a ∈ C (see [22], p.249).

Theorem 3.2.8. Let (A,C) be a COBA with C closed and inverse-closed. If a ∈ C and a is
invertible, then

(i) a ≥ α1 for all α ≥ 0, where α < δ(a),
(ii) a ≤ β1 for all β > r(a).

Proof. (i) If 0 < α < δ(a), then 1
δ(a)

< 1
α

. Therefore 1
α
> r(a−1). It follows from proposition

3.2.3 that (( 1
α

)1− a−1)−1 ≥ 0. Since C is inverse-closed, ( 1
α

)1− a−1 ≥ 0, so that a−1 ≤ ( 1
α

)1.
Lemma 3.2.7 then implies that a ≥ α1.

(ii) Suppose that β > r(a). Then proposition 3.2.3 implies that (β1 − a)−1 ≥ 0. Since
C is inverse-closed, β1− a ≥ 0, so that a ≤ β1. �

The last two results in the OBA case are also due to S. Mouton ([42], lemma 4.21, theorem
4.22). Note also that if A in theorem 3.2.8 is a C∗-algebra ordered by C = {a ∈ A : a = a∗

and σ(a) ⊆ [0,∞)}, then the result is trivial and holds without the assumptions that C is
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inverse-closed and a is invertible.

3.3 Unit spectrum I

Let a be an element of a Banach algebra such that σ(a) = {1}. A problem that naturally
arises is that of determining when a is necessarily the unit element. We refer to this problem
as the problem of unit spectrum. The problem of unit spectrum has been investigated in the
operator-theoretic setting in for instance [28], [40] and [34]. In OBAs, this problem has been
studied in [16]. In this section we will generalize these results to COBAs. We will also obtain
COBA counterparts of some of the results in [34]. The proofs of all the results arising from
[16] are verbatim those of the corresponding OBA results, since every COBA has the property
that all powers ak of a positive element a are positive. For this reason, proofs of results arising
from [16] will generally be omitted.

An element of a Banach algebra a is said to be Cesáro bounded if there exists a D > 0 such
that || 1

n+1

∑n
k=0 a

k|| ≤ D for all k ∈ N. If there is a D > 0 such that ||(1− θ)
∑∞

k=0 θ
kak|| ≤ D

for all θ ∈ (0, 1), then a is said to be Abel bounded. If a is invertible and both a and a−1 are
Abel bounded, then a is said to be doubly Abel bounded. Let N ∈ N be fixed. If there exists
a D > 0 such that ||(1− θ)N

∑∞
k=0 θ

kak|| ≤ D for all θ ∈ (0, 1), then a is said to be (N)-Abel
bounded. If a is invertible and both a and a−1 are (N)-Abel bounded, then a is said to be
doubly (N)-Abel bounded.

Our first result for the problem of unit spectrum is corollary 3.3.2. To obtain this result,
we need theorem 3.3.1.

Theorem 3.3.1. Let (A,C) be a COBA with C closed and c-normal. If a ∈ C and a is Abel
bounded, then a is Cesáro bounded.

Theorem 3.3.1 is a COBA version of ([16], theorem 2.1).

Using theorem 3.3.1 and ([40], theorem 2), we can establish corollary 3.3.2.

Corollary 3.3.2. Let (A,C) be a COBA with C closed and c-normal. If σ(a) = {1}, a, a−1 ∈
C and a is doubly Abel bounded, then a = 1.

Corollary 3.3.2 is the COBA version of the original OBA version ([16], corollary 2.2).

If we replace Abel boundedness of a in theorem 3.3.1 with the weaker condition of (N)-
Abel boundedness, we obtain theorem 3.3.3. Its original OBA counterpart is ([16], theorem
3.2).

Theorem 3.3.3. Let (A,C) be a COBA with C closed and c-normal. If a ∈ C is (N)-Abel
bounded, then || 1

n+1

∑n
k=0 a

k|| = o(nN) as n→∞.
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In ([24], theorem 2) it is proved that if a is an element of a Banach algebra such that σ(a) =
{1}, || 1

n+1

∑n
k=0 a

k|| = o(np) as n → ∞ and || 1
n+1

∑n
k=0(a−1)k|| = o(nq) as n → ∞ for some

p, q ∈ N then (a− 1)s = 0, where s = min(p, q). An immediate consequence of theorem 3.3.3
and this result is the following corollary. Its original OBA version is ([16], corollary 3.3).

Corollary 3.3.4. Let (A,C) be a COBA with C closed and c-normal. Let a ∈ A such that
σ(a) = {1}. If a, a−1 ∈ C and if a is doubly (N)-Abel bounded, then (a− 1)N = 0.

We present our next result regarding the problem of unit spectrum. It is the COBA version
of ([16], theorem 2.7).

Theorem 3.3.5. Let (A,C) be a COBA with C closed and proper. If a ∈ A such that
σ(a) = {1}, then a = 1 if and only if aL is Abel bounded and aN ≥ 1 for some L,N ∈ N.

Following along the lines of ([16], theorem 3.1), we can prove the following result, which may
be seen as a generalization of theorem 3.3.5.

Theorem 3.3.6. Let (A,C) be a COBA with C closed and proper. Let a ∈ A such that
σ(a) = {1}. If a ≥ 1 and if a is (N)-Abel bounded, then a = 1.

In corollary 3.3.2 and theorem 3.3.5 we had to assume that the element a is Abel bounded or
doubly Abel bounded. In the next theorem, which is a COBA version of ([16], theorem 4.1),
we obtain the result under conditions that do not use any of these assumptions.

Theorem 3.3.7. Let (A,C) be a COBA with C closed, proper and inverse closed. If a ∈ A
is such that σ(a) = {1} and if aN ∈ C for some N ∈ N then a = 1.

We establish the following result, which is a COBA counterpart of ([16], proposition 4.2). It
will be used in Chapter 4 in proving a result that provides a criterion for a positive element
in a COBA to be Abel bounded and Chapter 5 in connection with ergodicity.

Proposition 3.3.8. Let (A,C) be a COBA with C closed and inverse-closed. If a ∈ C, then
0 ≤ a ≤ r(a)1.

Proof. Let (λn) be the sequence defined by λn = r(a) + 1
n
. The resolvent (λ1− a)−1 of a has

a Neumann series representation (λ1− a)−1 =
∑∞

k=0
ak

λk+1 for |λ| > r(a). Since λn > r(a) ≥ 0

for all n ∈ N and since C is an algebra c-cone, we have that ak

λk+1
n
∈ C for all k. Closedness of

C then implies that (λn1− a)−1 ∈ C for all n ∈ N. Since C is inverse-closed, λn1− a ∈ C for
all n ∈ N. From closedness of C and the fact that r(a)1− a = limn→∞(λn1− a), we get that
r(a)1− a ∈ C. �

The problem of unit spectrum was studied in [34] for operators on Banach spaces. Some
of the results in this paper can be obtained in the more general setting of Banach algebras. If
we restrict ourselves to positive elements in Banach algebras, we obtain corresponding results
with simpler proofs, although in some cases the results are weaker. These are the next four
results. The results extend the theory of COBAs and OBAs and are due to the author.
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Suppose that T is a bounded linear operator on a Banach space, with σ(T ) = {0}, and
that 0 < t ∈ R. In ([34], theorem 2.1) conditions on ||tTetT || are given that imply that
T = 0. We prove the following corresponding theorem for COBAs and then apply it to obtain
corollary 3.3.10.

Theorem 3.3.9. Let A be a COBA with a closed and c-normal algebra c-cone C and let
a ∈ C. If limt→∞||taeta|| <∞ then a = 0.

Proof. We have that aeta = a+ ta2 + t2a3

2!
+ · · · . Since C is a closed algebra c-cone, aeta ∈ C.

Clearly, a ≤ aeta. Since C is c-normal, there exists an α > 0 such that ||a|| ≤ α||aeta||.
From the hypothesis, it follows that limt→∞||ta|| ≤ αlimt→∞||taeta|| < ∞. If ||a|| > 0, then
limt→∞||ta|| =∞. Therefore ||a|| = 0, so that a = 0. �

Note that the ordering has enabled us to relax the condition on ||taeta|| in ([34], theorem 2.1).
This yields a slightly stronger result than ([34], theorem 2.1) if the operator T is assumed to
be positive. Note also that the conditions in theorem 3.3.9 imply σ(a) = {0}. If not, then
0 < r(a) ≤ ||a||, so that limt→∞||ta|| =∞, and then c-normality implies limt→∞||taeta|| =∞.

The next corollary follows immediately from theorem 3.3.9.

Corollary 3.3.10. Let A be a COBA with a closed and c-normal algebra c-cone C and let
a ∈ C. If a ≤ 1 or if a ≥ 1 and if limt→∞||t(1 − a)et(1−a)|| < ∞ (respectively limt→∞||t(a −
1)et(a−1)|| <∞), then a = 1.

Theorem 3.3.11. Let A be a COBA with a c-normal algebra c-cone C and let a ∈ C. Suppose
that a ≥ 1 or a ≤ 1. If limn→∞n||an+1 − an|| <∞, then a = 1.

Proof. Suppose that a ≥ 1. We have that (an+1 − an) − (a − 1) = (a − 1)(an − 1). By
proposition 2.1.22, we get that (a − 1)(an − 1) ≥ 0, so that 0 ≤ a − 1 ≤ an+1 − an. Since
C is c-normal, there exists an α > 0 such that ||a − 1|| ≤ α||an+1 − an||. By hypothesis,
limn→∞n||a− 1|| ≤ αlimn→∞n||an+1 − an|| <∞. If ||a− 1|| > 0 then limn→∞n||a− 1|| =∞.
Therefore ||a−1|| = 0, and so a = 1. By making obvious adjustments, we can prove the result
for the case a ≤ 1 in a similar way. �

Theorem 3.3.11 is a COBA analogue of ([34], theorem 2.2). Note however that because
of the ordering, the condition on ||an+1− an|| has been relaxed. Similarly as in theorem 3.3.9,
this yields a slightly stronger result than ([34], theorem 2.2) in the special case where the
operator T is positive and either T ≥ I or T ≤ I (where I is the identity operator). Also, the
conditions in theorem 3.3.11 imply σ(a) = {1} (see remarks following theorem 3.3.9).

Theorem 3.3.12. Let A be a COBA with a c-normal algebra c-cone C and let a ∈ C. If
a ≤ 1 or a ≥ 1 and if λ = 1 is the only complex solution of the system of inequalities
|1− λn| ≤ ||1− an||, n = 1, 2, ..., then a = 1.

Proof. Let α ∈ (0, 1). Since λ = 1 is the only complex solution of the system of inequalities
|1−λn| ≤ ||1−an||, n = 1, 2..., there exist n ∈ N such that ||1−an|| < 1−αn. Now if a ≤ 1, we
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have by proposition 2.1.22 that 1− an−1 ≥ 0. Therefore (1− an)− (1− a) = a(1− an−1) ≥ 0,
so that 1 − a ≤ 1 − an. Since C is c-normal, there exists a constant β > 0 such that
||1− a|| ≤ β||1− an|| < β(1− αn). Suppose that ||1− a|| > 0. Since limα→1− β(1− αn) = 0,
there exists an α0 ∈ (0, 1) such that β(1 − αn0 ) ≤ ||1 − a||. This contradicts the fact that
||1− a|| < β(1− αn) for all α ∈ (0, 1). Thus ||1− a|| = 0, so that a = 1. By making obvious
adjustments, we can prove the result for the case a ≥ 1 in a similar way. �

Note that the conditions in theorem 3.3.12 imply that σ(a) = {1}. To see this let λ ∈ σ(a).
Then by the spectral mapping theorem, 1 − λn ∈ σ(1 − an) for all n ∈ N. Therefore
|1 − λn| ≤ r(1 − an) ≤ ||1 − an|| for all n ∈ N. Since λ = 1 is the only complex solu-
tion of the system of inequalities |1− λn| ≤ ||1− an||, n = 1, 2, ..., it follows that σ(a) = {1}.

Theorem 3.3.12 is a COBA analogue of ([34], theorem 4.1). It is a weaker result than ([34],
theorem 4.1), but, under the assumption that the operator T is positive and either T ≥ I or
T ≤ I, it can be established with a simpler proof.

3.4 Unit spectrum II

In Section 3.3 we dealt with the problem of unit spectrum. Huijsmans and de Pagter (see
[62]) asked the following more general question: when will it be true that if T is a positive
bounded linear operator on a complex Banach lattice with σ(T ) = {1}, then T ≥ 1? This
problem has been investigated in the operator-theoretic setting in, for instance, [61], [62]. In
[42], S. Mouton studied this problem in OBAs. The aim of this section is to generalize the
results of Mouton to COBAs. The proofs of all the results in this section are the same as the
proofs of the corresponding original OBA results and will therefore not be included.

In [42], S. Mouton proved that if (Mn(C), C) is the OBA of all n × n complex matrices
with C the subset of Mn(C) consisting of all n × n complex matrices with non-negative en-
tries, and if a ∈ C with σ(a) = {1}, then a− 1 ∈ C ([42], theorem 4.1). In the same paper a
generalization of this result to direct sums of arbitrary OBAs was obtained ([42], theorem 4.2).
The following is a corresponding result for direct sums of arbitrary COBAs, whose existence
is guaranteed by proposition 2.3.2:

Theorem 3.4.1. Let n ∈ N and (Ai, Ci) a COBA for all i = 1, ..., n. Suppose that (A,C) is
the COBA with A = A1 ⊕ · · · ⊕ An and C = {(c1, ..., cn) ∈ A : ci ∈ Ci for i = 1, ..., n}, and
suppose that each (Ai, Ci) satisfies the following property: if ai ∈ Ci with σ(ai) = {1} then
ai − 1 ∈ Ci. If a ∈ C with σ(a) = {1}, then a− 1 ∈ C.

In terms of different Banach algebras, we have the following result, whose original OBA
counterpart is ([42], theorem 4.5).

Theorem 3.4.2. Let B be a COBA with a proper algebra c-cone C1 and with B isomorphic
(as an algebra) to a COBA A, with a proper algebra c-cone C which has the property that if
a ∈ C and σ(a,A) = {1}, then a − 1 ∈ C. Suppose that C is the only proper algebra c-cone
of A. If a1 ∈ C1 and σ(a1, B) = {1}, then a1 − 1 ∈ C1.
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We now consider the case where the spectral radius of a is a pole of the resolvent (λ1− a)−1

of a, and extend the problem to the case where σ(a) = {r(a)} with r(a) ≥ 1. We have the
following result, whose OBA counterpart is ([42], corollary 4.9 (2) and (4)).

Theorem 3.4.3. Let (A,C) be a COBA and let a ∈ C with σ(a) = {r(a)} such that r(a) ≥ 1.
Then

(i) if r(a) is a simple pole of the resolvent of a, then a− 1 ∈ C.
(ii) If C is closed and r(a) is a pole of order 2 of the resolvent of a, then a− 1 ∈ C.

Theorem 3.4.3 may be obtained as a corollary of theorem 3.2.6.

Recall from Chapter 1 that δ(a) denotes the distance from 0 to σ(a). S. Mouton extended
the problem under consideration to the case where the cone is inverse-closed and to the case
where δ(a) ≥ 1, with no other restrictions on σ(a) ([42], theorem 4.23). The following is the
COBA counterpart of this result.

Theorem 3.4.4. Let (A,C) be a COBA with C closed and inverse-closed, and let a ∈ C.
Then we have the following implications:

(i) δ(a) > 1⇒ a > 1 and δ(a) = 1⇒ a ≥ 1, hence δ(a) ≥ 1⇒ a− 1 ∈ C.
(ii) If a is invertible: r(a) < 1⇒ a < 1 and r(a) = 1⇒ a ≤ 1, hence r(a) ≤ 1⇒ 1− a ∈ C.
If in addition, C is proper, then we also have

(iii) σ(a) ⊆ C(0, 1) ⇒ a = 1, where C(0, 1) is the circle with centre at 0 and radius 1 in
the complex plane.
(iv) σ(a) = {1} ⇒ a = 1.

In the case of a c-normal algebra c-cone, the behaviour of the spectrum in (iii) above is quite
restricted. We will present the result showing this fact in the next chapter, where it has been
deferred as it relies on monotonicity of the spectral radius.
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Chapter 4

Monotonicity of the spectral radius

In Chapter 3 we gave results in COBAs that do not rely on c-monotonicity (or monotonicity)
of the spectral radius. In this chapter we will discuss those results in COBAs that do rely on
c-monotonicity (or monotonicity) of the spectral radius.

4.1 Basic properties

This section deals mostly with basic results involving c-monotonicity or monotonicity of the
spectral radius in COBAs. Some of these results are crucial for further development of spectral
theory in COBAs.

If (A,C) is a COBA and M an MPCS in A and if F is a closed ideal in A, then (A,M)
and (A/F, πM) are OBAs by theorem 2.4.2. Consequently, we refer to the spectral radius in
(A,M) and (A/F, πM) as being monotone, rather than c-monotone.

We begin by providing the following elementary result, due to the author, about c-monotonicity
in relation to algebra c-cones and MPCSs.

Theorem 4.1.1. If (A,C) is a COBA such that the spectral radius in (A,C) is c-monotone
and if M is an MPCS in A, then the spectral radius in (A,M) is monotone.

Proof. The result follows from theorem 2.4.2 and the fact that the spectrum of an element
of C remains the same if this element is considered as a member of M . �

In ([51], theorem 4.1 1) H. Raubenheimer and S. Rode proved that in an OBA, normality
of the algebra cone implies monotonicity of the spectral radius. Results of this type have
already been proved for positive operators on ordered Banach spaces (cf. ([38], theorem 4.2),
and ([19], theorem 1.1)). For COBAs, we have

Theorem 4.1.2. If A is a COBA with a c-normal algebra c-cone C, then the spectral radius
in (A,C) is c-monotone.
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Proof. Let a, b ∈ A such that 0 ≤ a ≤ b w.r.t. C and ab = ba. Then by proposition 2.1.22, we
have that 0 ≤ an ≤ bn for any n ∈ N. Since an and bn commute and C is c-normal, it follows
that ||an|| ≤ α||bn|| for some α > 0. Therefore lim

n→∞
||an||

1
n ≤ lim

n→∞
α

1
n ||bn||

1
n = lim

n→∞
||bn||

1
n .

This implies that r(a) ≤ r(b). �

Note that theorem 4.1.2 is essentially ([31], theorem 2), although our proof is more detailed.

In view of the fact that proposition 2.1.22 is used in the proof of theorem 4.1.2, we sus-
pect that normality of C would not necessarily imply monotonicity of the spectral radius
relative to C in a COBA which is not an OBA. However, in all the examples known to us
where the spectral radius is c-monotone, it is in fact monotone. So giving an example where
normality implies only c-monotonicity and not monotonicity of the spectral radius remains an
open problem.

The next example shows that the converse of theorem 4.1.2 is not true.

