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Summary

With the long-term goal of surviving the night in Minecraft, we ask whether a
reinforcement learning agent learns better by first learning the skills to perform
smaller tasks in a complex environment or by learning the skills in the complex
environment from the start. This is investigated empirically in a non-trivial
game environment. We use the premise of curriculum learning where an agent
learns different skills in independent and isolated sub-environments referred
to as dojos. The skills learned in the dojos are then used as different actions
as the agent decides which skill to perform that best applies to the current
game state. We evaluate this with experiments conducted in the Minecraft
gaming environment. We find that our approach of Dojo learning is able to
achieve better performance with faster training time in certain environments.
The main benefit of this approach is that the reward functions can be finely
tuned in the dojos for each action as compared to the traditional methods.
However, the skills learned in the individual dojos become the limiting factor
in performance as the agent is unable to combine these skills effectively when
put in certain complex environments. This can be mitigated if the dojo modules
are further trained to achieve similar results as a standard deep Q network.
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Opsomming

Met die langtermyndoel om ’n nag in Minecraft te oorleef, vra ons
of versterkingsleer beter leer deur eers die vaardighede aan te leer
om kleiner take in ’n komplekse omgewing uit te voer of deur die
vaardighede in die komplekse omgewing aan te leer. Dit word in ’n
uitdagende spelomgewing ondersoek. Ons gebruik kurrikulumleer waar
’n agent verskillende vaardighede aanleer in onafhanklike en geïsoleerde
sub-omgewings waarna as dojos verwys word. Die vaardighede wat in die
dojos aangeleer word, word dan as verskillende aksies gebruik aangesien
die agent besluit watter vaardighede hy moet uitvoer wat die beste van
toepassing is op die huidige speltoestand. Ons evalueer dit eksperimenteel in
die Minecraft-spelomgewing. Ons vind dat ons benadering van Dojo-leer beter
vaar met ’n vinniger opleidingstyd in sekere omgewings. Die belangrikste
voordeel van hierdie benadering is dat die beloningsfunksies in die dojo’s vir
elke aksie fyn ingestel kan word in vergelyking met die tradisionele metodes.
Die vaardighede wat in die individuele dojos aangeleer word, word egter die
beperkende faktor aangesien die agent nie in staat is om hierdie vaardighede
effektief te kombineer as dit in sekere komplekse omgewings geplaas word nie.
Dit kan versag word as die dojo-modules verder afgerig word om soortgelyke
resultate te lewer as ’n standaard diep Q-netwerk.
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NOMENCLATURE

Units

m meters
s seconds

Definitions

agent a reinforcement learning robot that interacts with the
environment

bot an autonomous program which interacts with a system
or the user

mobs the dangerous creatures in Minecraft which roam the
environment at night and are able to attack the player

sandbox a gaming environment which has minimal limitations
on the player allowing it to roam the virtual world freely
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Chapter 1

Introduction

The aim of having a robot successfully interact with a challenging environment
is one that researchers are keen to solve. With the recent advancements in
reinforcement learning (RL), such as the Atari 2600 from Google DeepMind in
2015 [1], Alpha Go in 2016 winning the current world champion in the board
game Go [2], and OpenAI winning a 5v5 match against the top players in the
world in Dota 2 [3], RL has become a powerful tool in achieving super human
results in games. RL agents appear to be able to master any game, but what
about a game such as Minecraft – a game that does not have a round timer
or level progression? An agent cannot play the game in a few episodes nor be
matched against an opponent. Minecraft is different from other games which
RL has seemed to conquer with an environment comparable to a real world
scenario.

1.1 Research objective

The long-term objective of our research is to use reinforcement learning
(RL) to teach an agent to survive a day-night cycle in the Minecraft gaming
environment. We test a new method, referred to as dojo learning and based
on curriculum learning, against current methods to progress one step closer to
our goal. Although Minecraft is used as a testing platform, our method could
be generalised and adapted to work in any appropriate gaming environment.

There are two possible approaches to conducting this experiment. One
is using RL by allowing the agent to explore the world by itself and learn
the best technique to survive. The other is by acquiring survival techniques
by studying and learning from real world players, also known as inverse
reinforcement learning (IRL). Each approach has its own drawback, with RL
needing large computing power and a long simulation time, and IRL requiring

1
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CHAPTER 1. INTRODUCTION

a large amount of player data to be collected in order for the agent to learn
the optimal strategy.

1.2 Minecraft overview

Minecraft is a 3-D sandbox game which allows the player to do almost
anything in a procedurally generated grid-world environment. The player can
explore the vast open world, gather resources and build structures with a
variety of blocks. The resources can also be used to craft items which can aid
in exploration and survival.

The day-night cycle in Minecraft lasts for 20 minutes in real world time.
During the day, the player is allowed to gather all the resources they want
with little danger or consequences. However, once the sun sets the world
of Minecraft is swamped with mobs – dangerous creatures which roam the
environment at night. The mobs can attack the player when in range and
if the player loses all their health, they will be stripped of all the gathered
resources and respawn elsewhere.

There are many game modes in Minecraft. Our focus is survival mode
where the mobs pose a threat and the player has to gather resources. Another
is creative mode where the player has any type of block or item in their
endless inventory and can build and create any sort of world they imagine.
For further insight into the world of Minecraft, refer to Section 2.6.2.

Microsoft saw potential in Minecraft and purchased it from Mojang AB in
2015 for $2.5 billion (USD) [4]. Microsoft also developed Project Malmo, a
research platform for machine learning (ML) algorithms and set a goal of
having a reinforcement learning agent survive the night [5]. They were
unsuccessful in achieving this ambitious goal initially and set their sights
on smaller, more manageable sub-environments in the world of Minecraft.
However, the goal remains: can an agent survive the night in Minecraft using
reinforcement leanrning?

1.3 Reinforcement learning overview

Reinforcement learning (RL) is a subset of machine learning, a term coined by
Arthur Samuel in 1959 [6]. A more formal definition of machine learning was
later given by Tom M. Mitchell stating: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance

2
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CHAPTER 1. INTRODUCTION

measure P, if its performance at tasks in T, as measured by P, improves with
experience E” [7]. This definition introduces the basic concept of machine
learning (ML), which will be elaborated on in Section 2.1. In summary, machine
learning is when a computer acquires the knowledge to complete a given task
through experience.

The idea behind RL is to teach a computer in a similar way dogs learn
new tricks – after performing an action, it will receive either a positive or
negative reward. This is also true when humans learn. The major difference
between a human and a computer learning a new task is that a human will use
common sense (usually from life experience or natural instinct) to determine
the next approach if the first was unsuccessful. However, a computer will
often perform a random action, or a slight variation of what it previously did
until it achieves the goal of the task. However, the computer will attempt the
task many times and will gather experience quicker than the human is able to
given the same time allocation.

A simple example of this is when humans begin to drive before having
previous knowledge of driving. We use logic to brake at corners and use
‘common sense’ to turn at the appropriate time. But this common sense is not
a feature in computers and they will first have to fail at taking a corner before
they learn that they cannot take a corner that fast, or drive through a wall or
any other radical approach.

This sort of common sense can be programmed or hard-coded into a
computer but this will limit it from learning through its own experience and
can hinder the program from reaching its full potential. Sometimes the best
way to succeed is to take risks, even if it goes against all common sense. This
allows computers to potentially perform better than any human could, even in
intellectual activities.

1.4 Significance and motivation

Artificial general intelligence (AGI) is a goal which a great deal of machine
learning research is striving towards. The aim of having one robot do
everything is one that has captured the imagination of society and has
ingrained itself in pop culture throughout the world. Currently however, the
robots we have are only good at one specific task. These algorithms may
have achieved super human results when playing a specific game, or are able
to drive within a crowded city while minimising the risk of an accident, but

3
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CHAPTER 1. INTRODUCTION

no one algorithm can play all the games a human can and drive a car. This
is one main reason that the Atari 2600 by Google DeepMind [1] was such a
breakthrough as it is the first case of one algorithm able to achieve super
human success in multiple games on the platform. But we still have a way to
go to achieve true AGI.

The idea of an RL agent exploring the world of Minecraft is a step towards
AGI. The agent needs to master multiple aspects of the game to be able to
explore the world, let alone fight mobs and craft items. With the research and
experiments we conduct, we progress towards a better algorithm for AGI.

1.5 Experiment overview and hypothesis

The experiment set out to establish a baseline for dojo learning which is
explained in Section 2.5.1. We consider two approaches: a network, which will
learn from the full environment directly, and our new dojo network, which will
learn the simple, primitive actions in sub-environments first before attempting
the full environment. Both these approaches are explained in detail in Chapter
3.

The goal of our experiments is to determine which of the two approaches is
more successful in allowing an agent to achieve a high score in a challenging
environment which requires mastery of multiple tasks. Our hypothesis is that
the agent with knowledge of the sub-environments will perform better in the
full environment and be able to learn more sophisticated tasks within that
environment than an agent that began its learning in the full environment.
The latter will potentially be overwhelmed with the amount of learning needed
and will not be able to learn the skills efficiently, if at all.

1.6 Contribution

Our contribution is the new approach for an RL agent to succeed in a
challenging environment in the form of a dojo network. Our approach includes
learning simpler tasks in sub-environments and merging them into one model
which is able to do any of the sub-tasks as well as a combinations of sub-tasks.
In order to make the learning efficient, a 2-D Python environment of Minecraft
was also created using PyGame. This is available to the public on GitHub
at https://github.com/Matthew-Reynard/malmo. A paper titled “Combining
primitive DQNs for improved reinforcement learning in Minecraft” has also
been approved for the PRASA 2020 conference.

4
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CHAPTER 1. INTRODUCTION

1.7 Layout

In the next chapter we discuss many aspects and ideas related to the research
in detail. Our discussion covers the basics of machine learning, to the
Q-learning algorithm and the Deep Q-Network (DQN) which is used in the
experiments. We also discuss what Minecraft is and why it is chosen as the RL
testing environment.

The following chapter, Chapter 3, breaks down the approach taken, and
the decisions and reasons behind them in order to answer the research
question proposed. The first few sections of this chapter will outline the
learning experience and how the final approach came to be. The classic game
of Snake is used to educate the reader about the Q-learning algorithm.

The experiment chapter, Chapter 4, lays out the steps taken to achieve the
results. It outlines the architecture of the neural network used, discusses the
code, and explains the decisions made for the experiments and environment
setup.

In the results, Chapter 5, we discuss the findings of the experiment and what
information is learnt by investigating the training curves of the experiments.

The conclusion, Chapter 6, discusses the results compared to our hypothesis
and whether the research objective is met. The chapter also highlights
possible alternative approaches, improvements and future work that could be
added to the experiment to refine the results or make them more conclusive.

5
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Chapter 2

Background

In this chapter we delve into machine learning and specifically where
reinforcement learning (RL) belongs in the broad field of computer science.
The ideas and algorithms used in later chapters such as neural networks are
explained, as well as the Minecraft gaming environment chosen to run the
experiments is discussed in detail. Related work and similar research will be
discussed in the chapter, and our approach of dojo learning is explained. First
we start with the basics of machine learning and RL.

