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Summary 
 

 

The synthesis and characterization of a new tertiary alcohol (2-octyl-2-dodecanol) and 

“bushy-tailed”, hydrophobic acrylic monomer (2-octyl-dodecyl acrylate) from a        

1-decene dimer (2-octyl-1-dodecene) precursor that was synthesized with metallocene 

technology is reported. Some preliminary applications of the newly synthesized        

2-octyl-dodecyl acrylate were investigated. These applications included the use of    

2-octyl-dodecyl acrylate as a reactive hydrophobe in mini-emulsion polymerizations, 

and as a reactive (internal) plasticizer. 

  

In an attempt to selectively dimerize 1-decene, the effect of various factors on the 

oligomerization of 1-decene was investigated. These factors include the following: 

i. Different temperatures: 5, 35, 70 and 90°C 

ii. Different co-catalyst [methylaluminoxane (MAO)] concentrations  

iii. Different catalysts: bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2) and 

bis(cyclopentadienyl)hafnium dichloride (Cp2HfCl2) 

iv. Different reaction times. 

 

In all instances the final product obtained, under the abovementioned conditions, was 

a mixture of residual monomer, the dimer and trimer of 1-decene. These findings 

were corroborated with GC-MS and 1H-NMR spectroscopy.  

 

The isolation and further processing of the dimer of 1-decene (2-octyl-1-dodecene) 

was investigated. The efficiency, in terms of the final product-composition for the 

amount of catalyst used and reaction time, of Cp2ZrCl2 compared to 

bis(cyclopentadienyl)hafnium dichloride (Cp2HfCl2; hafnocene) as catalyst for the 

oligomerization of 1-decene is also reported on. The results obtained indicated that 

Cp2ZrCl2 is the more efficient catalyst for the oligomerization of 1-decene.  The 

effect of different reaction times (1, 3, 6, 24 hours) on the final product-composition 

for the oligomerization of 1-decene was also investigated. Longer reaction times (24 

hours) seemed to be excessive. A reaction time of 6 hours was optimal.  
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The purified 1-decene dimer (2-octyl-1-dodecene) was converted to the new tertiary 

alcohol (2-octyl-2-dodecanol) using the oxymercuration-demercuration procedure. 

The 2-octyl-dodecyl acrylate was synthesized by the esterification of the tertiary 

alcohol with acryloyl chloride in the presence of triethylamine. The new tertiary 

alcohol and acrylate were characterized by FT-IR and 1H-NMR spectroscopy. 

 

Stable polymer latex particles were successfully synthesized with the novel reactive 

hydrophobe 2-octyl-dodecyl acrylate in the mini-emulsion polymerization of butyl 

acrylate, methyl methacrylate and styrene. Phase-separation experiments showed that 

the presence of 2-octyl-dodecyl acrylate in the dispersed phase retards Ostwald 

ripening. 

 

The novel acrylic monomer, 2-octyl-dodecyl acrylate, was copolymerized with 

styrene via conventional free radical polymerization. Both low and high molecular 

weight copolymers were prepared. Thermal analysis of the copolymers showed that 

2-octyl-dodecyl acrylate does act as a reactive (internal) plasticizer. Blends of 

commercial virgin polystyrene and the synthesized low and high molecular weight 

copolymers were prepared. Partially miscible blends were obtained. Decreases in the 

glass transition temperatures of the blends compared to the virgin polystyrene were 

observed. The higher molecular mass styrene/2-octyl-dodecyl acrylate copolymers 

produced larger decreases in glass-transition temperatures.  
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Opsomming 
 

 

Hierdie studie behels die sintese en karakterisering van ŉ nuwe tersiêre alkohol, 2-

oktiel-2-dodekanol, en unieke, vertakte, hidrofobiese akriliese monomeer (2-oktiel-

dodekielakrielaat) vanaf ŉ 1-dekeen-dimeer (2-oktiel-1-dodekeen) wat met behulp 

van metalloseen tegnologie  gesintetiseer was. Twee aanvanklike toepassings van die 

nuwe hidrofobiese, vertakte akrielaat is ondersoek, naamlik, die gebruik van 2-oktiel-

dodekielakrielaat as reaktiewe hidrofobiese kostabiliseerder in mini-emulsie-

polimerisasies en as ‘n reaktiewe interne plastiseerder. 

 

Die effek van ŉ verskeidenheid van faktore op die oligomerisasie van 1-dekeen is 

ondersoek. Hierdie faktore sluit die volgende in:  

i. Verskeie temperature: 5, 35, 70, 90 °C 

ii. Verskeie ko-katalisator (metielalumienoksaan) konsentrasies 

iii. Verskeie katalisators: bis(siklopentadiëniel)zirkoniumdichloried (Cp2ZrCl2) en 

bis(siklopentadiëniel)hafniumdichloried (Cp2HfCl2) 

iv. Verskeie reaksietye. 

 

In alle gevalle is ŉ finale produk bestaande uit oorblywende 1-dekeen, 1-dekeen-

dimeer en 1-dekeen-trimeer verkry. GC-MS en 1H-NMR spektroskopie het dit 

bevestig. 

 

Die isolasie en verdere verwerking van die dimeer van 1-dekeen (2-oktiel-2-

dodekeen) is ondersoek. Die effektiwiteit, in terme van finale produksamestelling, vir 

die hoeveelheid katalis gebruik, asook reaksietyd, is ondersoek vir beide Cp2ZrCl2 en 

Cp2HfCl2 as oligomerisasiekataliste vir 1-dekeen. Die resultate toon aan dat die Zr-

katalis meer effektief is as die Hf-monoloog. Daar is ook gevind dat ‘n reaksietyd van 

6 uur optimaal is.  

 

Die nuwe tersiêre alkohol (2-oktiel-2-dodekanol) is gesintetiseer vanaf die gesuiwerde 

1-dekeen-dimeer (2-oktiel-1-dodekeen) deur middel van die oksiemerkurasie-

demerkurasie proses. Die esterifikasie van 2-oktiel-2-dodekanol met akrolielchloried 
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in die teenwoordigheid van trietielamien het die nuwe monomeer, 2-oktiel-

dodekielakrielaat, gelewer. Die alkohol en akrielaat is deur middel van FT-IR en 1H-

NMR spektroskopie gekarakteriseer. 

 

Die gebruik van 2-oktiel-dodekielakrielaat as reaktiewe hidrofoob (kostabiliseerder) 

in die mini-emulsie polimerisasie van butielakrielaat, metielmetakrielaat en stireen het 

stabiele lateks partikels gelewer. Faseskeidingseksperimente het getooon dat die 

teenwoordigheid van 2-oktiel-dodekielakrielaat in die disperse fase Ostwald-

rypwording vertraag.  

 

Lae- en hoë-molekulêre-massa stireen/2-oktiel-dodekielakrielaatkopolimere is 

gesintetiseer deur middel van konvensionele vrye-radikaalpolimerisasie. Termiese 

analise van die kopolimere het getoon dat 2-oktiel-dodekielakrielaat as ’n reaktiewe 

(intêrne) plastiseerder optree. Mengsels van stireen met lae en hoë molekulêre massa 

kopolimere is berei. Gedeeltelik-mengbare mengsels is verkry. In alle gevalle is ŉ 

verlaging in die glas-oorgangstemperature waargeneem. Die hoë molekulêre massa 

stireen/2-oktiel-dodekiel akrielaat kopolimere het groter verlagings in die glas-

oorgangstemperature tot gevolg gehad. 
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M n:   Number average molecular weight 

M p:   Peak average molecular weight  

Tg:   Glass transition temperature 

DDM               Dodecyl methacrylate    

CA                   Cetyl alcohol 

LMA                Lauryl methacrylate  

SMA                Stearyl methacrylate 

CMC               Critical micelle concentration 

HIPS                High impact polystyrene 

SBS                 Styrene-butadiene-styrene 

HEMA            Hydroxyethyl methacrylate 
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CHAPTER 1 
 

Introduction and Objectives 
 

 

CONTENTS
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1.4 Outline of Dissertation 
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ABSTRACT

A brief introduction to acrylic polymers and some of their applications, along with some basic polymer 

chemistry concepts, are presented here. The objectives of the study and the layout of this dissertation are 

also presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 2

1.1 Introduction 

 

All materials have their origin in nature. Polymers are no exception; they originate from 

such basic chemical elements as carbon, oxygen, hydrogen, nitrogen, chlorine, or 

sulphur. These materials are extracted from nature's storehouse of air, water, gas, oil, 

coal, and even living organisms, such as plants.  

 

From the basic sources come the feedstocks we call ‘monomers’ (from the words 

‘mono’, which means one, and ‘mer’, which means unit - in this case, the specific 

chemical unit). Monomers undergo chemical reactions known as polymerization, which 

causes the small molecules to link together into longer molecules. Chemically, the 

polymerization reaction converts the original monomer into a ‘polymer’ (many ‘mers’). 

Thus, a polymer may be defined as a high-molecular-weight compound that contains 

comparatively simple recurring units. 

 

A monomer can contribute to the synthesis of a variety of different polymers, each with 

its own distinctive characteristics. A number of factors play a role in the ultimate 

properties of a particular polymer. These include the following: 

 The way in which the monomers link together into a polymer, resulting in linear, 

branched, star or crosslinked polymers;   

 The length of the molecular chain, in other words, the molecular weight of a polymer; 

 The  molecular weight distribution (assortment of molecular chain lengths); 

 The type of monomer; 

 Polymerizing two or more different monomers together, in a process known as 

copolymerization; copolymers can have a number of arrangements of the monomers 

along the chain: random, alternating, block or graft; 

 

 

 

 

 

AlternatingRandom Block Graft 
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 Incorporating various chemicals or additives during or after polymerization. 

 

The need for new and improved materials for existing and new applications is an ongoing 

pursuit in the field of polymer science. The discovery of man’s ability to synthetically 

produce materials, with significant and distinctive qualities, was the birth of a new era - 

the polymer age. This discovery opened up the way for products that have become 

commonplace in our everyday lives. Due to the infinite number of combinations and 

permutations of molecules at our disposal, a world of infinite possibilities has become 

ours for the taking.  

 

Acrylic-based polymers have been of continuing interest for many years, since the 

incorporation of functional acrylates or methacrylates into polymers provides adaptable 

routes for the preparation of reactive polymers. Homopolymers and copolymers of acrylic 

or methacrylic materials were found to be very versatile in different applications1. Chern 

and Chen reported on the use of long-chain alkyl methacrylates, like dodecyl and 

octadecyl methacrylate, as reactive hydrophobes in the mini-emulsion polymerization of 

styrene2. Amphiphilic copolymers of these hydrophobic monomers have been 

successfully used to act as both stabilizer (surfactant) and costabilizer (hydrophobe) in 

the mini-emulsion polymerization of styrene 3.  
 

Acrylic polymers have also been widely used in the medical industry, due to the fact that 

they are resistant to many biological and chemical agents. For medical devices, special 

impact-modified grades, formulated to resist breaking and cracking, are employed more 

often than standard grades. The leading uses of acrylic polymers in the medical industry 

today are for cuvettes and tubing connectors, but they are also used to produce test kits, 

syringes, blood filters, drainage wands, flow meters, blood-pump housings, fluid silos, 

surgical-blade dispensers, incubators and surgical trays4. 

 

‘Bushy-tailed’ hydrophobic acrylic monomers (like the one synthesized in this study) 

have, by nature, very interesting properties. ‘Bushy-tailed’ refers to a branched, as oppose 

to a linear, hydrophobic component in the acrylic monomer structure. Their structural and 
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chemical nature affords them the ability to be used in a variety of applications. Of special 

interest here is the fact that they can be used as reactive hydrophobes in the mini-

emulsion polymerization of various monomers. They can also be used as internal 

plasticizers, as they alter the structural properties, and hence the thermal and mechanical 

properties, of any rigid and brittle polymer.  

 

The work presented in this dissertation is my small, but hopefully significant, 

contribution to the global database of new compounds and polymeric materials with 

(hopefully) unquestionable usefulness. 

 

 

1.2 Motivation 
 

This study was motivated by the need for new monomers, more specifically, the need for 

uniquely branched (‘bushy-tailed’) hydrophobic monomers and their applications. These 

applications take advantage of the hydrophobicity and ‘branchiness’ of these types of 

monomers.  

 

In this study, the newly synthesized hydrophobic monomer was used as a reactive 

hydrophobe, forming a copolymer with a specific monomer, in the mini-emulsion 

polymerization process. Such an application is motivated by the need to eliminate low-

molecular-weight unreactive hydrophobes, like hexadecane, from the final polymer 

product. 

 

An internal (reactive) plasticizer that chemically bonds with a polymer, acting as a 

comonomer, is useful in eliminating the problems associated with unreactive plasticizers, 

such as migration to the surface of the polymer or even the evaporation of the plasticizer. 

Exploiting the reactive ‘bushy-tailed’ monomer in this regard for the plasticization of 

polystyrene and using the synthesized copolymers in the modification of commercial 

virgin polystyrene by means of blending was investigated. The blending of the 

commercial virgin polystyrene with the internally plasticized polystyrene was expected to 
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minimize immisciblity, as most polymer blends are immiscible and require some sort of 

compatibilizer. 

 

 

1.3 Objectives 

 

In an effort to synthesize new monomers, with a view to using them to prepare new 

polymeric materials, which find applications such as coatings, surfactants, co-surfactants, 

drug binders, sound absorbers and reinforcement materials, I report here on the synthesis 

of the highly hydrophobic (‘bushy-tailed’) 2-octyl-dodecyl acrylate (2-ODA).  

 

Will this novel acrylate be an adequate reactive hydrophobe substitute for the 

conventional unreactive hydrophobes like hexadecane and cetyl alcohol in the mini-

emulsion polymerization of various monomers? This question will be answered in 

Chapter 5. 

 

When one mentions the need for new polymeric materials and the requirement for new 

material properties, the copolymerization method of preparing such materials is one of 

the obvious choices that spring to mind. Thus, the copolymerization of 2-ODA with 

styrene was investigated, and how its incorporation affected the thermal and mechanical 

properties of the polystyrene.  

 

This study endeavoured to realise the following objectives: 

 The selective dimerization of 1-decene, with the use of a metallocene-based catalytic 

system; 

 The synthesis and characterization of a new acrylic monomer, 2-octyl dodecyl 

acrylate; 

 The use of 2-octyl-dodecyl acrylate as a reactive hydrophobe, equivalent to 

hexadecane, in the stabilization of conventional mini-emulsion polymerizations of 

various monomers; 
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 The synthesis of low- and high-molecular-weight styrene/2-octyl-dodecyl acrylate 

copolymers via conventional free radical copolymerization; 

 The blending of the abovementioned copolymers with commercial virgin polystyrene; 

 Determining the thermo-mechanical properties of the aforementioned copolymers and 

blends. 

 

 

1.4 Outline of Dissertation 
 

This dissertation is structured in the following manner: 

 

 Chapter 1 

A general introduction to this study and the aims are the highlights of this chapter. 

 

 Chapter 2 

A brief historical overview on the oligomerization of α-olefins, common and novel 

acrylic and methacrylic monomers and polymers, and some theoretical background to the 

concepts and procedures used in this study are outlined in this chapter. 

 

 Chapter 3 

This chapter details the effects of various factors, such as temperature, co-catalyst 

concentration, type of catalyst and reaction time, on the oligomerization of 1-decene. 

 

 Chapter 4 

The synthesis and characterization of a new tertiary alcohol, 2-octyl-2-dodecanol, and a 

novel acrylic monomer, 2-octyl dodecyl acrylate, are described in this chapter. 

 

 Chapter 5 

This chapter discusses the possible use of the novel reactive acrylic monomer as a 

suitable alternative to hexadecane as hydrophobe (costabilizer) in the mini-emulsion 

polymerization of various common monomers. 
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 Chapter 6 

The conventional free-radical copolymerization of the novel acrylic monomer (2-octyl-

dodecyl acrylate) with styrene, and the blending of the newly synthesized copolymers 

with commercial virgin polystyrene, with their resultant thermo-mechanical property 

modifications, are the subjects of this chapter.  

 

 Chapter 7 

General conclusions, and recommendations for further research, are presented here.  
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ABSTRACT 

The historical development of some of the most common monomers and their polymers are highlighted. 

Background information on α-olefin oligomerization is provided. The various concepts used in this study, 

as they pertain to  α-olefin oligomerization and mini-emulsion polymerization, are also given attention.  

 
Keywords: acrylic monomers, α-olefin oligomerization, mini-emulsion polymerization, polymer blends 
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2.1  A Brief History of Polymeric Materials 

 

2.1.1 General

 

A study of this nature warrants the need to have a brief look into the history of polymeric 

materials. Where did it all begin and how did we progress to where we are today?  

 

Well, natural polymers have been with us since the beginning of time, but the centenary 

of purely synthetic polymers will only be celebrated in 2009. Natural polymers began to 

be chemically modified during the 1800’s to produce many materials. The most famous 

amongst these materials were vulcanized rubber (Goodyear and Hancock), gun cotton 

(Schoenbein), and celluloid (Hyatt). It was not until 1909 that synthetic polymers became 

a reality. It all started with Leo Baekeland who produced the first synthetic plastic, a 

thermosetting plastic resin called Bakelite, from the condensation reaction between 

phenol and formaldehyde. This was soon followed by the development of the first semi-

synthetic fibre, Rayon, in 1911. By the end of the 1930’s many purely synthetic polymers 

were in commercial production. One of these was poly(vinyl chloride) (1933), which was 

used as cable insulation during the Second World War. Wallace Carothers discovered the 

first purely synthetic fibre (nylon) in 1935. One of the very first products produced from 

nylon were stockings, which went on sale in 1939 as a novelty. The end of World War II 

ushered in a polymer industry that has never looked back since.  

 

2.1.2 Acrylics, methacrylics and vinylics

 

The industrial revolution of polymeric materials allowed these materials to be used in a 

wide range of applications due to the unique physical, chemical and mechanical 

properties that they possess. Some of these applications include coatings, adhesives, 

furniture, clothing, packaging and cosmetics. Various homo- and copolymers of acrylics, 

methacrylics and vinylics are used in all of these applications. The difference between 

acrylics, methacrylics and vinylics, as used in the context of this dissertation, is as 

illustrated in Figure 2.1.  
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The basis for modern acrylic polymers was the work of the German scientist Otto Rohm 

in 1901. Rohm produced solid transparent polymers of acrylic acid in laboratory 

experiments and observed some of their characteristics. A handy discovery was made 

when it was observed that colourless, liquid acrylic monomers, such as methyl and ethyl 

acrylate, could be polymerized into transparent solids. Rohm & Haas produced 

poly(methyl acrylate), marketed as Acryloid and Plexigum moulding powder by 1927. 

By 1931 they introduced Plexiglas, poly(methyl methacrylate) sheeting. From around 

1929, ICI Ltd. (UK) started conducting major research into the properties of acrylic 

plastics. From about 1936, Klein and Pearce, Farben, Du Pont and others started 

investigating the potential use of aqueous dispersions of acrylic polymers in for example 

surface coatings. The first water-borne acrylic was developed and launched in 1955. 

Today water-based paints utilizing acrylic dispersion binders already have good 

application properties and, in comparison to traditional solvent-borne paints, low volatile 

organic compound (VOC) content and low odour. In 1990 Lee suggested an attractive 

alternative strategy for zero-VOC future paint binders1; the idea was to create structured 

or multiphase acrylic particles by a stepwise, semi-batch emulsion polymerization 

process. A two-phase system of butyl acrylate as the soft phase and methyl methacrylate 

as the hard phase was successfully used to formulate solvent-free paints with good 

physical properties, such as blocking resistance, gloss, surface hardness and elasticity. 