Example 4.1.3. Let E be the Banach lattice `1⊕L2[0, 1]⊕`∞, C the positive cone in E and let
K = {T ∈ Lr(E) : TC ⊆ C}. If π : Lr(E)→ Lr(E)/Kr(E) is the canonical homomorphism,
then (A, πK) = (Lr(E)/Kr(E), πK) is an OBA, and hence a COBA. The spectral radius in
(A, πK) is monotone (and hence c-monotone) but πK is not c-normal in A.

Proof. By ([51], example 4.2) (A, πK) is an OBA (and hence a COBA), and the spectral
radius is monotone (and hence c-monotone). We show that πK is not c-normal in A. By
([51], example 4.2), there exist positive operators S,T on E such that 0 ≤ S ≤ T w.r.t. K,
T ∈ Kr(E) and S /∈ Kr(E). Thus 0 ≤ S + Kr(E) ≤ T + Kr(E), ||S + Kr(E)|| > 0 and
||T + Kr(E)|| = 0. Since Kr(E) is an ideal, ST − TS ∈ Kr(E), so that S + Kr(E) and
T +Kr(E) commute but ||S +Kr(E)|| > α||T +Kr(E)|| for every scalar α > 0. �

The next corollary is an immediate consequence of theorems 2.4.2, 4.1.1 and 4.1.2.

Corollary 4.1.4. If A is a COBA with a c-normal algebra c-cone C and if M is an MPCS
in A, then the spectral radius in (A,M) is monotone.

The next result is about c-monotonicity of the spectral radius when different Banach algebras
are involved. Its original OBA counterpart is ([51], proposition 4.5).

Theorem 4.1.5. Let (A,C) be a COBA and B a Banach algebra with finer norm than A such
that 1 ∈ B ⊆ A. Suppose that the spectral radius in (B,C ∩ B) is c-monotone. If a, b ∈ B
such that 0 ≤ a ≤ b w.r.t. C, ab = ba and σ(b, B) = σ(b, A), then r(a,A) ≤ r(b, A).

Proof. Let a, b ∈ B with 0 ≤ a ≤ b w.r.t. C and ab = ba. Since the spectral radius in
(B,C ∩ B) is c-monotone, r(a,B) ≤ r(b, B). From the assumption that B has finer norm
than A, we obtain that r(a,A) ≤ r(a,B). The assumption σ(b, B) = σ(b, A) implies that
r(b, B) = r(b, A). Therefore r(a,A) ≤ r(a,B) ≤ r(b, B) = r(b, A). �

H. Raubenheimer and S. Rode proved that if the spectral radius in an OBA is monotone,
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then the spectral radius of a positive element in the OBA belongs to the spectrum of that
element ([51], theorem 5.2). This is a generalization of the original matrix theorem of O.
Perron. We prove the corresponding result in COBAs. This result will play a crucial role in
the further development of spectral theory in COBAs. In fact, it is because this result can be
generalized from OBAs to COBAs that generalization of a large part of the theory of OBAs
to COBAs is made possible.

Theorem 4.1.6. Let A be a COBA with a closed algebra c-cone C such that the spectral
radius in (A,C) is c-monotone. If a ∈ C then r(a) ∈ σ(a).

Proof. Let a ∈ C. Without loss of generality we assume that r(a) = 1. Suppose that
1 /∈ σ(a). Then there exists 0 ≤ α < 1 such that σ(a) ⊆ {λ ∈ C : Re λ ≤ α}. Let t ≥ 0 and
let f(z) = etz. Using the spectral mapping theorem, σ(eta) = etσ(a) ⊆ {λ ∈ C : |λ| ≤ etα}.
Therefore r(eta) ≤ etα for all t ≥ 0. From the fact that C is an algebra c-cone, a ∈ C and

t ≥ 0, we obtain that all positive integer powers (ta)n

n!
are in C. Since C is closed, it follows

that eta = 1 + ta +
(ta)2

2!
+ · · · ∈ C. This implies that 0 ≤ tn

n!
an ≤ eta for all n ∈ N and

for all t ≥ 0. Since the spectral radius in (A,C) is c-monotone and r(a) = 1, we have that

0 ≤ r

((
tn

n!

)
an
)

=
tn

n!
≤ etα. Taking t = n

α
, we get that

nn

αnn!
≤ en. This contradicts

corollary 1.6.3. Hence r(a) ∈ σ(a). �

The proof of theorem 4.1.6 is that of ([51], theorem 5.2), since the only multiplication of
positive elements involved is taking powers. We include it in the interest of completeness.
Note that theorem 4.1.6 is essentially ([31], theorem 3). Also, if A in theorem 4.1.6 is a C∗-
algebra ordered by C = {a ∈ A : a = a∗ and σ(a) ⊆ [0,∞)}, the result holds without using
monotonicity or the proof of theorem 4.1.6. This is so because if a ∈ C, then σ(a) ⊆ [0,∞).
Similar remarks apply for similar results in this section.

From theorem 2.4.2 and ([51], theorem 5.2), we can obtain the following result, which will be
useful in proving other results in this chapter.

Theorem 4.1.7. Let A be a COBA with a closed algebra c-cone C and M an MPCS in A
such that the spectral radius in (A,M) is monotone. If a ∈M then r(a) ∈ σ(a).

In ([33], theorem 2), Herzog and Schmoeger proved the converse of ([51], theorem 5.2). Adapt-
ing this result to our present setting, we obtain the following result, which is a converse of
theorem 4.1.6.

Theorem 4.1.8. Let A be a Banach algebra and a ∈ A. If r(a) ∈ σ(a), then there exists a
closed algebra c-cone C in A such that the spectral radius in (A,C) is c-monotone and a ∈ C.

Note that since an algebra cone is an algebra c-cone and since monotonicity implies c-
monotonicity, theorem 4.1.8 can alternatively be obtained as a direct corollary of ([33], theorem
2).
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In the setting of quotient algebras, H. Raubenheimer and S. Mouton obtained ([51], theo-
rem 5.3) and ([51], corollary 5.4), which is a generalization of a result of J. Martinez and J.M.
Mazón ([39], corollary 2.14). We give the corresponding results for COBAs.

Theorem 4.1.9. Let (A,C) be a COBA with C closed and let M be an MPCS in A. Suppose
that F is a closed ideal of A such that the spectral radius in (A/F, πM) is monotone. If a ∈M
then r(a+ F ) ∈ σ(a+ F ).

Proof. By theorem 2.4.2, we have that (A,M) is an OBA with M closed. From ([51], theorem
5.3), the result follows. �

Note that if (A,C) is a COBA and M an MPCS in A and if B is a Banach algebra with
1 ∈ B ⊆ A, then by theorem 2.4.2 and the remarks on ([51], p. 492), M ∩ B is an algebra
cone in B. Therefore we have the following corollary of theorem 4.1.9:

Corollary 4.1.10. Let (A,C) be a COBA and M an MPCS in A, and let B be a Banach
algebra with 1 ∈ B ⊆ A such that M ∩ B is closed in B. Suppose that I is an inessential
ideal of both A and B such that the spectral radius function in the OBA (B/clB(I), π(M ∩B))
is monotone. If a ∈ M ∩ B is such that σ(a,A) = σ(a,B) then r(a + clB(I), B/clB(I)) ∈
σ(a+ clB(I), B/clB(I)) and r(a+ clA(I), A/clA(I)) ∈ σ(a+ clA(I), A/clA(I)).

Since C in the corollary above is used only to guarantee the existence of M , the proof of this
corollary is similar to the proof of the corresponding original OBA result in ([51], corollary 5.4).

The next two results, due to the author, are related to what was discussed in Chapter 3.
They have been placed here because they rely on monotonicity of the spectral radius.

Proposition 3.1.4 gives a spectral characterization of the rank one idempotents in a gen-
eral semiprime Banach algebra. If we take a semiprime COBA in which the spectral radius is
c-monotone, then we obtain the following:

Proposition 4.1.11. Let A be a semiprime COBA with a closed algebra c-cone C such that
the spectral radius is c-monotone and let x ∈ F1(A)∩C. Then x is an idempotent if and only
if r(x) = 1.

Proof. If x is an idempotent, that r(x) = 1 follows from the fact that x ∈ F1 means x 6= 0.
Conversely, suppose that r(x) = 1. With the spectral mapping theorem, it can be shown that
σ(a) = {tr(a)} if dim (A) = 1 and σ(a) = {0, tr(a)} if dim A > 1 for every a ∈ F1(A). By
theorem 4.1.6, this implies that r(x) = tr(x) = 1. From x2 = tr(x)x, the result follows. �

An element a in a Banach algebra is said to be power bounded if there exists a scalar M > 0
such that ||an|| ≤ M for all n ∈ N. It is well known that every power bounded element is
Abel bounded. The following result gives a criterion for a positive element in a COBA with
a closed, inverse closed and c-normal algebra c-cone to be power bounded.

Proposition 4.1.12. Let A be a COBA with a closed, inverse closed and c-normal algebra
c-cone C. If a ∈ C and r(a) ≤ 1, then a is power bounded.
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Proof. From proposition 3.3.8 and the spectral mapping theorem, we have that 0 ≤ an ≤ 1
for all n ∈ N. It follows from c-normality of C that there exists a constant α > 0 such that
||an|| ≤ α for all n ∈ N. �

4.2 Algebra c′-cones

We recall that in order to obtain the result in theorem 4.1.9, we had to work with MPCSs.
This is because from the COBA (A,C), we could not get (A/F, πC) to be a COBA. If we
relax the multiplication axiom in the definition of an algebra c-cone, we obtain another type of
cone, which we shall call algebra c′-cone. An algebra c′-cone is more general than an algebra
c-cone. In this section we show that if C is an algebra c′-cone, then πC is also an algebra
c′-cone. Using this fact we prove a variant of theorem 4.1.9 in terms of πC. We start by
defining algebra c′-cones.

Definition 4.2.1. Let A be a Banach algebra. A subset C of A is called an algebra c′-cone if
C satisfies the following:

(i) C + C ⊆ C,
(ii) λC ⊆ C for all λ ≥ 0,
(iii) If a ∈ C, then an ∈ C for any n ∈ N,
(iv) 1 ∈ C.

Every Banach algebra can be ordered by an algebra c′-cone in the usual way. A Banach
algebra ordered by a c′-cone is called a C ′OBA. Clearly, every algebra c-cone is an algebra
c′-cone. Therefore every COBA is a C ′OBA.

In the following proposition we prove that if C is an algebra c′-cone, then πC is also an
algebra c′-cone.

Proposition 4.2.2. Let (A,C) be a C ′OBA and let F be a closed ideal of A. If π : A→ A/F
is the canonical homomorphism, then πC = {c+ F : c ∈ C} is an algebra c′-cone in A/F .

Proof. Let a + F, b + F ∈ πC. Clearly, (a + F ) + (b + F ) ∈ πC and if λ ≥ 0, then
λ(a + F ) ∈ πC. It is also clear that 1 + F ∈ πC. We show that (a + F )n ∈ πC for every
n ∈ N. Since a + F ∈ πC, there exists an a1 ∈ C such that a + F = a1 + F . Since C is an
algebra c′-cone, an1 ∈ C, so that (a+ F )n ∈ πC. �

Note that πC is not in general an algebra c-cone, even if C is an algebra c-cone.

The following two are examples of C ′OBAs.

Example 4.2.3. Let A be a C∗-algebra and C = {a ∈ A : a = a∗ and σ(a,A) ⊆ [0,∞)}.
Suppose that F is a closed ideal in A and for each a + F in A/F , define (a + F )∗ = a∗ + F .
If π : A→ A/F is the canonical homomorphism, then πC is a normal algebra c′-cone in A/F
and the spectral radius in (A/F, πC) is monotone. Therefore (A/F, πC) is a C ′OBA.
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Proof. By example 2.1.19, C is an algebra c-cone in A and hence by proposition 4.2.2, πC is an
algebra c′-cone in A/F . LetK = {a+F ∈ A/F : (a+F )∗ = a+F and σ(a+F,A/F ) ⊆ [0,∞)}.
By theorem 1.5.4, A/F is a C∗-algebra. In view of example 2.1.19, (A/F,K) is a COBA with
K normal and the spectral radius in (A/F,K) monotone. Since πC ⊆ K, it follows that πC
is a normal algebra c′-cone in A/F and the spectral radius in (A/F, πC) is monotone. �

By theorem 1.4.3 the following is a special case of example 4.2.3.

Example 4.2.4. Let H be a Hilbert space and A = L(H) and C = {T ∈ A : T ≥ 0}. Suppose
that for all T +K(H) in A/K(H), we define (T +K(H))∗ = T ∗+K(H). If π : A→ A/K(H)
is the canonical homomorphism, then πC is a normal algebra c′-cone in A/K(H). Therefore
(A/K(H), πC) is a C ′OBA.

From proposition 4.2.2, if (A,C) is a C ′OBA and F is a closed ideal of A, then (A/F, πC) is
a quotient C ′OBA. The following result is a variant of theorem 4.1.9 for quotient C ′OBAs.

Theorem 4.2.5. Let (A,C) be a COBA with C closed. Suppose that F is a closed ideal
of A such that the spectral radius in the C ′OBA (A/F, πC) is c-monotone. If a ∈ C then
r(a+ F ) ∈ σ(a+ F ).

Note that the C ′OBA structure in theorem 4.2.5 is used only to allow the result to be formu-
lated in the quotient algebra (A/F, πC). Otherwise the result is proved in a similar way to
([51], theorem 5.3).

The following result is a C ′OBA counterpart of ([51], corollary 5.4). Its proof is verbatim
the same as that of ([51], corollary 5.4) by using theorem 2.2.1 and theorem 4.2.5.

Corollary 4.2.6. Let (A,C) be a COBA and B a subalgebra of A with 1 ∈ B ⊆ A and
such that C ∩ B is closed in B. Suppose that I is an inessential ideal of both A and B such
that the spectral radius in the C ′OBA (B/clB(I), π(C ∩ B)) is c-monotone. If a ∈ C ∩ B
is such that σ(a,A) = σ(a,B), then r(a + clB(I), B/clB(I)) ∈ σ(a + clB(I), B/clB(I)) and
r(a+ clA(I), A/clA(I)) ∈ σ(a+ clA(I), A/clA(I)).

The next two results are COBA versions of ([51], theorem 6.1).

Theorem 4.2.7. Let (A,C) be a COBA and M an MPCS in A. Suppose that a, b ∈ A and
that F is a closed ideal in A. Then the following two conditions are equivalent:

(i) if 0 ≤ a ≤ b w.r.t. M and b ∈ F , then a ∈ F ;
(ii) the algebra cone πM in the quotient algebra A/F is proper.

Proof. The result follows from theorem 2.4.2 and ([51], theorem 6.1). �

Theorem 4.2.8. Let (A,C) be a COBA with a, b ∈ A and let F be a closed ideal in A. Then
the following two conditions are equivalent:

(i) if 0 ≤ a ≤ b w.r.t. C and b ∈ F , then a ∈ F ;
(ii) the algebra c′-cone πC in the quotient algebra A/F is proper.
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Proof (i) ⇒ (ii): Let c + F ∈ πC ∩ −πC. Then c + F = c1 + F = −c2 + F , where
c1, c2 ∈ C. Therefore c1 + c2 +F = F , so that c1 + c2 ∈ F . Now since c1, c2 ∈ C, we have that
0 ≤ c1 ≤ c1+c2 w.r.t. C. Condition (i) then implies that c1 ∈ F . Therefore c+F = c1+F = F ,
and since c + F was arbitrary in πC ∩ −πC, we get that πC ∩ −πC = {F}. Hence πC is a
proper algebra c′-cone in A/F .

(ii) ⇒ (i): Suppose that 0 ≤ a ≤ b and b ∈ F . Then F ≤ a + F ≤ b + F = F . Since
πC is a proper algebra c′-cone in A/F by condition (ii), the order ≤ in A/F is antisymmetric
by theorem 2.1.2. It follows that a+ F = F , so that a ∈ F . �

The proof of theorem 4.2.8 is essentially that of ([51], theorem 6.1).

4.3 Boundary spectrum and spectral continuity of positive ele-
ments

In [45] S. Mouton studied the boundary spectrum of elements of Banach algebras and applied
some of the results in ordered Banach algebras. This work was continued in [46], where results
on the boundary spectrum were applied in proving spectral continuity of positive elements.
In this section we generalize some of the OBA results in the papers cited above to the COBA
setting. The proofs follow along the lines of the proofs of the corresponding original results
in OBAs; we include them to illustrate how some COBA analogues of known OBA results,
which have already been presented, are utilized.

Recall that the boundary spectrum S∂(a) of an element a in a Banach algebra A is the
set S∂(a) = {λ ∈ C : λ1− a ∈ ∂S}, where S is the set of all non-invertible elements of A.

In theorem 4.1.6 we proved that if a is a positive element in a COBA, then under certain
conditions, r(a) ∈ σ(a). The following is an analogous result for the boundary spectrum. Its
original version in OBAs is ([45], proposition 3.3).

Proposition 4.3.1. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone. If a ∈ C then r(a) ∈ S∂(a).

Proof. If a ∈ C, then r(a) ∈ σ(a) by theorem 4.1.6. Therefore r(a) ∈ ∂σ(a) and by proposi-
tion 1.1.13, we have that r(a) ∈ S∂(a). �

If C is inverse-closed, then we obtain the following result, whose original OBA version is
([45], proposition 3.4). As set out in Chapter 1, the notation δ(a) here indicates the distance
d(0, σ(a)) from 0 to σ(a).

Proposition 4.3.2. Let (A,C) be a COBA with C closed and inverse-closed, and such that the
spectral radius in (A,C) is c-monotone. If a is an invertible element of C, then δ(a) ∈ S∂(a).

Proof. Since C is inverse-closed, we have that a−1 ∈ C. It follows from proposition 4.3.1
that r(a−1) ∈ S∂(a−1). Proposition 1.1.14 then implies that r(a−1) = 1

λ0
, for some λ0 ∈ S∂(a).
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Since r(a−1) = 1
δ(a)

, it follows that δ(a) ∈ S∂(a). �

Using the boundary spectrum we obtain the following result, which is a stronger version
of theorem 4.1.5.

Theorem 4.3.3. Let (A,C) be a COBA and B a Banach algebra with finer norm than A and
such that 1 ∈ B ⊆ A.

(i) Suppose that the spectral radius in (A,C) is c-monotone. If a, b ∈ B with ab = ba and
0 ≤ a ≤ b, and either ∂σ(a,B) = ∂σ(a,A) or S∂(a,B) = S∂(a,A), then r(a,B) ≤ r(b, B).

(ii) Suppose that the spectral radius in (B,C ∩ B) is c-monotone. If a, b ∈ B with 0 ≤ a ≤ b
and ab = ba, and either ∂σ(b, B) = ∂σ(b, A) or S∂(b, B) = S∂(b, A), then r(a,A) ≤ r(b, A).