2.1 Machine learning

Machine learning can be summarised neatly by these two historical quotes
from Arthur Samuel and Tom Mitchell. Samuel was one of the first to define
the term in the late 1950s, while Mitchell gave it a more robust definition in
1998.

“Machine learning is a field of study that gives computers the ability to

learn without being explicitly programmed.” – Arthur Samuel (1959) [6]

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E.” – Tom M. Mitchell (1998)
[7]

These definitions not only explain the concept well, but also reveal the
age of the idea of machine learning. Many think of machine learning as being
a recent advancement but it has been around for many decades. It has only
gained traction recently due to the improved computing power available to
the public.

6
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Artificial
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Computer	Vision
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Figure 2.1: A breakdown of the artificial intelligence field and where
reinforcement learning fits into the broader field of computer science. (Figure
created based on content from [8].)

Artificial intelligence (AI) is a broad area of computer science. It can be split
up into two main branches, symbolic learning and machine learning (ML) as
shown in Figure 2.1.

Symbolic learning is an older form of AI and was popular in the 1950s
until the 1980s. Since then a more advanced type of AI has grown in
popularity, namely, non-symbolic AI, and for good reason. However, this is not
to say that symbolic learning is inferior, there are still many practical uses for
this type of machine learning and in certain situations it can perform better
than modern non-symbolic AI.

Symbolic learning involves using symbols and other ‘human readable’
information that is relative to the task. It then uses this information in a type

7
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CHAPTER 2. BACKGROUND

of lookup table or search algorithm by finding keywords and showing the
relevant information initially provided. This allows the symbolic AI bot to be
quickly set up and working for a small task, but with large data files it might
take time to search and deliver a result. Whereas a non-symbolic learning AI
will take a long time to set up and ‘train’, it will often operate more efficiently
and be easily expandable [9].

Machine learning, which falls under non-symbolic AI, is used for pattern
recognition. Raw data is given to the AI bot, unlike symbolic learning, and
the computer learns patterns in this data either by the given labels or simply
from the data itself. Machines are significantly better than humans at pattern
recognition as they are able to use more data and more dimensions of data
[8].

2.1.1 Classification and prediction

The two main functions of machine learning is either to classify data or predict
using given data. Classification is when the labels of the data or the data
itself falls into a category or class, and given the new raw data the algorithm
classifies it into one of these categories. A common example of this is the
MNIST dataset [10], a classic machine learning tutorial where an algorithm
learns from the labeled dataset that contains handdrawn numbers from 0 to 9
that is 28x28 pixels in size. After training, the AI model needs to decide which
one of the labels best fits the new given input in the test set.

With prediction, the data does not necessarily fall into a class and is
more often than not continuous data. The task of the AI is to predict the
unknown data given the specific input. An example of this might be of a linear
regression model, where the temperature is related to the number of people
at the beach. Given the temperature, the AI can predict the amount of people,
and vice versa.

2.1.2 Supervised and unsupervised learning

Supervised and unsupervised learning are the two main methods of machine
learning. Supervised learning is a method of training a model to map an input
to an output based on labelled data, whereas unsupervised learning refers
to the method of finding patterns within unlabelled data. There is also a mix
of these two methods known as semi-supervised learning, a combination of
the two previously described methods, where the data is partially labelled.
Semi-supervised learning methods is often used in the case of large amounts
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Agent

Environment

at strt

st+1
t

rt+1

Figure 2.2: The reinforcement learning iterative interaction cycle: The agent
performs an action, t, given the current state, st, of the environment at time t.
The environment reacts to this action and the agent receives a scalar reward,
rt, based on the action taken, as well as receiving the next state, st+1. This
cycle is repeated during the learning process.

of data and where only a small portion is of the data is labelled.

In summary, supervised learning uses labelled data and normally takes
the form of linear regression (prediction) or logistic regression (classification)
models, where unsupervised learning has unlabelled data and is mainly used
for clustering. We do not use these two methods of ML in this investigation,
and therefore will not explore them further.

2.2 Reinforcement learning

A brief overview of reinforcement learning was given in Section 1.3. In this
section we will discuss RL in more detail, going over the terminology and
explaining the different methods and algorithms which will be used in later
sections.

The idea of reinforcement learning differs from supervised and unsupervised
where instead of a computer learning through large amounts of data, the
computer will learn through an agent performing actions and gathering
experience in an environment.

Referring to Figure 2.2, the agent performs actions in an environment and
is learning through trial and error over many episodes. An episode refers to
everything the agent does within a finite number of states between the initial
state and the terminal state. The environment changes accordingly and the
agent receives feedback in the form of a scalar reward. The goal of RL is for
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the agent to maximise the expected cumulative reward, GT , also known as
the return, which is explained later in this section.

Reinforcement learning has some terminology that one needs to understand
in order to discuss the other aspects more effectively. We look at the RL terms
and explain each one.

History: Mathematically written as a set of all aspects up until time t

that affect the agent within an episode, Ht = {O1, R1, A1, · · · , At, Ot, Rt}. This
is a record of the observations, O, the rewards, R, and the actions taken, A,
from the initial state to the terminal state.

State: The state is a function of the history St = ƒ (Ht). It is used to
describe the configuration of the environment to the agent and based on this
state, the agent will decide on an action to perform. There are two different
states one can consider in RL: the agent state, which is one used for the agent
to determine the next action, and the environment state, which fully defines
the current environment configuration. The term state commonly refers to the
agent state unless otherwise stated.

Observation: An observation is what the agent sees. It is a function of
the state of the environment Ot = ƒ (St). The entire environment state often
has irrelevant information for the agent, and therefore only a subset is used
for decision making. If however, the agent is able to observe the entire
state of the environment, we say that the environment is fully observable.
Otherwise the environment is partially observable.

Action: The action taken by the agent at time step t, shown as t, is
within the total action space of the agent  ∈ A. This is the only method for
the agent to interact with the environment.

Reward: The reward is normally a function of the current state, the action
taken and the next state, R(s, , s′), and it defines the goal in an RL task. Each
time step a reward is sent to the agent from the environment, always in the
form of a scalar. The agent’s objective is to maximise the total discounted
reward received over a defined time period or task. It defines what are good
and bad behaviours for the agent and is the primary basis for altering the
policy.

Policy, π: Defines the agent’s way of behaving at a given time or in a
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given state, π(|s). A policy is a mapping of the current state to the actions
taken when the agent is in those states [11]. It is the core of the agent, and
it alone determines the agent’s behaviour. Policies may be fully stochastic
or ‘greedy’. A greedy policy always goes for the best immediate reward gain
which limits the agent’s ability to explore other possible options. We use the
ε-greedy policy, which combats the exploration and exploitation dilemma
discussed in Section 2.2.6. This policy is based on the greedy policy, but has
a chance of a random action being attempted which aids in the exploration of
the environment.

Value function: A reward signal shows what is a good behaviour immediately,
but a value function shows the agent what is a good behaviour over time.
The value of a state is the total amount of reward an agent can expect to
accumulate in the future when starting from that state. The value function
will constantly be trying to approximate the discounted reward for any given
state. The rewards determine the immediate intrinsic desirability of the states
whereas the value shows the long term desirability of the state by predicting
the states that are likely to follow and their discounted rewards. Rewards
remain the main objective. Without rewards there would be no values, and the
reason there are values is to receive more rewards down the line. However,
values are more important when making decisions. A crucial role in RL is
estimating these values efficiently [11].

Transition probability: The transition probability refers to the chance of
transferring from one state to another based on the current state and the
action taken, P(s′|s, ).

Discount factor (γ ∈ [0,1]): The value of the discount factor describes
how much an agent values future rewards. As the discount factor, γ,
approaches the value of 0 the agent is only concerned about immediate
rewards, and as γ approaches the value of 1, the agent is only focussed on
potential future rewards [12].

Return, Gt: Another term for return is the discounted cumulative expected
reward. The overall goal for any RL algorithm is to maximise the return. The
total discounted return is shown in equation 2.1, with Rt being the reward
received at time t.

GT = Rt+1 + γ1Rt+2 + ... =
T
∑

k=0

γkRt+k+1 (2.1)
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Model of the environment: A model mimics the behaviour of the environment.
Given the action and the state the agent resides, a model can predict the
rewards and state at the next time step in order for the agent to make a
calculated decision on its next action. Models are used for planning. RL
methods that use models for planning are known as model-based methods
and are elaborated on in Section 2.2.5. Model free methods are solely trial
and error methods and use no planning [11]. The word model can also refer
to the AI function used to predict the output given the input. Hereafter, the
word model will refer to the AI function unless otherwise stated.

Step-size parameter or learning rate, α: A small positive fraction that
can be reduced over time for the method to lead to convergence. This is
the rate of learning, which is used in optimisation algorithms discussed in
Section 2.4.4. If the parameter is not reduced to zero, the agent will remain
competitive even to an evolving opponent.

To reiterate, the goal of RL is to optimise over a value function and have
an agent choose an action that will maximise future return. We now discuss
various aspects of RL.

2.2.1 Markov decision process

In the field of probability and statistics, the Markov property expresses that
the future is independent of the past, given the present [13]. The current
state completely characterises the position and condition of all entities and
objects within the world.

A Markov decision process (MDP), shown in Figure 2.3, describes an RL
environment and is defined by the tuple

(S,A,R, P, γ),

with S being the set of all possible states of the environment, and A referring
to the set of all possible actions an agent can perform. R is the distribution of
the rewards given and is a function of the state and action performed. P is the
transition probability from one state to another and γ is the discount factor
and describes how much the agent values future rewards.

There are also different order MDPs. A first order MDP is one in which the next
state is only determined by the current state and the action taken. If the next
state depends on two previous states it is a second order MDP, and so on.
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Figure 2.3: A Markov decision process diagram with initial state S0 and
terminating state S2.

Another type of MDP is the semi Markov decision process (SMDP). In an
SMDP the actions have duration, whereas in the standard MDP the actions are
instantaneous. Not all actions have the same duration, and could take varying
lengths of time depending on the action. This is referred to as holding time or
transition time and is represented as τ. Another way to imagine it is the agent
decides on an action at time t but only executes the action at time t + τ.

In order to solve for the values of an MDP, one needs to use the Bellman
optimality equation (2.2). This is a non-linear equation that can only be solved
using iterative methods [13].

Vπ(s) = R(s, π(s)) + γ
∑

s′
T(s, π(s), s′)Vπ(s′) (2.2)

In words, the Bellman optimality equation states that the value of a given state
under a certain policy is equal to the reward of that state plus the discounted
future value of the next possible states.

2.2.2 Passive and active reinforcement learning

An agent in RL can be either passive or active, or a combination of the two.
An active RL agent changes its policy, π, as it explores the environment and
learns. One method of this is the greedy approach, as explained in Section
2.2. As the agent acquires more rewards, it updates the current optimal policy
and then uses that policy to guide the next actions. It is known as greedy as it
wants to get the best policy immediately and does not want to waste time on
a sub-optimal policy.