 

 Figure 2.1 Illustration of the chemical difference between acrylics, methacrylics and vinylics. 
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The research carried out by ICI Ltd. (UK) into the properties of acrylic polymers, in 

1932, resulted in a commercial process for poly(methyl methacrylate) for cast sheet. It 

went into production in 1934, marketed as Perspex. For over 30 years poly(methyl 

methacrylate) has been used in orthopaedic surgery to fix prosthetic components2. 

McCaskie and coworkers reported on the use of polymethyl methacrylate as a bone graft 

template and as a femoral window plug in total hip replacement2. 

 

Polystyrene, poly(vinyl acetate) (PVA) and poly(vinyl chloride) (PVC) are some of the 

most common and widely used vinyl polymers. In 1933 Gibson and Fawcett discovered 

the most popular polymer in use today, namely low-density polyethylene. Today’s most 

widely used plastic evolved from the need for a superior insulating material that could be 

used for such applications as radar cabling during World War II. Today it is used in many 

applications, such as food packaging, films, grocery bags, etc.  

 

Styrene as a monomer was first obtained by distilling the gum resin of a tree, liquid 

amber orientalis. M. Berthelot first prepared a synthetic styrene in 1869. (Interestingly, it 

was Berthelot who coined the term 'synthesis'). By 1900, Kronstein had developed 

polymers of styrene. I. G. Farben Industries, whose main interest was rubber synthesis, 

commenced experiments on styrene after 1924, with full-scale production commencing in 

1929. I. G. Farben's work on Buna-S rubber, for which styrene was the comonomer, with 

butadiene, led to further research on the thermoplastic properties of the polymer. 

Staudinger’s investigation of styrene polymers and copolymers in the 1920s and 1930s 

was the main vehicle for testing his revolutionary theories and experiments3,4. Staudinger 

was the first to use the term ‘macromolecules’ in his May 1922 paper on rubber. 

Staudinger's work helped to explain the chemical nature of plastic materials and laid the 

foundation for future commercial exploitation of polymers. It took many years of work 

for him to convince his fellow researchers of the correctness of his theories. His 

outstanding work was rewarded with the Nobel Prize in 1953. Polystyrene was a 

commodity resin by 1949. Later, styrene copolymers, styrene acrylonitrile (SAN) and 

acrylonitrile butadiene styrene (ABS), contributed to the development of extremely tough 

engineering plastics. 
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Klatte discovered vinyl acetate in 1912, and patented its preparation from acetylene gas. 

Vinyl acetate readily polymerized to give dense solid materials, but had greater potential 

as a copolymer due to its ability to combine with other monomers, as described by Klatte 

in 1917. Production of vinyl acetate polymers on a commercial scale commenced after 

1937; it was mainly adhesives, laminate glues and paints that were produced. 

Experimental production in the U.S.A. began in the same year at Monsanto, where the 

main interest was the use of vinyl acetate polymers for safety glass in the lucrative 

automobile industry. 

 

Following Regnault's initial discovery of vinyl chloride in 1838, little work was done on 

the chemical analysis of the monomer until 1872, when Baumann succeeded in obtaining 

polymerized substances. Between 1912 and 1916 Ostromislensky did outstanding 

analytical work on PVC, demonstrating the potential of PVC and detailing 

polymerization techniques. Between 1927 and 1933 the B.F. Goodrich Company (also 

remembered for putting the 'bubble' into bubblegum) first developed and commercialized 

plasticized PVC. The first Goodrich PVC moulding compound was called Koroseal. PVC 

appeared in numerous forms, from toothbrushes to book bindings. It was first injection 

moulded around 1937. PVC products were widely available after 1938. Unplasticized 

PVC (UPVC) progressively became a major commodity resin after 1958, following its 

successful introduction in Europe as pipe for town water services, replacing cast iron 

systems.  

 

2.1.3 Speciality polymers 

 

Polymer supports based on glycidyl methacrylate (GMA), mainly used as excellent 

thermosetting adhesives, have gained popularity because of their superior performance. 

Recently, poly(4-propanoylphenyl methacrylate-co-GMA) was investigated by Godwin 

and coworkers as an adhesive for leather5. The authors reported on the peal strength of 

the copolymer obtained. The copolymer showed good adhesive characteristics. Poly(4-

benzyloxycarbonylphenyl methacrylate-co-GMA) was also studied for leather adhesive 

applications6. It was shown that the peel strength of the adhesive increases with 
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increasing GMA composition. Glycidyl methacrylate-based coatings are also used in the 

automobile industry as a clear topcoat. Clear topcoats are used to protect an automobile’s 

finish from environmental factors such as dirt, acid rain and ultraviolet rays. Glycidyl 

methacrylate-based coatings offer formulators and end users the highest levels of clarity, 

durability, weatherability, smoothness and chemical resistance.  

 

Copolymers such as methyl methacrylate (MMA)/vinyl pyrrolidone (VP) and 

hydroxyethyl methacrylate (HEMA)/vinyl pyrrolidone largely find their application in 

the field of contact lenses. The first soft contact lens made from polyHEMA was patented 

in 1961. The first recorded work on HEMA/VP polymers appeared in the US in 1966. 

Lenses made from HEMA/VP polymers went into production in 1968, marketed as 

Permalens. The first recorded work on MMA/VP polymers in the US and UK 

appeared between 1969 and 1972. The first commercial MMA/VP lenses (known as 

Sauflon) appeared around 1970.  

 

Since 1965, different special and new polymers with increasingly complex chemical 

structures were introduced. The properties of these polymers include very high thermal 

and chemical stability and high strength and stiffness. The following are examples of 

these polymeric materials and their trade names: poly (phenylene sulphide) (Ryton), 

polyaryletherketone (PEEK), polyimides (Kapton), aromatic polyesters (Ekonol and 

Vectra), aromatic polyamides (Nomex and Kevlar) and fluorine-containing polymers 

(Teflon and Viton). 

 

2.1.4 Recent additions to the family of acrylic and methacrylic monomers   

 

A number of new acrylic and methacrylic monomers have been synthesized in recent 

years. These novel monomers are listed in Table 2.1.  
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                      Table 2.1 

    Synthesis of novel acrylic and methacrylic monomers 

Compounds synthesized 
 
References 

Substituted phenyl acrylates 7 
5-indanyl acrylate 8 
4-acetamidophenyl acrylate 9 
4-benzyloxycarbonylphenyl methacrylate 6 
4-propanoylphenyl methacrylate 10 
4-benzoylphenyl methacrylate 11 
2-methylbenzyl methacrylate 12 
4-methylbenzyl methacrylate 12 
3, 5-dimethylphenyl acrylate 13 
3, 5-dimethylphenyl methacrylate 14 
2-(N-phthalimido)-2-methylpropyl acrylate 15 
4-(4'-chlorocinnamoyl) phenyl methacrylate 16 
2-(3-methyl-3-phenylcyclobutyl)-2-
hydroxyethyl methacrylate (PCHEMA) 

17 

2-(3-methyl-3-mesitylcyclobutyl)-2-
hydroxyethyl methacrylate (MCHEMA) 

17 

3-cyclohexyloxy-2-hydroxypropyl acrylate 18 
 

 

2.1.5 Copolymerization of alkyl acrylate monomers with styrene

 

Most of the work published on the free radical copolymerization of styrene with alkyl 

(meth)acrylates are concerned with the styrene-methyl methacrylate system19-24. The free 

radical copolymerization of styrene with n-butyl methacrylate25 and n-butyl acrylate23,26 

has also been reported on. Very few publications describe the copolymerization of 

styrene with long side chain alkyl (metha)acrylates as comonomers. Dodecyl 

methacrylate (DDMA) (lauryl methacrylate) and octadecyl methacrylate (stearyl 

methacrylate) are the most commonly used long side chain alkyl methacrylates as 

comonomers in free radical copolymerizations with styrene25,27-28. A few researchers 

reported on the reactivity ratios for the dodecyl methacrylate-styrene system via free 

radical copolymerization27-28. In addition, Vidović and coworkers reported on the 

copolymerization kinetics and other characteristic properties, such as the molecular 

weight, viscosities at different temperatures and the thermal behaviour of the dodecyl 

methacrylate-styrene and octadecyl methacrylate-styrene copolymer systems28. 
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2.2  Olefin Oligomerization 
 

2.2.1 General 

 

The basic building blocks of the petrochemical industry are ethylene, propylene and 

butene. These olefins are very useful for the following reasons: they are relatively 

inexpensive, readily available, reactive and easily convertible to a range of products. The 

last couple of decades have witnessed an increasing importance of higher linear α-olefins 

(C6-C20). The aforementioned α-olefins have become a major source of biodegradable 

detergents, lubricants, new kinds of polymers and many other industrially useful 

chemicals29.  

 

A number of processes are available for the production of α-olefins. The most common 

processes used to obtain α-olefins are thermal and catalytic cracking of paraffins 

(alkanes) and oligomerization of ethylene. Others include dehydrogenation of alkanes, 

dimerization and metathesis of olefins, dehydration of alcohols and electrolysis of C3-C30 

straight-chain carboxylic acids29. The thermal and catalytic cracking of alkanes is mainly 

used for the production of C2-C5 α-olefins, whereas the oligomerization of ethylene has 

been industrially used to manufacture large amounts of linear α-olefins in the C4-C30 

range, due to the abundance of ethylene and the high product quality.  

 

Lower and higher α-olefins can be subjected to a variety of reactions, such as 

hydrocarboxylation, hydroformylation, epoxidation and alkylation, which can lead to 

compounds with possible applications as adhesives, blend compatibilizers, fragrances, 

lubricants, additives for fuels or in the paper and leather industry30-32. In addition, α-

olefins oligomers or derivatives thereof may be used as (macro) monomeric building 

blocks for novel graft copolymers containing oligo-olefin side chains33- 35. 

 

In the following sections the following will be discussed: the general mechanism of α-

olefin oligomerization (2.2.2), the oligomerization of various higher α-olefins (C5 and 
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upwards) (2.2.3) and, more specifically, a review of the oligomerization of 1-decene as 

reported in literature (2.2.4). Mention will also be made of the very few cases where α-

olefins have been successfully selectively oligomerized (2.2.5).  

 

2.2.2 Oligomerization of higher α-olefins

 

The higher α-olefins (longer chains) undergo a more difficult oligomerization reaction 

than ethylene or propylene for example36-37. Higher α-olefins can also form more isomers 

than ethylene and propylene. Thus, the selectivity of the oligomerization reaction for 

higher α-olefins is lower than in the case of ethylene and propylene for instance.  

 

Several types of catalytic systems have been used in the oligomerization of higher α-

olefins. The most common catalytic systems used include the titanium-, zirconium- and 

nickel-based systems, the Lewis and Bronsted acids (AlCl3 and BF3) and heterogeneous 

inorganic systems29. The use of these various types of catalytic systems is highlighted 

here; a few selected literature examples of where they have been successfully used to 

oligomerize higher α-olefins are reported. 

 

Isa and coworkers oligomerized 1-octene with the TiCl4/AlCl3/LiH system38. Octene 

trimers were the main product of the octene oligomerization in the presence of the 

TiCl4/propylene oxide/Et2Al2Cl3 system39. Schoenthal and Slaugh oligomerized 1-hexene 

with the zirconium-based system Cp2ZrCl2/(CH3)3Al/H2O40. Wahner and co-workers and 

Mange reported on the oligomerization of 1-pentene using MAO-activated zirconium 

systems41-42. Various nickel-based systems have been shown to be active in the 

oligomerization of 1-hexene43. AlCl3/tertiary alcohols and AlCl3/ quaternary alcohols 

have been reported as 1-dodecene oligomerization catalysts44. AlCl3/poly(alcohol esters) 

were successfully used in the oligomerizations of higher α-olefins 45. A change from 

AlCl3 to BF3 gives active oligomerization catalysts for C6-C12 α-olefins46. Shubkin and 

coworkers demonstrated the use of BF3/alkanoic acids for the oligomerization of 1-

hexene and 1-tetradecene to highly branched di-, tri-, tetra- and pentamers47. A number of 

heterogeneous inorganic catalytic systems have been used for the oligomerization of 
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higher α-olefins. Anderson and coworkers used the HZSM-5 zeolite system for the 

oligomerization of 1-hexene48. Johnson successfully used the TaCl5/SiO2 system for the 

oligomerization of 1-hexene49. Tabak showed that 1-pentene and 1-octene could be 

successfully oligomerized with the HZSM-12 zeolite system50. Bianchi and coworkers 

oligomerized 1-pentene in the presence of cluster ruthenium complexes51. Da Rosa and 

coworkers described the oligomerization of 1-hexene and 1-octene catalyzed by 

nickel(II)/alkylaluminum systems52. Janiak and coworkers used a series of alkyl-

substituted cyclopentadienyl- and phospholyl-zirconium/MAO catalysts for the 

oligomerization of 1-hexene32. Stenzel and coworkers demonstrated the successful 

oligomerization of 1-pentene, 1-hexene and 1-octene in the ionic liquid 1-butyl-3-

methylimidazolium tetrachloroaluminate, in the presence of ethylaluminiumdichloride53. 

 

2.2.3 Selective oligomerization of α-olefins

 

The Dimersol process is a well-known industrial process for the selective dimerization of 

ethylene, propylene and butene54-55. The branched dimers of propylene and 1-butene find 

application as plasticizer precursors or fuel additives. The selective trimerization of 

ethylene to 1-hexene with chromium-based catalyst systems has been reported56. 

Christoffers and Bergman showed that a variety of α-olefins, ranging from ethylene to 1-

heptene, could be dimerized successfully, without the presence of significant portions of 

the higher oligomers, using a very low ratio of Cp2ZrCl2 to MAO (approximately 1:1)57. 

Small and Schmidt reported the catalytic dimerization of 1-butene by a variety of metal 

catalysts58. The reaction products mainly consisted of linear and/or branched dimers. 

Wasserscheid and coworkers recently reported on the selective trimerization of 1-decene 

and 1-dodecene using a chromium catalyst of the general type (R3TAC)CrCl3 (R = alkyl, 

aryl) with MAO as cocatalyst59. Ranwell and Tshamano highly selectively trimerized 1-

decene in the ionic liquid [1-butyl-3-methylimidazolium][Et3nAlnCl]60. They combined 

chromium(III) 2-ethylhexanoate, 2,5-dimethylpyrrole and triethylaluminium to form an 

active catalyst.  

 

 

Stellenbosch University http://scholar.sun.ac.za



 19

2.2.4 Oligomerization of 1-decene 

 

A variety of conditions (different catalytic systems, temperatures, pressures) have been 

employed for the oligomerization of 1-decene. Table 2.2 gives a summary of the 

literature examples where 1-decene was successfully oligomerized. 

 

 
Table 2.2  

Oligomerization of 1-decene 

Catalyst system Reaction conditions References 

AlCl3/Alkyl aromatic hydrocarbons containing O and 

N ligands 

 

100 °C, 5 hours 

 

37 

BF3/H2O, alkanoic acids 30 °C, 24 hours 39 

AlCl3/alkylaluminum halide  70-80 °C 49 

BF3/SiO2/H2O 29-36 °C, 12 hours 50 

HZSM-12 zeolite 200-400 psig, 120-210 °C 42 

BF3/C2H5OH or C4H9OH 10 psig, 20-25 °C, 4-6 hours 51 

BF3/O2/SiO2 10-15 °C 52 

BF3/n-BuOH 50 psig, 50 °C  53 

BF3/n-BuOH, C2H5COOH 23-49 °C, 1-2.5 hours 54 

ZrCl4(HfCl3)/AlCl3 99 °C, 1 hour 55 

BF3/n-BuOH, CH3COC2H5 or HO(CH2)OH 20 psig, 50 °C 38 

R3Al2X3 or RnAlX3-nX2, R = hydrocarbyl; X = Br, I;  

n = 1, 3 

 

42 °C, 15 minutes 

 

56 

TiCl4/(C2H5)3-nAlCln/3RCl, n = 0, 1, 1.5  42 °C, 15 minutes 57 

BF3/alcohols C5-8 -10 °C and 40 °C 58 

AlCl3 103 °C, 1 hour 59 

[C5H5B-R]2ZrCl2/MAO (R = alkyl, alkoxy) 25 °C, 2 hours 61 

 

 

2.2.5 Principle of α-olefin oligomerization 

 

The oligomerization reaction consists of three steps, namely activation of the catalyst, 

propagation (chain growth) and chain-termination (β-hydrogen elimination: transfer to 
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metal or monomer). The relative rates of propagation (rp) and chain-termination (rt) 

determine the molecular weight of the obtained product. If rp >> rt, many propagation 

steps occur before chain-termination takes place, resulting in the formation of a high 

molecular weight polymer. When rt >> rp, dimers are obtained. In the case where rp ≈ rt, 

oligomers are produced. 

 

This study focuses on the use of metallocene catalyst systems for the oligomerization of 

α-olefins. A metallocene catalyst system consists of a metallocene complex (a group 4 

transition metal compound) and a cocatalyst, mainly methylaluminoxane (MAO). Other 

cocatalysts in use include borates or boranes.  

 

A number of parameters can be changed in a metallocene catalyst system. These include 

the ligand, the substituents on the ligand, the bridging between ligands, the metal and the 

cocatalyst. 

 

The cocatalyst (MAO) is the key to the activity of the metallocene. MAO is typically 

used in large excess to ensure the activation of the catalyst and the destruction of catalyst 

poisons, such as water or oxygen for example. MAO acts as both an alkylating agent and 

a Lewis acid, to form the catalytically active metallocene-methyl cation. The first 

function of the MAO is the monomethylation of the halogenated metallocene complex, 

which takes place within seconds (Scheme 2.1). An excess of MAO leads to dialkylated 

species. The methylation has been studied by UV/VIS and NMR spectroscopy62-68. These 

studies have suggested the formation of a monomethylated species for a 

metallocene/MAO complex at low [Al]/[Zr] ratios of 10-20. After the methylation, the 

MAO complex seizes a methyl anion from the metallocene, forming the catalytically 

active metallocene-methyl cation (1, Scheme 2.1). The formation of the metallocene-

methyl cation has been detected by X-ray photoelectron spectroscopy as well as by 13C 

and 91Zr NMR spectroscopic techniques 69-71. The presence of cationic metallocene 

species has also been verified by the use of weakly coordinating anions, such as 

(C6H5)4B- and (C6F5)4B-, as counterions for alkylated metallocene cations 72. 
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The active metallocene-methyl cation reacts with one or more α-olefin monomer units 

(by way of 1,2-insertion) before undergoing β-hydrogen elimination to form the active 

metallocene-hydrogen cation (2, Scheme 2.1). The addition of two or three monomer 

units to the active metallocene-hydrogen cation, for example, results in a dimeric (3, 

Scheme 2.1) or trimeric α-olefin product after β-hydrogen elimination. 