Proof. (i) Since B has finer norm than A, we have that r(b, A) ≤ r(b, B). From c-
monotonicity of the spectral radius in (A,C), we obtain that r(a,A) ≤ r(b, A). By assump-
tion and proposition 1.1.13, we have that r(a,B) = r(a,A). Therefore r(a,B) = r(a,A) ≤
r(b, A) ≤ r(b, B).

(ii) From the assumptions and proposition 1.1.13, we get that r(b, B) = r(b, A). The assump-
tion that B has finer norm than A and that the spectral radius in (B,C ∩ B) is c-monotone
lead to the inequalities r(a,A) ≤ r(a,B) and r(a,B) ≤ r(b, B). Hence r(a,A) ≤ r(a,B) ≤
r(b, B) = r(b, A). �

The original OBA result corresponding to theorem 4.3.3 was proved in ([45], theorem 3.5).

In [46], S. Mouton proved an OBA result giving conditions under which the spectral ra-
dius of a positive element is continuous (see [46], theorem 4.6). We generalize this result to
the COBA setting. We start with the following lemma, whose original OBA version is also
due to S. Mouton ([46], lemma 4.3). We first recall from Chapter 1 that if a is an element of
a Banach algebra A, then T (a) is the set {λ ∈ C : |λ|1 − a ∈ ∂S}, where as usual, S is the
set of all non-invertible elements of A. Also, γ(a) is the number sup{|λ| : λ ∈ T (a)}.

Lemma 4.3.4. Let (A,C) be a COBA with C closed and c-normal. If a ∈ C, then γ(a) = r(a)
and r(a) ∈ T (a).

Proof. From the fact that T (a) ⊆ {λ ∈ C : |λ| ≤ r(a)}, we have (if T (a) 6= ∅) that
γ(a) ≤ r(a). Since a ∈ C, theorem 4.1.2 and proposition 4.3.1 imply that r(a) ∈ S∂(a). Since
r(a) ∈ R+, it follows that r(a) ∈ T (a). Hence T (a) 6= ∅ and r(a) ≤ γ(a). �

Theorem 4.3.5. Let (A,C) be a COBA with C closed and c-normal, and let a ∈ C be such
that S∂(a) ∩ R+ = {r(a)}. If (an) is a sequence in C such that an → a as n → ∞, then
r(an)→ r(a) as n→∞.

The proof of theorem 4.3.5 is the same as that of ([46], theorem 4.6), using lemma 4.3.4 and
theorem 1.1.15.
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4.4 Riesz elements, Riesz points and quasi inessential elements

In this section we apply c-monotonicity and monotonicity of the spectral radius to prove re-
sults involving Riesz elements, Riesz points and quasi inessential elements and the peripheral
spectrum. The results in this section are COBA generalizations of the corresponding results
in OBAs. The results involving MPCSs in COBAs will generally not be presented if they can
be obtained directly from theorem 2.4.2 and the associated OBA result. It will be mentioned
whenever such results occur.

In the previous chapter we gave a basic form of the Krein-Rutman theorem (theorem 3.1.2)
and mentioned that the other version of the result was deferred to this chapter. We are now in
a position to give the second version of the Krein-Rutman theorem, which is the next result.

Theorem 4.4.1. Let A be a semisimple COBA with a closed, c-normal algebra c-cone C and
let 0 6= a ∈ C be such that r(a) > 0. If I is a closed inessential ideal in A such that a is Riesz
relative to I, then there exists 0 6= u ∈ C such that ua = au = r(a)u and aua = r(a)u2.

Proof. By theorem 4.1.2, the spectral radius in (A,C) is c-monotone. It follows from theorem
4.1.6 that r(a) ∈ σ(a). From the hypothesis and theorem 1.2.1, it follows that r(a) is a pole
of the resolvent of a. Theorem 3.1.2 then implies that there exists 0 6= u ∈ C such that
ua = au = r(a)u and aua = r(a)2u. �

The original OBA counterpart of the previous theorem is due to S. Mouton and H. Rauben-
heimer (see [47], theorem 3.7).

In ([43], lemma 4.2) S. Mouton proved that under suitable conditions, the spectral radius
of a positive element of an OBA is strictly greater than the spectral radius of the corre-
sponding element in the quotient algebra. We give the corresponding result in the COBA
setting.

Theorem 4.4.2. Let (A,C) be a COBA with C closed, M an MPCS in A and I a closed
inessential ideal of A such that the spectral radius in (A/I, πM) is monotone. Let a ∈M .

(i) If r(a) is a Riesz point of σ(a), then r(a+ I) < r(a).
(ii) If in addition, the spectral radius in (A,M) is monotone, then r(a) is a Riesz point of
σ(a) if and only if r(a+ I) < r(a).

Theorem 4.4.2 follows directly from theorem 2.4.2 and ([43], lemma 4.2). It has been presented
because it is used to prove other results in this section.

In C ′OBAs, the following is the corresponding result to theorem 4.4.2. Its proof is essen-
tially that of ([43], lemma 4.2).

Theorem 4.4.3. Let (A,C) be a COBA with C closed and I a closed inessential ideal of A
such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. Let a ∈ C.
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(i) If r(a) is a Riesz point of σ(a), then r(a+ I) < r(a).
(ii) If in addition the spectral radius in (A,C) is c-monotone, then r(a) is a Riesz point of
σ(a) if and only if r(a+ I) < r(a).

Proof. (i) If r(a + I) = r(a) then by theorem 4.2.5 we get that r(a) ∈ σ(a + I). It follows
from theorem 1.2.6 that r(a) ∈ DI(a,A), so that r(a) is not a Riesz point of σ(a).

(ii) If r(a) is not a Riesz point of σ(a), then by theorem 4.1.6, we have that r(a) ∈ DI(a,A).
Therefore r(a) ∈ ησ(a+ I) by theorem 1.2.6. This implies that r(a) ≤ r(a+ I). �

Note that if A is any Banach algebra, I a closed inessential ideal in A and a ∈ A such
that σ(a) ⊆ [0,∞), then it follows from theorem 1.2.6 that r(a) is a Riesz point of σ(a)
if and only if r(a + I) < r(a). So if A in theorems 4.4.2 and 4.4.3 is a C∗-algebra ordered
by C = {a ∈ A : a = a∗ and σ(a) ⊆ [0,∞)}, then the results hold without using monotonicity.

It is well known that if T is a positive operator on a Banach lattice E such that the spectral
radius of T is a Riesz point of σ(T,L(E)), then psp(T ) consists of Riesz points ([55], theorem
V.5.5). In the following theorem we give a corresponding result for a positive element of a
COBA. The original result was proved for OBAs in ([43], theorem 4.3) (also see [47], theorem
4.1).

Theorem 4.4.4. Let (A,C) be a COBA with C closed, M an MPCS in A and I a closed
inessential ideal of A such that the spectral radius in (A/I, πM) is monotone. If a ∈ M is
such that r(a) is a Riesz point of σ(a) relative to I, then psp(a) consists of Riesz points of
σ(a).

Theorem 4.4.4 follows directly from theorem 2.4.2 and ([43], theorem 4.3). We have presented
it because we refer to it later in this section.

The C ′OBA counterpart of theorem 4.4.4 is the following. The proof mimics that of ([43],
theorem 4.3) by using theorem 4.4.3.

Theorem 4.4.5. Let (A,C) be a COBA with C closed and I a closed inessential ideal of A
such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. If a ∈ C is such that
r(a) is a Riesz point of σ(a), then psp(a) consists of Riesz points of σ(a).

If A in theorems 4.4.4 and 4.4.5 is a C∗-algebra ordered by C = {a ∈ A : a = a∗ and
σ(a) ⊆ [0,∞)}, then the results hold trivially. This follows from the fact that if a ∈ C, then
psp(a) = {r(a)}.

The next theorem is a COBA version of ([43], theorem 4.4).

Theorem 4.4.6. Let (A,C) be a COBA with C closed and M an MPCS in A such that the
spectral radius in (A,M) is monotone. Let I be a closed inessential ideal of A such that the
spectral radius in (A/I, πM) is monotone. Suppose that a, b ∈ A with 0 ≤ a ≤ b relative to M
and r(a) = r(b). If r(b) is a Riesz point of σ(b), then psp(a) consists of Riesz points of σ(a).
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Proof. Since r(b) is a Riesz point of σ(b), it follows from theorem 4.4.2 that r(b+ I) < r(b).
By the monotonicity of the spectral radius in (A/I, πM), we have that r(a + I) ≤ r(b + I).
Since r(a) = r(b), it follows that r(a + I) < r(a). Theorem 4.4.2 then implies that r(a) is a
Riesz point of σ(a). The result now follows from theorem 4.4.4. �

An immediate consequence of theorem 4.4.6 is the following, which was originally proved
for OBAs in ([47], theorem 4.3).

Corollary 4.4.7. Let (A,C) be a COBA with C closed and M an MPCS in A such that the
spectral radius in (A,M) is monotone. Let I be a closed inessential ideal of A such that the
spectral radius in (A/I, πM) is monotone. Suppose a, b ∈ A with 0 ≤ a ≤ b w.r.t. M and
r(a) = r(b). If r(b) is a Riesz point of σ(b) relative to I, then r(a) is a Riesz point of σ(a)
relative to I.

In terms of C ′OBAs, we get the following result corresponding to theorem 4.4.6.

Theorem 4.4.8. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral radius in
the C ′OBA (A/I, πC) is c-monotone. Suppose that a, b ∈ A with 0 ≤ a ≤ b relative to C,
ab = ba and r(a) = r(b). If r(b) is a Riesz point of σ(b), then psp(a) consists of Riesz points
of σ(a).

Proof. Since r(b) is a Riesz point of σ(a), theorem 4.4.3 implies that r(b+I) < r(b). Since the
spectral radius in (A/I, πC) is c-monotone, r(a+ I) ≤ r(b+ I). It follows from r(b+ I) < r(b)
and from the assumption r(a) = r(b) that r(a + I) < r(a). Theorem 4.4.3 then implies that
r(a) is a Riesz point of σ(a). By theorem 4.4.5, we get that psp(a) consists of Riesz points of
σ(a). �

Note that if in theorem 4.4.8 we assume that the spectral radius in the C ′OBA (A/I, πC)
is monotone, then a and b need not commute. The next corollary follows immediately from
theorem 4.4.8.

Corollary 4.4.9. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral radius
in the C ′OBA (A/I, πC) is c-monotone. Suppose a, b ∈ A with 0 ≤ a ≤ b, ab = ba and
r(a) = r(b). If r(b) is a Riesz point of σ(b) relative to I, then r(a) is a Riesz point of σ(a)
relative to I.

In a C∗-algebra, theorem 4.4.6, corollary 4.4.7, theorem 4.4.8 and corollary 4.4.9 hold trivially
(see remarks following theorem 4.4.5).

Following the remarks after theorem 3.4.4, we give the following result. The original ver-
sion in the OBA setting was proved in ([42], theorem 4.25).

Theorem 4.4.10. Let (A,C) be a COBA with C closed and c-normal. If a ∈ A and there is
a k ∈ N and an α > 0 such that ak ≥ α1, then

(i) psp(ak) = {r(a)k},
(ii) #psp(a) ≤ k.
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The proof of the above result is the same as that of ([42], theorem 4.25) by using theorems
4.1.2 and 4.1.6.

Note that in a C∗-algebra A ordered by C = {a ∈ A : a = a∗ and σ(a) ⊆ [0,∞)}, theo-
rem 4.4.10 holds trivially. This is so since if a ∈ C, psp(a) = {r(a)}.

Combining theorem 3.2.8 (i) and theorem 4.4.10 (i) we obtain

Theorem 4.4.11. Let (A,C) be a COBA with C closed, c-normal and inverse-closed. If
a ∈ C is an invertible element, then psp(a) = {r(a)}.

In the OBA setting, ([42], theorem 4.26) is the original version of the above result. Also, as
in theorem 4.4.10, in a C∗-algebra the result holds trivially.

The following theorem gives a characterization of quasi inessential elements. Its original
version in the OBA setting was proved by S. Mouton and H. Raubenheimer in ([47], theorem
5.2), but our proof is somewhat neater.

Theorem 4.4.12. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral radius in
the C ′OBA (A/I, πC) is c-monotone. If a ∈ C with r(a) = 1, then the following statements
are equivalent:

(i) a is quasi inessential relative to I.
(ii) 1 /∈ σ(a+ I).
(iii) 1 is a Riesz point of σ(a) relative to I.

Proof. (i) ⇒ (ii): By proposition 1.2.5, we have that r(a+ I) < 1, so that 1 /∈ σ(a+ I).

(ii) ⇒ (iii): We have that r(a + I) ≤ r(a) = 1. By theorem 4.2.5, r(a + I) ∈ σ(a + I).
It follows that if 1 /∈ σ(a + I) then r(a + I) < 1, so that by theorem 4.4.3, 1 is a Riesz point
of σ(a) relative to I.

(iii) ⇒ (i): If 1 is a Riesz point of σ(a) relative to I, then r(a + I) < 1 by theorem 4.4.3. It
follows from proposition 1.2.5 that a is quasi inessential relative to I. �

A result corresponding to theorem 4.4.12 can be obtained in terms of maximal positive com-
mutative sets directly from theorem 2.4.2 and ([47], theorem 5.2).

4.5 Peripheral spectrum: Perturbation by Riesz elements

In [21] V. Caselles studied the peripheral spectrum in relation to compact positive pertur-
bations of certain classes of positive operators. The results obtained are ([21], theorem 5.1,
corollary 5.2, theorem 5.4, corollary 5.5). We prove related results for the peripheral spec-
trum in relation to perturbations of positive elements by positive Riesz elements in the setting
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of COBAs. All these results have analogues in the OBA setting as well. The main results
are corollary 4.5.8 and corollary 4.5.10. These and other results in this section extend the
theory of COBAs and OBAs and are attributed to the author. We start with the following
proposition.

Proposition 4.5.1. Let (A,C) be a COBA with C closed and such that the spectral radius
in (A,C) is monotone, and let I be a closed inessential ideal of A. If a, b ≥ 0 with b Riesz
relative to I, then the following two statements are equivalent:

(i) r(a) < r(a+ b)
(ii) psp(a) ∩ psp(a+ b) = ∅.

Proof. We prove the non-trivial implication (ii) ⇒ (i). By theorem 4.1.6, we have that
r(a) ∈ σ(a) and r(a+b) ∈ σ(a+b), so that r(a) ∈ psp(a) and r(a+b) ∈ psp(a+b). Now since
a, b ≥ 0, monotonicity of the spectral radius implies that r(a) ≤ r(a + b). If r(a) = r(a + b)
then psp(a) ∩ psp(a+ b) 6= ∅, which yields the result. �

Note that proposition 4.5.1 remains true if we replace monotonicity with c-monotonicity,
as long as a and b commute.

In a C∗-algebra, psp(a) = {r(a)} for every positive element a. Thus if in proposition 4.5.1 A
is a C∗-algebra then the result holds without using monotonicity.

Before we proceed we introduce the following notation: if a is an element in a Banach al-
gebra A and I a closed inessential ideal of A, we denote by Rp(a, I) the set of Riesz points of
σ(a) that are in psp(a).

In theorem 4.5.5 we consider the relationship between psp(a) and psp(a + b) when psp(a)
has no Riesz points, where a and b are positive elements in a COBA and b is Riesz relative
to a closed inessential ideal. To prove the result we will need corollary 4.5.4, which is a
consequence of the following theorem:

Theorem 4.5.2. Let A be a Banach algebra, a ∈ A and I a closed inessential ideal of A. If
b ∈ A is Riesz relative to I and ab = ba, then at least one of the conditions

psp(a) ⊆ psp(a+ b) ∪Rp(a, I) and psp(a+ b) ⊆ psp(a) ∪Rp(a+ b, I)

holds.

Proof. Case 1: psp(a) consists of Riesz points of σ(a) and psp(a+ b) consists of Riesz points
of σ(a+ b). Then obviously both inclusions hold.

Case 2: psp(a) consists of Riesz points of σ(a) and psp(a + b) does not consist of Riesz
points of σ(a+ b), i.e.

psp(a+ b) * Rp(a+ b, I). (*)
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In this case we have r(a + b) < r(a). To prove this, we get from theorem 1.2.7 that
DI(a) = DI(a+ b). Take λ ∈ psp(a+ b) \ Rp(a+ b, I). Then λ ∈ DI(a) and if |λ| = r(a), we
have that λ ∈ psp(a), which contradicts the fact that psp(a) consists of Riesz points of σ(a).
Thus |λ| < r(a), so that r(a+b) < r(a). It follows that psp(a+b)∩psp(a) = ∅. Together with
(*) this implies that psp(a+b) * psp(a)∪Rp(a+b, I), and clearly psp(a) ⊆ psp(a+b)∪Rp(a, I).

Case 3: psp(a) does not consist of Riesz points of σ(a) and psp(a + b) consists of Riesz
points of σ(a + b). In this case we have r(a) < r(a + b), and similarly as in Case 2 we find
that psp(a) * psp(a+ b) ∪Rp(a, I) while, clearly, psp(a+ b) ⊆ psp(a) ∪Rp(a+ b, I).

Case 4: psp(a) does not consist of Riesz points of σ(a) and psp(a + b) does not consist
of Riesz points of σ(a + b), i.e. psp(a) ∩ DI(a) 6= ∅ and psp(a + b) ∩ DI(a + b) 6= ∅. By
theorem 1.2.7 DI(a) = DI(a+ b) and so psp(a) ∩DI(a+ b) 6= ∅ and psp(a + b) ∩DI(a) 6= ∅,
say λ1 ∈ σ(a + b) with |λ1| = r(a) ≤ r(a + b) and λ2 ∈ σ(a) with |λ2| = r(a + b) ≤ r(a). It
follows that r(a) = r(a+ b).

We show that psp(a) ⊆ psp(a + b) ∪ Rp(a, I). Let λ ∈ psp(a). If λ is a Riesz point of
σ(a) then we are done. If λ is not a Riesz point of σ(a) then λ ∈ DI(a), so that λ ∈ DI(a+ b)
by theorem 1.2.7. Therefore λ ∈ σ(a+b) and it follows from r(a) = r(a+b) that λ ∈ psp(a+b).
Similarly, psp(a+ b) ⊆ psp(a) ∪Rp(a+ b, I). �

Note that if b in theorem 4.5.2 is an element of I, the condition ab = ba can be dropped.
This is because then theorem 1.2.6 can be used in the place of theorem 1.2.7. The following
example, however, shows that the condition ab = ba cannot in general be omitted.