A passive RL agent has a fixed policy and as it explores the environment
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it learns the reward, R, or transition model T [14]. Over time it will update the
policy but only once it has stored enough rewards and learnt from the current
policy.

2.2.3 Episodic and continuing tasks

Episodic tasks are tasks with a start point and an end point, or in RL terms, an
initial state and a terminal state. Most games where an RL agent is asked to
learn are episodic tasks. Continuous tasks go on forever and have no terminal
state, such as an agent which must learn the difficult task of autonomous stock
trading [15].

2.2.4 Online and offline learning

Online learning is when the model is trained as the data is gathered, whereas
offline learning is training a model from a static dataset.

In terms of RL, online learning would be to update the model and train
it after every step or action is executed. Each time the agent executes
subsequent actions, it is using the new, updated model.

This is different from offline, where the same model is used for multiple
actions and only updated after a certain number of episodes or actions. This
can be done by storing the history of the agent and having a mass update of
the policy.

2.2.5 Model-based and model-free learning

The difference between model-based and model-free learning is that with
model-based the agent is trying to understand the entire environment and
how it works, essentially creating model for the environment. This type
of learning tries to learn two aspects of the world, the transition function
between states, and the reward function. Using these functions, the agent is
able to predict the reward it will receive and the next state, and can therefore
plan accordingly.

With model free, instead of trying to understand the entire environment,
the agent simply learns by trial and error and learns a policy according to the
current state. The Q-learning algorithm, which is used in our experiments, is a
model free method.
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2.2.6 Exploration and exploitation tradeoff

Exploration is acting, be it randomly or in a deterministic manner, in order
to explore unseen areas of the environment to update what is known about
the environment. Exploitation, on the other hand, is acting solely in a way to
maximise the return based on the current understanding of the environment.
The trade off between exploration and exploitation is the problem that
separates RL from supervised and unsupervised learning [11]. The ε-greedy
policy provides a way to manage the two ideas, and allow the agent to perform
well in both aspects.

2.3 Reinforcement learning methods

There are three fundamental methods of RL. Understanding these will allow
one to easily grasp an understanding of the more complex methods.

Dynamic programming: This type of method is well developed mathematically
but requires a complete and accurate model of the environment [11]. This
incorporates model-based learning and planning methods.

Monte Carlo: These methods are simple and do not require a model of
the environment. They are also not well suited for step-by-step incremental
computation [11]. With Monte Carlo, the agent only receives rewards at the
end of an episode. The agent looks at the total cumulative reward, GT , to see
how well it performed, and begins the new episode with that newly acquired
knowledge. A general equation for Monte Carlo is shown with equation 2.3.

V(St) ← V(St) + α[Gt − V(St)]. (2.3)

Temporal difference (TD) learning: These require no model of the environment
and are fully incremental methods, but are more complex to analyse than
Monte Carlo methods [11]. If an agent learns at each time step, this method
is known as TD(0), however, experience can be gained and learnt through a
batch update with N time steps of experience being TD(N). As N approaches
infinity, or simply the end of the episode at time step T (N → T), TD will
effectively be the Monte Carlo approach. Equation 2.4 shows a general form
of a TD learning equation.

V(St) ← V(St) + α[Rt+1 + γV(St+1 − V(St))]. (2.4)

15

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND

RL Methods

     
    Value Based Model Based   Policy Based Actor Critic

DQN

DDQN

Q Learning A3C

DPG

DDPG

REINFORCE

Planning

MPC
Model Predictive ControlDeterministic Policy GradientDeep Q Network

Asynchronous Advantage 
Actor-Critic

Dueling DQN Dueling DPG

'Quality' learning
Policy Gradient

Figure 2.4: The different types of reinforcement learning methods and the most
popular algorithms of each method type.

With the gained knowledge of these fundamental method types, we now
discuss the specific algorithms which fall into the categories shown in Figure
2.4 of value based, policy based and actor critic. Model-based is not further
discussed as we focus on model-free methods.

2.3.1 Value based

A value based method is based on TD learning, with the premise of learning
the value function. The value function calculates the discounted return that an
agent will receive at each given state, with the general form of equation 2.5.

π(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+2 + ...|St = s] (2.5)

Q-learning is a value based algorithm which forms the fundamental approach
to our algorithm. Being a value based algorithm means there is no need for a
model of the environment and it is an iterative method used to calculate the
‘quality’ of each state-action pair.

A simple form of Q-learning could be thought of as a lookup table, or
Q-matrix, where the values of the matrix is the Q values for each state-action
pair. The dimensions of the matrix is sttes × ctons, with a reward matrix
also defined with the same dimensions. Starting from the initial state of the
environment and iterating through the formula shown in equation 2.6 (with
pseudocode provided in Section 3.1.2), over many episodes, the randomly
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initialised Q values will begin to represent the actual Q values of each
state-action pair.

Q(s, ) = Q(s, ) + α[R(s, ) + γmx


Q′(s′, ′) − Q(s, )] (2.6)

The idea of a deep Q network (DQN), is using the iterative method of Q-learning
to train a deep neural network, which is explained in Section 2.4. Effectively,
a DQN is using the state of the game as the input to the neural network, and
the actions of the agent as the output.

2.3.2 Policy based

Rather than trying to learn the value of an action or state, policy based
methods learn the policy, π, directly. This is considered a Monte Carlo
method of learning, meaning the agent first collects data from an entire
episode and thereafter performs calculations and updates the model at the
end of that episode [12]. Algorithms such as the policy gradient method
and the REINFORCE algorithm fall under policy based methods, as both solely
evaluates and updates the agent’s policy.

2.3.3 Actor critic method

The actor critic method is a combination of value based and policy based as
depicted in Figure 2.4. The method uses two policies to learn, a behavioural
policy and an estimation policy. This is also known as an off-policy method as
the policy used to perform actions is separate to the policy which is learning
and improving. A method which has one policy is an on-policy method as it
learns the policy while using it to generate the actions.

The critic (the estimation policy) evaluates the actor’s actions and behaves
similar to a value based algorithm by estimating the value function as the
actor explores the environment. The actor (the behavioural policy) acts using
the same policy for a given time or a certain number of episodes, learning the
most from the policy and performing updates at the end from the knowledge
learnt by the critic. Methods for this include the advantage actor critic (A2C)
and the asynchronous A2C (A3C).

2.3.4 Genetic algorithm and neuroevolution

Another method of an agent ‘learning’ is to use a genetic algorithm. This does
not fall under RL as it differs greatly at a fundamental level, but can however
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yield similar results when dealing with simple environments.

A genetic algorithm is a method where many agents are created with a
variety of brain parameters known as genes, or to use a term similar to RL,
policies. These agents are then all put into the same environment with the
same goal and allowed to explore by themselves. Whichever agent or set of
agents are closest to the goal, or are deemed to have succeeded the most, are
selected and a portion or their genes is shared amongst the new generation
of agents with a degree of randomness or mutation, attempting to build a
stronger agent.

This algorithm is derived from Darwinian Natural Selection [16], which is
colloquially termed survival of the fittest, and is an evolutionary method.
Evolving policies do not learn while interacting with the environment and is
therefore not well suited for large RL tasks in general.

Neuroevolution is a technique of combing genetic algorithms and neural
networks. The neural network acts like the genes of an agent, with the
stronger selected networks sharing neurons with slight mutation over multiple
episodes or generations of agents. This method requires a large amount
of computational power as one will have many agents acting in the same
environment all evolving to achieve one task.

2.3.5 Inverse reinforcement learning

With a better understanding of RL, let’s briefly explain the other possible
approach to achieve our research objective, inverse reinforcement learning
(IRL).

With IRL, the goal is to use expert demonstrations in order to infer a reward
function [17]. Each episode that an expert performs is characterised by the
states, s, and actions, , of that expert’s demonstration, grouped into the
trajectory, τ, shown in equation 2.7. The full set of all experts demonstrations,
D, performed under the optimal policy, π∗, is shown in equation 2.8. Using
this data, the goal is to calculate the reward represented in equation 2.9.

τ = {s1, 1, ..., st, t, ..., sT}, (2.7)

D = {τ} ∼ π∗, (2.8)

Rϕ(τ) =
∑

t

rϕ(st, t). (2.9)
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The main idea when using IRL methods, such as maximum likelihood or
maximum entropy IRL, is that we cannot simply mimic the actions of the
expert. One reason for this is that the expert might not be perfect or behave
in an optimal manner, and therefore IRL is normally a good starting point
for solving RL problems. Another reason not to mimic the expert is the
environment might be stochastic and the agent might not have been exposed
to a specific state before and will have to act accordingly.

The process of gathering data from experts, or crowdsourcing, is an area
of concern on its own. The amount of data needed for an IRL method is less
than that of an RL method, based on the fact that the agent is assumed to
be operating under an optimal policy. Although, depending on the task, the
optimal policy might differ, and if the optimal policies differ greatly, the agent
might find it challenging to learn from the experts.

Preprocessing the data gathered is a step in the ML process that is most
often overlooked or its importance underestimated. It is ensuring that the
data is set up correctly in the best format with no duplicates. The data that is
duplicated or redundant should be carefully discarded.

In summary, gathering data from people is an ethical and administrative
challenge. Learning from experts might also limit the agent’s ability to learn
as it might be learning from a sub-optimal policy. Since we have chosen to
use an RL approach, IRL is not discussed in depth.

2.4 Neural networks

A neural network (NN) is a massive function approximator. An input is given to
the network and it provides an output. Neural networks, shown in Figure 2.5,
are inspired by the way a brain works, with the values in the NN referred to as
neurons or nodes, connected by weights and added biases. Each layer goes
through a similar calculation in the forward pass shown in equation 2.10, with
X representing the input nodes, W and B representing the weights and biases
respectively, and the function, ƒ , representing the activation function.

y = ƒ (
n
∑

=1

(W × X) + B) (2.10)
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Input layer
Hidden layers Output layer

No. of inputs No. of outputs

Figure 2.5: A standard fully connected neural network layout, with an input
layer, two hidden layers, and an output layer.

2.4.1 Activation functions

An activation function is a non-linear function which changes any input
number into a number between 0 and 1, or in some cases, between −1 and
1. This is useful for NNs as the values in the nodes work best when within
this number range. When an NN has many layers, and the values go through
the calculation for each layer, shown in equation 2.10, it is susceptable to
enlarging to infinity or going to an extremely small value which computers
cannot handle.

There are many activation functions, with the most popular ones listed
from equation 2.11 - 2.15. The ReLU (Rectified Linear Unit) and Leaky ReLU
functions have gained major popularity recently, however a softmax function
is still widely used at the output of the NN, with the ReLU being the main
choice between the layers.