 

 

M
Cl

ClCp

Cp

MAO M
Cl

MeCp

Cp

MAO
M

Me

MeCp

Cp

M
Me

MeCp

Cp

M
MeCp

Cp Me

Al MAO
M

MeCp

Cp Me

Al MAO
-

M eta llocene  com p lex

A ctive  m e ta lloce ne -
m e thy l ca tion

M
MeCp

Cp

H 2C CH

R

M
MeCp

Cp
C

R

M

Cp

Cp H 2C CH

R

CH 3

H 2C C

R

H 2
C CH 2

R

D im eric  p roduct

rt

β−H  
e lim ina tion

M

Cp

Cp

H 2
C

H 2C

R

CH 2

CH 2

+ +

R

M

Cp

Cp H 2C CH 2

R

+

M

Cp

Cp

H
+

H 2C CH

R

rp

+

M

Cp

Cp

H 2
C

C

R

CH 2

CH 2

R

+

H

rt

M

Cp

Cp H 2C C

R

CH 3

+

β−H  
e lim ina tion M

Cp

Cp

H 2C C

R

CH 3
H H

+

+

A ctive  m e ta llocene -
hyd rogen  ca tion

H 2C CH

R

rp

1 , 2  Inse rtion

1 , 2  Inse rtion

+

(1 )

(2)

(3)

 
 

Scheme 2.1 Mechanism of α-olefin oligomerization62-71.
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2.3  Heterophase Systems 
 

2.3.1 Introduction
 

A mixture of at least three components (oil, water and surfactant; additional components: 

costabilizer/hydrophobe and initiator) can form an opaque (milky) or translucent 

polymer-dispersion (heterophase system) on polymerization. There are various ways of 

generating a polymer-dispersion. These include suspension polymerization, the 

generation of secondary dispersions by precipitation or polymerization of emulsions, 

inverse emulsions, mini-emulsions and micro-emulsions. The most common water-based 

heterophase systems for the generation of nanoscale polymer latexes are emulsion, mini-

emulsion and micro-emulsion systems. The differences between these systems are 

illustrated in Scheme 2.273.  

 

The following differences between the emulsion, mini-emulsion and micro-emulsion 

systems can be highlighted: 

 Conventional emulsions produce latex particles in the size range of 50-300 nm. The 

size of the latex particles in conventional emulsion polymerization does not 

correspond to the size of the initial droplets.  

 Mini-emulsions are colloidally stabilized by a surfactant and diffusionally stabilized 

by a costabilizer (hydrophobe). Particle sizes of between 30 and 100 nm have been 

reported. The latex particles in mini-emulsion polymerization are copies of the 

original droplets. 

 Micro-emulsions are stabilized by high amounts of surfactant (15-50 wt % of 

monomer). Very small particles of between 10 and 30nm are characteristic of the 

final latex product.  
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This study focuses on the technique of mini-emulsion polymerization for the synthesis of 

nanoscale polymer latexes for two major reasons. Firstly, conventional emulsions exhibit 

insufficient colloidal stability. Secondly, micro-emulsions require excessive amounts of 

surfactant.  

 

The following section seeks to shed some light on the inner-workings of the mini-

emulsion polymerization system. 

   

 

 

 

Scheme 2.2 Differences between (a) emulsion, (b) mini-emulsion, and (c) micro-emulsion 
systems73. 
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2.3.2 Mini-emulsion polymerization

 

2.3.2.1 General

 

The generation of small (nanoscale), homogeneous and stable monomer droplets that 

undergo polymer reactions to form polymer latex particles identical to the initial 

monomer droplets are realized by the technique of mini-emulsion polymerization. Each 

monomer droplet behaves like a nanoreactor and becomes the predominant locus of 

nucleation. These nanoreactors are produced by subjecting a mixture of oil (monomer), 

water, emulsifier (surfactant), costabilizer (cosurfactant or hydrophobe) and initiator to a 

high shear force, for example by means of ultrasonication.  Thus, a mini-emulsion can be 

defined as a dispersion of critically stabilized oil droplets (nanoreactors).   

 

Antonietti and Landfester proposed the following checklist for the presence of a mini-

emulsion73: 

 Steady-state dispersed mini-emulsions are stable against diffusional degradation, but 

critically stabilized with respect to colloidal stability. 

 The interfacial energy between the oil and water phases is significantly larger than 

zero. The surface coverage of the droplets by surfactant molecules is incomplete. 

 The formation of a mini-emulsion requires high mechanical agitation to reach a 

steady state, given by a rate-equilibrium of droplet fission and fusion. 

 The stability of mini-emulsion droplets against diffusional degradation results from 

an osmotic pressure in the droplets, created by the addition of a component that has 

an extremely low solubility in the continuous phase. 

 Polymerization of mini-emulsions occurs predominantly by droplet nucleation. 

 The amount of surfactant required to form a polymerizable mini-emulsion is 

comparably small (between 0.25 and 25 weight % relative to the monomer), which is 

well below the surfactant amounts required for micro-emulsions. 

 

The stability (kinetic or thermodynamic) of any mini-emulsion system depends on two 

major factors. Any mini-emulsion needs to be stabilized against coalescence, which is 
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brought about by the collision of the droplets or particles due to the attractive Van der 

Waals forces, and against Ostwald ripening (diffusional degradation), which entails the 

diffusion of monomer from smaller droplets to larger ones at the expense of the smaller 

droplets due to the Laplace pressure of the droplets (droplet pressure).  

 

The use of an appropriate type and amount of surfactant (surface-active agent) provides 

colloidal stability to the droplets/particles by providing adequate coverage of the 

droplet/particle surface. Three types of surfactants have been successfully utilized: 

anionic, cationic and non-ionic surfactants. The ionic surfactants prevent extensive 

collision of droplets and particles by means of repulsive forces (like charges repel one 

another). Examples of ionic surfactants include sodium dodecyl sulphate (SDS) [Also 

known as sodium lauryl sulphate (SLS)] and cetyltrimethylammonium bromide (CTAB). 

The non-ionic surfactants provide colloidal stability due to steric hindrance. An example 

of a commonly used non-ionic surfactant is the polyethoxylated nonylphenol, with an 

average of 40 ethylene oxide units per molecule (NP40).  

 

One of the major factors that distinguish mini-emulsions from conventional emulsions is 

the incorporation of a cosurfactant or hydrophobe. It must be noted that the term 

cosurfactant is only applicable in the case where the costabilizer has a polar group as part 

of its molecular structure. In other words, it has some surface activity associated with it in 

terms of further lowering the interfacial energy between the continuous and dispersed 

phases, but cannot form micellar aggregates by itself. An example of such a cosurfactant 

is cetyl alcohol. From this point onwards the author will refer to the costabilizer as a 

hydrophobe (or reactive hydrophobe, in the case where the costabilizer has the ability to 

be chemically incorporated into the final polymer product). The function of the 

hydrophobe is to significantly slow down the Ostwald ripening process by creating an 

osmotic pressure in the droplets that counteracts the droplet pressure. The droplet 

pressure (pLaplace) is a function of the droplet size (Equation 2.1)73.  

 

pLaplace = 2γLL/R   (2.1) 
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where R is the droplet radius and γLL is the surface tension of the droplets. 

 

Thus, smaller droplets have a larger droplet pressure (or chemical potential) than larger 

droplets, making them susceptible to diffusional degradation due to the chemical 

potential gradient between the smaller and larger droplets. The incorporation of a low 

molecular weight, hydrophobic (water-insoluble) and monomer soluble hydrophobe 

serves to equalize the chemical potential of the droplets (in the general case of multi-

dispersed droplet sizes) by equalizing (in the ideal case) the net pressure difference (the 

difference between the droplet and the osmotic pressure) between the droplets. Thus, 

diffusion of the monomer out of the droplets is retarded.  

 

2.3.2.2 Principle of mini-emulsion polymerization

 

As previously mentioned (Section 2.3.2.1), mini-emulsions (nanoreactors) are prepared 

by subjecting a mixture of oil, water, surfactant and cosurfactant/hydrophobe to a high 

shear force. This results in the formation of two discrete phases: a continuous (water) 

phase and a dispersed (oil) phase. The mini-emulsion polymerization process consists of 

three major stages: (1) pre-homogenization, (2) homogenization, and (3) polymerization 

(Scheme 2.3).  

 

Pre-homogenization involves of the mixing of the various suspension components via 

mechanical agitation (stirring), resulting in various droplet sizes (heterogeneous 

distribution). Subjecting this semi-stable suspension to ultrasonic homogenization results 

in the formation of smaller droplets, with a uniform droplet size distribution. Thereafter, a 

fast and minor equilibration process occurs and the effective net pressure in each droplet 

is equalized. The polymerization of these stable droplets results in the formation of 

polymer latex particles that are one-to-one copies of the original droplets. 
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2.3.2.3 Role of the hydrophobe

 

As previously mentioned (section 2.3.2.1), conventional emulsions display extensive 

diffusional degradation of monomer from smaller droplets to larger ones due to the 

difference in the chemical potential of these droplets (Ostwald ripening). Monomer tends 

to diffuse from the small droplets, through the aqueous phase, to the large droplets, in 

order to relax the chemical potential gradient between two droplets with different sizes at 

the expense of the smaller droplets.  

 

Higuchi and Misra originally proposed in 1962 that the incorporation of a largely 

hydrophobic component to the emulsion recipe could serve to impart diffusional stability 

to the monomer droplets74. Webster and Cates theoretically described this stabilization 

effect75. They considered an emulsion whose droplets contained a species insoluble in the 

continuous phase and studied its stability via the Lifshiftz-Slezov theory. They concluded 

that the emulsion evolution is driven by the competition between the osmotic pressure of 

Scheme 2.3 Schematic of the principle of mini-emulsion polymerization. 

oil
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the trapped species (hydrophobic component in the monomer droplets) and the Laplace 

pressure of the droplets. 

 

As stated earlier (Section 2.3.2.1) I will refer to this hydrophobic, trapped species as the 

hydrophobe or reactive hydrophobe. Three characteristics qualify any compound as a 

good hydrophobe. They are: (1) extreme insolubility in the continuous phase, (2) good 

solubility in the dispersed phase, and (3) relatively low molecular weight (in the case of 

thermodynamic stable mini-emulsions). 

 

Apart from the conventional hydrophobes like cetyl alcohol (CA) and hexadecane (HD), 

various other hydrophobes have been successfully used over the years to impart 

diffusional stability to polymerizable mini-emulsions. The use of other types of 

hydrophobes is mainly driven by the need to eliminate the low molecular weight cetyl 

alcohol and hexadecane, which serve as organic contaminants, from the final latex 

product. Polymeric hydrophobes like polystyrene and poly(methyl methacrylate) have 

been used to prepare kinetically stable mini-emulsions76-78. These polymers are highly 

water-insoluble and soluble in their own monomers. The drawback to using polymers as 

hydrophobes is their high molecular weight. The need for a good hydrophobe to be of 

low molecular weight is based on swelling experiments and theoretical swelling 

calculations76. Thus, polymers are relatively poor hydrophobes that form mini-emulsions 

that are only stable over a very short period of time (hours or days).  

 

Mini-emulsions with a high stability (months) have been successfully prepared with 

dodecyl mercaptan (DDM) acting as both hydrophobe and chain transfer agent79-80. The 

use of a blue dye (Blue 70) as hydrophobe by Chern and Chen resulted in relatively stable 

styrene mini-emulsions81. However, the rate of Ostwald ripening for the styrene mini-

emulsions with Blue 70 as hydrophobe is faster than the mini-emulsions where the 

reactive hydrophobes lauryl methacrylate (LMA) and stearyl methacrylate (SMA) were 

used82. The effectiveness of LMA and SMA over Blue 70 as hydrophobe could be 

attributed to the fact that the reactive hydrophobes are more hydrophobic than Blue 70 

and of a lower molecular weight than Blue 70. Alduncin and coworkers reported on the 
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use of a very low water soluble initiator as hydrophobe82. They compared the ability of 

lauroyl peroxide to stabilize the monomer droplets against diffusional degradation to that 

of benzoyl peroxide and azobis(isobutyronitrile). Only lauroyl peroxide was hydrophobic 

enough to stabilize the droplets against Ostwald ripening. Reimers and Schork also 

reported on the successful use of lauroyl peroxide as both initiator and hydrophobe in the 

mini-emulsion polymerization of methyl methacrylate83. 

 

Once again it must be highlighted that the effectiveness of any hydrophobe strongly 

depends on its water-solubility. Chern and Chen listed the following estimated values for 

the water-solubility of CA, HD, LMA and SMA, in decreasing order81. 

 

CA (5.77 x 10-8mL/mL) > DMA (1.38 x 10-8mL/mL) > SMA (3.23 x 10-9mL/mL) > HD 

(1.14 x 10-9mL/mL) 

 

A summary of the numerous types of alternative hydrophobes, hydrophobes other than 

hexadecane and cetyl alcohol, reported in literature is presented in Table 2.373.  

 

 

Table 2.3 

Summary of literature examples of alternative hydrophobes 

Monomer Hydrophobe Surfactant Initiator Homogenization References 

Styrene LPO SDS AIBN, BPO, LPO Sonication 82, 84 

Styrene Blue 70 SDS NaPS Microfluidizer 85 

Styrene DMA NP40 NaPS, AIBN Microfluidizer 86 

Styrene SMA NP40/SDS NaPS Microfluidizer 87 

Styrene DMA, SMA SDS/NP40/NE40 NaHCO3 Microfluidizer 81 

Styrene PSt SDS KPS Microfluidizer 88 

MMA DDM SDS KPS Ultrasonication 79 

MMA PMMA SDS KPS Sonication 78 

MMA LPO SDS LPO Sonic dismembrator 83 

MMA PMMA SDS KPS Sonication 89 

 
MMA: methyl methacrylate; LPO: lauroyl peroxide; DMA: dodecyl methacrylate; SMA: stearyl 
methacrylate; PSt: polystyrene; DDM: dodecyl mercaptan; PMMA: poly(methyl methacrylate); SDS: 
sodium dodecyl sulphate; NP40: nonyl polyethoxylate with 40 ethylene oxides per molecule; NE40: 
polymerizable nonyl polyethoxylate with 40 ethylene oxides per molecule; AIBN: azobisisobutyronitrile; 
NaPS: sodium persulphate; KPS: potassium persulphate; NaHCO3: sodium bicarbonate 
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2.3.2.4 Kinetics of mini-emulsion polymerization

 

a. Nucleation

Three major modes of nucleation are associated with heterophase polymerizations. These 

are micellar, homogeneous and droplet nucleation. Micellar nucleation can only occur in 

systems where the free surfactant concentration is above its critical micelle concentration 

(CMC). The micellar nucleation mechanism is typical for emulsion and micro-emulsion 

polymerizations started from the continuous phase. The use of a water-soluble initiator 

results in the formation of an oligomeric radical as a few monomer units are added. The 

water-insolubility of the oligomeric radical causes it to enter a monomer-swollen micelle, 

which results in chain-growth to form a polymer chain. Furthermore, monomer droplets 

and other monomer-swollen micelles act as reservoirs for the growing particles by freeing 

monomer to diffuse to the nucleated micelles. Thus, the polymerization rate is dependent 

on the water-solubility of a particular monomer in such systems.   

 

Micellar nucleation is highly unlikely in mini-emulsion polymerization systems, due to 

the fact that very little (if any) free surfactant is available for the formation of micellar 

aggregates. In other words, the free surfactant concentration in the continuous phase of a 

mini-emulsion polymerization system will always be below its CMC.  

 

Homogeneous (continuous phase) nucleation predominates in the surfactant-free 

emulsion polymerization systems. Various researchers have documented the occurrence 

of homogeneous nucleation in mini-emulsion polymerizations 85-86,90-91. The stabilization 

system seemed to be one of the major factors that determined the amount of 

homogeneous nucleation in a particular mini-emulsion system. The use of an oil-soluble 

initiator in the mini-emulsion system further promotes droplet nucleation over 

homogeneous nucleation. 

 

Droplet nucleation predominates for an ideal mini-emulsion polymerization system. As 

explained above, micellar nucleation is non-existent and homogeneous nucleation can be 

limited to a large extent. Reimers and Schork reported a droplet nucleation of 95% in the 
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mini-emulsion polymerization of styrene using hexadecane as hydrophobe78,89. It can 

generally be assumed that droplet nucleation is the predominant nucleation mechanism 

when there is no significant difference between the size of the droplets and the number of 

droplets compared to that of the particles. Fontenot and Schork made use of conductance 

data to support droplet nucleation as the main mechanism of particle formation in the 

mini-emulsion polymerization of styrene92. 

 

b. Kinetics of polymer growth

Harkins defined three prominent intervals for emulsion polymerizations: nucleation 

(Interval I), an interval of constant reaction rate (Interval II) and a region of exponentially 

decreasing rate of reaction (Interval III)93-95. The only intervals of relevance in mini-

emulsion polymerizations are intervals I and III. Furthermore, the presence of an interval 

with a marked gel-effect (Interval IV), due to the occurrence of auto-acceleration, is a 

possibility in glassy systems. Bechthold and Landfester obtained the calorimetric curve in 

Figure 2.2 for the mini-emulsion polymerization of styrene using hexadecane as 

hydrophobe96. Figure 2.2 demonstrates the intervals applicable to the mini-emulsion 

polymerization system.  

 

 

 
 Figure 2.2 Calorimetric curve of a typical styrene mini-emulsion polymerization: surfactant: SDS, 

hydrophobe: hexadecane, initiator: KPS96. 
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During the first interval (droplet nucleation) an equilibrium radical concentration is 

reached in every nucleated droplet. This interval ends at low conversions (≤ 10%) so that 

every droplet is nucleated before unbalanced mass transfer can play a crucial role. The 

length of interval I depends on the type of initiator used (water-soluble or oil-soluble) 

and, in the case of a water-soluble initiator, the water-solubility of the monomer. 

Consequently, interval I is longer for water-soluble initiators due to the fact that these 

hydrophilic initiators have to add on a few monomer units before they are able to enter a 

monomer droplet. Interval I is further prolonged when a water-soluble initiator is used in 

conjunction with a monomer with poor water-solubility, like styrene. Alduncin and 

coworkers also demonstrated that the rate of nucleation is dependent on the size of the 

droplets82. They showed that the probability of droplet nucleation increased with 

increasing droplet size when a water-soluble initiator is employed.  

 

The average number of active radicals per droplet slowly increases to approximately 0.5 

during the initiation (nucleation) process. The primary maximum for the rate of 

polymerization at the end of interval I (Figure 2.2) is attributed to the formation and 

growth of polymer particles. The maximum rate of polymerization strongly depends on 

the size of the droplets, which is directly proportional to the number of droplets. The 

smaller the droplets are the faster is the rate of polymerization.  

 

As is common in emulsion and suspension polymerization, an interval III corresponding 

to a decrease in the polymerization kinetics is also observed in mini-emulsion 

polymerization. The decrease in the polymerization kinetics is due to the exponential 

depletion of monomer from the reaction site, since only the monomer in the droplet is 

available for polymerization. 

 

The secondary maximum for the rate of polymerization observed in interval IV (Figure 

2.2) is ascribed to the gel effect, which is due to the viscosity increase inside the particles 

and the coupled kinetic hindrance of radical recombination. The presence of the gel peak 

depends on the size of the particles. The gel peak becomes more pronounced with an 

increase in particle size (Figure 2.3)96. In addition, its onset also depends on the particle 
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size. It can be seen from Figure 2.3 that the onset of the gel peak for the 151 nm and 105 

nm particles is at 45% and 60% conversion, respectively.   

 

 

 

 
 
 
 

2.4 Polymer blends 
 

2.4.1 Introduction 

 

Blending of polymers for producing multiphase systems, either by the solvent-casting or 

the melt-mixing method, is less expensive than synthesizing block or graft copolymers. 