Example 4.5.3. Let u ∈ L(`2) be the linear operator u(x1, x2, ...) = (0, x1, x2, ...) for every
x = (x1, x2, ...) ∈ `2. Let T and S in the algebra A = L(`2⊕ `2) be defined by T (x, y) = (uy, x)
and S(x, y) = (0, x) for every (x, y) ∈ `2 ⊕ `2. Then S is a Riesz operator relative to the
closed inessential ideal of compact operators I = K(`2⊕ `2) in A, TS 6= ST and neither of the
inclusions psp(T ) ⊆ psp(T + S) ∪Rp(T, I) and psp(T + S) ⊆ psp(T ) ∪Rp(T + S, I) holds.

Proof. From ([30], example 1) we get that S is Riesz relative to I and that ST 6= TS.
From the same result we also get that σ(T ) = B, σ(T + S) =

√
2B, DI(T ) = σ(T ) and

DI(T+S) = σ(T+S), where B = {λ ∈ C : |λ| ≤ 1}. This means that psp(T )∩psp(T+S) = ∅,
psp(T ) has no Riesz points of σ(T ) and psp(T + S) has no Riesz points of σ(T + S). Hence
neither of the mentioned inclusions holds. �

It follows from cases 1 and 4 in the proof of theorem 4.5.2 that:

Corollary 4.5.4. Let A be a Banach algebra, a ∈ A and I a closed inessential ideal of
A. Suppose that b ∈ A is Riesz relative to I, that r(a) = r(a + b) and ab = ba. Then
psp(a) ⊆ psp(a+ b) ∪Rp(a, I) and psp(a+ b) ⊆ psp(a) ∪Rp(a+ b, I).

Using corollary 4.5.4 we prove the following result:

Theorem 4.5.5. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone, and let I be a closed inessential ideal of A. Suppose that a, b ≥ 0 with

47

Stellenbosch University  http://scholar.sun.ac.za



ab = ba and that b is Riesz relative to I. If psp(a) has no Riesz points of σ(a) then one of
r(a) < r(a+ b) or psp(a+ b) = psp(a) ∪Rp(a+ b, I) holds.

Proof. Since a, b ≥ 0 and ab = ba, c-monotonicity of the spectral radius implies that
r(a) ≤ r(a+b). If r(a) < r(a+b) then we are done. If r(a) = r(a+b) then by the previous corol-
lary, we get the inclusions psp(a) ⊆ psp(a+b)∪Rp(a, I) and psp(a+b) ⊆ psp(a)∪Rp(a+b, I).
Since psp(a) has no Riesz points, from the first inclusion we obtain that psp(a) ⊆ psp(a+ b).
Together with the second inclusion, this implies that psp(a+ b) = psp(a) ∪Rp(a+ b, I). �

The next example gives an instance of theorem 4.5.5.

Example 4.5.6. Let I, P ∈ A = L(`2), where I is the identity operator and P a projection
of `2 on a finite dimensional subspace of `2. Then we have that I, P ≥ 0, IP = PI and
P is Riesz relative to F = K(`2). Furthermore, psp(I) has no Riesz points of σ(I). Also,
r(I) < r(I + P ) but psp(I + P ) 6= psp(I) ∪Rp(I + P, F ), illustrating theorem 4.5.5.

Proof. By example 2.1.18, A is a COBA with a closed, normal algebra c-cone C = {T ∈
A : T ≥ 0}. Obviously I, P ≥ 0, IP = PI, σ(I) = {1} and σ(I + P ) = {1, 2}, so that
r(I) < r(I + P ). Clearly, P ∈ F , and so it is Riesz relative to F . To show that psp(I) has
no Riesz points of σ(I), we note that psp(I) = σ(I) = {1}. Since the spectral projection
corresponding to 1 and I is I and F is a proper ideal of A, it follows that 1 is not a Riesz
point of σ(I) relative to F . Now, from theorem 1.2.7, we get that DF (I +P ) = DF (I) = {1}.
Therefore Rp(I + P, F ) = {2}, and so psp(I + P ) 6= psp(I) ∪Rp(I + P, F ). �

Note also that the converse of theorem 4.5.5 is false, as the following counter example shows.

Example 4.5.7. Consider A = M2(C) ordered by C = {a ∈ A : a = a∗ and σ(a) ⊆

[0,∞)}, where a∗ denotes the complex conjugate transpose. Let a =

(
1 0
0 2

)
, b =

(
1 0
0 1

)
,

c =

(
1 0
0 0

)
∈ A. Then b, c are Riesz relative to A, ab = ba, ac = ca and a, b, c ∈ C. We have

r(a) < r(a+ b) and psp(a+ c) = psp(a) ∪Rp(a+ c, A), but psp(a) consists of Riesz points of
σ(a).

Proof. For the closed inessential ideal of A we take the whole algebra A. We have that
r(a) = 2 < r(a + b) = 3, and psp(a) = {2} consists of Riesz points of σ(a). Also, it follows
from psp(a+ c) = {2} and Rp(a+ c, A) = {2} that psp(a+ c) = psp(a) ∪Rp(a+ c, A). �

Finally, combining proposition 4.5.1 and theorem 4.5.5 we obtain the following result, which
shows that if psp(a) has no Riesz points of σ(a), then one of two very dissimilar properties
holds.

Corollary 4.5.8. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone, and let I be a closed inessential ideal of A. Suppose that a, b ≥ 0 with
ab = ba and that b is Riesz relative to I. If psp(a) has no Riesz points of σ(a), then one of
psp(a) ∩ psp(a+ b) = ∅ or psp(a+ b) = psp(a) ∪Rp(a+ b, I) holds.
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If A in corollary 4.5.8 is a C∗-algebra, then the result holds without the commutativity or
monotonicity assumptions, and without any assumptions on psp(a), since psp(a) = {r(a)} for
all positive a in a C∗-algebra.

In corollary 4.5.8, we gave the relationship between psp(a) and psp(a+ b) when psp(a) has no
Riesz points. When we only know that r(a) is not a Riesz point of σ(a), we get the following
result.

Theorem 4.5.9. Let (A,C) be a COBA such that C is closed and the spectral radius in (A,C)
is c-monotone, and let I be a closed inessential ideal of A. Suppose that a, b ≥ 0 with b Riesz
relative to I and ab = ba. If r(a) is not a Riesz point of σ(a), then the following two assertions
are equivalent:

(i) r(a) < r(a+ b),
(ii) psp(a+ b) consists of Riesz points of σ(a+ b).

Proof. (i) ⇒ (ii): Suppose that r(a) < r(a+ b). Let λ ∈ psp(a+ b). If λ is not a Riesz point
of σ(a+ b), then λ ∈ DI(a+ b). It follows from theorem 1.2.7 that λ ∈ DI(a) ⊆ σ(a), so that
|λ| ≤ r(a). This contradicts r(a) < r(a+ b). Thus λ is a Riesz point of σ(a+ b).

(ii) ⇒ (i): From theorem 4.1.6 we obtain that r(a) ∈ σ(a) and r(a + b) ∈ σ(a + b), so
that r(a) ∈ psp(a) and r(a + b) ∈ psp(a + b). Since a, b ≥ 0 and ab = ba, c-monotonicity
of the spectral radius implies that r(a) ≤ r(a + b). Since r(a) is not a Riesz point of σ(a)
by assumption, we obtain from theorem 1.2.7 that r(a) ∈ DI(a) = DI(a + b). Now, since
psp(a + b) consists of Riesz points of σ(a + b), we have that r(a + b) /∈ DI(a + b), so that
r(a) 6= r(a+ b). Thus r(a) < r(a+ b). �

Finally, combining proposition 4.5.1 and theorem 4.5.9 we obtain the following result.

Corollary 4.5.10. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone, and let I be a closed inessential ideal of A. Suppose that a, b ≥ 0 with
ab = ba and that b is Riesz relative to I. If r(a) is not a Riesz point of σ(a), then the following
two assertions are equivalent:

(i) psp(a) ∩ psp(a+ b) = ∅,
(ii) psp(a+ b) consists of Riesz points of σ(a+ b).

A number of results in this section rely on theorem 1.2.7. (Note that ([30], theorem 2) can
also be used instead.) Therefore for these results, the condition ab = ba cannot be dropped
even in an OBA.

4.6 Convergence properties

If a sequence (an) of positive elements of an OBA converges to an element a in the OBA,
the problem of determining which properties of r(a) are inherited by r(an) was studied by S.
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Mouton in [43]. This problem was originally studied in the context of positive operators on
Banach lattices by Arándiga and Caselles in [4], [5] and [6]. In this section we will adapt the
results in [43] to the more general COBA setting. The results involving MPCSs in COBAs
will generally not be presented if they can be obtained directly from theorem 2.4.2 and the
associated OBA result. It will be mentioned whenever such results occur.

We start with the following result, which is about a continuity property of the spectral radius.
Its original OBA version is ([43], theorem 4.5).

Theorem 4.6.1. Let (A,C) be a COBA with C closed and I a closed inessential ideal of A
such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a ∈ A,
an ∈ C for all n ∈ N and an → a as n→∞. If r(a) is a Riesz point of σ(a), then r(an)→ r(a)
as n→∞.

Proof. Since C is closed, a ∈ C. From the assumption that r(a) is a Riesz point of σ(a) and
from theorem 4.4.5, it follows that psp(a) consists of Riesz points of σ(a). By lemma 1.2.2,
we have that r(an)→ r(a) as n→∞. �

A result corresponding to theorem 4.6.1 can be obtained in terms of MPCSs directly from
theorem 2.4.2 and ([43], theorem 4.5).

The next result is a COBA analogue of ([43], theorem 4.6).

Theorem 4.6.2. Let (A,C) be a COBA with C closed and such that the spectral radius in
(A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral radius in
the C ′OBA (A/I, πC) is c-monotone. Suppose that a ∈ A, an ∈ C for all n ∈ N and an → a
as n → ∞. If r(a) is a Riesz point of σ(a), then there is a natural number N such that, for
all n ≥ N , r(an) is a Riesz point of σ(an).

The proof of theorem 4.6.2 is the same as the proof of ([43], theorem 4.6) by using theorems
4.4.3 and 4.6.1. Using theorem 2.4.2 and ([43], theorem 4.6), we can obtain a result corre-
sponding to theorem 4.6.2 in terms of MPCSs.

A COBA version of ([43], theorem 4.7) can be obtained using MPCSs directly from theo-
rem 2.4.2 and ([43], theorem 4.7). The following is its corollary, and will be used to prove
another result later in this section.

Corollary 4.6.3. Let (A,C) be a COBA with C closed, M an MPCS in A and I a closed
inessential ideal of A such that the spectral radius in (A/I, πM) is monotone. Suppose that
a ∈ A, an ∈ M for all n ∈ N, that an → a as n → ∞ and that r(a) is a Riesz point of σ(a).
If α ∈ C, αn ∈ psp(an) for all n ∈ N and αn → α as n→∞, then there is a natural number
N such that for all n ≥ N , αn is a Riesz point of σ(an).

The original OBA counterpart of corollary 4.6.3 is ([43], corollary 4.8) and it can be estab-
lished with a similar proof.

The following are COBA counterparts of ([43], theorem 4.7) and corollary 4.6.3 in terms of
C ′OBAs. Their proofs are the same as those of ([43], theorem 4.7, corollary 4.8) respectively.
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Theorem 4.6.4. Let (A,C) be a COBA with C closed and I a closed inessential of A such
that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a ∈ A, an ∈ C
for all n ∈ N, that an → a as n → ∞, and that r(a) is Riesz point of σ(a). If α ∈ psp(a),
αn ∈ ∂∞σ(an) for all n ∈ N and αn → α as n→∞, then there is an N ∈ N, such that for all
n ≥ N , αn is a Riesz point of σ(an).

Corollary 4.6.5. Let (A,C) be a COBA with C closed and I a closed inessential ideal of A
such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a ∈ A,
an ∈ C for all n ∈ N, that an → a as n→∞ and that r(a) is a Riesz point of σ(a). If α ∈ C,
αn ∈ psp(an) for all n ∈ N and αn → α as n→∞, then there is an N ∈ N such that, for all
n ≥ N , αn is a Riesz point of σ(an).

We prove ([43], corollary 4.10) in our current setting. We first remark that if L(X) is the
Banach algebra of all bounded linear operators on a Banach space X, then the set K(X) of
all compact operators in L(X) is a closed inessential ideal of L(X) ([9], p.106).

Corollary 4.6.6. Let H be a Hilbert space. The positive operators on H have the following
properties:

(i) If T is a positive operator on H and r(T,L(H)) is a Riesz point of σ(T,L(H)), then
the peripheral spectrum of T in L(H) consists of Riesz points of σ(T,L(H)).

(ii) Suppose that (Tn) is a sequence of positive operators converging uniformly to an oper-
ator T . If r(T,L(H)) is a Riesz point of σ(T,L(H)), then
(a) r(Tn,L(H))→ r(T,L(H)) as n→∞ and
(b) for all n big enough r(Tn,L(H)) is a Riesz point of σ(Tn,L(H)).

(iii) Suppose that S and T are positive operators on H satisfying 0 ≤ S ≤ T and ST = TS. If
r(S,L(H)) = r(T,L(H)) and r(T,L(H)) is a Riesz point of σ(T,L(H)), then the peripheral
spectrum of S in L(H) consists of the Riesz points of σ(S,L(H)).

(iv) Suppose that Tn is a sequence of positive operators converging uniformly to an opera-
tor T . Suppose that r(T,L(H)) is a Riesz point of σ(T,L(H)). If αn ∈ ∂∞σ(Tn,L(H)) for
all n ∈ N and αn → α as n → ∞ where α is in the peripheral spectrum of T in L(H), then,
for all n big enough, αn is a Riesz point of σ(Tn,L(H)).

Proof. Let C = {S ∈ L(H) : S ≥ 0}. Then by example 2.1.18, we have that (L(H), C) is
a COBA with C closed and normal, and the spectral radius in (L(H), C) is monotone. Let
I = K(H). If π : L(H) → L(H)/I is the canonical homomorphism, then (L(H)/I, πC) is a
C ′OBA and πC is c-normal; hence the spectral radius is c-monotone. Therefore:

(i) Follows from theorem 4.4.5.
(ii) Part (a) follows from theorem 4.6.1 and (b) follows from theorem 4.6.2.
(iii) Follows from theorem 4.4.8.
(iv) Follows from theorem 4.6.4. �
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Recall that L(H) is a non-commutative C∗-algebra. Therefore the structure under considera-
tion in ([43], corollary 4.10) is a typical COBA. Although the corresponding quotient algebra
does not have the COBA structure, it does however, have the C ′OBA structure. We have
used this fact to prove corollary 4.6.6, whereas ([43], corollary 4.10) uses different means to
prove the result. So ([43], corollary 4.10) is a typical result that motivates the introduction of
C ′OBAs. Also note that corollary 4.6.6 is a stronger result than ([43], corollary 4.10), since
the assumption that operators in the sequence (Tn) in corollary 4.6.6 (ii) and (iv) mutually
commute has been dropped.

Theorems 4.6.7 and 4.6.8 are COBA analogues of ([43], theorem 5.5) and ([43], theorem 5.6)
respectively. They will be followed by the C ′OBA analogues. These results give conditions
under which certain properties of the Laurent series of the resolvents of a sequence of positive
elements are inherited by the Laurent series of the limit of such a sequence.

Theorem 4.6.7. Let (A,C) be a semisimple COBA with C closed, M an MPCS in A and I a
closed inessential ideal in A such that the spectral radius in (A/I, πM) is monotone. Suppose
that a ∈ A, an ∈ M for all n ∈ N, that an → a as n → ∞ and that r(a) is a Riesz point of
σ(a). If αn ∈ psp(an) such that αn → α, then the following hold:

(i) For all n large enough, αn is a pole, say of order kn, of (λ1 − an)−1, and α is a pole,
say of order k, of (λ1− a)−1.

(ii) If (λ1− a)−1 =
∞∑

j=−∞

(λ− α)jbj (b−j = 0 for all j > k) and if for all n ≥ N , we have that

(λ1− an)−1 =
∞∑

j=−∞

(λ− αn)jbn,j (bn,−j = 0 for all j > kn), then bn,j → bj as n→∞, for all

j ∈ Z.
(iii) If p = p(a, α) and pn = p(an, αn), then pn → p as n→∞.
(iv) If kn ≤ k for all n ≥ N1, for some N1 ∈ N, and u = b−k, un = bn,−kn (where au = αu = ua
and anun = αnun = unan), then un → u as n→∞.

Proof. (i) From theorem 4.4.4, we have that psp(a) consists of Riesz points of σ(a). It follows
from lemma 1.2.2 2(c) that α ∈ psp(a), so that α is a Riesz point of σ(a). By lemma 1.2.3 we
have that α is a pole of (λ1− a)−1. From corollary 4.6.3 we have that αn is a Riesz point of
σ(an), and hence a pole of (λ1− an)−1, for all n big enough.

(ii) This result follows from (i) and theorem 1.1.10.
(iii) Follows from (i) and corollary 1.1.11.
(iv) Follows from (i) and corollary 1.1.12. �

Theorem 4.6.8. Let (A,C) be a semisimple COBA with C closed, M an MPCS in A such
that the spectral radius in (A,M) is monotone. Suppose that I is a closed inessential ideal in
A such that the spectral radius in (A/I, πM) is monotone, and that a ∈ A, an ∈ M for all
n ∈ N. If an → a as n→∞ and r(a) is a Riesz point of σ(a), then the following hold:

(i) For all n large enough, r(an) is a pole, say of order kn, of (λ1 − an)−1, and r(a) is
pole, say of order k, of (λ1− a)−1.
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(ii) If (λ1 − a)−1 =
∞∑

j=−∞

(λ − r(a))jbj (b−j = 0 for all j > k) and if for all n ≥ N we have

that (λ1 − an)−1 =
∞∑

j=−∞

(λ − r(an))bn,j (bn,−j = 0 for all j > kn), then bn,j → bj as n → ∞,

for all j ∈ Z.
(iii) If p = p(a, r(a)) and pn = p(an, r(an)), then pn → p as n→∞.
(iv) Let u denote the positive Laurent eigenvector of the eigenvalue r(a) of a, and un the
positive Laurent eigenvector of the eigenvalue r(an) of an. If kn ≤ k for all n ≥ N1, for some
N1 ∈ N, then un → u as n→∞.

Proof. By corollary 4.1.7 we have that r(an) ∈ σ(an), and hence r(an) ∈ psp(an) for all
n ∈ N. Since r(a) is a Riesz point of σ(a), theorem 4.4.4 implies that psp(a) consists of Riesz
points of σ(a). It follows from lemma 1.2.2 2(b) that r(an) → r(a). The results (i)-(iv) then
follow from theorem 4.6.7. �

If the sequence (an) in theorem 4.6.8 has the property that r(an) ∈ σ(an) for all n large
enough, then monotonicity of the spectral radius in (A,M) is not required, since it is needed
only to guarantee that r(an) ∈ σ(an).