Sigmoid function:

σ() =
1

1 + e−
=

e

e + 1
(2.11)

ReLU:

ReLU() =m(0, ), (2.12)
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Leaky ReLU:

ReLUeky() =

(

, if  > 0,

0.01, otherwise.
(2.13)

Softmax:

S() =
e
∑

j e
j

(2.14)

Tanh:

ƒ () =
e − e−

e + e−
=
1 − e−2

1 + e−2
(2.15)

2.4.2 Backpropagation

In order for a neural network to learn a given task, the network has to know
how to evaluate itself. For this we have an error that the network uses called
the cost function, J(θ). It is a function used to represent the difference between
what the network predicted and the actual or labelled value. The larger the
cost function, the worse the network is at performing that task. The goal is to
minimise the value of the cost function and that is the task of backpropagation.

Backpropagation effectively determines which weights and biases of the
network to change and by how much in order to minimise the given cost
function. It achieves this by propagating the gradient of the cost function
backwards through the network, hence the name backpropagation.

2.4.3 Architecture

There are multiple types of architectures of NNs, all of which have different
use cases. The architecture depicts the number of layers, the number nodes
in each layer, the input configuration and different aspects of other types of
networks. Although Figure 2.5 shows the general form of a fully connected
feed-forward neural network, it can take the form of more complicated
structures or architectures. These include convolutional neural networks
(CNNs), which are useful for scanning images or multi-dimensional matrices
and recurrent neural networks (RNNs), which are useful for natural language
processing (NLP) as it is able to make use of information of previous time
events.

A convolutional neural network is better than a fully connected neural
network at extracting features from a matrix or an image, which is a matrix
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of RGB pixel values. Instead of simply flattening the matrix to have an input
layer such as the one shown in Figure 2.5, the data in the matrix is kept in
the same relative location as a kernel or filter passes over it. This kernel,
usually 3 × 3 in size, shifts over the input matrix by a chosen stride length
and performs the mathematical operation of convolution. The goal of this
convolutional layer is to extract high level features from the input matrix [18].
Between each convolutional layer is normally a max-pooling layer. This is
done to downsample the matrix with the main goal of reducing parameters
and computation.

2.4.4 Optimisation algorithms

Optimisation algorithms are methods used for backpropagation. There
are many types of optimisation algorithms with all having advantages and
disadvantages. One of the common optimisation algorithms is gradient
descent due to its simplicity, while others include Adam, RMSProp and
AdaGrad.

Another method for accelerating the learning process is to use batch
updates. Mini-batch updates can use gradient descent to update the model
for a batch of n training examples. This improves training as the gradient
calculated is more accurate based on the use of a larger data set being used
in each batch as opposed to a single training example.

2.4.5 Regularisation and normalisation

In order to stop the model from overfitting on the training data, one can use a
technique known as regularisation. This improves the generalising capabilities
of the model, and therefore allows it to predict more accurately on previously
unseen data. Dropout is a regularisation technique, where random nodes are
not activated during a full pass of the learning process. This allows the model
to not only rely on specific nodes and creates a broader knowledge of the task
which might improve generalisation.

Normalisation is usually used at the output of a NN. It scales the output
to values between 0 and 1 which can be useful for the error function to remain
within a certain range.
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2.4.6 Deep learning

Deep learning is simply a term to illustrate that the network used has many
layers and hence referred to as ‘deep’. As computational power increases, the
process of deep learning becomes easier and more achievable.

2.5 Work related specifically to our approach

2.5.1 Dojo learning

The word dojo is a Japanese term primarily used in martial arts, meaning ‘place
of the way’. It refers to a space of immersive training or learning, and the term
has caught on in the field of software development. A coding dojo refers to a
place for groups of programmers to practice their coding skills. The term dojo
learning is chosen to define the style of learning our agent undertakes, as it
learns different skills in independent and isolated training environments and
uses the learnt skills in a separate environment. The method of dojo learning
is further explained in the next chapter.

2.5.2 Hierarchical task network

An HTN is an approach to automated planning in AI. It mainly consists of three
levels of tasks, but can contain up to N levels if the situation requires. The first
level is the primitive actions or tasks. This is the building blocks of all tasks
to follow. Translated to Minecraft, this is the actions being done every tick
(one time step in Minecraft), for example to move forward. The next level is
the compound tasks. This is a set or combination of primitive actions in some
specified order to create a more intuitive task. In Minecraft, this could be to
move two blocks forward. The last level is a goal or achievement task. This is
the highest level of a task that can be performed autonomously and ensures
that a goal is achieved before declaring the task complete. Translated to the
Minecraft environment this would be to move to a specific location.

This idea of an HTN, which bears a resemblance to symbolic task acquisition
[19], is beneficial when using a DQN in Minecraft. In order to make training
and running the RL model a more efficient process in Minecraft, we could use
an HTN. Instead of running through the NN to decide on an action every tick,
it could be used every time the agent has finished executing a compound
action. This would also be more intuitive to humans. Instead of learning a
different action every tick, as the game state does not change much between
ticks, it could learn the next compound action once it has fully completed the
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previous one. However, a disadvantage of an HTN is that the primitives, the
compound task and the goal need to be well defined, which might be limiting
in the world of Minecraft.

2.5.3 Transfer learning

Learning a new model from scratch can be time consuming and often
unnecessary. The idea of transfer learning utilises the knowledge that the two
models might share similar feature extractions or primitive layers in the NN,
it might even be identical. Let us use an example of an MNIST digit identifier.
With a convolutional layer, as described in Section 2.4.3, the filters might pick
up edges and curves based on these numbers. Now suppose a new model
is created to identify the first ten letters of the Greek alphabet. There is a
high possibility the filters will learn the same sort of primitive lines and curves,
therefore instead of retraining the new model from a blank slate, we transfer
the first layer of filters to speed up the training process of the new model.

2.5.4 Curriculum learning

Curriculum learning is a special case of transfer learning in which the agent
learns smaller simpler tasks and gradually builds up complexity in tasks in
order to increase the performance or learning speed of a more complex task
[20]. This method of learning derives directly from the human education
system.

One problem with curriculum learning is the agent has a high chance of
forgetting previously learnt skills. If, for example, the skill for learning how
to tie a shoelace is transferred to a model which now learns how to walk, the
agent might forget how to tie the shoelace. This forgetful nature is due to the
model learning a new skill in a new environment on the same neural network
and overwriting the previously learnt skill.

2.5.5 Options framework

The options framework stems from SMDPs, explained in Section 2.2.1, in which
the transition from one state to another has a certain duration and is not
instant such as MDPs. Options refer to the combination of primitive actions
which may have an extended duration. It consists of a policy (π), a terminating
condition (β) and an initiation set () [21]. Once an option is chosen, and the
state is present in the initiation set, the actions of the agent are decided by
that option’s policy, and terminates after a reaching a terminating condition,
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often being a specified time duration. Thereafter, a new option is chosen, and
the agent acts according to that policy, and so on, until the task is complete.

2.5.6 Limbic system

A similar idea to dojo learning in the field of psychology is the limbic system.
This is a biological system to do with the emotional response in the brain. The
main system comprises of the hypothalamus, amygdala, hippocampus and
the thalamus. This system learns in a similar way to the dojo learning system
we are investigating, by learning a reaction independently of the rest of the
environment, and bringing the knowledge together when required [22].

2.6 Implementation and software

2.6.1 Machine learning libraries

There are many machine learning libraries to use when implementing an ML
approach. Instead of creating a library of functions that can handle matrix
manipulation efficiently and quickly, we simply use what is already developed,
available and used in industry and other research fields.

An ML library is a programming library that can do matrix calculations
efficiently and has NN functionality of everything discussed in Section 2.4.
Many of them are high level libraries and require minimal knowledge of ML
and the mathematical formulas used. This is one of the criticisms of these
types of libraries, it makes it easy for the developer, but does not give them
full control – unless it is built from source.

TensorFlow, which is developed by Google [23], is our library of choice.
However, Keras, Theano and PyTorch are other available libraries. TensorFlow
is the library most widely used in the industry and is relatively new compared
to others. It is also available in many programming languages, including
Python, Java and JavaScript. PyTorch, and recently TensorFlow 2.0, has good
debugging functionality and is great for research purposes. Keras has a high
level API, and is based on other libraries, whereas Theano is not as popular
as it once was. Therefore TensorFlow is chosen based on popularity and the
availability in multiple programming languages, as Minecraft is Java based.
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2.6.2 Minecraft environment

Many of the current breakthroughs in ML and AI have come from the gaming
world. This is no coincidence. The gaming world offers the developer a chance
to encounter problems with limited amount of controls and variables. This
shortens the length of time needed for simulation while still being able to
optimise gaming scenarios.

Minecraft was created by the founder of Mojang AB, Markus "Notch" Persson,
in 2011. It is a sandbox construction game which allows the player to roam
freely and create anything at will [24]. It is a game which involves a player
roaming a randomly and procedurally generated world, building structures
and creating artwork. Technically speaking there is an ‘end goal’ to the game,
which is accomplished by defeating the ender dragon. But few people strive to
accomplish this as Minecraft has so much more to offer when creating a new
world. It can be played in single player, multiplayer and creative mode, the
latter of which allows the player to have unlimited resources, fly, and create
anything they want. The main mode is survival, which has one main objective
– to survive. During the day, the player has to hurry and gather resources in
order to survive the monster infested night time. The day-night cycle is 20
minutes in total – 10 for day time and 10 for night [24].

For our purposes, it is only necessary to understand the basics of survival as
the long-term goal of this research is for an agent to learn how to survive the
night in Minecraft using RL techniques.

Minecraft is chosen for its simplicity of movement, relatively simple interface
and grid-like environment. The crafting aspect allows for a large variety of
items to be created and could pose as a problem since there are many choices.
For humans, having too many choices is not always a positive, and having too
many actions for an RL agent can result in a sub-optimal performance unless
managed correctly.

A human in Minecraft, shown in Figure 2.6a measures in at 1.8 m, with
the movement speeds found in Table 2.1. It is easy to conceptualise one
meter in the virtual game world as it corresponds to one block as shown in
Figure 2.6b. The time in Minecraft is also straightforward to convert between
the real world and the virtual world. Dividing the real world time by 72 will
calculate virtual world time and using this method it is simple to calculate the
day-night cycle time shown in the following equation.
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(a) Human in Minecraft (Steve). (b) One block in Minecraft.

Figure 2.6: A Minecraft human and block. Minecraft has a variety of blocks,
which are not all the same size.

Dayreal = 24 hours

= 24 × 60 minutes

= 1440 minutes

Dayvirtual = 1440 ÷ 72 minutes

= 20 minutes

The world of Minecraft is split up into different dimensions which can be
traversed by the use of a portal. The Overworld, shown in Figure 2.7a, is the
dimension in which every player spawns and begins their Minecraft journey
[24]. Other dimensions include the Nether and the End. These dimensions are
not important for our purposes and hence will not be elaborated on any further.