Early commercial work on polymer blending was largely focused on improving the 

impact strength of glassy polymers by the inclusion of elastomeric materials such as 

natural rubber97. Most efforts were aimed at modifying polystyrene and have since 

expanded to include poly(vinyl chloride), poly(phenylene oxide), poly(methyl 

methacrylate), as well as various other thermoplastics and some thermosets98. 

 

Figure 2.3 Calorimetric curves for styrene mini-emulsions with different particle sizes96. 
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A polymer blend can be classified as either a miscible or an immiscible blend. Both types 

of polymer blends are very useful. Examples of useful immiscible blends include high 

impact polystyrene (HIPS) and the poly(ethylene terephthalate)/poly(vinyl alcohol) blend 

used to make bottles for carbonated beverages. 

 

 2.4.2 Miscibility of polymer blends 

 

The main problem associated with the blending of polymers is one of immiscibility. Very 

few polymers are miscible. Examples of miscible polymers include 

polystyrene/poly(phenylene oxide), poly(ethylene terephthalate)/poly(butylene 

terephthalate) and poly(methyl methacrylate)/poly(vinylidene fluoride). The majority of 

polymers are immiscible from a thermodynamic point of view due to the fact that the 

entropy contribution to the Gibbs energy of mixing is negligible99. Therefore, mixing of 

two homopolymers often leads to a coarse heterogeneous phase structure with a low 

adhesion between phases.  

 

Immiscible polymer blends are characterized by a two-phase morphology, a narrow 

interface and poor physical or chemical interactions across the phase boundaries100. In 

such cases, the interfacial tension is high and adhesion between the two phases is low, 

which results in poor stress transfer across the interface. These shortcomings generally 

result in poor mechanical properties.  

 

It was thus necessary to develop appropriate methods to address the compatibility-

problem of polymer blends. The addition of a compatibilizer (interfacial agent) capable 

of physical or chemical interaction with the blend components is one such method that 

overcomes the compatibility-problem of polymer blends. The main function of the 

compatibilizer is to lower the interfacial tension between the two homopolymers and 

thereby promote adhesion between the homopolymers. 

 

Moreover, the miscibility of polymer blends is affected by factors such as the processing 

method101-105 and the processing parameters. The processing parameters of importance 
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are the temperature106, mixing speed107-109, mixing time107,110-111, type of solvent112-114 and 

the concentration of the dispersed phase115. 

 

2.4.3 Polymeric compatibilizers 

 

Various polymeric compatibilizers have been used over the last two decades. These 

compatibilizers may be classified into two types, depending on the method of addition. 

The two types are the separate addition type and the in situ formation type.  

 

In the separate addition type, a block or a graft copolymer that is prepared in a separate 

step is added to the immiscible blend. The block or graft copolymer normally possesses 

segments with chemical structures that are identical or similar to those of the polymers 

being blended. In the in situ formation type, suitably functionalized polymers are melt-

mixed with the immiscible polymer blend. The copolymer formed has segments that are 

identical or similar to the unreactive immiscible homopolymers. 

 

Nakayama and coworkers made a direct comparison between a separately added and an 

in situ compatibilizer116. In their specific study, they reported that the compatibilization 

by in situ formed copolymers is more effective in reducing the domain size of the 

dispersed phase and stabilizing them than in the case of the separately added copolymers. 

 

Styrene-butadiene-styrene block copolymer (SBS) is one of the most common 

compatibilizers used in immiscible polystyrene blends117-119. Other compatibilizers used 

in immiscible polystyrene blends include styrene-butadiene multiblock copolymers99, 

styrene-ethylene/butylenes-styrene triblock copolymer (SEBS)118,120, styrene/ethylene-

propylene diblock copolymer (SEP)121 and polystyrene modified with maleic anhydride 

(MPS)100. Polystyrene blends have been reportedly successfully prepared with polymers 

such as polypropylene (PP), high-density polyethylene (HDPE), low-density 

polyethylene (LDPE), polyamide 6 (PA6) and ethylene-propylene-diene terpolymer 

(EPDM) using the abovementioned polymeric compatibilizers. 
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2.4.4 Characterization of polymer blends by dynamic mechanical analysis 

 

Dynamic mechanical analysis is one of the most useful tools available to study the 

behaviour of polymeric materials. Dynamic mechanical analysis gives valuable 

information regarding the visco-elastic (temperature- and time-dependent) properties of 

polymeric materials. The properties obtained from the dynamic mechanical analysis of 

polymers are the glass transition temperature (Tg), storage modulus (E΄), loss modulus 

(E΄΄) and loss tangent (tan δ = E΄΄/ E΄). 

 

Dynamic mechanical analysis is commonly used to evaluate the miscibility of a polymer 

blend. The blending of any two, or more, polymers can produce one of three possibilities: 

an immiscible, a partially miscible or a highly miscible blend8-10. The loss tangent curve 

of a highly miscible blend displays a single peak between the transition temperatures of 

the individual polymers (Figure 2.4). The loss tangent curve of an immiscible blend of 

two polymers generally shows the presence of two dampening peaks, corresponding to 

the Tg values of the individual polymers (Figure 2.5). A broadening of the glass transition 

occurs in the case of a partially miscible blend (Figure 2.6). The Tg is shifted to lower or 

higher temperatures.  

 

 

 
 Temperature [°C] 

Polymer A 

A + B

Figure 2.4 Graphic representation of the loss tangent curve of a miscible polymer blend (A + B). 

Polymer B
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Figure 2.5 Graphic representation of the loss tangent curve of an immiscible polymer blend (A + B). 

Polymer A 
Polymer B

A + B

Polymer A Polymer B

A + B

Temperature [°C] 

Figure 2.6 Graphic representation of the loss tangent curve of a partially miscible polymer blend (A + B). 
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CHAPTER 3 
 

Selective Dimerization of 1-Decene 
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ABSTRACT 

The selective dimerization of 1-decene with the metallocene-based bis(cyclopentadienyl)zirconium 

dichloride (Cp2ZrCl2, zirconocene) catalyst and methylaluminoxane (MAO) as cocatalyst was investigated 

in this study. The effect of various factors on the dimerization of 1-decene, such as temperature, cocatalyst 

concentration and reaction time is reported. The efficiency of Cp2ZrCl2 catalyst, in terms of the final 

product-composition for the amount of catalyst used and the reaction time, compared to 

bis(cyclopentadienyl)hafnium dichloride (Cp2HfCl2, hafnocene) catalyst for the dimerization of 1- decene 

is also reported. 

 
Keywords: 1-decene, metallocene-based catalytic systems, dimerization 
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3.1 Introduction 
 

In most reported cases for the oligomerization of α-olefins, the obtained products are 

normally a distribution of oligomers, under various reaction conditions, such as 

temperature and the type of catalytic system1-3. Very few oligomerization conditions for 

selective α-olefin oligomerization, to a single α-olefin, have been reported4,5. For 

examples of α-olefins that have been successfully selectively oligomerized to a single α-

olefin see Section 2.2.5.  

 

The successful selective trimerization of 1-decene has been reported by Wasserscheid 

and coworkers5; 1-decene was selectively trimerized by making use of homogeneous 

chromium catalysts. However, there is no available literature on the selective 

dimerization of 1-decene. Thus, I was faced with the challenge of selectively dimerizing 

1-decene, in order to avoid the harsh conditions required for the separation of the higher 

oligomers of 1-decene from the dimeric product, due to the relatively high boiling points 

of the 1-decene higher oligomers.  

 

In an attempt to selectively dimerize 1-decene using the bis(cyclopentadienyl)zirconium 

dichloride (zirconocene)/methylaluminoxane (MAO) catalytic system, the effect of 

various factors, such as co-catalyst concentration, reaction temperature and time, on the 

oligomerization of 1-decene were investigated. The efficiencies of the metallocene-based 

catalytic systems, zirconocene/MAO and bis(cyclopentadienyl)hafnium dichloride 

(hafnocene)/MAO, for the oligomerization of 1-decene were also investigated and 

reported on. The fact that these metallocene-based catalytic systems are homogeneous 

systems, and that they oligomerize α-olefins at moderate temperatures (energy efficient 

conditions) and at atmospheric pressure (no costly reactors are required), makes them 

ideal candidates for this study.  

 

The oligomerization of α-olefins such as 1-pentene, 1-hexene and 1-heptene has been 

successfully carried out with the abovementioned metallocene-based catalytic systems2,4.  
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3.2 Experimental  
 
3.2.1 Reagents 
 

All the reagents were used as received without any further purification. The monomer, 1-

decene (95%), and the catalyst, bis(cyclopentadienyl)zirconium dichloride (zirconocene, 

Cp2ZrCl2, 98%), were purchased from ACROS (Labchem). The cocatalyst, 

methylaluminoxane (MAO) (10 wt% solution in toluene), was purchased from Aldrich. 

The catalyst, bis(cyclopentadienyl)hafnium dichloride (hafnocene, Cp2HfCl2, >97%), was 

purchased from Fluka.  

 

3.2.2 Selective dimerization of 1-decene 

 

The general procedure used for the dimerization of 1-decene was based on that used by 

Wahner and coworkers2. A Schlenk-tube was charged with N2 gas, before the addition of 

1-decene (22.2 g, 0.16 mol) and MAO (2.90 g, 0.050 mol). The catalyst (zirconocene, 15 

mg, 0.050 mmol) was then added. Molar ratios of 500, 1000, 2000, 4000 and 8000:1 of 

MAO:catalyst were used. The Schlenk-tube was sealed. The reaction mixture was heated, 

or cooled in ice, to the desired temperature (5, 35, 70 or 90 °C) and allowed to react for 

the pre-determined duration (1, 3, 6 or 24 h). The Schlenk-tube was opened and methanol 

was added to the reaction mixture to quench the reaction. Hydrochloric acid (20 ml, 5.0% 

solution) was used to dissolve the aluminium hydroxide formed after quenching. The two 

layers that formed were separated. Toluene was evaporated from the product-containing 

layer. A colourless solution consisting of a mixture of 1-decene, the dimer of 1-decene 

(2-octyl-1-dodecene) (1) and the trimer of 1-decene (2, 4-octyl-1-tetradecene) (2), as 

determined by GCMS, was obtained. Thereafter the dimer (1) and trimer (2) were 

separated using a micro-distillation system. This was achieved at a pressure of 10mbar 

and a temperature of 140 °C.  The respective purities of the dimer and trimer were 98.0% 

and 96.0%, as determined by GC. 
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3.2.3 Characterization 
 

GCMS analyses of the final reaction mixtures were carried out on a Finnigan MAT GCQ 

system fitted with a 30 m x 0.25 mm non-polar column (0.25 μm film thickness). Each 

sample was dissolved in dichloromethane (1.0 μl sample/ml DCM). A heating rate of 4.0 

°C/min, starting from an initial temperature of 40 °C was used.  The helium flow rate was 

40 cm/s. In all instances the final reaction mixtures were found to comprise residual 

monomer, the dimer and the trimer of 1-decene.  

 

The isolation of the dimer and trimer of 1-decene was carried out under reduced pressure 

at 140 °C with a Buchi GKR-50 ball-tube micro-distillation apparatus. 

 

The determination of the purity of the dimer and trimer of 1-decene, after isolation, was 

performed on a Perkin Elmer Autosystem XL fitted with a 30 m x 0.2 mm fused silica, 

Supelco SPB-1 column with a 0.20 μm film thickness. 

 

The 1H-NMR spectra were run on a VarianVXR 300 MHz spectrometer. The samples 

were dissolved in CDCl3 and TMS was used as internal standard. 

 

1 2

Scheme 3.1 Reaction scheme for the oligomerization of 1-decene. 
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Quantitative 13C-NMR analysis was carried out using a Varian Inova 600 MHz 

spectrometer with a triple resonance HCN probe with pulsed field gradient (PFG). Based 

on the T1 measurements for quantitative conditions, a 45 degree pulse angle was used 

with a 1.3 s acquisition time at a 3 s pulse delay. Inverse gated decoupling was applied. 

The sample was dissolved in CDCl3 and TMS was used as internal standard. 

 

 

3.3 Results and Discussion 
 
 
3.3.1 Identification of the reaction products 
 

Figure 3.1 is a typical gas chromatogram of the colourless reaction product obtained after 

the evaporation of toluene. It shows that the reaction product contains residual monomer 

(a), the dimer (b) and the trimer (c) of 1-decene.  

 

 
 

 

Figure 3.1 Typical gas chromatogram of the final reaction mixture of the oligomerization of 1-decene. 
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The aforementioned is supported by the MS and NMR data. Figure 3.2(a) shows the mass 

spectrum obtained for a.  

 

 

 

 

 
 Figure 3.2 Mass spectra of the (a) residual 1-decene, (b) 1-decene dimer and (c) 1-decene trimer in the 

final reaction mixture. 

(c)  

(b) 

(a) 
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The mass fragment for 1-decene is indicated by x. Figure 3.2(b) shows the mass spectrum 

obtained for b. The mass fragment for the dimer of 1-decene is indicated by y. Figure 

3.2(c) shows the mass spectrum obtained for c. The mass fragment for the trimer of 1-

decene is indicated by z. The mass fragments x, y and z correspond to the fragments for 

1-decene, the dimer of 1-decene and trimer of 1-decene, respectively. 

 

The formation of the 1-decene dimer was further confirmed by 1H-NMR spectroscopy. 

Figure 3.3 and Figure 3.4 show the 1H-NMR spectra of 1-decene and the 1-decene dimer, 

respectively.  

 

 

 
 
 

 Figure 3.3 1H-NMR spectrum of 1-decene in CDCl3 with TMS as internal standard. 

Chemical shift [ppm] 

CDCl3 TMS 
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In Figure 3.3, the peaks due to the vinylic protons appear at about 5.0 ppm and 5.9 ppm. 

The absence of the peak at about 5.9 ppm in Figure 3.4 confirms the formation of the 1-

decene dimer. The other peaks are as assigned. 

 

Figure 3.5 shows the quantitative 13C-NMR spectrum of 2-octyl-1-dodecene (1-decene 

dimer). It can be seen from Figure 3.5 that a small amount of impurities (any species 

other than 2-octyl-1-dodecene) is present in the product. The labeled peaks in Figure 3.5 

correspond to a 1-decene dimeric product, 3-methyl-2-octyl-1-undecene, resulting from a 

2,1-insertion followed by a 1,2-insertion. The aforementioned byproduct constitutes 

approximately 3.0% percent of the total of 4.2% (as calculated from NMR integration 

values) impurities in the 2-octyl-1-dodecene product. The remaining impurities consist of 

traces of 1-decene, 1-decene trimer and toluene. 

 

Figure 3.4 1H-NMR spectrum of the 1-decene dimer in CDCl3 with TMS as internal standard. 

Chemical shift [ppm] 

CDCl3 TMS 
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3.3.2 The effect of various factors on the dimerization of 1-decene 
 

Determinations of the relative percentages of the residual monomer, dimer and trimer of 

1-decene in each final reaction mixture were based on the relative peak areas of these 

different components in the different reaction mixtures, as determined by GCMS. The 

reliability of using these relative peak areas was verified with known ratios of a mixture 

of 1-decene and 1-octadecene. Within acceptable experimental scatter margins, the 

expected relationships were obtained. 

 

 

Figure 3.5 Quantitative 13C-NMR spectrum of 2-octyl-1-dodecene in CDCl3 with TMS as internal 

standard. Peaks associated with 3-methyl-2-octyl-1-undecene are as assigned. 

Stellenbosch University http://scholar.sun.ac.za



 54

3.3.2.1 The effect of co-catalyst to catalyst ratio on the dimerization of 1-decene at 35 °C 

 

Figure 3.6 shows the effect of the co-catalyst to catalyst molar ratio on the final reaction 

product composition for the dimerization of 1-decene at 35 °C when using Cp2ZrCl2 as 

catalyst. The percentage residual monomer in the final reaction mixture decreased from 

about 15% at MAO:Cp2ZrCl2 = 500:1, to about 1.0% at MAO:Cp2ZrCl2 = 8000:1. For 

MAO:Cp2ZrCl2 ratios of 500:1, 2000:1, 4000:1 and 8000:1, the percentage of dimer in 

the final reaction mixture was about 70%.  For MAO:Cp2ZrCl2 ratios of 250:1 and 

1000:1, the percentage of dimer in the final reaction mixture was 81% and 79%, 

respectively.  The percentage of trimer in the reaction mixture increased from 13% to 

29% over this co-catalyst to catalyst concentration range. The higher co-catalyst 

concentrations (2000:1, 4000:1 and 8000:1) promote the formation of a greater fraction 

of the 1-decene-trimer at 35 °C. The same amount of trimer (29%) was obtained in all 

three instances. 
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Figure 3.6 Effect of co-catalyst to catalyst molar ratio on product composition for the dimerization of 

1-decene (22.2 g) using Cp2ZrCl2 (15 mg) as catalyst.  Reaction conditions: 35 °C, 24 hours. 
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3.3.2.2 The effect of temperature on the dimerization of 1-decene at a co-catalyst to 

catalyst ratio of 1000:1 

 

Figure 3.7 shows the effect of temperature on the final product composition for the 

dimerization of 1-decene at a co-catalyst to catalyst molar ratio of 1000:1, using Cp2ZrCl2 

as catalyst. The same amount of unreacted monomer (2.0%) was left after 24 hours at 35, 

70 and 90 °C, and about 3.0% at 5 °C. The amount of dimer produced at 5 °C and 35 °C 

was 70% and 79%, respectively. The same amount of dimer (87%) was obtained at 70 °C 

and 90 °C.  
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Figure 3.7 Effect of temperature (5, 35, 70 and 90 °C) on product composition for the dimerization of 

1-decene (22.2 g). Reaction cconditions: molar ratio of MAO:Cp2ZrCl2 = 1000:1; 24 hours. 
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The percentages of trimer in the reaction mixtures at 5, 35, 70 and 90 °C were 27, 19, 11 

and 11%, respectively. The above results show that higher temperatures (70 °C and       

90 °C) facilitate the formation of the shorter oligomers (dimers of 1-decene) when 

Cp2ZrCl2 (MAO: Cp2ZrCl2 = 1000:1) is used as catalyst, whereas more of the trimer of  

1-decene is obtained at the lower temperatures (5 °C and 35 °C)3,4.  

 

In all of the abovementioned instances, approximately 2.0% of residual monomer was 

present in the final reaction mixtures. 

 

3.3.2.3 The effect of different reaction times on the product composition for the 

dimerization of 1-decene 

 

Figure 3.8 shows the effect of different reaction times on the dimerization of 1-decene at 

35 °C using Cp2ZrCl2 as catalyst and a co-catalyst to catalyst ratio of 1000:1.  
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Figure 3.8 Comparison of the relative amounts of dimer and trimer of 1-decene produced after reaction 

times of 1, 3, 6 and 24 hour(s), respectively. Reaction conditions: molar ratio of MAO:Cp2ZrCl2 = 

1000:1, reaction temperature 35 °C. 
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The percentages of 1-decene in the reaction mixtures were 29, 9.8, 2.4 and 2.0% after 

reaction times of 1, 3, 6 and 24 hour(s), respectively. The percentages of dimer in the 

reaction mixtures were 59, 74, 82 and 79% after 1, 3, 6 and 24 hour(s), respectively. The 

percentages of trimer in the reaction mixture were 13, 16, 15 and 19% after 1, 3, 6 and 24 

hour(s), respectively. The results obtained for a reaction time of 6 hours compare very 

well with those obtained for the longer reaction time of 24 hours at 35 °C for a molar 

ratio of MAO:Cp2ZrCl2 = 1000:1. A reaction time of 6 hours is thus preferred to one of 

24 hours. 