Theorem 4.6.9. Let (A,C) be a semisimple COBA with C closed and let I be a closed
inessential ideal of A such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone.
Suppose that a ∈ A, an ∈ C for all n ∈ N, that an → a as n → ∞ and that r(a) is a Riesz
point of σ(a). If αn ∈ psp(an) such that αn → α as n→∞, then the following hold:

(i) For all n large enough, αn is a pole, say of order kn, of (λ1 − an)−1, and α is a pole,
say of order k, of (λ1− a)−1.

(ii) If (λ1− a)−1 =
∞∑

j=−∞

(λ− α)jbj (b−j = 0 for all j > k) and for all n ≥ N (λ1− an)−1 =

∞∑
j=−∞

(λ− αn)jbn,j (bn,−j = 0 for all j > kn), then bn,j → bj as n→∞, for all j ∈ Z.

(iii) If p = p(a, α) and pn = p(an, αn), then pn → p as n→∞.
(iv) If kn ≤ k for all n ≥ N1, for some N1 ∈ N, and u = b−k, un = bn,−kn (where au = αu = ua
and anun = αnun = unan, then un → u as n→∞.

Proof. (i) By theorem 4.4.5, psp(a) consists of Riesz points of σ(a). It follows from lemma
1.2.2 (2c) that α ∈ psp(a), so that α is a Riesz point of σ(a). By lemma 1.2.3, we have that
α is a pole of (λ1− a)−1. It follows from corollary 4.6.5 that αn is a Riesz point of σ(an) and
hence a pole of (λ1− an)−1, for n large enough.

(ii) Follows from (i) and theorem 1.1.10.
(iii) Follows from (i) and corollary 1.1.11.
(iv) Follows from (i) and corollary 1.1.12. �

Theorem 4.6.10. Let (A,C) be a semisimple COBA with C closed and such that the spectral
radius in (A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral
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radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a ∈ A, an ∈ C for all n ∈ N,
that an → a as n→∞ and that r(a) is a Riesz point of σ(a). Then the following hold:

(i) For all n large enough, r(an) is a pole, say of order kn, of (λ1 − an)−1, and r(a) is a
pole, say of order k, of (λ1− a)−1.

(ii) If (λ1− a)−1 =
∞∑

j=−∞

(λ− r(a))jbj (b−j = 0 for all j > k) and for all n ≥ N (λ1− an)−1 =

∞∑
j=−∞

(λ− r(an))jbn,j (bn,−j = 0 for all j > kn), then bn,j → bj as n→∞, for all j ∈ Z.

(iii) If p = p(a, r(a)) and pn = p(an, r(an)), then pn → p as n→∞.
(iv) Let u denote the positive Laurent eigenvector of the eigenvalue r(a) of a, and un the
positive Laurent eigenvector of the eigenvalue r(an) of an. If kn ≤ k for all n ≥ N1, for some
N1 ∈ N, then un → u as n→∞.

Proof. Since the spectral radius in (A,C) is c-monotone, r(an) ∈ σ(an) by theorem 4.1.6.
Therefore r(an) ∈ psp(an). By theorem 4.4.5, psp(a) consists of Riesz points of σ(a). It
follows from lemma 1.2.2 (2b) that r(an) → r(a). From theorem 4.6.9, the results (i)-(iv)
follow. �

4.7 Trace

The trace of elements of Banach algebras has been studied by several authors including [49]
and [10]. In the context of ordered Banach algebras, a problem that naturally arises is that of
determining when a positive element in a Banach algebra has a positive trace. In this section
we will investigate this problem and give some results. Our main result is theorem 4.7.6. The
results in this section extend the theory of COBAs and OBAs and are due to the author.

We will start with the following remark.

Remark 4.7.1. Let A be a semisimple Banach algebra and a ∈ Soc(A) such that σ(a) ⊆
[0,∞). Then in terms of the spectral definition of the trace, it is clear that the element
a has a positive trace. In view of this, if A is a C∗-algebra ordered by the algebra c-cone
C = {a ∈ A : a∗ = a and σ(a) ⊆ [0,∞)}, then every element in Soc(A) ∩ C has a positive
trace.

The following proposition, which gives conditions under which a positive rank one element
has a positive trace, will be required in the proof of our main result.

Proposition 4.7.2. Let A be a semisimple COBA with a closed algebra c-cone C such that
the spectral radius in (A,C) is c-monotone. If x ∈ F1(A) ∩ C then tr(x) ≥ 0.

Proof. We have that x2 = tr(x)x. Using the spectral mapping theorem, it can easily be
shown that if dim(A) = 1 then σ(x) = {tr(x)} and if dim(A) > 1, then σ(x) = {0, tr(x)}.
Now by theorem 4.1.6, we have that r(x) ∈ σ(x). This implies that tr(x) ≥ 0. �
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Let A be a semisimple COBA with an algebra c-cone C. We define the set

F+ = {0} ∪ {x ∈ F(A) : x =
∑n

i=1 xi, with xi ∈ F1(A) ∩ C for i = 1, ..., n}.

From the definition of F+, it is clear that F+ ⊆ F(A) ∩ C. In some cases, the sets F+ and
F(A) ∩ C actually coincide. We illustrate this with the following examples.

Example 4.7.3. Let A = M2(C) and C = {(αij) ∈ A : αij ≥ 0, i, j = 1, 2}. Then C is a
closed, normal algebra cone in A and F+ = F(A) ∩ C.

Proof. The first part follows from example 2.1.15. Since A is semisimple (example 1.3.1)
and finite dimensional, F(A) = Soc(A) = A, so that F(A) ∩ C = C. So to show that F+ =

F(A) ∩ C, we show that F+ = C. For the non-trivial inclusion, let M =

(
α11 α12

α21 α22

)
∈ C.

Then the non-invertible matrices M1 =

(
α11 0
0 0

)
,M2 =

(
0 α12

0 0

)
,M3 =

(
0 0
α21 0

)
and

M4 =

(
0 0
0 α22

)
are all in C. From example 1.3.1, we have that M1,M2,M3,M4 ∈ F1(A).

Since M =
∑4

i=1 Mi, it follows that M ∈ F+. Hence C ⊆ F+. �

Example 4.7.4. Let A = `∞ and C = {(αi) ∈ A : αi ≥ 0 for all i ∈ N}. Then C is a closed,
normal algebra cone of A and F+ = F(A) ∩ C.

Proof. The first part follows from example 2.1.16. We show the non-trivial inclusion F(A)∩
C ⊆ F+. Let x ∈ F(A)∩C. If x = 0 then x ∈ F+ and we are done. If x 6= 0 then x =

∑n
i=1 xi,

where xi ∈ F1(A), i = 1, ..., n. By example 1.3.2, the rank one elements of A are the sequences
with one non-zero term and zeroes elsewhere. Now since x ∈ C its terms are either zeroes or
positive real numbers. This implies that the non-zero term of xi is a positive real number for
all i = 1, ..., n. Therefore xi ∈ C. Hence x ∈ F+. �

Example 4.7.5. Let K be a completely regular Hausdorff space and let Cb(K) be the Banach
algebra of all complex valued bounded continuous functions on K with the supremum norm.
If C = {f ∈ Cb(K) : f(k) ≥ 0 for all k ∈ K}, then C is a normal algebra cone of Cb(K) and
F+ = F(Cb(K)) ∩ C.

Proof. By ([13], example 5.1), we have that C is a normal algebra cone of Cb(K). We prove
the non-trivial inclusion F(Cb(K)) ∩ C ⊆ F+. Let f ∈ F(Cb(K)) ∩ C. Then f(k) ≥ 0 for all
k ∈ K and f =

∑n
i=1 fi, where fi ∈ F1(Cb(K)). By example 1.3.3, for each i = 1, ..., n, there

is an si ∈ iso (K) and an αi ∈ C such that

fi(t) =

{
αi if t = si
0 if t 6= si.

It follows from f =
∑n

i=1 fi that f(t) = αi if t = si for i = 1, ..., n, and f(t) = 0 otherwise.
Since f(k) ≥ 0 for all k ∈ K, we get that αi ≥ 0 for i = 1, ..., n. Hence f ∈ F+. �

We now present our main result.
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Theorem 4.7.6. Let A be a semisimple COBA with a closed algebra c-cone C such that the
spectral radius in (A,C) is c-monotone. If x ∈ F+, then tr(x) ≥ 0.

Proof. If x = 0 then we are done. If x 6= 0, then since x ∈ F+, there exist n ∈ N and
xi ∈ F1(A) ∩ C such that x =

∑n
i=1 xi. Therefore tr(x) is defined and tr(x) =

∑n
i=1 tr(xi).

The result now follows from proposition 4.7.2. �

The following corollary follows immediately from theorem 4.7.6.

Corollary 4.7.7. Let A be a semisimple COBA with a closed algebra c-cone C such that the
spectral radius in (A,C) is c-monotone and F(A)∩C = F+. If x ∈ F(A)∩C, then tr(x) ≥ 0.

The following theorem gives conditions under which the trace of a dominated positive finite
rank element is less than the trace of the dominating element.

Theorem 4.7.8. Let A be a semisimple COBA with a closed algebra c-cone C such that the
spectral radius in (A,C) is c-monotone, and suppose that F(A)∩C = F+. If x, y ∈ F(A)∩C
such that 0 ≤ x ≤ y, then tr(x) ≤ tr(y).

Proof. We have that y − x ∈ F(A) ∩ C. From corollary 4.7.7, it follows that tr(y − x) ≥ 0.
Since the trace is a linear functional on F(A) by theorem 1.3.4, the result follows. �

If A in theorem 4.7.8 is a C∗-algebra, then the result holds without using monotonicity and
the assumption F(A)∩C = F+. This follows directly from linearity of the trace and the fact
that in a C∗-algebra, tr(a) ≥ 0 for every positive finite rank element.

Note that proposition 4.7.2 and theorem 4.7.6 through theorem 4.7.8 hold in a semisimple
OBA with a closed algebra cone such that the spectral radius in the OBA is monotone.

In the rest of this section we will use corollary 4.7.7 and theorem 4.7.8 to establish Banach
algebra analogues of some well known trace inequalities in matrix theory.

In [14] trace inequalities for positive semidefinite matrices were studied and one of the re-
sults is ([14], theorem 1.1). We prove theorem 4.7.9, which is an adaptation of this result in
our present setting.

Theorem 4.7.9. Let A be a semisimple COBA with a closed, inverse-closed algebra c-cone
C such that the spectral radius in (A,C) is c-monotone, and suppose that F(A) ∩ C = F+.
Let a, b, c, d ∈ F(A) ∩ C, with 0 ≤ a ≤ b and 0 ≤ c ≤ d. If a, b, c, d mutually commute and
a−1, b−1, (a+ c)−1, (b+ d)−1 exist, then

tr[(b− a)(a−1 − b−1) + (d− c)((a+ c)−1 − (b+ d)−1)] ≥ 0.

Proof. Since C is inverse-closed, a−1, b−1, (a + c)−1, (b + d)−1 ∈ C. Since 0 ≤ a ≤ b
and 0 ≤ c ≤ d, and a, b, c, d mutually commute, lemma 3.2.7 implies that b−1 ≤ a−1 and
(b + d)−1 ≤ (a + c)−1. It follows that (b − a)(a−1 − b−1) ≥ 0 and (d − c)((a + c)−1 −
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(b + d)−1) ≥ 0, so that [(b − a)(a−1 − b−1) + (d − c)((a + c)−1 − (b + d)−1)] ∈ C. Clearly,
[(b − a)(a−1 − b−1) + (d − c)((a + c)−1 − (b + d)−1)] ∈ F(A). The result then follows from
corollary 4.7.7. �

Since commutativity of the elements a, b, c, d in theorem 4.7.9 is used only to get products of
positive elements to be positive, in an OBA with a closed and inverse-closed algebra cone such
that the spectral radius in the OBA is monotone, the result holds without this requirement.
Similar remarks can be made for the rest of the results in this section.

In [26], S. Furuichi, K. Kuriyama and K. Yanagi studied trace inequalities for products of
two matrices and proved ([26], theorem 1.3). The following theorem is a version of this result
in our current setting.

Theorem 4.7.10. Let A be a semisimple COBA with a closed algebra c-cone C such that the
spectral radius in (A,C) is c-monotone, and suppose that F(A)∩C = F+. If a, b ∈ F(A)∩C
such that 0 ≤ a ≤ b

2
and ab = ba, then tr(ab) ≤ 1

2
tr(a2 + b2).

Proof. From the assumption 0 ≤ a ≤ b
2
, we get that 1

2
(a2 + b2) − ab = a2

2
+ ( b

2
− a)b ∈ C.

Now since a, b ∈ F(A) and F(A) is an ideal of A, we also have that 1
2
(a2 + b2), ab ∈ F(A).

The result then follows from theorem 4.7.8. �

Let a be an element of a Banach algebra and let n ∈ N. We define expn(a) = (1+ a
n
)n. If λ ∈ C,

it is well known that (1 + λ
n
)n → eλ as n→∞. If Ω is a neighbourhood of σ(a), then clearly

both functions (1+ λ
n
)n and eλ are analytic on Ω. Therefore if Γ is a smooth contour surround-

ing σ(a), then we have that (1+ a
n
)n = 1

2πi

∫
Γ
(1+ λ

n
)n(λ1−a)−1dλ→ 1

2πi

∫
Γ
eλ(λ1−a)−1dλ = ea.

We have the following result.

Theorem 4.7.11. Let A be a finite-dimensional semisimple COBA with a closed algebra c-
cone C such that the spectral radius in (A,C) is c-monotone, and suppose that F(A)∩C = F+.
If a, b ∈ C with ab = ba, then tr(expn(a+ b)) ≤ tr(expn(a)expn(b)).

Proof. We have that A = F(A) = Soc(A). Also, expn(a + b) = (1 + 1
n
(a + b))n and

expn(a)expn(b) = (1 + a
n
)n(1 + b

n
)n. Since ab = ba, we get that (1 + a

n
)n(1 + b

n
)n =(

(1 + a
n
)(1 + b

n
)
)n

= (1 + 1
n
(a + b) + ab

n2 )n. Clearly, 1 + 1
n
(a + b) ≤ 1 + 1

n
(a + b) + ab

n2 for
all n ∈ N. It follows from proposition 2.1.22 that (1 + a

n
)n(1 + b

n
)n ≥ (1 + 1

n
(a + b))n ≥ 0, so

that the result follows from theorem 4.7.8. �

Theorem 4.7.11 is an adaptation of ([27], proposition 3.2). This result is the famous Golden-
Thompson inequality. For more on the Golden-Thompson inequality (see [27]) and the refer-
ences given there.

The following theorem gives conditions under which the number of points in the periph-
eral spectrum of a dominated positive element of the socle is less than or equal to the number
of points in the peripheral spectrum of the dominating element. In this result, we apply the
spectral definition of the trace.
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Theorem 4.7.12. Let (A,C) be a semisimple COBA such that the spectral radius in (A,C) is
c-monotone. Suppose that a, b ∈ Soc(A) such that 0 ≤ a ≤ b and ab = ba. If |tr(ak)| ≤ |tr(bk)|
for all k ∈ N, then either psp(a) ∩ psp(b) = ∅ or #psp(a) ≤ #psp(b).

Proof. Since the spectral radius is c-monotone, r(a) ≤ r(b). If r(a) < r(b), then psp(a) ∩
psp(b) = ∅. If r(a) = r(b), then by theorem 1.3.5 and the assumption |tr(ak)| ≤ |tr(bk)|, we

have that #psp(a) = limk→∞
|tr(ak)|
r(a)k

≤ limk→∞
|tr(bk)|
r(b)k

= #psp(b). �

The condition ab = ba in theorem 4.7.12 is needed only because of c-monotonicity.
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Chapter 5

Domination

The motivation for the results in this chapter is the following general problem (which we will
refer to as the domination problem) that was studied in Banach lattices: Let E be a Banach
lattice and let S and T be positive operators such that 0 ≤ S ≤ T holds. If T has certain
properties, does it follow that S has the same properties? This problem has been investigated
if T has certain topological properties, e.g. T compact [3], T weakly compact [2], T Dunford-
Pettis [1] and if T has certain spectral properties, see [21]. The domination problem in OBAs
has been studied and several authors have made contributions. In this chapter we start by
generalizing some of the results to COBAs and then proceed to obtain new results in COBAs
and OBAs. Some of the results in this chapter rely on c-monotonicity (or monotonicity) of
the spectral radius while others do not.

Note that corollary 4.4.7 is in fact a domination result. It is however placed in a section
of the previous chapter because it is closely related to the other results in that section.

5.1 The radical

Let a and b be positive elements of a COBA with a ≤ b. This section deals with results de-
scribing conditions under which if b is in the radical, then a is also in the radical. Such results
were obtained in [51] and [41] for OBAs. We obtain corresponding results for COBAs. The
proofs of our results will follow along the lines of the proofs of corresponding results for OBAs.

We start with the following theorem, whose original OBA version is ([51], theorem 4.1).

Theorem 5.1.1. Let A be a COBA with a c-normal algebra c-cone C and let a, b ∈ A with
ab = ba and 0 ≤ a ≤ b w.r.t. C. Then

(i) if b ∈ QN(A) then a ∈ QN(A),
(ii) if b ∈ Rad(A) then a ∈ QN(A),
(iii) if b ∈ Rad(A) and a ∈ Ac then a ∈ Rad(A).
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Proof. (i) If b ∈ QN(A) then r(b) = 0. Since 0 ≤ a ≤ b and ab = ba, it follows from theorem
4.1.2 that r(a) ≤ r(b), so that r(a) = 0. Hence a ∈ QN(A).

(ii) Let b ∈ Rad(A). Then bA ⊆ QN(A), so that b ∈ QN(A). By (i), we have that a ∈ QN(A).

(iii) Let x ∈ A. Since a ∈ Ac, it follows from proposition 1.1.5 that r(ax) ≤ r(a)r(x). If
b ∈ Rad(A), then a ∈ QN(A) by (ii), so that r(a) = 0. Therefore r(ax) = 0. Since x was an
arbitrary element of A, we have that aA ⊆ QN(A). �

We prove theorem 5.1.3, which also gives conditions required for a dominated positive el-
ement to be in the radical, if the dominating element is in the radical. We will need the
following lemma, whose original OBA counterpart is ([41], lemma 4.1).

Lemma 5.1.2. Let A be a COBA with a c-normal algebra c-cone C and let M be an MPCS
in A. If a, b ∈M such that 0 ≤ a ≤ b w.r.t. C and b ∈ Rad(A), then aM ⊆ QN(A).

Proof. Let b ∈ Rad(A). Then bA ⊆ QN(A), so that bM ⊆ QN(A). From 0 ≤ a ≤ b we have
that b − a ∈ C. Let c ∈ M . Then (b − a)c = bc − ac ∈ C, so that 0 ≤ ac ≤ bc. Since C
is c-normal, the spectral radius in (A,C) is c-monotone by theorem 4.1.2. This implies that
r(ac) ≤ r(bc). Since bM ⊆ QN(A), we have that aM ⊆ QN(A). �

Note that if A in theorem 5.1.1 and lemma 5.1.2 is a C∗-algebra, these results are trivial
since a C∗-algebra is semisimple. This also applies to some of the other results in this section.