The Overworld is subdivided into biomes which completely determine all
the aspects of the virtual world, with the desert having lots of sand, the forest
having an abundance of trees, etc. [24]

A chunk is a section of the map measuring 16 x 16 x 256 blocks, with
a total of 65536 blocks, and is a way of splitting up the world into more
manageable pieces. The render distance uses a scale of chunks and the
player decides how many chunks they want to render [24]. The render
distance might affect an algorithm attempting the use the pixels displayed on
the screen as an input to a neural network.

The coordinate system in Minecraft has the x-axis and z-axis in the horizontal
plane depicting the negative to positive direction as West to East and North
to South respectively. The y-axis sits in the vertical plane with upwards
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(a) The Overworld dimension in Minecraft. (b) One isolated Chunk in
Minecraft.

Figure 2.7: The Minecraft Overworld dimension and one chunk of its landscape.

Reference point

Figure 2.8: A representation of the coordinate system within Minecraft.

representing the positive direction. The reference point for each block is the
most negative 3-D coordinate. This is visually represented in Figure 2.8 with
the North-West corner being the reference point.

2.6.3 A* algorithm

Within Minecraft, the mobs need a method of locating the player and moving
towards them. In our experiments, we create zombies that need a method of
finding the agent in the environment and for this we use the A* (pronounced
A-star) pathfinding algorithm. There are a many pathfinding or search
algorithms in graph theory, such as breadth-first search, Dijkstra, and others,
but the A* algorithm is one of the more efficient algorithms which is useful for
computing many times within an episode. Without going into any detail, the
A* algorithm uses heuristics to find the optimal best guess for the next step
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Table 2.1: A summary of the measurements in Minecraft.

Description Measurement

1 block 1 m
1 day-night cycle 20 minutes

Walking speed 4.317 m/s
Sprinting speed 5.612 m/s
Sneaking speed 1.295 m/s
Jumping height 1.252 m

Chunk size 16x16x256 m
Human height (standing) 1.8 m
Human height (sneaking) 1.65 m

with the hope of finding the target in the least number of steps [25].

2.6.4 Modifications and source code

With Minecraft being the popular game it is, creators and game developers
want to add their own spin on it and modify the way they interact with the
world.

A mod is a modification done on the Minecraft client side and is typically
used to make the world more interesting and fun to play in, while a plugin
is a modification on the server side and is typically used to make the game
run smoothly and more efficiently. These are typical uses but not the rule, as
mods, such as Optifine, are used to optimise the game, and plugins can also
be used to make the game more fun, or modify the rules of the server for a
Minecraft minigame.

The main difference between a mod and a plugin is that a player can
join a server which has a specific plugin without having to install anything on
the client side, whereas to join a server with a mod, the player will need the
mod installed on the client side for it to take effect.

This terminology only holds in Minecraft development, as the term mod,
plugin, add-on, etc. are all interchangeable in software. This distinction in
Minecraft is simply to differentiate between the two at a quick glance [26].

The three major modification platforms are Forge, Spigot, and the Minecraft
coder pack (MCP). Forge is a mod tool which enables you to create a mod for
the client side of Minecraft. Spigot, or Bukkit, is similar to Forge but focuses
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Table 2.2: Pros and cons of the various modding tools for Minecraft.

Forge Spigot MCP

Pros Client side mod Server side mod Can change the
source code

Cons Cannot change
source code

Cannot change
source code

Not easily
distributable

(a) Single player configuration (b) Multiplayer configuration

Figure 2.9: The client server relationship in Minecraft when in single player
mode and multiplayer mode.

on the server side. The MCP is the decompiled source code of Minecraft and
allows one to delve into the source code and alter it in any way. Table 2.2
summarises the different modding tools.

Client and server

There are four main terms used when dealing with clients and servers in
Minecraft. Physical server, also known as the dedicated server, is a physical
server out in the real world which runs the server side code of Minecraft.
Physical client, is the client application of Minecraft, and runs on the players
computer. A logical server is the part of the code which is responsible for all
game logic, mobs and world updates. The logical client is the part of the code
which reads the input controls from the player and relays them to the logical
server [27].

The client-server connection is always present regardless of playing in
single player or multiplayer mode. Figure 2.9 depicts the relationship between
clients and servers in Minecraft.
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Socket
port: 5555

Minecraft
TensorFlow
(RL Model)

JAVA PYTHON

State & Reward
Action

Figure 2.10: A socket server-client and Java-Python communication diagram.

Ticks

A tick is essentially one time step in Minecraft. By default the Minecraft server
runs at 20 ticks per second, with 24000 ticks per Minecraft day. In order to
train a Minecraft RL agent, the more times the agent can simulate a day’s
events the more efficient the learning process. One limit for this is the rate at
which the Minecraft server runs, also known as the tick rate. Apart from the
tick rate, the other limitation for simulation time is the computing hardware
used for the simulations, and the efficiency of the learning algorithm.

Sockets

A socket is a connection tool that can be used to communicate between any
two hosts or applications, in this case Java and Python. It creates a simple
local server on localhost (IPv4 address of 127.0.0.1) and communicates via
the same port. This is useful as Minecraft is Java based and most machine
learning algorithms are well supported and easy to implement in Python. The
only information that needs to be transferred is the state and reward from
Java to Python, and the action taken from Python to Java. This is depicted in
Figure 2.10.

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are two
different methods of sending data over a network or through sockets. UDP
is unreliable at times, and can lose data when sending across a network. To
ensure that no packets are lost, TCP is a better option and is used in our socket
network.
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2.6.5 Synchronising code

When creating sockets and having Python and Java communicate with each
other, Minecraft in Java runs at a certain rate and the socket communicates
at a certain rate. When increasing the rate at which Minecraft runs using a
tick rate changer mod, the Minecraft code runs significantly faster than the
sockets that are used to communicate between the two languages. When the
agent completes an action, it needs to send the state through to Python and
receive an action back and execute it. The two rates need to be synchronised
when running to minimise errors with timing.

In order to synchronise the code, the synchronize keyword in Java can
be used with a lock on an object. The major problem is when synchronize is
used on the main thread of code, the server thread is still running and when
the main thread is notified, it simply updates the display with what happened
in the background in the server thread. When using the wait() function on
the server thread, which is where all the game logic resides, when notify() is
used Minecraft realises that the client and server are out of sync, and simply
updates the client to ‘catch up’ with the server by skipping ticks and it makes
the wait() notify() technique null and void.

A method of pausing Minecraft while the game is in focus is possible.
Pausing the game of Minecraft stops all threads from continuing the game
logic. This is done by clicking the escape (ESC) key virtually using a Robot
Object in Java, essentially using software to click buttons on the keyboard
which is bound to actions in Minecraft. This method can synchronise Minecraft
with the socket network with minor impact on the overall performance.

2.7 Chapter summary

In this chapter we presented an overview of the fundamentals of reinforcement
learning and neural networks. In particular the value-based learning methods
Q-learning and deep Q-learning with a DQN were discussed.

We introduced the basic concepts of Minecraft, the virtual environment
in which we train our RL agents. We discussed the issues of how the deep
learning software (which is Python based) will interface with the Minecraft
virtual environment. Lastly we discussed different aspects related to learning
in virtual environments.
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Approach

In this chapter we discuss the approach taken to determine the experiments
and experimental setup, discussed in the next chapter. We first make a brief
note of the snake experiment used to learn about the Q-learning algorithm,
and the Python-Java environment setup before the use of Project Malmo.
Lastly we discuss the final approach to the experiment setup, and the
decisions taken to arrive at that point.

Based on the ideas of the previous chapter, Chapter 2, there are numerous
ways to approach our goal of having an agent perform well in a complex
environment. Reinforcement learning methods are favoured over inverse
reinforcement learning as gathering real world data would not only prove
challenging and time consuming, but would limit the success of the agent in
the long run as it might be learning from sub-optimal policies by humans.

The goal of this chapter is to arrive at an approach for testing dojo learning.
We take a step by step method of building up the complexity of a model by
starting with the simple game of Snake.

3.1 Snake – a Python minigame

Before attempting to solve the Minecraft environment using RL, a snake game
is developed in Python using the PyGame library [28] in order to run tests on
Q-learning.

Snake is a classic game where the player takes control of the head of a
snake and directs it to some food in the world using directional buttons,
usually four inputs (up, down, left and right). As the snake consumes the food,
it grows its tail by one unit length. The game is over when the snake bumps
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Figure 3.1: A snake minigame in Python created using the PyGame library.

into itself or into an obstacle and the player is victorious when all the blocks
are occupied by the snake’s body.

As discussed in Section 2.3.1, Q-learning has a Q matrix of dimensions
sttes × ctons. Without a tail and solely with the head of the snake
gathering food in a ten by ten grid, the number of states is quite large at
9900. This number is calculated by the 100 possible positions for the snake’s
head and 100 positions for the piece of food that work out to 10000 possible
arrangements, noting that the food cannot be within the same block as the
head. If one includes the tail, the number of states grows to be a massive
number. With the knowledge that we need to store a matrix with the number
of states as the rows, using Q-learning as a lookup table is inefficient when
dealing with this snake game, but it is a good place to start.

3.1.1 Objective and motivation

The objective for this minigame is to understand the fundamentals of
Q-learning and the ML libraries, namely TensorFlow, available before delving
into the complex world of Minecraft.

The games Snake and Minecraft are similar in that they are both grid worlds,
with Snake being discrete and Minecraft being continuous. If the Minecraft
controls were changed to discrete, they would have similar approaches to
solve the RL environment. The idea behind using Snake is the ability to
slowly grow the complexity of the method used to solve Snake, and grow the
complexity of the environment of Snake to mimic Minecraft. Once a decent RL
method is created and is functional in a simple game, we transfer the method
over to Minecraft.
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3.1.2 Q-learning table

A simple Q-learning algorithm was implemented as a baseline. Due to the
large state space in a simple snake game with a grid size of 10 × 10 units,
the game is simplified to just the head and a piece of food. This resulted in
a total of approximately 10000 states (s). The number of possible actions ()
is 4, with up, down, left and right. This results in a Q matrix of dimensions
(10000 × 4).

The rewards are −1 for every move, forcing the snake to reach the food
in the shortest time, and a reward of 100 for when the head reaches the food.
Since there are no obstacles or tail, there is no crashing penalty.

A time limit of 500 time steps for each episode was given, and the test
ran using the ε-greedy policy for one million episodes with the following
hyperparameters, α = 0.3 (learning rate), γ = 0.99 (discount factor),
ε = 0.1 (probabilty of exploring a random action). This test was successful
and set the benchmark for the later experiments. The code for this is shown
in Listing 3.1.

3.1.3 Action space dilemma

Initially when the snake game was created it had 4 possible actions, up, down,
left and right. This would seem intuitive because of the grid world nature of
the game. However, when the snake begins growing a tail, ‘backwards’ is no
longer an option.