 

3.3.2.4 Comparison of the efficiency of zirconocene and hafnocene as catalysts for the 

dimerization of 1-decene 

 

The efficiency of zirconocene (Zr) and hafnocene (Hf) as catalysts for the dimerization of 

1-decene was compared in terms of the amount of oligomer(s) produced in the same time 

period (24 h). In all instances 0.05 mmol of catalyst was used. A comparison of the 

efficiency of zirconocene and hafnocene as catalysts for the dimerization of 1-decene at 

35 °C, for a co-catalyst to catalyst molar ratio of 1000:1 and a reaction time of 24 hours, 

is shown in Figure 3.9.  

 

A large percentage of monomer (88%) was left in the final reaction mixture after 24 

hours when hafnocene was used as catalyst compared to 2.0% of monomer in the case of 

the zirconocene catalyst. 

 

A comparison the efficiency of zirconocene and hafnocene as catalysts for the 

dimerization of 1-decene at 70 °C, for a co-catalyst to catalyst molar ratio of 1000:1 and a 

reaction time of 24 hours, is shown in Figure 3.10. An amount of 59% of monomer, 23% 

of dimer and 18% of trimer remained in the final reaction mixture when hafnocene was 

used as catalyst. When zirconocene was used as catalyst, the final reaction mixture 

consisted of 2.0% monomer, 87% dimer and 11% trimer. 
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Figure 3.9 Comparison of the efficiency of zirconocene (Zr) (15 mg) and hafnocene (Hf) (15 mg) as 

catalysts for the dimerization of 1-decene (22.2 g). Reaction conditions: molar ratio of MAO:catalyst = 

1000:1, reaction temperature 35 °C, reaction time 24 hours. 
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Figure 3.10 Comparison of the efficiency of catalysts of zirconocene (Zr) (15 mg) and hafnocene (Hf) 

(15 mg) for the dimerization of 1-decene (22.2 g). Reaction conditions: molar ratio of MAO:catalyst = 

1000:1, reaction temperature: 70 °C, reaction time: 24 hours. 
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These results suggest that zirconocene is a more efficient catalyst for the production of  

1-decene dimers than hafnocene is. Large concentrations of residual monomer (>50% of 

initial monomer concentration) were still present in the final reaction mixtures when 

hafnocene was used as catalyst for a reaction time of 24 hours5. The greatest 

concentrations of dimer and trimer of 1-decene in the final reaction mixture were 

obtained with zirconocene, at a reaction temperature of 35 °C. At a reaction temperature 

of 70 °C, zirconocene produced the largest concentration of the dimer of 1-decene and 

hafnocene the largest concentration of the trimer of 1-decene in the final reaction 

mixture. 

 

 

3.4 Conclusions 
 

Oligomers of 1-decene with a high percentage of the dimeric product were successfully 

synthesized with the metallocene catalyst, zirconocene, under various reaction conditions. 

The results indicate that zirconocene is the preferred catalyst over hafnocene for the 

dimerization of 1-decene. Reaction times of 24 hours seemed to be excessive, as a 

comparable composition of the final reaction mixture was obtained after only 6 hours.  

 

The various reaction conditions that were used in this study did not result in the selective 

dimerization of 1-decene. The reaction product, in all instances, consisted mostly of the 

dimeric product. Further purification of the main product of interest, the 1-decene dimer, 

was thus necessary.  

 

The general trends observed for the oligomerization of 1-decene agree with previously 

reported trends for α-olefins such as 1-pentene and 1-hexene2,3. Namely, lower 

temperatures and higher co-catalyst concentrations facilitate the formation of the higher 

oligomers of α-olefins.  
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CHAPTER 4 
 

The Synthesis of a Novel Hydrophobic Acrylic 
Monomer 

 

 

CONTENTS 

 4.1 Introduction 
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 4.2.1 Oxymercuration-demercuration of 2-octyl dodecene 

 4.2.2 Synthesis of 2-octyl dodecyl acrylate 

 4.2.3 Characterization 

 4.3 Results and Discussion 

 4.4 Conclusions 

 4.5 References 

 
ABSTRACT 

The synthesis and characterization of a new tertiary alcohol (2-octyl-2-dodecanol) and acrylic monomer (2-

octyl-dodecyl acrylate) from a 1-decene dimer precursor (2-octyl-1-dodecene), which was synthesized with 

a metallocene-based catalytic system, is reported. The newly synthesized acrylic monomer was 

characterized via infra red (IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. 

 

Keywords: oxymercuration-demercuration, esterification of alcohols, hydrophobic acrylic monomer 
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4.1 Introduction 
 

The synthesis and characterization of a new tertiary alcohol, 2-octyl-2-dodecanol, and a 

novel hydrophobic acrylic monomer, 2-octyl-dodecyl acrylate, from the purified             

1-decene dimer precursor, 2-octyl-1-dodecene, is reported here. The synthesis and 

purification of the 2-octyl-1-dodecene is detailed in the previous chapter. 

 

The highly hydrophobic nature of 2-octyl-1-dodecene necessitated the introduction of 

some slight modifications, as explained in the following paragraphs, to the existing 

literature procedures for the oxymercuration-demercuration of alkenes and esterification 

of alcohols with acryloyl chloride1-4. 

 

The oxymercuration-demercuration of short chain alkenes normally only requires a 1:1 

volume ratio of water to THF for significant yields. Brown and Geoghegan reported on 

the need for an increased volume of THF with increased alkene chain length to facilitate 

the solubility of the longer chain alkenes and thus the reaction between the water-soluble 

mercurial salt and the oil-soluble alkene1. In the present case, no more than a 1:2 volume 

ratio of water to THF was sufficient for a satisfactory yield of 2-octyl-2-dodecanol. 

 

For the esterification of 2-octyl-2-dodecanol, a 10% excess of acryloyl chloride to the 

alcohol, as reported in literature2-4, was insufficient for a high yield of the acrylate. Also, 

where short chain alcohols or relatively water-soluble alcohols are used, it is normally 

sufficient to wash the final reaction mixture with a NaOH solution to remove any residual 

alcohol. Due to the very low water solubility of 2-octyl-2-dodecanol, the aforementioned 

procedure for the removal of any residual 2-octyl-2-dodecanol would not be very 

efficient. It was thus necessary to use an increased excess of acryloyl chloride (30%) for 

optimum conversion of 2-octyl-2-dodecanol to 2-octyl-dodecyl acrylate.  
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4.2 Experimental  
 
4.2.1 Oxymercuration-demercuration of 2-octyl dodecene 

 

4.2.1.1 Reagents 

 

The 2-octyl-1-dodecene (98%, as determined by GC) was synthesized and purified as in 

chapter 3.2.2. The mercury acetate (98.5%) and sodium borohydride (minimum 95%) 

were obtained from Saarchem and used as received. The solvent (THF, 99.5%) was 

purchased from Saarchem. The sodium hydroxide pellets (97%) were purchased from 

Associated Chemical Enterprises. 

 

4.2.1.2 Procedure 

 

The synthetic procedure followed in the hydration of 2-octyl-1-dodecene was as reported 

by Brown and Geoghegan1.  Mercuric acetate (11.4 g, 35.7 mmol) together with 50 ml of 

water was placed in a 500 ml flask and stirred until it dissolved. This was followed by the 

addition of 50 ml of THF and 2-octyl-1-dodecene (10.0 g, 35.7 mmol) in 50 ml of THF. 

The reaction mixture was stirred for 4 hours at 25 °C to complete the oxymercuration 

step. The addition of 50 ml of 3.0 M sodium hydroxide, followed by a 50 ml solution of 

0.50 M sodium borohydride in 3.0 M sodium hydroxide, resulted in the reduction of the 

mercurial intermediate with the separation of elemental mercury. The reaction mixture 

was stirred for 1h to complete the demercuration process. The elemental mercury was 

allowed to settle. The organic and aqueous layers were separated. The aqueous layer was 

extracted with three 30 ml portions of ether. The ether extract and organic layer were 

combined. The 2-octyl-2-dodecanol (yield: 10.1 g, 95%) (3, Scheme 4.1) was obtained 

after evaporation of the volatiles. 
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4.2.2 Synthesis of 2-octyl-dodecyl acrylate 

 

4.2.2.1 Reagents 

 

The 2-octyl-2-dodecanol was synthesized as in 4.2.1.2 above. The triethyl amine (99%, 

Acros Organics), acryloyl chloride (96%, Aldrich) and diethyl ether (solvent) were used 

as purchased. The sodium hydroxide pellets (97%) were purchased from Associated 

Chemical Enterprises. 

 

4.2.2.2 Procedure 

 

The general procedure used for the synthesis of 2-octyl-dodecyl acrylate was based on 

that used by Reddy2. A 250 ml three-necked flask was charged with 2-octyl-2-dodecanol 

(9.0 g, 30.2 mmol), 10 0ml diethyl ether and triethylamine [3.97 g, 39.3 mmol (30% 

excess)]. The acryloyl chloride [3.56 g, 39.3 mmol (30% excess)], dissolved in 50 ml of 

diethyl ether, was placed in a dripping funnel and added dropwise to the reaction mixture 

while stirring at 0 °C. A milky suspension formed. The reaction mixture was stirred for 

an additional hour after the addition of the acryloyl chloride. The reaction mixture was 

then washed with 100 ml of water to dissolve the formed quaternary ammonium salt. The 

organic and aqueous layers were allowed to separate in a funnel. The two layers were 

Scheme 4.1 Chemical structure of 2-octyl-2-dodecanol (3) and 2-octyl-dodecyl acrylate (4). 
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separated and the resulting product, 2-octyl-dodecyl acrylate (4, Scheme 4.1), was 

obtained in good yield (9.8 g, 92%) after the evaporation of the diethyl ether.  

 

4.2.3 Characterization 

 

The FT-NMR spectra of 2-octyl-2-dodecanol and 2-octyl-dodecyl acrylate were run on a 

Varian VXR 300 MHz spectrometer. The samples were dissolved in CDCl3 using TMS 

as internal standard. 

 

The FT-IR spectra were recorded on a Perkin Elmer Paragon 1000 PC spectrometer. 

 

 

4.3 Results and Discussion 
 

The synthesis of the new acrylic monomer, 2-octyl dodecyl acrylate [Z, Scheme 4.2(b)], 

was preceded by the synthesis of the tertiary alcohol, 2-octyl-2-dodecanol [Y, Scheme 

4.2(a)], by means of the oxymercuration-demercuration procedure. 
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Scheme 4.2 The (a) oxymercuration-demercuration of 2-octyl-1-dodecene and (b) esterification of 2-

octyl-2-dodecanol. 
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The successful synthesis of the tertiary alcohol [Y, Scheme 4.2(a)] and acrylic monomer 

[Z, Scheme 4.2(b)] were confirmed by IR, 1H-NMR and 13C-NMR spectroscopy. 

 

It can be seen from Figure 4.1b that the tertiary alcohol absorbs near 3400 cm-1. The 

absence of the typical double bond absorption of the dimeric alkene [X, Scheme 4.2 (a)] 

in the region of 1620 cm-1 (Figure 4.1a) further confirms the synthesis of Y (Figure 4.1b). 

Furthermore, the absence of the vinyl group is indicated by the absence of the peak at 

around 4.7 ppm in Figure 4.2. The singlet at 2.2 ppm is associated with the hydroxyl 

proton.  
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Figure 4.1c shows the typical carbonyl peak at around 1720 cm-1 and the carbonyl 

overtone band (generally of low intensity) in the region of 3550 cm-1 due to the C=O 

stretching5. The reappearance of the peak in the region of 1620 cm-1 (Figure 4.1c), 

associated with the vinyl group, further confirms the synthesis of the acrylate [Z, Scheme 

4.2(b)]. The peaks due to the vinylic protons appear at 5.7-6.4 ppm in the 1H-NMR 

spectrum (Figure 4.3). 

Figure 4.1 IR spectra of (a) 2-octyl-1-dodecene, (b) 2-octyl-2-dodecanol and (c) 2-octyl-dodecyl  
acrylate. 
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 Figure 4.3 1H-NMR spectrum of 2-octyl-dodecyl acrylate in CDCl3 with TMS as internal standard. 

Figure 4.2 1H-NMR spectrum of 2-octyl-2-dodecanol in CDCl3 with TMS as internal standard. 

CDCl3 TMS 

Chemical shift [ppm] 

Chemical shift [ppm] 

CDCl3 TMS 
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The synthesis of 2-octyl-1-dodecene, 2-octyl-2-dodecanol and 2-octyl-dodecyl acrylate is 

further confirmed by the 13C-NMR spectra presented in Figure 4.4, Figure 4.5 and Figure 

4.6, respectively.  

 

 

 
 

 

 

CDCl3 

CDCl3 

Figure 4.4 13C-NMR spectrum of 2-octyl-1-dodecene in CDCl3. 

Figure 4.5 13C-NMR spectrum of 2-octyl-2-dodecanol in CDCl3. 

Chemical shift [ppm] 

Chemical shift [ppm] 
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4.4  Conclusions 

 

The tertiary alcohol, 2-octyl-2-dodecanol, and the novel acrylic monomer, 2-octyl-

dodecyl acrylate, were successfully synthesized and characterized. The preliminary 

usefulness of the newly synthesized hydrophobic acrylic monomer is the focus of the 

chapters that follow. Is 2-octyl-dodecyl acrylate useful as a reactive hydrophobe in the 

mini-emulsion polymerization of various monomers? How effective is 2-octyl-dodecyl 

acrylate as an internal (reactive) plasticizer?  

 

 

 

 

 

 

 

 

Figure 4.6 13C-NMR spectrum of 2-octyl-dodecyl acrylate in CDCl3.

Chemical shift [ppm]

CDCl3 
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CHAPTER 5 
 

Conventional Mini-emulsion Polymerizations 
Stabilized with SDS and 2-Octyl-dodecyl acrylate 
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ABSTRACT 

Mini-emulsions of butyl acrylate, methyl methacrylate and styrene with sodium dodecyl sulphate as 

surfactant and 2-octyl-dodecyl acrylate (2-ODA) as costabilizer were prepared and polymerized. The 

ability of 2-ODA to stabilize the polymer latexes against Ostwald ripening was investigated.  

Keywords: mini-emulsion, reactive hydrophobe, diffusional degradation 
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5.1 Introduction     
 

Science is not just the pursuit of novel concepts, but also the pursuit of novel alternatives, 

whether it is more economical alternatives and/or more effective alternatives. This study 

focused on the use of an effective novel alternative to the conventional hydrophobe 

(costabilizer) hexadecane in a mini-emulsion formulation. 

 

The use of reactive acrylates and methacrylates as costabilizers (hydrophobes) in the 

mini-emulsion polymerization of various monomers is motivated by the need to eliminate 

low molecular weight hydrophobes, such as hexadecane, from the final polymer product. 

The presence of these unreactive low molecular weight costabilizers is undesirable for 

commercial applications as they are low molecular weight contaminants. The use of a 

reactive hydrophobe ensures that the hydrophobe becomes chemically incorporated into 

the final polymer product. Although the reactive hydrophobe is consumed during the 

polymerization process, the hydrophobic polymer formed should still act as an effective 

Ostwald ripening (diffusional degradation) suppressant.  

 

Chern and Chen1 successfully used the hydrophobic monomers lauryl methacrylate and 

stearyl methacrylate as reactive hydrophobes in the mini-emulsion polymerization of 

styrene. Alduncin and coworkers2 and Reimers and Schork3 successfully used lauryl 

peroxide as reactive hydrophobe in the mini-emulsion polymerization of styrene and 

methyl methacrylate, respectively. 

 

It must be noted that the effectiveness of the reactive hydrophobe strongly depends on its 

solubility in water (or lack thereof). The effectiveness of the reactive hydrophobe in 

suppressing Ostwald ripening increases as its water-solubility decreases. 

 

The aim of this chapter is to show that 2-octyl-dodecyl acrylate can be used as an 

effective (reactive) hydrophobe, and equivalent to the model hydrophobe hexadecane, in 

the conventional mini-emulsion polymerizations of butyl acrylate, methyl methacrylate 

and styrene.  
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Does 2-octyl-dodecyl acrylate meet all the necessary criteria for a good (reactive) 

costabilizer? A good costabilizer should have a very low water-solubility, be monomer-

soluble and of low molecular weight. All of the aforementioned criteria are met by         

2-octyl-dodecyl acrylate. Thus, in theory, 2-octyl-dodecyl acrylate should be able to serve 

as a good costabilizer.  

 

Four different experiments were performed for each monomer: 

 

 Experiment 1: Formulation and polymerization of the mini-emulsion with the 

conventional hydrophobe hexadecane  

 Experiment 2: Formulation and polymerization of the mini-emulsion with 2-octyl 

dodecyl acrylate as reactive hydrophobe 

 Experiment 3: Formulation and polymerization of the mini-emulsion with no 

hydrophobe present, but with shearing (sonication)  

 Experiment 4: Conventional emulsion polymerization of the three monomersΨ 

 

In all instances sodium dodecyl sulphate (SDS) was used as the surfactant.  

 

The ability of 2-octyl-dodecyl acrylate to stabilize the mini-emulsions against Ostwald 

ripening was evaluated on the basis of the visual onset of phase separation for the 

different systems and their long-term stability. It was anticipated that the use of 2-octyl-

dodecyl acrylate as reactive hydrophobe would result in final polymer latexes of at least 

comparable stability to those latexes where hexadecane was used as hydrophobe.  

 

In addition, the ability of 2-octyl-dodecyl acrylate to stabilize the mini-emulsion 

formulations against Ostwald ripening was compared to that of the hydrophobic 

monomers lauryl methacrylate and stearyl methacrylate. 

 

 

                                                 
Ψ The conventional emulsion is defined here as an emulsion where no hydrophobe and no high shear force 
was used. 
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5.2 Experimental  
 

5.2.1 Reagents 

 

The monomers butyl acrylate, methyl methacrylate and styrene were purified by washing 

with a 10% KOH solution to remove the inhibitor and then distilled under reduced 

pressure. The oil-soluble initiator, azobisisobutyronitrile (AIBN), was recrystallized from 

methanol. The sodium dodecyl acrylate (SDS) [90%, BDH Laboratory Supplies] and 

hexadecane [99%, Aldrich] were used as received. The 2-octyl-dodecyl acrylate was 

synthesized as described in Section 4.2.2.2. Distilled and deionized (DDI) water was used 

in all the formulations. 

 
5.2.2 Typical formulations 

 

5.2.2.1 Mini-emulsions 

 

The water (continuous) phase consisted of approximately 40 g DDI water and 1.0 g SDS 

(10 wt% of monomer). The oil (dispersed) phase consisted of approximately 10 g 

monomer, 16 mg AIBN and 500 mg hydrophobe (where applicable). The oil phase was 

added to the water phase in a beaker and stirred for 1 hour (prehomogenization). 