Theorem 5.1.3. Let A be a COBA with a c-normal algebra c-cone C and M any MPCS in
A. Suppose that for every x in A there is a 0 6= λ ∈ C such that λx ∈ M . If a, b ∈ M with
0 ≤ a ≤ b relative to C and b ∈ Rad(A), then a ∈ Rad(A).

Proof. Suppose that a, b ∈ M with 0 ≤ a ≤ b relative to C and b ∈ Rad(A). Then
aM ⊆ QN(A) by lemma 5.1.2. We must show that aA ⊆ QN(A). If x ∈ A then by as-
sumption, there is a 0 6= λ ∈ C such that λx ∈ M . Therefore a(λx) ∈ aM ⊆ QN(A). This
implies that r(a(λx)) = |λ|r(ax) = 0. Since λ 6= 0, we have that r(ax) = 0. This means that
ax ∈ QN(A). Since x was arbitrary, aA ⊆ QN(A). �

The original OBA result corresponding to theorem 5.1.3 is ([41], theorem 4.2).

The following result is an immediate consequence of theorem 5.1.3. Its OBA counterpart
is ([41], corollary 4.3).

Corollary 5.1.4. Let A be a COBA with a c-normal algebra c-cone C and M an MPCS in
A. Suppose that for every x in A there is a line segment L in C such that λx ∈ M for all
λ ∈ L. If a, b ∈M such that 0 ≤ a ≤ b w.r.t. C and b ∈ Rad(A), then a ∈ Rad(A).

Since the proof of lemma 5.1.2 involves multiplication of positive elements, commutativity
is required to establish this result, and consequently the same holds for theorem 5.1.3 and
corollary 5.1.4. To prove the corresponding results for OBAs, commutativity is not necessary
([41], lemma 4.1, theorem 4.2, corollary 4.3).
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The next result is a COBA version of ([41], lemma 4.4) and can be established with the
same proof.

Proposition 5.1.5. Let A be a COBA with a c-normal algebra c-cone C. If aC ⊆ QN(A),
then a(span C) ⊆ QN(A).

If (A,C) is a COBA where C is only an algebra c-cone, we do not know if the analogue of
([41], theorem 4.6) holds. It cannot be proved in the same way as ([41], theorem 4.6), be-
cause although we have proposition 5.1.5, there is no suitable COBA analogue of ([41], lemma
4.1). However, if we take an MPCS M in A the result follows immediately from theorem
5.1.1 (i) under the assumption A = span M because then A is commutative and this implies
Rad(A) = QN(A). This also applies to ([41], theorem 4.9) since if A is commutative, then
continuity of the spectral radius function is automatically implied and does not play a role.

With the assumptions of the foregoing results, we obtain the following result, which gives
characterizations of the radical in terms of the cone of the Banach algebra. Its OBA counter-
part is ([41], theorem 4.17).

Theorem 5.1.6. Let A be a COBA with a c-normal algebra c-cone C and let M be an MPCS
in A. Suppose that at least one of the following conditions holds:

(i) For every x ∈ A there is a 0 6= λ ∈ C such that λx ∈M .
(ii) For every x ∈ A there is a line segment L in C such that λx ∈M for all λ ∈ L.
Then Rad(A) = {a ∈ A : aM ⊆ QN(A)}.

Proof. Let a ∈ Rad(A). Then aA ⊆ QN(A). Since aM ⊆ aA, we have that aM ⊆ QN(A).
Therefore Rad(A) ⊆ {a ∈ A : aM ⊆ QN(A)}. So this inclusion holds for both cases. For
both cases, the inclusion {a ∈ A : aM ⊆ QN(A)} ⊆ Rad(A) is proved in a similar way to
([41], theorem 4.17). �

The COBA results corresponding to ([41], theorem 4.17 (3) and (4)) hold trivially under
the assumptions A = span M and A = cl(span M) (see remarks following proposition 5.1.5).

Note that since elements in an MPCS have the restrictive requirement of being positive and
commutative, the COBA results mentioned in the preceding discussion will in general be con-
siderably weaker than their OBA counterparts.

In [13] D. Behrendt and H. Raubenheimer proved a result giving conditions, in terms of
polynomials, under which an element in an OBA dominated by a positive element lies in the
radical (see [13], theorem 3.3, corollary 3.4). With similar proofs we establish the correspond-
ing results for COBAs.

Theorem 5.1.7. Let (A,C) be a COBA such that the spectral radius in (A,C) is c-monotone
and let a, b ∈ A such that 0 ≤ a ≤ b, ab = ba and b ∈ QN(A). If g(a) = λka

k + λk+1a
k+1 +

· · · + λna
n (λk, λk+1, ..., λn ∈ C, λk 6= 0) is a polynomial in a and if g(a) ∈ Rad(A), then

ak ∈ Rad(A).
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Proof. Since the spectral radius in (A,C) is c-monotone, r(a) ≤ r(b). From the assumption
that b ∈ QN(A), it follows that r(a) = 0, so that a ∈ QN(A). By the spectral mapping
theorem, this implies that σ(λk + λk+1a+ · · ·+ λna

n−k) = {λk}. Therefore λk + λk+1a+ · · ·+
λna

n−k is invertible. Since g(a) = λka
k +λk+1a

k+1 + · · ·+λna
n = ak(λk +λk+1a+ · · ·λnan−k),

it follows from g(a) ∈ Rad(A) that ak = g(a)(λk + λk+1a+ · · ·+ λna
n−k)−1 ∈ Rad(A). �

Corollary 5.1.8. Let (A,C) be a COBA such that the spectral radius in (A,C) is c-monotone
and let a, b ∈ A such that 0 ≤ a ≤ b, ab = ba and b ∈ QN(A). If a + a2 ∈ Rad(A) then
a ∈ Rad(A).

Note that in the proof of theorem 5.1.7, the multiplication involved does not require the
products to be positive. Therefore we can use the same proof to establish the corresponding
result in the C ′OBA setting. This is the following theorem. We will use it to prove another
result in Section 5.4.

Theorem 5.1.9. Let (A,C) be a C ′OBA such that the spectral radius in (A,C) is c-monotone
and let a, b ∈ A such that 0 ≤ a ≤ b, ab = ba and b ∈ QN(A). If g(a) = λka

k + λk+1a
k+1 +

· · · + λna
n (λk, λk+1, ..., λn ∈ C, λk 6= 0) is a polynomial in a and if g(a) ∈ Rad(A), then

ak ∈ Rad(A).

Corollary 5.1.10. Let (A,C) be a C ′OBA such that the spectral radius in (A,C) is c-
monotone and let a, b ∈ A such that 0 ≤ a ≤ b, ab = ba and b ∈ QN(A). If a + a2 ∈ Rad(A)
then a ∈ Rad(A).

In the last four results, the commutativity condition is required only because of c-monotonicity.

5.2 Riesz elements

Here we prove domination results that involve Riesz elements. We start with the following
theorem, whose original OBA version is due to H. Raubenheimer and S. Rode ([51], theorem
6.2).

Theorem 5.2.1. Let (A,C) be a COBA and M an MPCS in A. Suppose that F is a closed
ideal of A such that the spectral radius in (A/F, πM) is monotone. If a, b ∈ A such that
0 ≤ a ≤ b w.r.t. M and b is Riesz relative to F , then a is Riesz relative to F .

Proof. From theorem 2.4.2 and ([51], theorem 6.2) we obtain the result. �

For C ′OBAs, we get the following counterpart of theorem 5.2.1.

Theorem 5.2.2. Let (A,C) be a COBA and F a closed ideal of A such that the spectral
radius in the C ′OBA (A/F, πC) is c-monotone. If a, b ∈ A such that 0 ≤ a ≤ b w.r.t. C,
ab = ba and b is Riesz relative to F , then a is Riesz relative to F .

Proof. Since 0 ≤ a ≤ b w.r.t. C, we have that F ≤ a + F ≤ b + F w.r.t. πC. From
c-monotonicity of the spectral radius in (A/F, πC), it follows that r(a + F ) ≤ r(b + F ). If b
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is Riesz relative to F , then r(b + F ) = 0. Therefore r(a + F ) = 0, so that a is Riesz relative
to F . �

Note that if a and b in theorem 5.2.2 satisfy (a + F )(b + F ) = (b + F )(a + F ) rather than
ab = ba, then theorem 5.2.2 still holds and in this case we have a stronger result.

Instances of theorem 5.2.2 are given in ([51], corollary 6.3, proposition 6.4, theorem 6.5,
corollary 6.6). Note in particular that the formulation and proofs of theorem 6.5 and corol-
lary 6.6 in [51] are in the COBA sense, although COBAs are not introduced in this paper. It
is results such as these that give motivation for generalization from OBAs to COBAs.

5.3 Quasi inessential elements

In this section we prove results about domination by quasi inessential elements. We start with
the following theorem.

Theorem 5.3.1. Let (A,C) be a COBA and M an MPCS in A. Suppose that I is a closed
inessential ideal in A such that the spectral radius in (A/I, πM) is monotone, and a, b ∈ A
such that 0 ≤ a ≤ b w.r.t. M . If b is quasi inessential relative to I, then a is quasi inessential
relative to I.

Proof. Suppose that b is quasi inessential relative to I. Then r(b + I) < 1 by proposition
1.2.5. Since 0 ≤ a ≤ b w.r.t. M , we have that I ≤ a+I ≤ b+I w.r.t. πM . From monotonicity
of the spectral radius in (A/I, πM), it follows that r(a+ I) ≤ r(b+ I) < 1. Proposition 1.2.5
then implies that a is quasi inessential relative to I. �

This result was proved by J. Martinez and J.M. Mazón in the setting of positive operators on
Banach lattices ([39], proposition 2.5). S. Mouton and H. Raubenheimer proved the result in
OBAs ([47], corollary 5.4), although in view of proposition 1.2.5, closedness of the cone and
monotonicity of the spectral radius in the original OBA are not necessary, and no restrictions
on the spectral radii of the elements involved are required.

In terms of C ′OBAs, we get the following version of the above theorem.

Theorem 5.3.2. Let (A,C) be a COBA and suppose that I is a closed inessential ideal in
A such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. Let a, b ∈ A such
that 0 ≤ a ≤ b w.r.t. C and ab = ba. If b is quasi inessential relative to I, then a is quasi
inessential relative to I.

Proof. If b is quasi inessential relative to I, then r(b + I) < 1 by proposition 1.2.5. Since
0 ≤ a ≤ b w.r.t. C, we have that I ≤ a + I ≤ b + I w.r.t. πC. From c-monotonicity of the
spectral radius in (A/I, πC), it follows that r(a + I) ≤ r(b + I) < 1. Proposition 1.2.5 then
implies that a is quasi inessential relative to I. �

If a and b in the above theorem satisfy (a + I)(b + I) = (b + I)(a + I) rather than ab = ba,
the theorem is still valid and in this case it stronger than in the form given.
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5.4 Inessential elements

In [13] the domination problem was studied for inessential elements in the OBA setting. In
this section we will obtain corresponding results for COBAs. We start with the following
theorem, whose original OBA counterpart is ([13], theorem 4.1).

Theorem 5.4.1. Let (A,C) be a COBA and M an MPCS in A. Suppose that F is a closed
ideal in A such that the spectral radius in (A/F, πM) is monotone. If a, b ∈ A such that
0 ≤ a ≤ b w.r.t. M and if b is inessential relative to F , then we have the following:

(i) a is Riesz relative to F ,
(ii) If a is in the center Ac of A, then a is inessential relative to F .

Proof. (i) Since b is inessential relative to F , we have that b + F ∈ Rad(A/F ). Since
the spectral radius in (A/F, πM) is monotone, it follows that r(a + F,A/F ) = 0, so that
a+ F ∈ QN(A/F ). Hence a is Riesz relative to F .

(ii) Let x + F ∈ A/F . If a ∈ Ac, then (a + F )(x + F ) = (x + F )(a + F ), so that
r((a + F )(x + F )) ≤ r(a + F )r(x + F ) = 0 by (i). Therefore (a + F )A/F ⊆ QN(A/F ).
Hence a+ F ∈ Rad(A/F ) and a is inessential relative to F . �

We do not know if ([13], theorem 4.1 (iii)) holds if C is only an algebra c-cone. It can-
not be established like ([13], theorem 4.1 (iii)) because there is no suitable COBA version of
([41], theorem 4.6). However, if we replace C by M , the result holds trivially. This is because
the condition A = span M implies A is commutative, so that Rad(A) = QN(A), and then
the Riesz and inessential elements of A coincide. We then get the conclusion directly from
theorem 5.2.1.

The following is the C ′OBA version of theorem 5.4.1 and can be established with a simi-
lar proof.

Theorem 5.4.2. Let (A,C) be a COBA and suppose that F is a closed ideal in A such that
the spectral radius in the C ′OBA (A/F, πC) is c-monotone. If a, b ∈ A with 0 ≤ a ≤ b w.r.t.
C, ab = ba and if b is inessential relative to F , then we have the following:

(i) a is Riesz relative to F ,
(ii) If a is in the center Ac of A, then a is inessential relative to F .

We obtain the following analogue of theorem 5.1.7 in terms of inessential elements. We follow
this from ([13], theorem 4.6).

Theorem 5.4.3. Let (A,C) be a COBA, M an MPCS in A and F a closed ideal in A
such that the spectral radius in (A/F, πM) is monotone. Suppose that a, b ∈ A such that
0 ≤ a ≤ b w.r.t. M and b is Riesz relative to F . If g(a) = λka

k + λk+1a
k+1 + · · · + λna

n

(λk, λk+1, ..., λn ∈ C, λk 6= 0) is a polynomial in a and if g(a) ∈ kh(A,F ), then ak ∈ kh(A,F ).
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Proof. Since b is Riesz relative to F , we have that b + F ∈ QN(A/F ) and since g(a) ∈
kh(A,F ), it follows that g(a)+F ∈ Rad(A/F ). With the assumption that the spectral radius
in (A/F, πM) is monotone, we apply ([13], theorem 3.3) in the quotient OBA (A/F, πM) to
obtain that ak + F ∈ Rad(A/F ). Hence ak ∈ kh(A,F ). �

The following theorem is the C ′OBA version of theorem 5.4.3:

Theorem 5.4.4. Let (A,C) be a COBA and F a closed ideal in A such that the spectral
radius in the C ′OBA (A/F, πC) is c-monotone. Suppose that a, b ∈ A such that 0 ≤ a ≤ b
w.r.t. C, ab = ba and b is Riesz relative to F . If g(a) = λka

k + λk+1a
k+1 + · · · + λna

n

(λk, λk+1, ..., λn ∈ C, λk 6= 0) is a polynomial in a and if g(a) ∈ kh(A,F ), then ak ∈ kh(A,F ).

Proof. From 0 ≤ a ≤ b and ab = ba, we obtain that F ≤ a+F ≤ b+F and (a+F )(b+F ) =
(b+ F )(a+ F ). Now since b is Riesz relative to F , we have that b+ F ∈ QN(A/F ) and since
g(a) ∈ kh(A,F ), it follows that g(a) +F ∈ Rad(A/F ). Applying theorem 5.1.9 in the C ′OBA
(A/F, πC), we get that ak + F ∈ Rad(A/F ). Hence ak ∈ kh(A,F ). �

If A in theorems 5.4.1 and 5.4.2 is a C∗-algebra, then results are trivial. This is because
a C∗-algebra is semisimple. Also, in theorems 5.4.2 and 5.4.4, the condition ab = ba is re-
quired only because of c-monotonicity.

5.5 Rank one and finite rank elements

In this section we deal with the domination problem in relation to rank one and finite rank
elements. As ([13], examples 5.2 and 5.3) demonstrate, if b is a positive finite rank element
in a semiprime OBA and if a is positive and dominated by b, then in general, a is not finite
rank. This scenario extends to COBAs.

The following theorem (whose original OBA version is ([13], theorem 5.4 (ii)) shows that
if a positive element in a COBA is dominated by a finite rank element, then under certain
natural conditions, the dominated element is at most in the closure of the set of finite rank
elements.

Theorem 5.5.1. Let (A,C) be a COBA with A semiprime, and M an MPCS in A such
that the spectral radius in (A/clA(F(A)), πM) is monotone. Suppose that a, b ∈ A such that
0 ≤ a ≤ b w.r.t. M and b ∈ F(A). If a is in the center of A, then a ∈ kh(A,F(A)). Therefore
if A/clA(F(A)) is semisimple, then a ∈ clA(F(A)).

Proof. Since b ∈ F(A), we have that b ∈ kh(A,F(A)) and replacing F by clA(F(A))
in theorem 5.4.1 (ii), the first part of the result follows. To prove the second part, if
A/clA(F(A)) is semisimple, then Rad(A/clA(F(A))) = {clA(F(A))}. Since a + clA(F(A)) ∈
Rad(A/clA(F(A))) by the first part, we have that a + clA(F(A)) = clA(F(A)), so that
a ∈ clA(F(A)). �

Similar remarks to those following theorem 5.4.1 apply to ([13], theorem 5.4 (i)). The following
theorem is the C ′OBA version of theorem 5.5.1.

65

Stellenbosch University  http://scholar.sun.ac.za



Theorem 5.5.2. Let (A,C) be a COBA with A semiprime and such that the spectral radius
in the C ′OBA (A/clA(F(A)), πC) is c-monotone. Suppose that a, b ∈ A such that 0 ≤ a ≤ b
w.r.t. C and b ∈ F(A). If a is in the center of A, then a ∈ kh(A,F(A)).

Proof. Since b ∈ F(A), we get that b ∈ kh(A,F(A)) and since a is in the center of A, ab = ba.
Replacing F by clA(F(A)) in theorem 5.4.2 (ii), we obtain that a ∈ kh(A,F(A)). �

If A is a semiprime Banach algebra which is not semisimple, clA(F1(A)) ∩ Rad(A) = {0}
and clA(F1(A)) · Rad(A) = {0} = Rad(A) · clA(F1(A)) hold ([17], theorem 2.10). Conse-
quently, F(A) · Rad(A) = {0} = Rad(A) · F(A). Using these facts we obtain the following
results. They are COBA analogues of ([13], theorem 5.5, 5.6; corollary 5.7) respectively.

Theorem 5.5.3. Let A be a semiprime COBA which is not semisimple, with a proper algebra
c-cone C. Suppose that a, b ∈ A with 0 ≤ a ≤ b and ab = ba.

(i) If b ∈ F(A) and a ∈ Rad(A), then a2 = 0.
(ii) If b ∈ Rad(A) and a ∈ F(A), then a2 = 0.