When playing the game with the tail functionality enabled the player
could go backwards and kill itself. Some code was implemented that made
it impossible to go backwards and if the player chose the backwards action
it would effectively do nothing, i.e. continue going forward. This created an
imbalance when exploring as the agent would go forward 50% of the time and
left or right, with respect to the snake’s current direction, the remaining time.

When the snake game changed to have three possible actions of forward, left
and right it was able to navigate the world with just these three actions, but
there was a problem that was not easily noticable. The state consisted of the
snake’s position and the food’s position. With this, the snake never had any
idea which direction it was facing. This meant that with the same action in
the same state, there was not a 100% certainty that it would transition to the
same next state. This gives a lot of unforeseen bugs and is not a good method
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1 def main( ) :
2 RENDER_TO_SCREEN = False
3 MAX_TIME = 500
4 env = Environment(True , rate = 10, render = RENDER_TO_SCREEN)
5 i f RENDER_TO_SCREEN:
6 env. prerender ( )
7 Q = np. zeros ( (env. number_of_states ( ) , env. number_of_actions ( ) ) )
8 alpha = 0.3 # learning rate
9 gamma = 0.99 # discount factor

10 epsilon = 0.1 # probabil ity to choose random action over best action
11 for episode in range(1000000) :
12 state , mytime = env. reset ( )
13 done = False
14 i f episode % 10000 == 0:
15 print (episode)
16 while not done:
17 i f RENDER_TO_SCREEN:
18 env. render ( )
19 i f np.random. rand ( ) <= epsilon :
20 action = env.sample( )
21 else :
22 action = np.argmax(Q[env. state_index ( state ) ] )
23 new_state , reward , done, myTime = env. step ( action )
24 Q[env. state_index ( state ) , action ] += alpha * (reward + gamma *

25 np.max(Q[env. state_index (new_state) ] ) − Q[env. state_index ( state ) , action ] )
26 state = new_state
27 i f myTime == MAX_TIME:
28 done = True
29 np. savetxt ( "Qmatrix_random_start . txt " , Q. astype(np. f loat ) , fmt=’%f ’ , delimiter = " " )

Listing 3.1: Q-learning main() function.

of implementing a Q-learning algorithm, as the agent can never learn what
the best action is in a given state.

The actions are increased to five possible actions, up, down, left, right
and do nothing. This allows the snake to always transition to the same
next state regardless of its current direction, and the position of all the tail
segments are added into the state which can show the snake which direction
is ‘backwards’. However, the Q-value lookup table was too large for this idea,
and therefore the function approximator is used. This is a single layer neural
network, with no activation function.

3.1.4 Function approximator

Between Q-learning and deep Q networks reside linear function approximators.
A linear approximator is an NN with one hidden layer and no activation
function, npt→ ƒ (npt)→ otpt.

There are various NN architectures, discussed in Section 2.4, which have
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different objectives, strengths and weaknesses. The architecture chosen for
this design has an input layer of 300 nodes, comprising of three one-hot-type
vectors flattened to represent the grid and the position of the head, food and
tail respectively, one hidden layer of 128 nodes, and an output layer or five
actions. Whichever output node had the highest value would be the most
favourable action in that current state.

This method achieved the goal on a smaller grid size of 6 x 6. But the
agent could not grow its tail more than four or five on a grid size larger than 6
x 6, therefore it was time to move to a DQN, in order to learn a more complex,
non-linear function.

3.1.5 Deep neural network

With the increase in the number of hidden layers to a total of three and the
creation of a deep neural network (DNN), the model works well on a 6 x 6 grid
up to an 8 x 8 grid, with the hyperparameters set to 0.01 learning rate (α), 0.99
discount factor (γ) and epsilon following a linear function, shown in equation
3.1, decreasing from 0.9 to 0.1 across 50% of the training. It is evident that this
small model was not working well for larger grid sizes. It was struggling to find
the food in a decent time, more often than not converging on a sub-optimal
local minimum and simply oscillating back and forth between two locations on
the grid. This could be due to the input layer style as only one of the many
input nodes represents the food block, while there are many input nodes that
represent a vacant space. The training function is shown in Listing 3.2.

Hyperparameter functions

The randomness in the learning process comes from the epsilon (ε) value. This
determines the exploration-exploitation ratio, as discussed in Section 2.2.6.
One method that seems to increase performance is to have a function for the
ε variable and decrease it over time as the agent learns. The high random
value initially is to allow the agent to visit as many states as possible and let
the agent have an idea of the environment and where the food is located, and
slowly decrease the value to rely more on exploitation.

ε =











−0.9

0.5 × epsodetot
× epsode, if epsodes ≤ 50% epsodetot,

0.1, otherwise.
(3.1)
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1

2 def train ( self , model, sess ) :
3

4 memory = sel f .memory[ se l f .memCntr % sel f .memSize−1]
5

6 output_vector = sess . run(model . q_values , feed_dict={model . input : memory[0]})
7

8 i f memory[3] :
9 output_vector [ : ,memory[1]] = memory[2]

10 else :
11 # Gathering the now current state ’s action−value vector
12 y_prime = sess . run(model . q_values , feed_dict={model . input : memory[4]})
13

14 # Equation for training
15 maxq = sess . run(model .y_prime_max, feed_dict={model . actions : y_prime})
16

17 # RL (Bellman) Equation
18 output_vector [ : ,memory[1]] = memory[2] + ( se l f .GAMMA * maxq)
19

20 _ , e = sess . run ( [model . optimizer , model . error ] ,
21 feed_dict={model . input : memory[0] , model . actions : output_vector})
22

23 return output_vector , e

Listing 3.2: DQN train() function using TensorFlow.

Normalisation

When dealing with a DNN, it is important to normalise the output data for an RL
algorithm. In order for the agent to learn effectively and change action values
quicker, it would be beneficial to have the action values within the same range
– in this case, between 0 and 1 – with small values referring to a bad action
and higher values referring to the possible good actions to take in the given
state. The range of output values can be quite large if not normalised and that
would affect the stability of the Q-learning equation.

3.1.6 Convolutional neural network

In order for this method to scale into the world of Minecraft, the input layers
of the neural network are reworked to a CNN. The snake game consists of
three layers in the CNN. Each layer is a 2-D one-hot array of positions of
interest in the 10 x 10 grid – one layer representing the head of the snake,
one representing the food, and the other representing the position of the tail
or obstacles. These stack together to create a 3-D tensor, three layers of a 10
x 10 grid resulting in a tensor size of [10,10,3].

This tensor is the new input to the neural network with two convolutional
layers, flattened to go into the two fully connected layers and finally the
output layer.
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3.2 Initial Minecraft environment

The Python snake game implementation is successful as it achieved its
objective and helped acquire insight into Q-learning for a grid world game.
In order to achieve the same success in the world of Minecraft, we train an
agent in Minecraft to play a game similar to snake. The agent would spawn on
a grid and given the coordinates, the agent’s goal is to move to the red block.
This has two large complications, one is that the action space in Minecraft is
continuous and the other is that Minecraft is a Java based program while all
the machine learning libraries are mainly Python based.

3.2.1 Snake in Minecraft

In order to follow a similar process to the one used in the snake game, we
need to run Minecraft (Java) at the same time as we run the Python Q-learning
algoritm. This is obtained by using sockets, explained in Section 2.6.4, to send
the state of Minecraft in an array over to Python in order to predict the best
action for the agent.

In order to optimise training time, the tick speed of Minecraft needed to
be increased. This was done by using a tick changer mod mentioned in
Section 2.6.4, which increases the tick speed of Minecraft on the client and
server side to as fast as the hardware could handle. This was successfully
changed from 20 ticks per second (TPS), which is the default, to around 2000
TPS.

Although the tick rate of Minecraft was successfully changed, the rate at
which the state is sent to Python and the action sent back is not increased as
the code runs on separate threads. This causes timing errors as the Python
code running the model cannot inform the agent of the best action quick
enough. This leads us to attempt to synchronise these two threads, the Python
ML code, and the Minecraft game code.

3.2.2 Minecraft threads

Minecraft is a mesh of multiple threads all running alongside each other with
the main thread, the server thread, the socket thread, and the music thread
all separate. This adds a major level of complexity to Minecraft’s source code.

Using the wait() and notify() functions built into every Java object,
we could pause and unpause the Minecraft client successfully, but the client
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or main thread, does not handle the game logic of the world and when the
game is unpaused, the entities in the world would simply teleport to where
they were on the server thread.

The server thread is what houses the main game logic loop. This controls the
positions of the entities, the blocks in the world, the health of the entities, and
so on. We can pause the server thread, but when the game was unpaused,
a message is displayed stating the server and client are out of sync, and the
server skipped as many ticks as the client went through during the pause for
the game to be synchronised again.

This makes sense in terms of gameplay. If the server lags, it simply catches up
to the client and no gameplay is lost with network lag in multiplayer. However,
this proved challenging to stop the game in Forge or Spigot using code to
synchronise the different threads.

3.2.3 Lock step

The entire training process and running of the model relies on the
synchronisation of Minecraft to the Python algorithm. This requires a
mechanism known as lock step. Simply put, Minecraft sends some information
to Python and it needs to wait, or be ‘locked’, and let Python run its code,
or ‘step’ through its code. When Python is done, the process is mirrored on
the other side, with Python sending its data to Minecraft (the sending of data
normally occurs at the end of the step), and subsequently locks itself in order
for Minecraft to step though its process and as a result, the program is fully
synchronised.

3.2.4 Training limitation

When running the model and showing the results after the training is complete,
we can run the Minecraft and Python setup easily through the socket network
as this is fast enough for 20 TPS. However, when training the model a better
implementation for this type of communication is necessary. The lock step
method for synchronising the code on Python side and Java side worked
perfectly, but is still time consuming. This lead us to use the Project Malmo, as
training in Minecraft proved to be quite the challenge.
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3.3 Project Malmo

The socket network and lock step method created for the communication
between Python and Java had a few drawbacks which limited the training
efficiency of the Minecraft world simulation. Instead of developing a
communication structure between the two platforms, we use an existing one.
Project Malmo is a reinforcement learning platform developed by Microsoft [29]
and built on top of Minecraft. It was designed to support fundamental research
in AI, mainly reinforcement learning algorithms. The platform has numerous
minigame environments setup for testing various algorithms.

3.3.1 Disabling rendering

The training in Project Malmo was faster and more efficient than our own
socket network communications setup, but was still significantly slower than
the snake training environment which is running solely on the Python side.

In order to improve training time, Minecraft needs to run without
rendering as it is a resource intensive process. We are able
to run the Minecraft client without rendering it to screen using
xvfb (X virtual framebuffer) and the following command in Linux,
$ xvfb-run -a -e /dev/stdout -s ’-screen 0 1400x900x24’ ./launchClient.sh.
This improved training time slightly, but would still take far too long to train
for millions of episodes on our current hardware.

3.4 Python minigame

Although Project Malmo supports training really well, it is still resource heavy
and slow in resetting the environment to the initial state at the start of each
episode. With many different experiments and models that need to be run
in order to test our prediction, a fast training platform is necessary to test a
variety of models.