Thereafter, the reaction mixture was subjected to 10 minutes of ultrasonication at 80% 

amplitude (homogenization). This resulted in an average energy input of 98 kJ. The 

reaction mixture was then transferred to a 100-ml three-necked flask equipped with a 

magnetic stirrer bar. The reaction mixture was purged with argon gas for 15 minutes and 

thereafter immersed in an oil bath at 75 °C. The reactions were allowed to run for 2 hours 

with continuous stirring. Samples were taken at regular intervals. Monomer conversion 

was followed by means of gravimetric analysis. 
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5.2.2.2 Emulsions 

 

A typical emulsion polymerization was as follows. Approximately 40 g DDI water, 1.0 g 

SDS, 10 g monomer and 16 mg AIBN were placed in a 100-ml three-necked flask 

equipped with a magnetic stirrer bar. The reaction mixture was purged for 15 minutes 

with argon gas and then immersed in an oil bath at 75 °C. The reaction was run for 2 

hours. Samples were taken at regular intervals. Monomer conversion was followed by 

means of gravimetric analysis. 

 

5.2.2.3 Phase-separation studies 

 

All of the formulations for the phase-separation studies were prepared as described in 

Sections 5.2.2.1 and 5.2.2.2. The reaction mixtures were placed in sample vials at 25 °C 

and the rate of phase-separation before polymerization was observed. The average rate of 

phase-separation (given in cm/min) was determined by recording the time it took to 

visually observe a separation of 2.0 cm. 

 

5.2.3 Characterization 

 

All droplet and particle size analyses were done on a Malvern Zetasizer 1000 HS at a 

wavelength of 633 nm and a detector angle of 90°. The samples were diluted with a 1.0 

mM NaCl solution. 

 

For transmission electron microscopy (TEM) analysis, the latex was diluted to a ratio of 

1:50 with water. The solution was transferred to a gold grid by mans of a pipette. The 

grid was stained with uranyl acetate. Analyses were done on a Leo 912 TEM. 

 

Capillary hydrodynamic fractionation (CHDF) analysis was performed using a Matec 

Applied Science CHDF 1100. The instrument was calibrated using polystyrene standards. 

The Key Centre for Polymer Colloids, University of Sydney, generously provided 

machine time. The samples were diluted with a 1.0 mM NaCl solution.  
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13C-NMR analysis was done on a Varian Inova 400 MHz spectrometer with a 5-mm dual 

broadband probe with pulsed field gradient (PFG). The sample was dissolved in CDCl3 

and TMS was used as internal standard. 

 

 

5.3 Results and Discussion 
 

5.3.1 Mini-emulsion polymerization of butyl acrylate with 2-octyl-dodecyl acrylate as 

reactive hydrophobe 

 

5.3.1.1 Rate of polymerization studies 

 

Figure 5.1 shows the progression of the conversion with time for the mini-emulsion and 

emulsion polymerization of butyl acrylate. In the case of the mini-emulsion 

polymerizations, the stabilization system was one of the following: either 

hexadecane/SDS or 2-ODA/SDS. All formulations were as given in Table 5.1. 

 

It can be seen from Figure 5.1 that all of the polymerizations were very fast. After only 

20 minutes, conversions of 85, 80, 91 and 87% were obtained for reactions 1, 2, 3 and 4, 

respectively. The amount of surfactant (10 wt % of monomer) used in the various 

reactions could be responsible for these fast reaction rates. The amount of surfactant 

determines the size of the particles, and hence, the number of particles produced in a 

mini-emulsion system, for an optimally homogenized system. This in turn affects the rate 

of polymerization. The more particles formed, the faster the rate of polymerization.  
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Table 5.1 

Formulations for the emulsion and mini-emulsion polymerizations of butyl acrylate 

Reaction 1 2 3 4 

Water phase     

SDS (g) 1.00 a 1.00 a 1.00 a 1.00 

DDI water (g) 40.3 41.7 40.2 40.6 

     

Oil phase     

BA (g) 10.0 10.0 10.0 10.0 

HD (g) 0.46    

2-ODA (g)  0.47 b   

AIBN (g) 0.015 0.015 0.016 0.016 

     

Sonication     

Sonication time (min) 10 10 10  

Sonication amplitude (%) 80 80 80  

Sonication energy (kJ) 101 98 98  
a Approximately 2.5 wt % of continuous phase 
b 1.65 mol % in feed relative to BA 

Figure 5.1 Graph of conversion versus time for the emulsion and mini-emulsion polymerizations of 

butyl acrylate. 
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5.3.1.2 Particle size studies 

 

Table 5.2 shows the average particle sizes of the emulsion and mini-emulsion poly(butyl 

acrylate) latexes. It can be seen from Table 5.2 that the average particle sizes of the 

prepared emulsion and mini-emulsions ranged from 73 nm to 103 nm, as determined by 

dynamic light scattering.  

 

An average particle size of 73.0 nm ± 0.7 nm was obtained for the mini-emulsion with 2-

ODA as reactive hydrophobe (reaction 2), as determined by dynamic light scattering. The 

average particle size obtained for the mini-emulsion with 2-ODA as reactive hydrophobe 

was confirmed by TEM (Image 5.1) and CHDF analysis (Figure 5.2). The average 

particle size, from the TEM image, was calculated by making use of a weighted average 

of the values obtained via TEM. The average particle size was calculated to be 71.0 nm#. 

The average particle sizes as determined by CHDF analysis were 66.8 nm ± 18.9 nm (by 

number) and 72.6 nm ± 19.1 nm (by weight). 

 

The average particle size data for reactions 1, 3, and 4 are as listed in Table 5.2ϒ. 

 

 
Table 5.2 

Average particle sizes of poly(butyl acrylate) latexes 

Reaction a 1 2 3 4 

Hydrophobe Hexadecane 2-ODA None None 

Particle size [nm] b 89 ± 0.4 73 ± 0.7 94 ± 1.2 103 ± 0.5 

Particle size [nm] c 83.0 ± 24.2 66.8 ± 18.9 85.3 ± 24.2 89.3 ± 24.5 

Particle size [nm] d 87.9 ± 18.8 72.6 ± 19.1 90.9 ± 20.6 94.9 ± 21.4 
a Reactions are defined in Table 5.1 
b Average particle sizes as determined by dynamic light scattering 
c Average particle size (by number) as determined by CHDF 
d Average particle size (by weight) as determined by CHDF 

                                                 
# See Appendix A 
ϒ See Appendix B for CHDF results. 
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Image 5.1 TEM image of poly(butyl acrylate) latex particles with 2-octyl-dodecyl acrylate as 

hydrophobe in the mini-emulsion polymerization of butyl acrylate. 

Figure 5.2 CHDF results of poly(butyl acrylate) latex particles with 2-octyl-dodecyl acrylate as 

hydrophobe in the mini-emulsion polymerization of butyl acrylate: (a) number average particle size 

and (b) weight average particle size. 
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The amount of surfactant used in this study (approximately 2.5 wt % of the continuous 

phase) is one of the major factors responsible for the obtained particle sizes, besides the 

sonication time. It must be noted that in the case of optimally homogenized systems the 

particle size is only dependent on the surfactant concentration. There are three major 

advantages of using high concentrations of surfactant. The first is a corresponding 

decrease in particle size. It is well documented that the particle size decreases with an 

increasing amount of surfactant. Van Zyl and coworkers reported a decrease in particle 

size from 87.8 nm to 36.0 nm by increasing the surfactant concentration from 0.10 to 2.0 

wt % of the continuous phase in the mini-emulsion polymerization of butyl acrylate4. 

Landfester and Antonietti reported a similar trend for the mini-emulsion polymerization 

of styrene5. They showed that by varying the concentration of surfactant from 0.30 to 50 

wt % relative to styrene the particle size decreased from 182 nm to 32 nm. The authors 

reported that only in the case of the highest surfactant load (50 wt % SDS of styrene) did 

they observe a dense surface layer and a surface tension value typical for a micellar 

phase.  

 

The second major advantage is an increase in the number of particles, which translates 

into faster polymerization rates (as stated above). The third major advantage is that the 

steady-state dispersed mini-emulsions are critically stabilized with respect to colloidal 

stability. 

 

The aforementioned results indicate that dynamic light scattering gives reliable average 

particle size data compared to TEM and CHDF. Thus, only dynamic light scattering 

(DLS) was used in Sections 5.3.2 and 5.3.3 for the determination of the average particle 

sizes, due to the fact that the DLS equipment was more readily available than the TEM 

and CHDF equipment.  
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5.3.1.3 Phase-separation and stability studies 

 

It was envisaged that the use of the novel reactive hydrophobe, 2-octyl-dodecyl acrylate, 

would result in a mini-emulsion that was not only kinetically stable (stable for the 

polymerization time), but thermodynamically stable, in other words, that it would exhibit 

long-term stability. Hence, it was necessary to compare the rate of phase-separation of 

the various emulsion and mini-emulsion formulations. 

 

Looking at the rate of phase-separation for the different butyl acrylate emulsion and mini-

emulsion formulations used in this study, the following observations were be made. The 

rate of phase-separation for the conventional emulsion (no hydrophobe and no high 

shear) was determined to be 0.24 cm/min. The mini-emulsions with hexadecane and      

2-ODA as hydrophobes exhibited rates of phase-separation of < 5.0 x 10-5 cm/min (no 

visible signs of phase-separation after 4 weeks). In the case where only sonication, and no 

hydrophobe, was used, the rate of phase-separation was 0.12 cm/min. In other words, 

phase-separation was at least a 2400 times faster in the mini-emulsion in which a 

hydrophobe was absent (Figure 5.3 and Image 5.2).  

 

The mini-emulsions in which hexadecane and 2-ODA were used as hydrophobes 

exhibited long-term stability (longer than 4 months). The results indicate that 2-ODA 

retards Ostwald ripening and allows the production of stable mini-emulsions. 
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5.3.1.4 Investigation of the incorporation of 2-octyl-dodecyl acrylate 

 

Figure 5.4 shows the 0 to 40 ppm region of in the 13C-NMR spectrum of the butyl 

acrylate/2-octyl-dodecyl acrylate copolymer. The signals labelled a, b and c have 

chemical shifts of 14.2, 22.6 and 31.9 ppm, respectively, corresponding to carbon atoms 

contained in 2-octyl-dodecyl acrylate. No peaks were observed in the region of 129.3 and 

Image 5.2 Butyl acrylate mini-emulsion formulations. Left to right: hexadecane as hydrophobe (stable 

mini-emulsion), no hydrophobe (extensive phase-separation observed) and 2-octyl-dodecyl acrylate as 

hydrophobe (stable mini-emulsion). 

Figure 5.3 Graph of distance versus time for the phase-separation of the butyl acrylate mini-emulsion 

formulation with no hydrophobe present. [An observation distance of 20 mm was chosen.] 
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130.5 ppm. Such peaks would have corresponded to the vinylic carbons of 2-octyl-

dodecyl acrylate. It can thus be concluded that 2-octyl-dodecyl acrylate does indeed 

become chemically incorporated, and therefore acts as a reactive hydrophobe. 

 

The amount of 2-octyl-dodecyl acrylate incorporated into the copolymer was quantified 

by making use of 13C-NMR. Based on the T1 measurements for quantitative conditions, a 

60 degree pulse width was used with a 2.3 s acquisition time at a 1 s pulse delay. Inverse 

gated decoupling was used. The sample was run overnight. Integration of the obtained 

quantitative 13C-NMR spectrum was performed. The quantity of 2-octyl-dodecyl acrylate 

incorporated into the butyl acrylate/2-octyl-dodecyl acrylate copolymer was calculated to 

be 0.8 mol % (0.22 g). 
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Figure 5.4 13C-NMR spectrum of the butyl acrylate/2-octyl-dodecyl acrylate copolymer, in deuterated 

chloroform, in the region 0 ppm to 40 ppm.  
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5.3.2 Mini-emulsion polymerization of methyl methacrylate with 2-octyl-dodecyl    

acrylate as reactive hydrophobe 

 

5.3.2.1 Rate of polymerization studies 

 

Figure 5.5 shows the progression of the conversion with time for the mini-emulsion and 

emulsion polymerization of methyl methacrylate. Either hexadecane/SDS or 2-ODA/SDS 

was used to stabilize the mini-emulsions. All formulations were as tabulated in Table 5.3. 

 

Figure 5.5 shows that, again, the polymerization rates for the different systems are fast. 

Conversions were 82%, 59%, 76% and 77% after 30 minutes for reactions 1, 2, 3 and 4, 

respectively.  
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Figure 5.5 Graph of conversion versus time for the emulsion and mini-emulsion polymerizations of 

methyl methacrylate. 
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Table 5.3 

Formulations for the emulsion and mini-emulsion polymerizations of methyl methacrylate 

Reaction 1 2 3 4 

Water phase     

SDS (g) 1.00 a 1.00 a 1.00 a 1.00 

DDI water (g) 41.2 40.2 40.2 40.1 

     

Oil phase     

MMA (g) 10.0 10.0 10.0 10.1 

HD (g) 0.45    

2-ODA (g)  0.48 b   

AIBN (g) 0.015 0.015 0.016 0.015 

     

Sonication     

Sonication time (min) 10 10 10  

Sonication amplitude (%) 80 80 80  

Sonication energy (kJ) 97 98 98  
a Approximately 2.5 wt % of continuous phase 
b 1.65 mol % in feed relative to MMA 
 

 

5.3.2.2 Particle size studies 

 

The average particle sizes for the poly(methyl methacrylate) latexes, as determined by 

dynamic light scattering, ranged from 54 nm to 84 nm (Table 5.4). The obtained particle 

sizes can, once again, be mainly ascribed to the surfactant concentration (Section 5.3.1). 

Once again smaller particles were obtained with 2-octyl-dodecyl acrylate as hydrophobe 

due to its possible surface activity. 
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Table 5.4 

 Average particle sizes of poly(methyl methacrylate) latexes 

Reaction a 1 2 3 4 

Hydrophobe Hexadecane 2-ODA None None 

Particle size [nm] b 67.2 ± 1.5 54.1 ± 1.1 83.8 ± 2.1 83.6 ± 1.7 
a Reactions are defined in Table 5.3 
b Average particle sizes as determined by dynamic light scattering 

 

 

5.3.2.3 Phase-separation and stability studies 

 

The rates of phase-separation for the different methyl methacrylate emulsion and mini-

emulsion formulations were as follow. The rate of phase-separation for the conventional 

emulsion (no hydrophobe and no high shear) was determined to be 0.22 cm/min. In the 

case where only sonication, and no hydrophobe, was used the rate of phase-separation 

was 0.13 cm/min. The mini-emulsions in which hexadecane and 2-ODA were used as 

hydrophobes exhibited rates of phase-separation of < 5.0*10-5 cm/min (no visible signs of 

phase-separation after 4 weeks). In other words, phase-separation was at least 2400 times 

faster in the mini-emulsion where a hydrophobe was absent (Figure 5.6 and Image 5.3). 

 

As expected from the results obtained with butyl acrylate (Section 5.3.1), the mini-

emulsions containing hexadecane and 2-ODA as hydrophobes displayed long-term 

stability (months).  
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Image 5.3 Methyl methacrylate mini-emulsion formulations. Left to right: hexadecane as hydrophobe 

(stable mini-emulsion), no hydrophobe (extensive phase-separation observed) and 2-octyl-dodecyl 

acrylate as hydrophobe (stable mini-emulsion). 

Figure 5.6 Graph of distance versus time for the phase-separation of a methyl methacrylate mini-

emulsion formulation with no hydrophobe present. [An observation distance of 20 mm was chosen.] 
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5.3.3 Mini-emulsion polymerization of styrene with 2-octyl-dodecyl acrylate as   reactive 

hydrophobe 

 

5.3.3.1 Rate of polymerization studies 

 

Figure 5.7 shows the progression of the conversion with time for the mini-emulsion and 

emulsion polymerization of styrene. Either hexadecane/SDS or 2-ODA/SDS was once 

again used to stabilize the mini-emulsions. All formulations were as given in Table 5.5. 

 

The respective conversions for the different reactions after 1 hour were 87.8% (reaction 

1), 87.9% (reaction 2), 82.8% (reaction 3) and 55.4% (reaction 4) (see Figure 5.7). As to 

be expected, the polymerization rate for the conventional styrene emulsion is much 

slower than that of all the other reactions. The observed difference in the polymerization 

rates is related to the local monomer and radical concentrations in the droplets versus the 

particles. 
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Figure 5.7 Graph of conversion versus time for the emulsion and mini-emulsion polymerizations of 

styrene. 
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Table 5.5 

Formulations for the emulsion and mini-emulsion polymerizations of styrene 

Reaction 1 2 3 4 

Water phase     

SDS (g) 1.03 a 1.00 a 1.04 a 1.00 

DDI water (g) 40.8 40.0 40.6 40.4 

     

Oil phase     

Styrene (g) 10.0 10.0 10.1 10.0 

HD (g) 0.49    

2-ODA (g)  0.48 b   

AIBN (g) 0.019 0.020 0.019 0.018 

     

Sonication     

Sonication time (min) 10 10 10  

Sonication amplitude (%) 80 80 80  

Sonication energy (kJ) 98 98 98  
aApproximately 2.5 wt % of continuous phase 
b 1.65 mol % in feed relative to styrene 
 

 

The polymerization rate of the conventional emulsion polymerization of styrene is much 

slower compared to that of methyl methacrylate (Figure 5.5, reaction 4) and butyl 

acrylate (Figure 5.1, reaction 4). The polymerization rates for the methyl methacrylate 

and butyl acrylate emulsions are much faster due to their higher propagation rate 

coefficients compared to styrene and the difference in the radical concentrations. 

Comparing the polymerization rate of the styrene mini-emulsion polymerizations to those 

of the methyl methacrylate and butyl acrylate, it is once again noticeable that the 

polymerization rates of the styrene mini-emulsion polymerizations are much slower. The 

lower reactivity of the styrene compared to methyl methacrylate and butyl acrylate is 

largely responsible for the observed slower polymerization rate. 
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5.3.3.2 Particle size studies 

 

The average particle sizes for the polystyrene latexes, as determined by dynamic light 

scattering, ranged from 65.4 nm to 92.2 nm (Table 5.6). Once again, the obtained particle 

sizes could largely be ascribed to the concentration of the surfactant. 

 

 
Table 5.6  

Average particle sizes of polystyrene latexes 

Reaction a 1 2 3 4 

Hydrophobe Hexadecane 2-ODA None None 

Particle size [nm] b 64.7 ± 0.6 65.4 ± 2.1 88.8 ± 1.8 92.2 ± 1.8 
a Reactions are defined in Table 5.5 
b Average particle sizes as determined by dynamic light scattering 

 

 

5.3.3.3 Phase-separation and stability studies 

 

The rates of phase-separation for the different styrene emulsion and mini-emulsion 

formulations were as follow. The rate of phase-separation for the conventional emulsion 

(no hydrophobe and no high shear) was determined to be 0.28 cm/min. The mini-

emulsions in which hexadecane and 2-ODA were used as hydrophobes exhibited rates of 

phase-separation of < 5.0 x 10-5 cm/min (no visible signs of phase-separation after 4 

weeks). In the case where only sonication, and no hydrophobe, was used the rate of 

phase-separation was 0.13 cm/min. In other words, phase-separation was at least 2400 

times faster in the mini-emulsion in which a hydrophobe was absent (Figure 5.8 and 

Image 5.4). 

 

A comparison of the shelf-life (stability) of the aforementioned styrene mini- emulsion 

polymerization latexes reveals that the use of 2-octyl-dodecyl acrylate as reactive 

hydrophobe imparts long-term stability (months) to the latex particles. 
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Image 5.4 Styrene mini-emulsion formulations. Left to right: hexadecane as hydrophobe (stable mini-

emulsion), no hydrophobe (extensive phase-separation observed) and 2-octyl-dodecyl acrylate as 

hydrophobe (stable mini-emulsion). 