Proof. Since C is an algebra c-cone, 0 ≤ a ≤ b and ab = ba, we have that 0 ≤ a2 ≤ ab.
If a ∈ Rad(A) and b ∈ F(A), it follows from Rad(A) · F(A) = {0} that ab = 0. Since C is
proper, a2 = 0. Part (ii) is proved similarly. �

As for a COBA analogue of ([13], theorem 5.5 (iii)), see remarks after theorem 5.4.1. Note
in theorem 5.5.3 that the condition ab = ba is required because we need the product ab to be
positive.

Theorem 5.5.4. Let A be a semiprime COBA with a proper algebra c-cone C and M an
MPCS in A. Suppose that b ∈M ∩ F(A) and M ∩ Rad(A) 6= {0}. Then there does not exist
an invertible element a such that 0 ≤ a ≤ b w.r.t. M .

Proof. Let 0 6= c ∈M ∩Rad(A). Suppose that a is invertible and 0 ≤ a ≤ b w.r.t. M . From
b, c ∈M , we have that 0 ≤ ac ≤ bc w.r.t. M . Since b ∈ F(A) and c ∈ Rad(A), it follows from
F(A) · Rad(A) = {0} that bc = 0. Since C is proper, M is proper by theorem 2.4.2, so that
ac = 0. Since a is invertible, it follows that c = 0, which is a contradiction. �

Corollary 5.5.5. Let A be a semiprime COBA with a proper algebra c-cone C and M an
MPCS in A. If M∩Rad(A) 6= {0}, there does not exist elements b ∈ F(A) such that 0 ≤ 1 ≤ b
relative to C.

5.6 Ergodic elements

Let A be a Banach algebra, a ∈ A and let (fn(λ)) be the sequence of functions defined by

fn(λ) =
∑n−1

k=0
λk

n
, λ ∈ C. Note that fn(1) = 1 for all n ∈ N. The terms of the sequence

(fn(a)) are called ergodic sums of a. The element a is said to be ergodic if its sequence of
ergodic sums converges.
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In this section we consider the problem of determining when a positive element dominated by
an ergodic element is ergodic. This problem was considered in the operator-theoretic setting
in [50] and a result was obtained (see [50], theorem 4.5). The proof of this result depends
on a theorem by N. Dunford (see [25], theorem 3.16). Here we will get results corresponding
to ([50], theorem 4.5) in our current setting. The results in this section extend the theory
of COBAs and OBAs and are attributed to the author. The main ones are theorems 5.6.11,
5.6.12, 5.6.16 and 5.6.17. A key result that will be used to establish these theorems is theorem
5.6.10, which is a generalization of part of ([25], theorem 3.16) to Banach algebras. The results
from theorem 5.6.1 through proposition 5.6.9, some of which are Banach algebra versions of
results in [25] (see theorems 2.19, 2.20, 2.21, 3.6), lead to theorem 5.6.10. The proofs of these
results rely heavily on operator theory, while our proofs are completely algebraic. We start
with the following theorem.

Theorem 5.6.1. Let A be a Banach algebra and let a ∈ A. Suppose that f is an analytic
function on a neighbourhood Ω of σ(a) such that

(i) for every pole λ of the resolvent of a of order k, f (j)(λ) = 0 (j = 0, 1, ..., k − 1) and
(ii) σ(a) contains at least one pole λ1 of the resolvent of a, and there exists a neighbourhood
U of σ(a) \ {λ1, λ2, ..., λn} for some n ≥ 1, where λ1, λ2, ..., λn are poles of the resolvent of a,
such that f(λ) = 0 for all λ ∈ U .

Then f(a) = 0.

Proof. Let Γ be a smooth contour surrounding σ(a). Then f(a) = 1
2πi

∫
Γ
f(λ)(λ1 − a)−1dλ.

We may take Γ to be the union of Γ1 and C1, C2, ..., Cn, where Γ1 is a smooth contour con-
tained in U and surrounding σ(a) \ {λ1, λ2, ..., λn}, and Ci is a small circle centered at the
pole λi of the resolvent of a and separating λi from the rest of σ(a). Therefore f(a) =

1
2πi

∫
Γ1
f(λ)(λ1− a)−1dλ+

∑n
i=1

1
2πi

∫
Ci
f(λ)(λ1− a)−1dλ. From assumption (ii) we have that

1
2πi

∫
Γ1
f(λ)(λ1−a)−1dλ = 0. Now since f (j)(λi) = 0 for i = 1, 2, ..., n and for j = 0, 1, ..., ki−1

(with ki the order of the pole λi) by assumption (i), there exist gi ∈ H(Ω) such that
f(λ) = (λ−λi)kigi(λ). Therefore 1

2πi

∫
Ci
f(λ)(λ1−a)−1dλ = 1

2πi

∫
Ci

(λ−λi)kigi(λ)(λ1−a)−1dλ.
Since λi is a pole of order ki of the resolvent of a, the resolvent of a has a Laurent se-
ries expansion (λ1 − a)−1 =

a−ki

(λ−λi)ki
+

a−ki+1

(λ−λi)ki−1 + · · · + a0 + a1(λ − λi) + · · · . Therefore

(λ−λi)kigi(λ)(λ1−a)−1 = gi(λ)[a−ki+a−ki+1(λ−λi)+· · ·+a0(λ−λi)ki+a1(λ−λi)ki+1+· · · ] on a
deleted neighbourhood of λi which includes Ci. Since gi is analytic on a neighbourhood of σ(a),
it has no singularities on or inside Ci. This implies that (λ−λi)kigi(λ)(λ1−a)−1 has no singular-
ities on or inside Ci. It follows from Cauchy’s theorem that 1

2πi

∫
Ci

(λ−λi)kigi(λ)(λ1−a)−1dλ =
0 for i = 1, 2, ..., n. Hence f(a) = 0. �

The following result is an immediate consequence of theorem 5.6.1.

Corollary 5.6.2. Let A be a Banach algebra and let a ∈ A. Suppose that f, g are functions
analytic on a neighbourhood Ω of σ(a) such that

(i) for every pole λ of the resolvent of a of order k, f (j)(λ) = g(j)(λ) (j = 0, 1, ..., k − 1)
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and
(ii) σ(a) contains at least one pole λ1 of the resolvent of a, and there exists a neighbourhood
U of σ(a) \ {λ1, λ2, ..., λn} for some n ≥ 1, where λ1, λ2, ..., λn are poles of the resolvent of a,
such that f(λ) = g(λ) for all λ ∈ U .

Then f(a) = g(a).

The following theorem is an important consequence of corollary 5.6.2.

Theorem 5.6.3. Let A be a Banach algebra and let a ∈ A. Suppose that f is a complex valued
function analytic on a neighbourhood Ω of σ(a). If α is a pole of order k of the resolvent of

a, then f(a) = f(a)(1− p) +
∑k−1

n=0
(a−α1)n

n!
f (n)(α)p, where p = p(α, a).

Proof. Since α is an isolated point in σ(a), we can take two open sets U0 and U1 such that
σ(a) \ {α} ⊆ U0, {α} ⊆ U1, U0 ∩ U1 = ∅ and f is analytic on U = U0 ∪ U1. Let χ : U → C be
the function defined by χ(λ) = 0 if λ ∈ U0 and χ(λ) = 1 if λ ∈ U1. Then χ is analytic on U
and from remark 1.1.9, we get that p = p(α, a) = χ(a). Now let g : U → C be the function

defined by g(λ) = f(λ)(1 − χ(λ)) +
∑k−1

n=0
(λ−α)n

n!
f (n)(α)χ(λ). We show that f and g satisfy

conditions (i) and (ii) of corollary 5.6.2. If λ ∈ U0 then χ(λ) = 0 and so g(λ) = f(λ). Hence
f and g satisfy condition (ii) of corollary 5.6.2. Since g(λ) = f(λ) for all λ ∈ U0, we have that
g(j)(λi) = f (j)(λi) (j = 0, 1, ..., ki − 1) for every pole λi ∈ U0 of order ki of the resolvent of a.
We show that g(j)(α) = f (j)(α) for j = 0, 1, ..., k− 1. We restrict the functions f and g to the
set U1. For j = 0, it is clear that f(α) = g(α). For j = 1, we have that

g′(λ) = f ′(α) + 2(λ−α)
2!

f ′′(α) + 3(λ−α)2

3!
f ′′′(α) + · · ·+ (k−1)(λ−α)k−2

(k−1)!
f (k−1)(α).

Therefore g′(α) = f ′(α). Next,

g′′(λ) = f ′′(α) + (λ− α)f ′′′(α) + 3·4(λ−α)2

4!
f (4)(α) + · · ·+ (k−2)(k−1)(λ−α)k−3

(k−1)!
f (k−1)(α).

Hence g′′(α) = f ′′(α). Continuing in this way, we obtain g(k−1)(λ) = 1·2···(k−1)
(k−1)!

f (k−1)(α) =

f (k−1)(α), and so g(k−1)(α) = f (k−1)(α). Therefore condition (i) of corollary 5.6.2 is satisfied
and so the result follows. �

The following three corollaries are consequences of theorem 5.6.3.

Corollary 5.6.4. Let A be a Banach algebra and let a ∈ A. Let (fn) be a sequence of complex
valued functions analytic on a neighbourhood Ω of σ(a). Suppose that α 6= 0 is a pole of order

k of the resolvent of a such that fn(α)→ 1 as n→∞ and f
(j)
n (α)→ 0 (j = 1, 2, ..., k − 1) as

n→∞. If (α1− a)fn(a)→ 0 as n→∞ then fn(a)→ p as n→∞, where p = p(a, α).

Proof. Since α is an isolated point in σ(a), we can take two open sets U0 and U1 such that
σ(a) \ {α} ⊆ U0, {α} ⊆ U1, U0 ∩ U1 = ∅ and fn is analytic on U = U0 ∪ U1 for all n ∈ N. By
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remark 1.1.9, we have that σ((1− p)a) = (σ(a)∩U0)∪{0}, where p = p(a, α). Since α 6= 0, it
follows that α /∈ σ((1− p)a), so that α1− (1− p)a is invertible. Let b = α1− (1− p)a. Then,

fn(a)(1− p) = fn(a)(1− p)bb−1

= fn(a)(1− p)(α1− (1− p)a)b−1

= fn(a)(1− p)(α1− a)b−1

= fn(a)(α1− a)(1− p)b−1,

since (1 − p)p = 0. From the assumption (α1 − a)fn(a) → 0 as n → ∞, it follows that
fn(a)(1 − p) → 0 as n → ∞. Also, from theorem 5.6.3, we get that fn(a) = fn(a)(1 − p) +∑k−1

j=0
(a−α1)j

j!
f

(j)
n (α)p. Together with the assumptions fn(α) → 1 as n → ∞ and f

(j)
n (α) → 0

(j = 1, 2, ..., k − 1) as n→∞, it follows that fn(a)→ p as n→∞. �

In the case where α in corollary 5.6.4 is a simple pole, we get the following result.

Corollary 5.6.5. Let A be a Banach algebra and a ∈ A. Let (fn) be a sequence of functions
analytic on a neighbourhood Ω of σ(a). Suppose that α 6= 0 is a simple pole of the resolvent of
a such that fn(α)→ 1 as n→∞. Then fn(a)→ p as n→∞ if and only if (α1−a)fn(a)→ 0
as n→∞, where p = p(α, a).

Proof. Suppose that fn(a)→ p as n→∞. Then (α1−a)fn(a)→ (α1−a)p as n→∞. Since
α is a simple pole of the resolvent of a, we have that (α1− a)p = 0. Hence (α1− a)fn(a)→ 0
as n→∞. The converse follows from corollary 5.6.4. �

Corollary 5.6.6. Let A be a Banach algebra, a ∈ A and suppose that α is a pole of order at
most k ≥ 1 of the resolvent of a. Suppose that (fn) is a sequence of complex valued functions
analytic on a neighbourhood of σ(a). If (a − α1)fn(a) → 0 as n → ∞ and fn(α) → 1 as
n→∞, then α is a simple pole of the resolvent of a.

Proof. Let p = p(α, a). By theorem 5.6.3 we may write

fn(a) = fn(a)(1− p) +
∑k−1

j=0
(a−α1)j

j!
f

(j)
n (α)p. (*)

For k = 1, the result is trivial. For k = 2 we have from (*) that fn(a) = fn(a)(1 − p) +
fn(α)p+ f ′n(α)(a− α1)p. Therefore

(a− α1)fn(a) = (a− α1)fn(a)(1− p) + (a− α1)fn(α)p+ (a− α1)2f ′n(α)p. (**)

Since k = 2, we have that α is pole of order at most 2 of the resolvent of a. Therefore
(a − α1)2f ′n(α)p = 0. Using the assumptions (a − α1)fn(a) → 0 as n → ∞ and fn(α) → 1
as n → ∞, it then follows from (**) that (a − α1)p = 0. Hence α is a simple pole of the
resolvent of a. For any k > 2, the general procedure is as follows: In the first step multiply
both sides of (*) by (a − α1)k−1. Since α is a pole of order at most k, this makes all but
the first two terms of the expression on the right hand side of (*) zero. On the resulting
equation, we take limits as n → ∞ and use the assumptions (a − α1)fn(a) → 0 as n → ∞
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and fn(α) → 1 as n → ∞ to obtain that (a − α1)k−1p = 0. In the second step multiply
both sides of (*) by (a − α1)k−2. Using arguments similar to the first step and the fact that
(a−α1)k−1p = 0, we get that (a−α1)k−2p = 0. After k−1 steps it follows that (a−α1)p = 0. �

In the rest of this section, we will consider only sequences of analytic functions of the form
fn(λ) =

∑n−1
k=0

λk

n
, as they are of particular interest for the problem at hand. The next propo-

sition shows that if we take this sequence of functions and α = 1 in corollary 5.6.5, then we
obtain a stronger form of the forward implication in corollary 5.6.5. To prove this result we
will use the following lemma.

Lemma 5.6.7. Let A be a Banach algebra and a ∈ A. Then (1− a)
∑n−1

k=0
ak

n
→ 0 if and only

if an

n
→ 0.

Proof. We have that (1− a)
∑n−1

k=0
ak

n
=
∑n−1

k=0
ak

n
−
∑n−1

k=0
ak+1

n
= 1

n
− an

n
. Now, 1

n
− an

n
→ 0 if

and only if an

n
→ 0. �

Proposition 5.6.8. Let A be a Banach algebra and a ∈ A. If (fn(a)) converges, where

fn(a) =
∑n−1

k=0
ak

n
, then (1− a)fn(a)→ 0.

Proof. Suppose that (fn(a)) converges, say, fn(a) → b. We have that 1
n
((n + 1)fn+1(a) −

nfn(a)) = an

n
. Since 1

n
((n + 1)fn+1(a) − nfn(a)) = n+1

n
fn+1(a) − fn(a) → b − b = 0, we get

that an

n
→ 0. It follows from lemma 5.6.7 that (1− a)fn(a)→ 0. �

In the following proposition, we establish that if σ(a) contains only one element, then a
stronger form of the reverse implication in corollary 5.6.5 holds. This result is not used
further; it is included for the sake of interest.

Proposition 5.6.9. Let A be a Banach algebra and a ∈ A. Suppose that σ(a) = {α} and
α is a simple pole of the resolvent of a. If (fn) is a sequence of functions analytic on a
neighbourhood Ω of σ(a) and if fn(α)→ 1, then fn(a)→ p(α, a).

Proof. Let Γ be a small circle centred at α. Then fn(a) = 1
2πi

∫
Γ
fn(λ)(λ1 − a)−1dλ. Since

α is a simple pole of the resolvent of a, we obtain the Laurent series expansion (λ1− a)−1 =
a−1

λ−α+a0+a1(λ−α)+a2(λ−α)2+· · · (aj ∈ A, j = −1, 0, 1, 2, ...) on a deleted neighbourhood N0

of α which contains Γ. Let S(λ) be the sum of the power series a0+a1(λ−α)+a2(λ−α)2+· · · .
Then S(λ) is analytic on N0 and then (λ1−a)−1 = S(λ) + a−1

λ−α . Clearly, fn(λ)S(λ) is analytic
on N0. Since Γ is contained in N0, it follows that

fn(a) =
1

2πi

∫
Γ

fn(λ)

(
S(λ) +

a−1

λ− α

)
dλ

=
1

2πi

∫
Γ

fn(λ)S(λ)dλ+
a−1

2πi

∫
Γ

fn(λ)

λ− α
dλ

= fn(α)a−1.

Since a−1 = p(α, a) and fn(α)→ 1, we obtain that fn(a)→ p(α, a). �

We now give our key result corresponding to part of ([25], theorem 3.16).
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Theorem 5.6.10. Let A be a Banach algebra and a ∈ A. Suppose that 1 ∈ iso σ(a). Let

(fn) be the sequence of functions fn(λ) =
∑n−1

k=0
λk

n
(λ ∈ C). Then the following statements

are equivalent:

(i) (fn(a)) converges, with fn(a)→ p(1, a).
(ii) (1− a)fn(a)→ 0 as n→∞ and 1 is a simple pole of the resolvent of a.

Proof. (i) ⇒ (ii): Suppose that fn(a) → p(1, a). Then by proposition 5.6.8, we have that
(1−a)fn(a)→ 0. Since (1−a)fn(a)→ (1−a)p(1, a), by uniqueness of limits, (1−a)p(1, a) = 0.
Therefore 1 is a simple pole of the resolvent of a.

(ii) ⇒ (i): We have that fn(1) =
∑n−1

k=0
1k

n
= 1. If (1 − a)fn(a) → 0 as n → ∞ and 1 is

a simple pole of the resolvent of a, then by corollary 5.6.5, we get that (fn(a)) is convergent,
with fn(a)→ p(1, a). �

Recall that a Banach algebra element a is ergodic if the sequence (fn(a)) converges, where

fn(λ) =
∑n−1

k=0
λk

n
, λ ∈ C. We give our first main result regarding the domination problem for

ergodic elements.

Theorem 5.6.11. Let (A,C) be a COBA with C closed and proper, and let a, b ∈ A such
that 0 ≤ 1 ≤ a ≤ b and ab = ba. Suppose that r(b) = 1 ∈ iso σ(a) and that 1 is a simple
pole of the resolvent of b. If b is ergodic with fn(b)→ p(1, b) and if p(1, a) = p(1, b), then a is
ergodic, with fn(a)→ p(1, a).