For this reason, a simple, low resource minigame was created using the Python
gaming library, PyGame, to mimic the Minecraft environment. With simple
discrete actions and observation information, we can train a model in the faster
PyGame version, and run the model in the real Minecraft on the Project Malmo
version. Figure 3.2 shows the same environment represented in the PyGame
environment and Project Malmo. This environment in PyGame is available to
the public on GitHub at https://github.com/Matthew-Reynard/malmo.
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Agent - "Steve"

Diamond

Lava

Obstacle

Zombie

(a) Minecraft in PyGame
- Python version.

(b) Minecraft in Project Malmo
- Java version.

Figure 3.2: The same Minecraft environment represented in both Python’s
PyGame library and Microsoft’s Project Malmo.

3.5 Final approach

With all the different tests complete, and various platforms and environments
such as those shown in Figure 3.3 tested, we are able to create an approach
to answering the research question. To recap, our goal is to test our new
method of dojo learning, which poses the question whether an RL agent will
achieve better performance in a challenging environment by first learning the
skills needed in smaller sub-environments or by learning in the complex and
challenging environment from the start.

The two networks that are compared in the experiments are that of the
dojo network, and a traditional deep Q network (DQN) which will be referred
to as the standard deep Q network. These methods are compared in both a
simple and complex environment and are explained in the Chapter 4.

3.6 Dojo environments

The goal is to learn different skills in different isolated environments or ‘dojos’,
which is similar to when a child learns different subjects at school in different
classrooms. The agent will not have any knowledge of the other learned skills,
and will only focus on the simple task at hand. The question we are trying
to answer is whether this method of learning can be more efficient and faster
than having an agent learn in a complex environment from the start. If so,
how much will this improve the training and to what extent can we expand the
range of skills the agent can learn.
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(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4

(e) Map 5 (f) Map 6 (g) Map 7 (h) Map 8

Figure 3.3: Different 6 x 6 maps for testing environment.

3.7 Dojo network architecture

In the experiments we set out to show the feasibility of our dojo network to
help an agent perform better in a complex environment. The dojo network
consists of two sections which is comprised of different modules. The first
section is the meta module, which decides which dojo skill the agent should
reference given the current state of the environment. The second section
is the different dojo modules. These modules are trained independently in
a simplified environment, with each obtaining adequate results in the given
sub-environments.

The specific Q network and architecture used for our experiments are
simple but can easily increase in complexity if needed. We show a proof of
concept here, and will explore more complex architectures and algorithms in
future work, such as Dueling DQN (DDQN) and prioritised experience replay
[30].

As previously mentioned, the dojo network consists of a number of dojo
modules each having that same network architecture with the same five
possible actions as outputs, however, these actions can also be different
actions entirely. This is then combined using a meta module with the same
main architecture shown in the module block in Figure 4.4 and the different
dojos as its outputs. Each time a dojo is selected, the appropriate input state
(i.e. a state configuration with which that dojo was trained) is then passed
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over to that dojo’s trained module and the best action is chosen. This dojo
choice occurs at every time step.

ℓxnxn

1xd0

Input
(state)

Output
(dojos)

1xa1

Output
(actions)

1xa2

1xa3

Input

Input

Input

Module

Module

Module

Module

DOJO MODULES

META MODULE

Figure 3.4: Dojo network architecture: This network has three dojo modules,
each having its own set of five possible actions. The number of possible
outputs for the dojo network is the number of unique actions that the dojo
modules have. The meta module decides which dojo module will decide on
the next action.

3.7.1 Dojo network input

The input to the dojo network can in theory be anything from the agent’s
coordinates to the raw RGB values of the screen, as long as the different dojo
modules take in the same input with which they were trained. In our case we
manually extract the positions of various blocks-of-interest (BOI) and arrange
them in an easily expandable way. A binary-style grid represents the positions
of the BOI, with each layer representing a different block type. The grid is
fixed around the position of the agent with odd value dimensions to ensure
the midpoint of the grid represents the agent.
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Figure 3.5: Detailed network input: Each layer of the 3-D array represents a
unique block-of-interest (BOI) in the grid world environment. A ‘1’ if the BOI
occupies this space and a ‘0’ otherwise. These are placed in relation to the
agents position which is always represented in the center of the first layer.

3.8 Chapter summary

In summary, the main points to note in this chapter are the creation of
the Python minigame environment created with PyGame in order to speed
up training and still allow the model to run within the world of Minecraft,
and the final approach to the experiment being the dojo network layout and
architecture that will be tested in the following chapter.
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Chapter 4

Experiments

In this chapter, we present the experiment conducted using the final approach
laid out in the previous chapter in Section 3.5 and run the tests in different
Minecraft environments. We also cover additional experiments which provide
some insight into the technique of dojo learning.

4.1 Environment setup

We test the dojo network in the Minecraft gaming environment as it provides
a baseline for RL research as well as being able to test our network’s ability to
scale in complex environments.

As metioned previously, training an agent in Project Malmo is time intensive
due to the platform’s complexity. To speed up the research, we recreate the
necessary aspects of Minecraft in a Python environment using PyGame for
training, with the trained network able to transfer and run in Project Malmo in
the same environmental setup, shown in Figure 3.2.

Two environments are created for these experiments, a simple environment,
shown in Figure 4.1a, and a complex environment, shown in Figure 4.1b.

4.1.1 The dojos

The dojo modules, or dojos, shown in Figure 3.4 are trained beforehand in
simpler sub-environments with just the input that affects those particular
skills. In the case of collecting diamonds, the dojo is trained without a zombie
present. This allows the reward function for that dojo to be refined and suited
to that specific scenario. Once all the dojos are trained for 100 thousand
episodes, the networks are fixed (no longer trainable) and added to the output
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(a) Simple Environment (b) Complex Environment

Figure 4.1: The different environments tested for results to show scalability as
well as simple versus complex environment behaviour.

of the meta module which will be trained for a further 100 thousand episodes.

The three different dojos used for these environments are collecting diamonds,
avoiding the zombies and exploration, with each shown in Figures 4.2a, 4.2b
and 4.2c respectively. An episode consists of a maximum 100 moves for the
agent with ten diamonds to collect, an environment to explore and zombies
that move towards the agent using the A* path finding algorithm mentioned
in Section 2.6.3.

(a) Diamond dojo (b) Zombie dojo (c) Exploration dojo

Figure 4.2: The different dojo environments in which the agent trains in this
experiment.

4.1.2 Simple environment

As illustrated in Figure 4.1a, the simple environment has ten diamonds to
collect and one zombie to outrun. This environment was used to obtain a
measure for how each model would perform in a relatively straight forward
environment. It was also kept very small, to increase the simplicity. The
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network used in this environment also had a smaller input area than the
complex environment network, with an input grid size of 9 x 9 instead of the
15 x 15 used in the complex environment.

4.1.3 Complex environment

As illustrated in Figure 4.1b, the complex environment setup was a little
more complicated than the simple, with ten diamonds, two zombies and the
introduction of obstacles and lava to manoeuvre around. The network input for
this environment had a size of 15 x 15 which allowed the agent to effectively
‘see’ further than that of the simple environment network, but this added an
extra level of complexity as well with more information for the network to
understand. The complex environment had set environment configurations or
‘maps’ for training, some extra maps for testing and larger maps for testing
the scaling ability. All these map are shown in Figure 4.3.

(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4 (e) Map 5

(f) Map 6 (g) Map 7 (h) Map 8 (i) Map 9 (j) Map 10

Figure 4.3: Different 10 x 10 maps used for complex environment training.

4.2 Network setup

The network’s full architecture is shown in the previous chapter in Figure 3.4,
with each module having an architecture as seen in Figure 4.4. It consists of
two convolutional layers with two fully connected layers giving the output of
five possible actions. Given that using data from raw pixels is computationally
expensive, we manually extract the required features for the input state
given to the network as shown in Figure 3.5. This is compiled into a one-hot
positional grid that is a layered 15 x 15 grid for the complex environment and
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Figure 4.4: The network architecture used for the dojo modules and standard
network.

a layered 9 x 9 grid for the simple environment, with the agent located in the
center and points-of-interest positioned relative to it.

The dojo modules are pretrained seperately with each dojo skill learnt in the
appropriate environment as shown in Figure 4.2. The choice of which dojo
module is used relies on the meta module to decide based on the network’s
input. The meta module is only trained once the dojo modules are trained
and frozen, meaning that they cannot be futher trained and their weights and
biases are fixed.

For these experiments all modules are using the same network architecture,
however this does not have to be the case. Each dojo module can have
different architectures as well as different outputs or actions. As long as the
input to each dojo module is the same format as the input that it trained with,
any input will work for any dojo module. We discuss this as possible future
work in Section 6.3.

4.3 Additional experiments

Based on the findings discussed in the next chapter, we conducted an
additional two experiments. A ‘cointoss’ experiment, which kept the output of
the meta module random and never pre-trained the dojo modules. This was
to see that if all the weights and biases of the entire dojo network is trainable,
would the results be similar to the standard network that we compare against.

The second experiment was to see the results of a zero zombie infested
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environment, with only the diamond dojo and exploration dojo used in the
complex environment. This was compared to the standard network with the
same input. These results are discussed at the end of the results section.

4.4 Chapter summary

The experiment layout is discussed in this chapter, as well as the different
dojo setups (diamond, zombie and exploration) used for the experiments.
The idea of simple and complex environment tests are explained, with the
main difference being that of the input matrix size and the size of the
environment. The simple environment does not have obstacles and the
diamonds are scattered randomly in the map, while the complex environment
has 10 different training environments, shown in Figure 4.3, with the diamonds
scattered randomly within them. The neural network architecture for both the
dojo modules and the standard DQN is shown in Figure 4.4, however, the dojo
modules do not need the same architecture in the dojo network. Lastly the
two additional experiments are described, the cointoss and the non-zombie
environment.
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Results

In this chapter, we present the final results of the experiments discussed in the
previous chapter. We begin with the overall results of the main experiments,
to compare our dojo network to a standard DQN in the simple and complex
environment setup described in Section 4.1. We then examine the training of
the dojo network in more detail and explain how we arrived at the additional
experiments discussed in the previous chapter in Section 4.3. Finally we
present the results of the two additional experiments that were conducted,
and provide a summary of the results of the experiments.

5.1 Overall results

For this experiment, the score achieved by the agent in each environment
setup is the only value we use to measure the success of the different
networks. However, the number of moves taken by the agent during the
training and running of the model reveals a key insight as to why the standard
network achieved success.

We train four networks in total, a standard DQN and a dojo network in a
simple 8 x 8 environment, and another standard DQN and dojo network in a
complex 10 x 10 environment with ten different environment layouts or maps
shown in Figure 4.3. The complex environment training is done with a random
map out of the ten chosen each training episode. The trained models are
then run in different environment setups with the results of these experiments
shown in Table 5.1.