Figure 5.8 Graph of distance versus time for the phase-separation of the styrene mini-emulsion 

formulation with no hydrophobe present. [An observation distance of 20 mm was chosen.] 
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5.3.4 Comparison of the reactive hydrophobes 2-octyl-dodecyl acrylate, lauryl 

methacrylate and stearyl methacrylate 

 

Mini-emulsion formulations of butyl acrylate, methyl methacrylate and styrene with the 

reactive hydrophobes 2-octyl-dodecyl acrylate, lauryl methacrylate and stearyl 

methacrylate were prepared as described in Section 5.2.2.3. An observation period of one 

month was chosen for the phase-separation experiments. No phase-separation was 

observed for all of the formulations with 2-octyl-dodecyl acrylate and stearyl 

methacrylate. In the case of lauryl methacrylate, phase-separation was observed after 

approximately three weeks for all of the formulations.  

 

Do the mini-emulsions with 2-octyl-dodecyl acrylate as hydrophobe qualify as true mini-

emulsions?  

 

The average particle sizes (as determined by dynamic light scattering) for the poly(butyl 

acrylate), poly(methyl methacrylate) and polystyrene latexes were 73 nm ± 0.7 nm, 51.9 

nm ± 0.5 nm and 65.4 nm ± 2.1 nm, which is typical of mini-emulsions. These particle 

sizes correspond very well with previously reported particle sizes by Landfester and 

Antonietti for similar mini-emulsion systems5. The obtained small particle sizes, and 

hence large surface areas, give an indication that most (if not all) of the surfactant is 

adsorbed onto the surface of the particles. Thus, very little (if any) free surfactant would 

have been available for micelle-formation or to stabilize aqueous-phase polymerization. 

Consequently, micellar and homogeneous nucleation would be limited to a large extent. 

In addition, the use of an oil-soluble (hydrophobic) initiator also limits the existence of 

radicals in the aqueous phase. As a result, we have to assume that droplet nucleation 

predominates.  

 

A one-to-one copy of droplet size compared to particle size was obtained for all the mini-

emulsions in which 2-octyl-dodecyl acrylate was used as reactive hydrophobe. No major 

discrepancies between the droplet sizes and particle sizes of the various mini-emulsions 
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were observed. Table 5.7 tabulates the droplet sizes and particle sizes of the mini-

emulsions prepared with 2-octyl-dodecyl acrylate as reactive hydrophobe. 

 

 
Table 5.7  

Comparison of the droplet sizes and particle sizes of the mini-emulsions prepared with 2-octyl-dodecyl 

acrylate as reactive hydrophobe  

Monomer Butyl acrylate Methyl methacrylate Styrene 

Droplet size [nm] a 69.8 ± 0.6 50.4 ± 1.6 77.0 ± 1.6 

Particle size [nm] b 73.0 ± 0.7 54.1 ± 1.1 65.4 ± 2.1 
a Average droplet sizes as determined by dynamic light scattering 
b Average particle sizes as determined by dynamic light scattering 
 

 

Furthermore, 2-octyl-dodecyl acrylate qualifies as a very good hydrophobe due to its 

chemical nature. Chern and Chen1 reported the estimated values for the water-solubility 

of hexadecane and stearyl methacrylate to be 1.14 x 10-9 mL/mL and 3.23 x 10-9 mL/mL, 

respectively. The water solubility of 2-octyl-dodecyl acrylate can be estimated to be at 

least comparable to that of stearyl methacrylate, based on chemical structure 

comparisons. It is thus safe to assume that 2-octyl-dodecyl acrylate will exhibit poor 

water solubility due to its ultra-hydrophobic component. The other criteria for a good 

hydrophobe, such as low molecular weight and monomer-solubility, are also met by       

2-octyl-dodecyl acrylate.  

 

 

5.4 Conclusions 
 

The presence of 2-octyl-dodecyl acrylate in the dispersed phase resulted in a sufficient 

osmotic pressure that significantly retarded Ostwald ripening. This is evidenced by the 

results obtained from the phase-separation studies. The average rates of phase-separation 

for the butyl acrylate, methyl methacrylate and styrene mini-emulsion formulations were 

at least 2400 times slower than for the formulations with no hydrophobe present. It must 
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be noted that after 4 weeks no visible sign of phase-separation was observable for the 

mini-emulsion formulations in which 2-octyl-dodecyl acrylate was used as hydrophobe. 

 

Finally, the results show that 2-octyl-dodecyl acrylate is capable of producing stable latex 

products. In all instances where 2-octyl-dodecyl acrylate was used as hydrophobe, the 

obtained mini-emulsions displayed long-term stability (months).  
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CHAPTER 6 
 

Preparation of Polystyrene/Poly(styrene-co-2-octyl-
dodecyl acrylate) Blends: Investigation of the 
Thermo-mechanical Behaviour of the Blends  
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ABSTRACT 

The novel acrylic monomer, 2-octyl-dodecyl acrylate, was copolymerized with styrene via conventional 

free-radical polymerization. Blends of virgin polystyrene and the synthesized low- and high-molecular-

weight copolymers were prepared. The thermo-mechanical properties of the obtained copolymers and 

blends were investigated. 

Keywords: copolymerization, glass transition temperature, loss modulus, blends, toughening, plasticization 
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6.1 Introduction 
 

The ongoing need for new polymeric materials has warranted the development of 

different methods of preparation for such polymeric materials to meet this demand. The 

three main methods, in use today, for the creation and development of new polymeric 

materials include the synthesis of new polymers from new monomers, copolymerization 

(random, alternating, gradient, block or graft) and physical blending of polymers.  

 

Blending of two or more polymers, whether to make new materials or to improve the 

properties of an existing polymer, is a widely used practice due to its cost-effectiveness. 

However, the blending of polymers is most often plagued by the problem of the 

compatibility of the blended components. Immiscibility of the blended polymers leads to 

weak interaction of the different phases, resulting in a product with poor mechanical 

properties. Various researchers have made use of polymeric compatibilizers to overcome 

the compatibility problem. Examples of these are given in Chapter 2 (Section 2.4.3). In 

addition, the modification of the properties of a homopolymer by blending it with a 

copolymer (block, grafted or random), with one of its constituents being the 

homopolymer in question, is another possible approach that can be used to minimize the 

incompatibility of the different phases1,2. In this study the previously mentioned 

approached was used to modify the thermo-mechanical properties of polystyrene. Glassy 

polymers, like polystyrene, are generally characterized as having poor toughness, which 

limits the application of these polymers. Over the last three decades, extensive research 

has gone into improving the toughness of glassy polymers.  

 

In an effort to synthesize new polymeric materials with improved damping properties 

(viscous dissipation) and toughness (which is a combination of tensile strength and 

ductility) properties, the synthesis of various styrene copolymers and blends are reported. 

Applications for which materials with low-temperature flexibility and toughness as well 

as moisture resistance are required, are ideal markets for these materials. Dynamic 

mechanical analysis was used to monitor any changes in the damping and toughness 

properties of the copolymers and blends.  
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The purpose of this study was to investigate the ability of the novel hydrophobic, ‘bushy-

tailed’ acrylic monomer, 2-octyl-dodecyl acrylate, to serve as a reactive modifier3-6. Due 

to the nature of the newly synthesized acrylic monomer it was expected that an increased 

flexibility and extensibility would be introduced into the obtained copolymers. How 

much (or how little) of the novel monomer would be adequate to modify the thermo-

mechanical properties of the glassy polystyrene appreciably was investigated.   

 

‘Random’ copolymers of styrene and 2-octyl-dodecyl acrylate with high (targeted M w 

between 50 000 and 100 000 g/mol) and low (targeted M w between 5 000 and 20 000 

g/mol) molecular weights were prepared via conventional free-radical copolymerization.        

 
1H-NMR spectroscopy was used to determine the level of incorporation of 2-octyl-

dodecyl acrylate into the various copolymers when starting with a specific feed ratio of 

styrene to 2-octyl-dodecyl acrylate.  

 

Blends of polystyrene with the newly synthesized high- and low-molecular-weight 

copolymers were prepared. The thermo-mechanical properties of the blends were 

investigated.  

 

Important note: Realizing the importance of knowing the reactivity ratios of any 

monomer pair, an attempt was first made to calculate the reactivity ratios for the 

monomers used in this study. However, this attempt was unsuccessful. This was due to 

the fact that it was not possible to form a true copolymer at low conversions under the 

experimental conditions used here. Future study might shed some light on this current 

unknown. 
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6.2 Experimental 
 

6.2.1 Reagents 

 

The 2-octyl-dodecyl acrylate was synthesized as described in Section 4.2. The styrene 

was washed with a 10% KOH solution and distilled under reduced pressure prior to use. 

The AIBN (initiator) was recrystallized from methanol. THF (99%) was received from 

Saarchem and used as received. Chloroform (99.8%) was received from ProChem and 

used as received. Polystyrene ( M w = 137 000 g/mol, PDI = 2.15) was obtained from 

BDH Laboratory Reagents. 

 

6.2.2 Copolymerization  

 

6.2.2.1 High molecular weight copolymers 

 

A typical copolymerization was carried out as follows. The monomers, solvent and 

initiator (0.1 wt%) were added to a three-neck flask. The reaction mixture was degassed 

with argon for approximately 15 minutes. The reaction vessel was placed in an oil bath at 

65 °C for 24 hours. The overall conversion was determined via 1H-NMR spectroscopy, 

using 1,3,5-trioxane as internal standard. The copolymers were repeatedly precipitated in 

methanol, dried and then redissolved in chloroform to remove the unreacted monomers.   

 

6.2.2.2 Low molecular weight copolymers 

 

The monomers, solvent and initiator (5 wt % of total monomer content) were added to a 

three-neck flask. The reaction mixture was degassed with argon for approximately 15 

minutes. The reaction vessel was placed in an oil bath at 65 °C for 24 hours. Samples 

were taken at predetermined intervals. The overall conversion was determined via 1H-

NMR spectroscopy, using 1,3,5-trioxane as internal standard. The copolymers were 

repeatedly precipitated in methanol, dried and then redissolved in chloroform to remove 

the unreacted monomers. 
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6.2.3 Blending studies 

 

A typical blending procedure was as follows for a 100-mg sample. The virgin polystyrene 

and the appropriate fraction of either the low- or high-molecular-weight copolymer were 

dissolved in chloroform and mixed. The chloroform was allowed to evaporate at a 

temperature of 40 oC and a pressure of 200 mbar for 48 hours. Thereafter each sample 

was further dried at 130 oC for 24 hours at 200 mbar to ensure that all of the solvent was 

removed. 

 

6.2.4 Characterization 

 

The 1H-NMR spectra of the copolymers were run on a VarianVXR 300 MHz 

spectrometer. The samples were dissolved in CDCl3 and TMS was used as internal 

standard. 

 

The molecular weights and molecular weight distributions of all samples (sample 

concentration: 5 mg/mL; injection volume: 100 μL) were determined on a Waters 600E 

instrument, fitted with a Waters 610 fluid unit, Waters 410 differential refractometer and 

a Waters 717plus autosampler. THF (purged with IR-grade helium) was used as mobile 

phase, at a flow rate of 1.0 mL/min, and the column temperature was 30 °C. Four 

Phenogel columns, with respective pore sizes of 100, 103, 104 and 105 Å, were used in 

series. The system was calibrated using narrow molecular weight polystyrene standards.  

 

Dynamic mechanical analysis (DMA) was performed on a Perkin-Elmer DMA 7e 

instrument fitted with an intercooler. Analyses were performed in a nitrogen atmosphere, 

using a flow rate of 28.5 mL/min. The following DMA temperature gradient (heat-cool-

heat cycle) was used: 
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6.3 Results and Discussion 
 

6.3.1 Synthesis of high molecular weight styrene/2-octyl-dodecyl acrylate copolymers  

 

Several high-molecular-weight copolymers of styrene and 2-octyl-dodecyl acrylate were 

synthesized (Scheme 6.2). The feed compositions consisted of 1.0, 3.0, 5.0 and 7.0 mol % 

of 2-ODA. The syntheses of the copolymers were confirmed by 1H-NMR spectroscopy 

(see Figure 6.1).  
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Scheme 6.1 Temperature gradient used for dynamic mechanical analysis. 

Scheme 6.2 Schematic representation of the copolymerization of styrene and 2-octyl-dodecyl acrylate. 

THF, 65 °C 
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Due the fact that acrylic monomers are generally more reactive than styrenic monomers, 

it could be predicted that 2-octyl-dodecyl acrylate would be incorporated into the 

copolymer at a higher rate than styrene. Thus, it could be assumed that ‘blocky’ random 

copolymers were formed. 

 

The compositions, overall conversions, average molecular weights, molecular weight 

distributions (PDI) and glass transition temperatures (Tg) of the copolymers are presented 

in Table 6.1. It must be noted that the copolymers were ‘random’ copolymers. Table 6.1 

shows that average molecular weights ( M w) of between 50 000 and 80 000 g/mol and 

polydispersities ranging from 1.73 to 1.79 were obtained for the styrene/2-octyl-dodecyl 

acrylate copolymers synthesized. The overall conversions for the copolymers were above 

80%. 

 

Figure 6.1 1H-NMR spectrum of poly(styrene-co-2-ODA) in CDCl3 with TMS as internal standard;  

7.0 mol % of 2-ODA in copolymer. 

-CH2- Complex 
Multiplet 
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The Tg values of the styrene/2-octyl-dodecyl acrylate copolymers, as determined by 

DMA analysis, were measured as the onset temperature of the loss tangent (tan δ) peaks. 

A shift of the Tg values to lower temperatures was observed for all of the copolymers. 

Glass transition temperatures of 74.5 °C, 57.4 °C, 50.0 °C and 47.9 °C were observed for 

copolymers A, B, C and D, respectively. A difference of 52.1 °C between the Tg of the 

virgin polystyrene (assuming a Tg of 100 °C) and copolymer D (7.0 mol % 2-ODA 

incorporated) was observed. The difference in the Tg values of the copolymers with 1.0 

mol % and 7.0 mol % 2-ODA incorporated is 26.6 °C (see Figure 6.2). Figure 6.2 also 

shows that the tan δmax for copolymer D is higher than that of copolymer A. This implies 

an increase in the main chain mobility with increasing 2-ODA content7. The area under 

the respective loss modulus curves supports the abovementioned observation. Any 

restriction in the main chain mobility in the polymer is expected to decrease the area 

under the loss modulus curve and vice versa. Figure 6.3 demonstrates this.     

 

 
            Table 6.1 

Copolymerization and glass transition temperature data for high molecular weight                 
styrene/2-octyl-dodecyl acrylate copolymers 
                    

*Determined from 1H-NMR spectroscopy data 
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   Mw              Mp          Mn
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Tg

[°C] 

A 1.0 89.6 52747 51158 29668 1.78 74.5 
B 3.0 89.1 59150 47212 33865 1.75 57.4 
C 5.0 80.7 56420 52791 32670 1.73 50.0 
D 7.0 82.4 75987 57873 42370 1.79 47.9 
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Increasing 2-ODA content 

Figure 6.2 Loss tangent (tan δ) curves of copolymers A and D to illustrate the decrease in the glass 

transition temperature with increasing 2-ODA content. 

Temperature [°C] 

Temperature [°C] 

Figure 6.3 Loss modulus curves of copolymers A and D, illustrating the increase in the main chain 

mobility with increasing 2-ODA content.  

Increasing 2-ODA content 
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6.3.2 Thermo-mechanical behaviour of blends of polystyrene with high molecular weight 

styrene/2-octyl-dodecyl acrylate copolymers 

 

The toughening ability of the copolymers and the compatibility of the blends were 

assessed, based on considerations such as the molecular weight of the copolymers and the 

amount of copolymer added. The toughening of any polymer, by whatever means, 

generally manifests itself as a broadening of the tan δ peak of the polymer, without a 

significant change in stiffness.  

 

Two copolymers were chosen for this study: copolymer C (Table 6.1: Tg = 50.0 °C, M w 

≈ 56 000 g/mol) and copolymer D (Table 6.1: Tg = 47.9°C, M w ≈ 76 000 g/mol). Glass 

transition temperatures of 111.7 °C (onset of tan δmax curve) and 103.7 °C (onset of loss 

modulus peak) were obtained for the commercial virgin polystyrene (see Figure 6.4). 

 

Blends of the commercial polystyrene with 5 wt % to 20 wt % of the abovementioned 

copolymers were prepared and analyzed. The blends are defined as follows:  

blend 1: polystyrene + copolymer D 

blend 2: polystyrene + copolymer C.  

 

The Tg values of the blends were taken as the onset temperatures of the loss tangent 

peaks. 
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(a) 

Figure 6.4 (a) Tan δ and (b) loss modulus curve of the commercial virgin polystyrene used in this 
study. 

(b) 

Temperature [°C] 
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The results for blend 1 are presented in Table 6.2. (Figure 6.5 shows the loss tangent 

curves of polystyrene and copolymer D.) 

 

 
                                Table 6.2  

                                Glass transition temperatures of blend 1 as determined by DMA 

Blend 

ratio 

[wt %] 

95/5 90/10 85/15 80/20

Tg [°C] 52.8 53.5 52.9 77.5 

 

 

Table 6.2 shows that the Tg values of the polystyrene/copolymer D blends are shifted to 

lower temperatures compared to the virgin polystyrene. The blends that contained the 

lower amounts of copolymer D (5-15 wt %) had the lowest Tg values. Approximately the 

same Tg (≈ 53.0 °C) was obtained for the blends with 5-15 wt % of copolymer D mixed 

into the virgin polystyrene. The Tg values of these blends differed from the Tg of the 

virgin polystyrene by approximately 58.2 °C. Although the Tg of the polystyrene/20 wt % 

copolymer D blend (Tg = 77.5 °C) is 34.2 °C lower than the virgin polystyrene, it is 

relatively much higher than the Tg values of the other polystyrene/copolymer D blends.   

 

There seems to be an optimum amount of copolymer D (20 wt %) at which the 

temperature of onset of molecular motion of the polystyrene/copolymer D blend 

increases again. This could be due to the formation of entanglements at specific 

copolymer D amount in the blend, which would lead to restricted mobility of the chains.  

 

The decrease in the amount of chain mobility with increased amounts of copolymer D 

can be seen from the decrease in the tan δmax in Figure 6.6. This is supported by the 

decrease in the area under the loss modulus curves (Figure 6.7). Furthermore, restriction 

in the amount of chain mobility in the blends compared to the commercial polystyrene is 

also evident from Figures 6.6 and 6.7. This is seen from the difference in the peak 

maxima. 
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Figure 6.6 shows that the polystyrene/copolymer D blends were partially miscible. The 

broadening of the loss tangent curves can be related to a certain degree of dynamic 

heterogeneity (micro-phase separation) in the blends.  

 

-50 0 50 100 150

Commercial Polystyrene

Copolymer D

 
 

 

 

-50 0 50 100 150

5 wt% Copolymer D

10 wt% Copolymer D

15 wt% Copolymer D

20 wt% Copolymer D

Commercial Polystyrene

 
 

Temperature [°C] 

Figure 6.6 Loss tangent curves of commercial polystyrene and polystyrene/copolymer D blends. 