Proof. Since 1 is a simple pole of the resolvent of b, by proposition 3.1.3, we get that 1
is an eigenvalue of b with positive corresponding eigenvector p(1, b). From the assumption
p(1, a) = p(1, b) it follows that p(1, a) ∈ C. Clearly, (a − 1)p(1, a) = p(1, a)(a − 1) and
(b − 1)p(1, b) = p(1, b)(b − 1). Since p(1, a) = p(1, b) and since C is an algebra c-cone, the
assumption 0 ≤ 1 ≤ a ≤ b implies that 0 ≤ (a − 1)p(1, a) ≤ (b − 1)p(1, b) = 0. From the
fact that C is proper, it follows that (1 − a)p(1, a) = 0, so that 1 is a simple pole of the
resolvent of a. Now since b is ergodic, proposition 5.6.8 and lemma 5.6.7 imply that bn

n
→ 0

as n → ∞. It follows from proposition 2.1.22 that an

n
→ 0 as n → ∞. Lemma 5.6.7 then

implies that (1 − a)fn(a) → 0 as n → ∞. It follows from theorem 5.6.10 that a is ergodic,
with fn(a)→ p(1, a). �

In an OBA, the condition ab = ba in theorem 5.6.11 can be dropped since it is used only
to guarantee that 0 ≤ an ≤ bn (n ∈ N) by proposition 2.1.22.

The remaining results about domination by ergodic elements will be proved under condi-
tions similar to those of ([50], theorem 4.5). We start with theorem 5.6.12, which is the basic
result from which the others will be obtained.

Theorem 5.6.12. Let A be a COBA with a closed algebra c-cone C such that the spectral
radius in (A,C) is c-monotone, and let a, b ∈ A such that 0 ≤ a ≤ b and ab = ba. Suppose
that 1 ∈ iso σ(a) is a pole of the resolvent of a. If b is ergodic, then a is ergodic.
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Proof. From proposition 2.1.22 we have that 0 ≤ an

n
≤ bn

n
for all n ∈ N. Since b is ergodic,

bn

n
→ 0 as n → ∞ by proposition 5.6.8 and lemma 5.6.7. Therefore an

n
→ 0 as n → ∞.

Lemma 5.6.7 then implies that (1− a)fn(a)→ 0 as n→∞. Since 1 is pole of the resolvent of
a, it follows from corollary 5.6.6 that 1 is a simple pole of the resolvent of a. It follows from
theorem 5.6.10 that a is ergodic, with fn(a)→ p(1, a) as n→∞. �

Even if c-monotonicity is replaced with monotononicity, we do not know whether the con-
dition ab = ba in theorem 5.6.12 can be dropped, since the proof uses proposition 2.1.22.
Although we showed in example 2.1.23 that the assumption is essential for proposition 2.1.22,
we could not show that it is essential for theorem 5.6.12. However, in OBA in which we have
monotonicity, the condition can be dropped.

To prove our next two main theorems, the following three lemmas will be required.

Lemma 5.6.13. Let A be a Banach algebra and a ∈ A. If a is ergodic, then r(a) ≤ 1.

Proof. Since a is ergodic, (fn(a)) converges. It follows from proposition 5.6.8 that (1 −
a)fn(a)→ 0 as n→∞. Lemma 5.6.7 then implies that ||a

n||
n
→ 0 as n→∞. Therefore there

exists a constant c > 0 such that ||a
n||
n
≤ c for all n ∈ N, so that ||an|| ≤ cn for all n ∈ N. It

follows that r(a) = limn→∞ ||an||
1
n ≤ limn→∞ c

1
nn

1
n = 1. �

Lemma 5.6.14. Let (A,C) be an OBA with C closed and such that the spectral radius in
(A,C) is monotone, and let a, b ∈ A such that 0 ≤ a ≤ b. Let I be a closed inessential ideal
of A such that the spectral radius in (A/I, πC) is monotone. If r(a) = r(b) and if r(b) is a
Riesz point of σ(b), then r(a) is a Riesz point of σ(a).

Lemma 5.6.14 follows immediately from ([43], theorem 4.4) and it will also be used in the
next section.

Lemma 5.6.15. Let A be a Banach algebra and a ∈ A. If an

n
→ 0 as n → ∞ and 1 /∈ σ(a),

then
∑n−1

k=0
ak

n
converges to 0 as n→∞.

Proof. If an

n
→ 0 as n → ∞, then by lemma 5.6.7 (1 − a)

∑n−1
k=0

ak

n
→ 0 as n → ∞. If also

1 /∈ σ(a), then 1− a is invertible, which yields the result. �

Theorem 5.6.16. Let (A,C) be a semisimple OBA with C closed and such that the spectral
radius in (A,C) is monotone, and let a, b ∈ A such that 0 ≤ a ≤ b w.r.t. C. Let I be a closed
inessential ideal of A such that the spectral radius in (A/I, πC) is monotone. If b is ergodic
and if r(b) is a Riesz point of σ(b), then a is ergodic.

Proof. Since b is ergodic, lemma 5.6.13 and the fact that the spectral radius in (A,C) is mono-
tone imply that r(a) ≤ r(b) ≤ 1. Then we have four cases: r(a) < r(b) < 1, r(a) < r(b) = 1,
r(a) = r(b) < 1 and r(a) = r(b) = 1. Now from the OBA version of proposition 2.1.22, we
have that 0 ≤ an

n
≤ bn

n
for all n ∈ N. Since b is ergodic, bn

n
→ 0 as n→∞ by proposition 5.6.8

and lemma 5.6.7. Therefore an

n
→ 0 as n→∞. In the first three cases, we get that 1 /∈ σ(a).

Therefore
∑n−1

k=0
ak

n
→ 0 as n → ∞ by lemma 5.6.15, so that a is ergodic. To deal with the
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last case suppose that r(a) = r(b) = 1. Since r(b) is a Riesz point of σ(b), by lemma 5.6.14,
we have that r(a) is a Riesz point of σ(a). Lemma 1.2.3 then implies that r(a) is a pole of
the resolvent of a. From the OBA version of theorem 5.6.12, it follows that a is ergodic. �

For C ′OBAs, we have the following version of theorem 5.6.16.

Theorem 5.6.17. Let (A,C) be a semisimple COBA with C closed and such that the spectral
radius in (A,C) is c-monotone, and let a, b ∈ A with 0 ≤ a ≤ b and ab = ba. Let I be a closed
inessential ideal of A such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. If
b is ergodic and if r(b) is a Riesz point of σ(b), then a is ergodic.

Proof. Since b is ergodic, lemma 5.6.13 and the fact that the spectral radius in (A,C) is
c-monotone imply that r(a) ≤ r(b) ≤ 1. The cases r(a) < r(b) < 1, r(a) < r(b) = 1,
r(a) = r(b) < 1 are dealt with in a similar way to theorem 5.6.16. For the case r(a) = r(b) = 1,
since r(b) is a Riesz point of σ(b), we have by corollary 4.4.9 that r(a) is a Riesz point of σ(a).
Lemma 1.2.3 then implies that r(a) is a pole of the resolvent of a. The result then follows
from theorem 5.6.12. �

Note that there is a result in terms of MPCSs corresponding to theorem 5.6.16. Since it
can easily be deduced, we have not presented it.

We end this section with the following observation, which we formulate as a proposition:

Proposition 5.6.18. Let A be a COBA with a closed and inverse-closed algebra c-cone C. If
a ∈ C and a is ergodic, then a ≤ 1.

Proposition 5.6.18 follows from proposition 3.3.8 and lemma 5.6.13.

5.7 Peripheral point spectrum

Let a be a non-zero element of a Banach algebra A. We denote by Pσ(a) the set of all eigen-
values of a, and Pσ(a) is called the point spectrum of a. The set Pσ(a) ∩ psp(a) is called the
peripheral point spectrum of a.

In this section we consider two problems. The first problem is that of determining when
the spectral radius of a dominated positive element is an eigenvalue of the element, with posi-
tive corresponding eigenvector, given that the spectral radius of the dominating element is an
eigenvalue of the element and has positive corresponding eigenvector. The main results are
theorems 5.7.4 and 5.7.5. The second problem is that of determining conditions under which
the peripheral point spectrum of a dominated positive element is contained in the peripheral
point spectrum of the dominating element. The main results are theorems 5.7.6 and 5.7.9 for
OBAs and theorems 5.7.8 and 5.7.10 for COBAs. Our results are analogous to those in [50],
where these problems were dealt with in the operator-theoretic context. The results in this
section, due to author, extend the theory of COBAs and OBAs. Whenever we have a result
involving C ′OBAs in this section, there is a corresponding result in terms of MPCSs, which
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will not be presented as it can easily be deduced from the corresponding OBA result.

The first part of the following proposition is related to our first problem. It provides con-
ditions under which an eigenvalue of a dominated positive element with positive correspond-
ing eigenvector will be an eigenvalue of the dominating element, with positive corresponding
eigenvector. A result for the corresponding problem for positive operators in Banach lattices
is ([50], lemma 1.3). Since the proof of this result is typically operator theoretic, we will obtain
our result under different conditions. Our proof then will be purely algebraic. Conversely, the
second part of the result gives conditions under which an eigenvalue of a dominating positive
element with positive corresponding eigenvector will be an eigenvalue of the dominated ele-
ment, with positive corresponding eigenvector. This part will be useful in the proof of theorem
5.7.3.

Proposition 5.7.1. Let A be an OBA with a proper algebra cone C and let a, b ∈ A. Suppose
that λ is an eigenvalue of a with positive corresponding eigenvector u. If either 0 < a ≤ b ≤ λ1
or 0 < λ1 ≤ b ≤ a, then λ is an eigenvalue of b with corresponding eigenvector u.

Proof. To prove the first part, if λ is an eigenvalue of a with positive corresponding eigenvec-
tor u, then it follows from 0 < a ≤ b ≤ λ1 that 0 ≤ au ≤ bu ≤ λu = au. Since C is proper,
the result follows. The second part is established similarly. �

If we assume in proposition 5.7.1 that u commutes with both a and b, then with the same
proof, we obtain the result in the COBA setting.

The following example, which can be easily verified, shows that the condition b ≤ λ1 in
the first part of proposition 5.7.1 cannot be dropped. In a similar way, it can be shown that
the condition λ1 ≤ b in the second part of the result cannot be omitted.

Example 5.7.2. Let A = M2(C) and M =

(
1 0
0 2

)
, N =

(
2 0
0 3

)
∈ A. Then 2 is an

eigenvalue of M with corresponding eigenvector

(
0
1

)
, and 2 is an eigenvalue of N but

(
0
1

)
is not a corresponding eigenvector.

Recall that our first problem is that of determining when the spectral radius of a dominated
positive element is an eigenvalue of the element, with positive corresponding eigenvector, given
that the spectral radius of the dominating element is an eigenvalue of the element and has
positive corresponding eigenvector. The following theorem is the basic result for this problem.

Theorem 5.7.3. Let A be an OBA with a proper, closed algebra cone C and let a, b ∈ A.
Suppose that 0 < r(a) = r(b) and that 0 < r(b)1 ≤ a ≤ b. If r(b) is a pole of the resolvent
of b, then r(b) is an eigenvalue of b with positive corresponding eigenvector u, and r(a) is an
eigenvalue of a with corresponding eigenvector u.

Proof. Suppose that r(b) is a pole of the resolvent of b. Then by the Krein-Rutman theorem
([47], theorem 3.2), r(b) is an eigenvalue of b, with positive corresponding eigenvector u. With
the assumptions r(a) = r(b) and 0 < r(b)1 ≤ a ≤ b, we apply proposition 5.7.1 to obtain that
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r(a) is an eigenvalue of a, with corresponding eigenvector u. �

If u in theorem 5.7.3 commutes with a, then using theorem 3.1.2 and the COBA version
of proposition 5.7.1, the corresponding result for COBAs can be established.

Under certain natural conditions, the assumption 0 < r(b)1 ≤ a ≤ b in theorem 5.7.3 can be
relaxed to 0 < a ≤ b. We prove this in the following result.

Theorem 5.7.4. Let (A,C) be a semisimple OBA with C closed and such that the spectral
radius in (A,C) is monotone. Let I be a closed inessential ideal of A such that the spectral
radius in (A/I, πC) is monotone. Suppose that a, b ∈ A with 0 < a ≤ b w.r.t. C and
0 < r(a) = r(b). If r(b) is an eigenvalue of b with positive corresponding eigenvector and
with r(b) a Riesz point of σ(b), then r(a) is an eigenvalue of a with positive corresponding
eigenvector.

Proof. By lemma 5.6.14, r(a) is a Riesz point of σ(a). Lemma 1.2.3 then implies that r(a)
is a pole of the resolvent of a. It follows from the Krein-Rutman theorem that r(a) is an
eigenvalue of a, with positive corresponding eigenvector. �

In terms of C ′OBAs, we get the following analogue of theorem 5.7.4.

Theorem 5.7.5. Let (A,C) be a semisimple COBA with C closed and such that the spectral
radius in (A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral
radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a, b ∈ A such that 0 < a ≤ b
w.r.t. C and that 0 < r(a) = r(b). If r(b) is an eigenvalue of b with positive corresponding
eigenvector and with r(b) a Riesz point of σ(b), then r(a) is an eigenvalue of a with positive
corresponding eigenvector.

Proof. By corollary 4.4.9, r(a) is a Riesz point of σ(a). It follows from lemma 1.2.3 and
theorem 3.1.2 that r(a) is an eigenvalue of a with positive corresponding eigenvector. �

We now turn to our second problem, that of determining when the peripheral point spec-
trum of a dominated positive element is contained in the peripheral point spectrum of the
dominating element. Results for the corresponding problem for positive operators on a Ba-
nach lattice are contained in ([50], theorem 2.2; corollaries 2.3, 2.4; theorem 2.6). Since the
proofs of these results are typically operator theoretic, we will obtain our results under differ-
ent conditions, so that the proofs are by purely algebraic means. We start with the following
result.

Theorem 5.7.6. Let (A,C) be a semisimple OBA with C closed and such that the spectral
radius in (A,C) is monotone. Let I be a closed inessential ideal of A such that the spectral
radius in (A/I, πC) is monotone. Suppose that a, b ∈ A such that 0 < a ≤ b w.r.t. C and
0 < r(a) = r(b). If r(b) is a Riesz point of σ(b) and psp(a) ⊆ psp(b), then Pσ(a) ∩ psp(a) ⊆
Pσ(b) ∩ psp(b).

Proof. Suppose that r(b) is a Riesz point of σ(b). Then by ([43], theorem 4.3) and ([43],
theorem 4.4), we have that psp(a) consists of Riesz points of σ(a) and psp(b) consists of Riesz
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points of σ(b). It follows from lemma 1.2.3 that psp(a) consists of poles of the resolvent of
a and psp(b) consists of poles of the resolvent of b. By theorem 3.1.1, we have that psp(a)
consists of eigenvalues of a and psp(b) consists of eigenvalues of b. Therefore psp(a) ⊆ Pσ(a)
and psp(b) ⊆ Pσ(b). From the assumption psp(a) ⊆ psp(b), the result follows. �

The next proposition shows that if we take positive operators on a Banach lattice, then
some of the assumptions in theorem 5.7.6 can be omitted.

Proposition 5.7.7. Let E be a Banach lattice and S, T positive operators on E such that
0 ≤ S ≤ T . If r(S) = r(T ) and if r(T ) is a Riesz point of σ(T ), then Pσ(S) ∩ psp(s) ⊆
Pσ(T ) ∩ psp(T ).

Proof. Since r(S) = r(T ) and r(T ) is a Riesz point of σ(T ), psp(S) ⊆ psp(T ) by ([50],
corollary 1.6). Also, r(S) is a Riesz point of σ(S) by ([21], theorem 4.1). It follows (cf. [50],
p.25) that psp(S) consists of Riesz points of σ(S) and psp(T ) consists of Riesz points of σ(T ).
Since Riesz points of σ(S) are poles of the resolvent of S (cf. [50]), psp(S) consists of poles of
the resolvent of S. Similarly, psp(T ) consists of poles of the resolvent of T . From proposition
1.4.4, we get that psp(S) consists of eigenvalues of S and psp(T ) consists of eigenvalues of T .
This implies that Pσ(S)∩psp(S) = psp(S) and Pσ(T )∩T = psp(T ), and the result follows. �

Note that if E in the proposition above is a Dedekind complete Banach lattice, then in
view of ([43], example 3.2), the result can be obtained directly from ([50], corollary 1.6) and
theorem 5.7.6.

In terms of C ′OBAs, we have the following analogue of theorem 5.7.6.

Theorem 5.7.8. Let (A,C) be a semisimple COBA with C closed and such that the spectral
radius in (A,C) is c-monotone. Let I be a closed inessential ideal of A such that the spectral
radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a, b ∈ A such that 0 < a ≤ b
w.r.t. C, ab = ba and 0 < r(a) = r(b). If r(b) is a Riesz point of σ(b) and if psp(a) ⊆ psp(b),
then Pσ(a) ∩ psp(a) ⊆ Pσ(b) ∩ psp(b).

By using lemma 1.2.3 and theorems 4.4.5, 4.4.8 and 3.1.1, theorem 5.7.8 can be proved simi-
larly to theorem 5.7.6.

If the elements involved are Riesz elements, some of the restrictions in theorem 5.7.6 and
theorem 5.7.8 can be relaxed. We prove this in the following results.

Theorem 5.7.9. Let (A,C) be a semisimple OBA and I a closed inessential ideal of A
such that the spectral radius in (A/I, πC) is monotone. Suppose that a, b ∈ A such that
0 < a ≤ b w.r.t. C and r(a), r(b) > 0. If b is Riesz relative I and if psp(a) ⊆ psp(b), then
Pσ(a) ∩ psp(a) ⊆ Pσ(b) ∩ psp(b).

Proof. If b is Riesz relative to I, then a is Riesz relative to I by ([51], theorem 6.2). It
follows from theorem 1.2.1 that every non-zero point in σ(a) is a pole of the resolvent of a
and every non-zero point in σ(b) is a pole of the resolvent of b. Since r(a), r(b) > 0, we have
that psp(a) consists of poles of the resolvent of a and psp(b) consists of poles of the resolvent
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of b. By theorem 3.1.1, it follows that psp(a) consists of eigenvalues of a and psp(b) consists
of eigenvalues of b. Therefore Pσ(a) ∩ psp(a) = psp(a) and Pσ(b) ∩ psp(b) = psp(b). From
the assumption psp(a) ⊆ psp(b), the result follows. �

Theorem 5.7.10. Let (A,C) be a semisimple COBA and I a closed inessential ideal of A
such that the spectral radius in the C ′OBA (A/I, πC) is c-monotone. Suppose that a, b ∈ A
such that 0 < a ≤ b w.r.t. C, ab = ba and r(a), r(b) > 0. If b is Riesz relative to I and if
psp(a) ⊆ psp(b), then Pσ(a) ∩ psp(a) ⊆ Pσ(b) ∩ psp(b).

Theorem 5.7.10 can be proved in a similar way to theorem 5.7.9, by using theorems 1.2.1,
3.1.1 and 5.2.2.

Note that if A is a C∗-algebra ordered by C = {a ∈ A : a = a∗ and σ(a) ⊆ [0,∞)},
theorems 5.7.6, 5.7.8, 5.7.9 and 5.7.10 hold trivially under merely the assumptions a, b ∈ C
and psp(a) ⊆ psp(b). This is because if a, b ∈ C, then psp(a) = {r(a)} and psp(b) = {r(b)}.
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