The simple environment setup is an environment with ten diamonds to collect,
one zombie to outrun and no obstacles or lava to avoid. For this network, the
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Table 5.1: Standard and dojo networks in different environments (simple:
simple environment; complex: complex environment; number: size of grid;
new: different environment layouts than training))

Network Moves Score

Standard (simple - 8) 27.4 7.9
Dojo (simple - 8) 19.9 6.2
Standard (simple - 16) 76.1 5.9
Dojo (simple - 16) 52.6 4.2
Standard (complex - 10) 35.2 8.1
Dojo (complex - 10) 30.6 7.2
Standard (complex - 10, new) 33.6 6.3
Dojo (complex - 10, new) 31.7 5.8
Standard (complex - 16, new) 51.3 5.5
Dojo (complex - 16, new) 58.0 5.2

size of the input grid is 9 x 9, representing the area around the agent which
it is able to observe. The initial starting point of the diamonds, the zombie
and the agent is random. The two models trained in the 8 x 8 grid simple
environment are run for 10000 episodes in a 8 x 8 grid and a 16 x 16 grid
simple environment. The terminating condition of the episode was either all
diamonds were collected, the zombie caught the agent or the agent has taken
100 moves.

Table 5.1 shows the standard network collected more diamonds on average,
i.e. had a higher score, than the dojo network in both size environments, but
also taking more moves to accomplish the same task. The higher average
number of moves can represent either the agent not having the goal of
collecting the diamonds and just roaming the environment aimlessly, or it can
represent the agent’s ability to avoid the zombie for a longer period of time.
With an observation size of 9 x 9, the low scores on the 16 x 16 environment
is understandable, as the agent cannot see where the diamonds are located.

The complex environment setup is an environment with ten diamonds,
two zombies as well as obstacles and lava placed around the environment.
The initial placement of the diamonds, zombie and agent are all random with
the obstacles and lava always located in the same place on a given map. One
of ten environment maps are randomly chosen foreach episode of training.
The two models trained in the 10 x 10 complex environment are run for 10000
episodes in three different setups, the 10 x 10 training maps, new 10 x 10
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(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4 (e) Map 5

(f) Map 6 (g) Map 7 (h) Map 8 (i) Map 9 (j) Map 10

Figure 5.1: Unseen 10 x 10 maps used for complex environment testing.

maps which the agent has never seen before, and 16 x 16 maps which were
also never seen before. The new maps and the 16 x 16 maps are shown in
Figures 5.1 and 5.2 respectively.

The standard DQN once again outperformed the dojo network in each of these
environments by collecting more diamonds on average. This is shown in the
last two rows in Table 5.1.

Having looked at the overall results, it is clear that the standard network
outperforms the dojo network in these environments. We now look at the data
gathered during training with some additional insight by the further training
of the dojo modules after the meta module of the dojo network is trained.

5.2 Training curve

The training curves represent the average score of the agent during training
after a certain number of episodes. The score represents how many diamonds
the agent collected within the allocated time period. The blue dotted line
in the training time graphs, such as Figure 5.3, represents the dojo network
average score during each episode, and the red solid line represents the
score of the standard DQN. For the training time graphs, the models were
trained for 10000 episodes in the simple environment and then an additional
20000 after the dojo modules are unfrozen, or allowed to train further. The
overall results, shown in Table 5.1 in the previous section, do not account for
the unfrozen dojo modules. For the complex environment, the models are
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(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4

(e) Map 5 (f) Map 6 (g) Map 7 (h) Map 8

(i) Map 9 (j) Map 10

Figure 5.2: Unseen 16 x 16 maps used for complex environment testing.

trained for 100000 episodes with an additional 200000 episodes after the dojo
modules are unfrozen.

The first two training time graphs in Figures 5.3 and 5.4 show the results of
the dojo modules being ‘blind’ to the rest of the environment as the input on
which the dojo modules is trained is the exact same input to the dojo modules
as used when the meta module is training. This means that the other layers
in the input to dojo module were removed if the agent did not learn that dojo
skill with that input layer. For example, in the case of the diamond dojo, the
zombie layer represented in the input of the network is removed and the
agent does not observe that zombie at all.

Although it appears promising for the dojo network within the first third
of episodes in the simple environment (Figure 5.3), both the simple and
complex environment networks (Figure 5.4) drop in score once the network
is unfrozen at episode 10k and the dojo modules are allowed to train. The
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Figure 5.3: Standard and dojo networks, unfrozen at 10k, ε = 0.1, simple
environment. Dojo input states are limited to observations available when
training dojos independently.

initial dip once unfrozen is expected as the network could have been in a local
optimum, but without full awareness of the environment, the dojo network
approach fails to reach the score of the standard network once unfrozen.

The next two training time graphs shown in Figures 5.5 and 5.6 show the
results of the dojo networks taking in the exact same input as the meta
module. This means that even if the agent does not train in a dojo with
that layer, such as a zombie in a diamond dojo environment, the agent will
still observe that zombie when the diamond dojo skill is chosen by the meta
module. Although having low initial score for the first third of training time,
once unfrozen, the score climbs to the results of the standard network, raising
the question of whether the dojo modules are simply becoming three identical
standard networks.

A reason for this plateau in score that can be seen in the first third of
training in Figure 5.6 is due to the fact that it has a fixed dojo module as an
action for the meta module and cannot make small changes to the trained
dojo module once exposed to the entire complex environment. This hinders
the agent’s ability to adapt to the new complex environment as it has fixed
skills that were trained in the dojo environment’s prior.

The question posed of whether the unfrozen dojo modules in Figure 5.6
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Figure 5.4: Standard and dojo networks, unfrozen at 100k, ε = 0.1, complex
environment. Dojo input states are limited to observations available when
training dojos independently.

is simply creating three identical standard networks for our dojo modules led
us to run the ‘cointoss’ experiment. The name is inspired by the dojo module
being chosen randomly. These results are discussed in the next section.

5.3 Additional experiments

The results for the experiments are not what was expected. A deeper
investigation into the training of the meta module is conducted which
prompted the two additional experiments to be carried out as described in
Section 4.3. One part of the investigation involved having a tally of how many
times each dojo module was chosen during the training of the meta module.
The results are shown as a histogram in Figure 5.7, with a surprising bias
towards dojo 2 – the zombie dojo. Dojo 1 and dojo 3 are the diamond and
exploration dojos respectively.

This large bias towards the zombie dojo shows that the reward system
in the combined network is not balanced as the agent is focused on avoiding
the zombie rather than achieving a high score and collecting diamonds. This
always hinders the agent’s exploration abilities as it only explores less than
10% of the time that it focuses on avoiding the zombie. The ratio between
these numbers are fairly consistent between the start and end of training.
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Figure 5.5: Standard and dojo networks, unfrozen at 10k, ε = 0.1, simple
environment. Dojo input states are unlimited and able to observe the entire
environment.

We strongly expected these results, as the dojo modules have the same
architecture as that of the standard network and was chosen at random which
module was to train each step of the episode. It also takes longer to train
based on the fact that there are three separate networks compared to one.

This prompted the second of the additional experiments where the zombies
were simply taken out of the experiment all together, and we compare the
two networks in a complex environment with only two dojo skills put to the
test. The models in this experiment were trained in the ten training maps
of the complex environment, shown in Figure 4.3. This result, with the
training data shown in the graph in Figure 5.9, shows that the dojo learning
method can be successful and outperform the standard DQN if in the correct
environment. It shows that the dojo network started achieving better results
from the beginning of training from the skills learnt in the pre-trained dojo
environments. The higher score of the dojo network, shown by the blue dotted
line being above the red solid line at 1 episode into training, is evident on
all training curves except the cointoss experiment in Figure 5.8, since in that
experiment the dojo modules were not pre-trained. Figure 5.9 shows the
standard DQN (represented by the solid red line) is never able to surpass the
score achieved by the dojo network. This poses another question however, in
which environments is the dojo network superior to the standard DQN?
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Figure 5.6: Standard and dojo networks, unfrozen at 100k, ε = 0.1, complex
environment. Dojo input states are unlimited and able to observe the entire
environment.

5.4 Chapter summary

The results show that dojo network does not always achieve a better
performance over the standard DQN in the simple nor the complex
environment. It also shows that when the network is unfrozen and all modules
are allowed to train, the dojo network will achieve the same result as the
standard DQN. The histogram for the tally of dojo modules chosen by the meta
module during training reveals a large bias towards the zombie dojo which
could be a result of an unbalanced reward system. This makes the agent focus
more on one skill or aspect of the complex environment and prioritises its skill
over the others. Lastly, the additional experiment results reveal that the dojo
network achieves a better result in certain environments with the standard
DQN not being able to achieve the same results regardless of the training
time.
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Figure 5.8: Standard network and dojo network in a cointoss experiment in the
complex environment.
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Chapter 6

Conclusions

6.1 Experiment conclusion

We set out to show that an agent that learned a subset of complex actions in
dojos or sub-environments prior to being exposed to the complex environment
might outperform an agent which is trained in the complex environment from
the start. The evaluated models do not appear to support our hypothesis with
the standard DQN outperforming our dojo network. Evaluating the results
shows the dojo network is being limited by the individual modules that was
previously learned in isolated dojos and when the agent is exposed to the
complex environment the agent is ‘stuck’ performing those previously learned
actions in a sub-optimal manner. It is possible to match the performance of
the standard DQN by allowing the dojo modules to be further trained in the
complex environment.

It has shown promise that the dojo learning method might be viable in
specific environments. In which environments it performs better and why
need to be explored in further research.

6.2 Improvements and recommendations

Future work should allow the meta module in the dojo network to have one
more action in the form of a complex module. This module allows the agent
to move and act based on the complex environment when none of the other
skills learnt in the dojos are applicable. This will hopefully give it a boost in
training time and performance, by not limiting the available actions.

The histogram in Figure 5.7 shows a bias towards avoiding the zombies.
An improvement could be to minimise this bias by altering and balancing
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the reward system in training as to not make the zombie attack have an
overpowering negative reward.

6.3 Future work

One of the main limitations the agent currently faces is the choice in deciding
the skills learnt in the different dojos and then locking the number of skills
by predetermining the number of dojos beforehand. We need to improve the
agent’s method of executing actions and not limit it by our choice in dojos.
It will be beneficial to explore a non-fixed action structure or use the chosen
actions as a stepping stone to learn about the complex environment in a more
efficient manner.

Investigate the idea of time integration with the chosen actions having a
duration with a specific end point, similar to the options framework discussed
in Section 2.5.5. This could take the form of executing a dojo’s learnt policy
for multiple time steps instead of a different dojo skill every time step.

As previously mentioned, some environments seem to work better than
others. We can thoroughly research which environments the dojo network
outperforms the standard network, such as the complex environment with no
zombies, and identify reasons for these results.

Finally, we can include a more complex algorithm, as mentioned in Chapter
3, and investigate the impact of these more advanced algorithms and
methods on our dojo network approach. We could also investigate different
architectures for different modules, with the actions of each dojo module
being unique and fitting to that particular skill.
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