Temperature [°C] 

Figure 6.5 Loss tangent curves of commercial polystyrene and copolymer D. 
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The results for blend 2 are presented in Table 6.3. (Figure 6.8 shows the loss tangent 

curves of polystyrene and copolymer C.) 

 

 
                             Table 6.3  

    Glass transition temperatures of blend 2 as determined by DMA                           

Blend 

ratio 

[wt%] 

95/5 90/10 85/15 80/20

Tg [°C] 49.1 53.1 48.3 70.9 

 

 

The Tg values of the blends decreased considerably compared to the commercial virgin 

polystyrene. A minimum decrease in the Tg of 40.8 °C and a maximum of 63.4 °C were 

observed. Similar trends for the Tg values of the polystyrene/copolymer C blends as for 

the polystyrene/copolymer D blends were observed. Approximately the same Tg was 

obtained for the blends with 5-15 wt % of copolymer C mixed into the virgin polystyrene. 

Temperature [°C] 

Figure 6.7 Loss modulus curves of commercial polystyrene, polystyrene/5 wt % copolymer D and 

polystyrene/20 wt % copolymer D blends. 
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The Tg of the polystyrene/copolymer C blend increased when 20 wt % of copolymer C 

was mixed into the virgin polystyrene. 

-50 0 50 100 150

Commercial Polystyrene

Copolymer C

 
 

 

 

The observed increase in the Tg could once again be ascribed to a restriction in the 

mobility of the chains due to entanglements. This is confirmed by Figures 6.9 and 6.10. 

The tan δmax of the polystyrene/20 wt % copolymer C blend is lower than that of the 

polystyrene/5 wt % copolymer C blend (Figure 6.9). In addition, the area under the loss 

modulus curve is greater for the polystyrene/5 wt % copolymer C blend than for the 

polystyrene/20 wt % copolymer C blend (Figure 6.10). Moreover, a decrease in the 

amount of chain mobility of the blends compared to the virgin polystyrene was observed 

(Figures 6.9 and 6.10).  

 

 

 

 

Temperature [°C] 

Figure 6.8 Loss tangent curves of commercial polystyrene and copolymer C. 
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Figure 6.9 shows that the formed blends were once again partially miscible. A certain 

amount of phase-separation was present in all of the blends as evidenced by the 

broadening of the loss tangent peaks. 

Figure 6.9 Loss tangent curves of commercial polystyrene and polystyrene/copolymer C blends. 

Temperature [°C] 

Figure 6.10 Loss modulus curves of commercial polystyrene, polystyrene/5 wt % copolymer C and 

polystyrene/20 wt % copolymer C blends. 

Temperature [°C] 
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The difference in the weight average molecular weight of 20 000 g/mol, between 

copolymer C and D, did not result in a significant difference in the thermo-mechanical 

behaviour of the polystyrene blends. In addition, the blending of the commercial virgin 

polystyrene with copolymers C and D did not result in a toughening, but only a 

plasticizing, of the commercial virgin polystyrene. The temperature at which the blends 

loose their stiffness is considerably lower than the temperature at which the virgin 

polystyrene loses its stiffness. Moreover, substantial differences in the maximum stiffness 

of the virgin polystyrene compared to the blends were observedϒ.  

 

The effect of a low molecular weight polystyrene/2-octyl-dodecyl acrylate copolymer on 

the thermo-mechanical behaviour of polystyrene was investigated, as described in the 

following sections. How will the low molecular weight additive affect the mobility of the 

chains in the blends? Does it introduce a toughening and/or plasticizing effect? 

 

6.3.3 Synthesis of low molecular weight styrene/2-octyl-dodecyl acrylate copolymers 

 

Several low molecular weight copolymers of styrene and 2-octyl-dodecyl acrylate were 

synthesized. The feed compositions comprised 1.0-7.0 mol % 2-ODA. The syntheses of 

the copolymers were confirmed by 1H-NMR spectroscopy (See Figure 6.1). The results 

are also presented in Table 6.4. It can once again be assumed that the copolymers were 

‘blocky’ random copolymers. 

 

The overall conversions for copolymers 1 and 2 were above 95%. The overall 

conversions for copolymers 3 and 4 were above 80%. Average molecular weights ( M w) 

of between 7 000 and 18 000 g/mol and polydispersities ranging from 2.5 to 3.5 were 

obtained for the synthesized copolymers.  

 

 

 

 
                                                 
ϒ See Appendix C, Figures C.1 and C.2 
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              Table 6.4 

Copolymerization and glass transition temperature data for low molecular weight             
styrene/2-octyl-dodecyl acrylate copolymers 

 

C
op

ol
ym

er
 

M
ol

 %
  2

-O
D

A
   

  

in
 c

op
ol

ym
er

 * 
Overall 

conversion *  
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The glass transition temperature values of the styrene/2-octyl-dodecyl acrylate 

copolymers, as determined by DMA analysis, were measured as the onset temperature of 

the loss tangent peak. It must be noted that two factors are responsible for the obtained Tg 

values: the low average molecular weights of the copolymers and the incorporation of    

2-ODA.  

 

The decrease in the Tg of the synthesized copolymers with increasing 2-ODA content is 

not directly illustrated in Table 6.4. It can be seen that the copolymers with 1.0 and 3.0 

mol % 2-ODA content have Tg values that are higher than that of the virgin, low 

molecular weight polystyrene. This can be directly related to the obtained molecular 

weights for the copolymers, due to the fact that the Tg of a polymer is a function of its 

molecular weight (up to a limiting molecular weight). Chartoff8 reported on the molecular 

weight dependence of the Tg for polystyrene; a Tg of 62 oC is reported for the virgin low 

molecular weight polystyrene, which corresponds very well with the data reported by the 

abovementioned author. 

 

However, it can be seen from the results in Table 6.4 that for copolymers 1, 3 and 4, with 

comparable M w values, that the Tg values decreased from 77.0 oC to 35.8 oC when 

increasing amounts of 2-ODA were incorporated into the copolymers (Figure 6.11). 

[%] 

 

 

Average molecular weights 

[g/mol] 

Mw           Mp          Mn

PDI 

 

 

Tg

[°C] 

0 - 80.5 7068 6930 1996 3.5 62.7 
1 1.0 98.7 9057 8684 2928 3.1 77.0 
2 3.0 97.6 17933 15626 7160 2.5 66.0 
3 4.5 80.9 9131 8386 3291 2.8 52.0 
4 7.1 84.2 9034 8035 3456 2.6 35.8 
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Although molecular motion set in at lower temperatures, the amount of mobility of the 

chains decreased with increasing amounts of 2-ODA, as evidenced by the lower tan δmax 

of copolymer 4 (Figure 6.11). Additionally, the broader molecular weight distribution 

associated with copolymer 1 could mean that copolymer 1 contains more short chains, 

which would contribute to the amount of chain mobility.  
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6.3.4 Thermo-mechanical behaviour of blends of polystyrene with low molecular  

 

 

6.3.4 Thermo-mechanical behaviour of blends of polystyrene with low molecular weight 

styrene/2-octyl-dodecyl acrylate copolymers 

 

Copolymer 3 (Table 6.4; M w ≈ 9 000 g/mol, Tg = 52.0 °C), with a glass transition 

temperature comparable to that of copolymers C and D, was chosen for this study. 

Various polystyrene/copolymer 3 blends were prepared and analyzed. The glass 

transition temperature results for the blends are presented in Table 6.5. (Figure 6.12 

shows the loss tangent curves of polystyrene and copolymer 3.) 

 

 

Increasing 2-ODA 
content 

Temperature [°C] 

Figure 6.11 Loss tangent curves of copolymers 1 and 4, illustrating the decrease in the glass transition 

temperature with increasing 2-ODA content.  
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                  Table 6.5  

               Glass transition temperatures of polystyrene/copolymer 3 blends  

as determined by DMA 

Blend ratio 

[wt%] 
95/5 90/10 85/15 80/20

Tg [°C]  

7 9 0 

93.5 99. 85. 79.

 

 

Table 6.5 shows that the Tg values of the blends generally decreased from 99.7 °C to 79.0 

°C as the amount of copolymer 3 in the blend increased. The blend that contained 20 wt 

% of copolymer 3 had the lowest Tg. A difference of 32.7 °C between the Tg of the virgin 

polystyrene and this particular blend was observed. It is generally expected that the 

addition of a low molecular weight additive to a polymer causes a significant decrease in 

the Tg. This was not observed in this particular instance. The effect of the high molecular 

weight additives on the Tg of the virgin polystyrene (Section 6.3.2) was more pronounced 

than that of the low molecular weight additive (copolymer 3). It is possible that nano-

phase separation plays a significant role in the case of the high molecular weight 

additives. This would influence the free volume in the 2-ODA-enriched phase, leading to 

wer Tg values compared to a more compatible polystyrene/copolymer 3 blend above.  

he tan δmax of the commercial 

olystyrene is significantly higher than that of the blends. 

 

lo

 

Figure 6.13 shows that the tan δmax of the polystyrene/copolymer 3 blends generally 

decreased with increasing amounts of copolymer 3. This indicates a decrease in the 

amount of chain mobility with increasing amounts of copolymer 3 in the blends. In 

addition, a decrease in the amount of chain mobility of the blends compared to the 

commercial polystyrene was also observed (Figure 6.13). T

p
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Figure 6.12 Loss tangent curves of commercial polystyrene and copolymer 3. 

Figure 6.13 Loss tangent curves of commercial polystyrene and polystyrene/copolymer 3 blends. 

Temperature [°C] 

Temperature [°C] 
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Partial miscibility of the blends is indicated by the broadening of the loss tangent curves 

(Figure 6.13). Furthermore, as in the case of the blends (Section 6.3.2), the commercial 

polystyrene is plasticized rather than toughened by the addition of copolymer 3. A 

substantial drop in stiffness of the blends compared to the commercial polystyrene was 

observedκ. 

 

 

6.4 Conclusions 
 

Low- and high-molecular-weight ‘random’ styrene/2-octyl-dodecyl acrylate copolymers 

were successfully prepared. The incorporation of 2-octyl-dodecyl acrylate into the 

various copolymers significantly decreased the glass transition temperatures of the 

synthesized copolymers. A difference in Tg of 52.1 °C between polystyrene (assuming a 

Tg of 100 °C) and the high molecular weight styrene/2-octyl-dodecyl acrylate copolymer 

with 7.0 mol % 2-octyl-dodecyl acrylate incorporated was observed. In the case of the 

low molecular weight styrene/2-octyl-dodecyl acrylate copolymer with 7.0 mol% 2-octyl-

dodecyl acrylate incorporated, the Tg decreased by 64.2 °C.  

 

The obtained results indicate that the novel ‘bushy-tailed’ monomer, 2-octyl-dodecyl 

acrylate, has the ability to serve as an internal plasticizer, and thereby serves to enhance 

the damping properties of the commercial polystyrene at low temperatures. 

 

The blending of commercial polystyrene with the high molecular weight copolymers C 

and D that were synthesized showed similar thermo-mechanical results. Partially miscible 

blends with significantly decreased glass transition temperatures compared to the 

commercial virgin polystyrene were obtained. Furthermore, approximately the same glass 

transition temperatures were observed for 5 to 15 wt % of the copolymers mixed into the 

commercial polystyrene. An increase in the glass transition temperature of the blends was 

observed when 20 wt % of the copolymers were mixed into the commercial polystyrene.  

 
                                                 
κ See Appendix C, Figure C.3 
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The blending of commercial polystyrene with the low molecular weight copolymer 3 

produced partially miscible blends with less significant differences in the glass transition 

temperatures compared to the commercial virgin polystyrene. 

 

In all instances, the commercial virgin polystyrene was plasticized by the copolymers. 

Significant differences in the stiffness of the blends compared to the commercial 

polystyrene were observed. 

 

It was observed from the DMA results that the blends were partially miscible. A second 

technique is required to study possible micro-phase separation, but this is not easy with 2-

octyl-dodecyl acrylate, which is difficult to stain or to see in neutron or low angle X-ray 

scattering. Furthermore, factors like the method of blending, the mixing time and the type 

of casting solvent might play a possible role in further enhancing the compatibility of the 

blends.  
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CHAPTER 7 
 

Conclusions and Recommendations 
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ABSTRACT 

All of the results of this study are summarized, conclusions are drarn, and possible future directions are 

suggested.   
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7.1 Introduction 
 

As the need for new materials and innovative applications continues to be an ongoing 

scientific pursuit, I trust that the work presented in this dissertation on the synthesis and 

applications of a new hydrophobic acrylic monomer (2-octyl-dodecyl acrylate) has 

contributed to this pursuit and opened up avenues for future exploration. I believe that 

this study has hardly scratched the surface as far as the synthesis of novel ultra-

hydrophobic, ‘bushy-tailed’ monomers and their applications are concerned. Section 7.3 

highlights a few likely research directions. 

 

 

7.2 Summary of Conclusions 
 

Selective dimerization of 1-decene 

 

Although the selective dimerization of 1-decene was not achieved in this study, the 

oligomerization of 1-decene with the bis(cyclopentadienyl)zirconium dichloride 

(catalyst)/methyl alumonoxane (cocatalyst) catalytic system did result in reaction 

products with a large dimeric fraction (a minimum of 70% and a maximum of 87%). Use 

of a cocatalyst to catalyst ratio of 1000:1 and reaction temperatures of 70 °C and 90 °C 

resulted in the optimum (87%) 1-decene dimer concentration in the reaction product. The 

obtained dimeric product, 2-octyl-1-dodecene, resulted from the 1,2-insertion 

mechanism. It must be noted that a very small percentage (3.0%) of dimer from a 2,1-

misinsertion was obtained, 3-methyl-2-octyl-1-undecene.  

 

Synthesis of a novel hydrophobic acrylic monomer 

 

The tertiary alcohol, 2-octyl-2-dodecanol, and the novel uniquely branched hydrophobic 

acrylic monomer, 2-octyl-dodecyl acrylate, were successfully synthesized from 2-octyl-1-

dodecene. Characterization of the reaction products by means of 1H-NMR and IR 

spectroscopy confirmed this. 
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The effectiveness of 2-octyl-dodecyl acrylate as a reactive hydrophobe in mini-emulsion 

polymerizations 

 

Stable polymer latex particles of butyl acrylate, methyl methacrylate and styrene were 

successfully synthesized with the novel reactive hydrophobe 2-octyl-dodecyl acrylate. 

Phase-separation experiments showed that the presence of 2-octyl-dodecyl acrylate in the 

dispersed phase retarded Ostwald ripening. A one-to-one copy of droplet size compared 

to particle size was obtained from all the mini-emulsions in which 2-octyl-dodecyl 

acrylate was used as reactive hydrophobe. The 13C-NMR data showed that   2-octyl-

dodecyl acrylate does indeed become chemically incorporated into the latex particles. 

 

Preparation of polystyrene/poly(styrene-co-2-octyl-dodecyl acrylate) blends 

 

Low- and high-molecular-weight styrene/2-octyl-dodecyl acrylate copolymers were 

successfully prepared and characterized. 1H-NMR data confirmed the chemical 

incorporation of 2-octyl-dodecyl acrylate.  

 

Dynamic mechanical analysis results indicated that the novel ‘bushy-tailed’ monomer, 2-

octyl-dodecyl acrylate, has the ability to serve as an internal plasticizer, and thereby 

serves to enhance the damping properties of the obtained copolymers. 

 

Blends of commercial virgin polystyrene and the synthesized low- and high-molecular-

weight copolymers were prepared. Decreases in the glass transition temperatures of the 

blends compared to the virgin polystyrene were observed. This was more pronounced in 

the case of the blends with the high molecular weight copolymers. Furthermore, phase-

separation was evident in the blends.  

 

 

 

 

 



 123

7.3 Recommendations for Future Work 
 

I submit the following spin-offs as viable options for further research. 

 

 The synthesis of a vinyl ester monomer derived from 2-octyl-1-dodecene that is 

equivalent to the commercial VEOVA (vinyl ester of versatic acid) monomer, and the 

investigation of its possible applications. 

 

 The synthesis and characterization of a 1-decene trimer derived acrylic monomer and 

investigating its uses. The synthesis procedure of Wasserscheid and coworkers 

(Reference 5, Chapter 3) is recommended as the method to be used for the highly 

selective trimerization of 1-decene.  

 

 The controlled mini-emulsion polymerization of various monomers using 2-octyl-

dodecyl acrylate as a reactive hydrophobe in combination with a polymerizable 

surfactant.  

 

 The use of 2-octyl-dodecyl acrylate modified styrene copolymers as opposed to virgin 

polystyrene in blends with (meth)acrylic polymers, to facilitate the miscibility of 

polystyrene with otherwise immiscible polymers. 

 

 The synthesis of well-controlled 2-octyl-dodecyl acrylate/maleic anhydride 

copolymers via the radical addition fragmentation transfer (RAFT) polymerization 

process and the application of these copolymers as polymeric reactive soaps. 
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APPENDIX A: Calculation of weight average particle size of poly(butyl acrylate) 
latex from TEM results 
 

 
Table A.1  

Measured poly(butyl acrylate) latex particle sizes 

Measured particle sizes 

[nm] 

Weighted value 

[nm] 

36.50 1.446 φ
19.74 0.4232 
72.37 5.686 
72.55 5.715 
76.39 6.335 
81.17 7.153 
79.45 6.853 
59.28 3.815 
61.11 4.055 
65.28 4.627 
85.28 7.896 
89.56 8.709 
74.54 6.033 
47.84 2.485 

 

Sum of measured particle sizes = 921.05 nm 
φ Weighted value = (36.50/921.05) x 36.50 = 1.446 nm 

Calculated weight average particle size = Sum of weighted values = 71 nm 
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APPENDIX B: Capillary hydrodynamic fractionation (CHDF results of poly(butyl 
acrylate) latexes 
 

 

 

 
Figure B.1 CHDF results of mini-emulsion polymerization of butyl acrylate with hexadecane as 

hydrophobe; (a) number average particle size and (b) weight average particle size. 

 

 

 

 
Figure B.2 CHDF results of mini-emulsion polymerization of butyl acrylate with no hydrophobe (only 

high shear); (a) number average particle size and (b) weight average particle size. 

 

 

(b)

(a) (b)

(a) 
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Figure B.3 CHDF results of emulsion polymerization of butyl acrylate; (a) number average particle size 

and (b) weight average particle size. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)
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APPENDIX C: Stiffness of the various polystyrene/poly(styrene-co-2-octyl-dodecyl 
acrylate) blends compared to the commercial virgin polystyrene 
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Figure C.1 Storage modulus curves illustrating the difference in the stiffness of the commercial 

polystyrene and polystyrene/copolymer D blends. 

Temperature [°C] 

Temperature [°C] 

Figure C.2 Storage modulus curves illustrating the difference in the stiffness of the commercial 

polystyrene and polystyrene/copolymer C blends. 
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Figure C.3 Storage modulus curves illustrating the difference in the stiffness of the commercial 

polystyrene and polystyrene/copolymer 3 blends. 
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APPENDIX D: Loss modulus curves of the various polystyrene/poly(styrene-co-2-
octyl-dodecyl acrylate) blends compared to the commercial virgin polystyrene 
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Figure D.1 Loss modulus curves of commercial polystyrene and polystyrene/copolymer D blends. 

Temperature [°C] 

Temperature [°C] 

Figure D.2 Loss modulus curves of commercial polystyrene and polystyrene/copolymer C blends. 
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Figure D.3 Loss modulus curves of commercial polystyrene and polystyrene/copolymer 3 blends. 

Temperature [°C] 
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