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Abstract
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Private Bag X1, Matieland 7602, South Africa.

Thesis: PhD
December 2019

We investigate weighted commutators, that is, weighted subobject commutator and weighted
normal commutator, as well as commutators in the sense of Huq, Higgins, Ursini and Smith,
which are all special cases of weighted commutators. One of the main aims is to establish further
properties of weighted commutators, and explore new relationships among commutators. In a
normal Mal’cev category C with finite colimits, we show that the Huq commutator of a pair of
local representations (i.e. equivalence relations considered as subobjects in a category of points
over a fixed object) is the local representation of the Smith commutator of the equivalence rela-
tions corresponding to the original local representations. We also show that the weighted normal
commutator can be obtained as the image of the kernel functor applied to the Huq commuta-
tor of another type of morphisms in a category of points over a fixed object. In addition, the
weighted normal commutator is characterized as the largest monotone ternary operation C' de-
fined on subobjects in a finitely cocomplete normal Barr-exact Mal’cev category, such that: (a)
C(X,Y,W) < X AY; (b) C(f(X), f(Y), f(W)) = f(C(X,Y,W)), for subobjects (X, ), (Y,y),
and (W, w) of an object A, and every morphism f whose domain is A. The weighted subob-
ject commutator is characterized in a similar way, and furthermore, known characterizations of
Higgins, Huq, and Ursini commutators are recovered as special cases.

Another aim is to extend the notion of commuting morphisms to a more general context,
and in particular, to a subtractive category with finite joins of subobjects, where we show that
commuting morphisms are related to the notion of internal partial subtraction structures. Fur-
thermore, we show that several results about central morphisms, commutative objects, and
abelian objects, which usually require a category to be at least (strongly) unital, also hold in the
context of (regular) subtractive category with finite joins of subobjects.
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Uittreksel

Geweegde sentraliteit elt(l ‘n Velid%re ,ltoe,gcladering tot kategoriese
ommutatiwitel

V.T. Shaumbwa
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Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: PhD
Desember 2019

Ons ondersoek geweegde kommutator, dit wil sé geweegde subobjekkommutator en geweegde
normale kommutator, sowel as kommutators in die sin van Huq, Higgins, Ursini en Smith, wat
almal spesiale gevalle van geweegde kommutator is. Een van die hoofdoelwitte is om verdere
eienskappe van geweegde kommutator te vestig, en om nuwe verhoudings tussen kommutator
te ondersoek. In 'n normale Mal’cev-kategorie C met eindige kolimiete, wys ons dat die Hug-
kommutator van 'n paar plaaslike voorstellings (dit wil sé ekwivalensieverhoudinge wat as subob-
jekte in 'n kategorie punte oor 'n vaste objek beskou word) die plaaslike voorstelling van die Smith
is kommutator van die ekwivalensieverhoudinge wat ooreenstem met die oorspronklike plaaslike
voorstellings. Ons wys ook dat die geweegde normale kommutator verkry kan word as die beeld
van die “kernel” funktor wat op die Hug-kommutator van 'n ander soort morfismes toegepas
word in ’'n kategorie punte oor 'n vaste objek. Daarbenewens word die geweegde normale kom-
mutator gekenmerk as die grootste monotone ternére werking C' gedefinieér op sub-objekte in 'n
eindelik klaargemaakte normale Barr-exact Mal'cev-kategorie, sodat: (a) C(X,Y, W) < X AY;
(b) C(f(X), f(Y), f(W)) = HEXY Wy, vir subobjekte (X, z), (Y,y), en (W, w) van 'n objek
A, en elke morfisme f waarvan die domein A is. Die geweegde subobjekkommutator word op
'n soortgelyke manier gekenmerk, en voorts word bekende karakterisering van Higgins, Huq en
Ursini-kommutators as spesiale gevalle herwin.

'N Ander doel is om die idee van die pendel van morfismes uit te brei na 'n meer algemene
konteks, en veral tot 'n subtraktiewe kategorie met 'n eindige samevoeging van sub-onderwerpe,
waar ons wys dat die pendel-morfisme verband hou met die idee van interne gedeeltelike aftrek-
strukture. Verder toon ons dat verskeie resultate oor sentrale morfismes, kommutatiewe objekte
en abeliese objekte, wat gewoonlik vereis dat 'n kategorie ten minste (sterk) uniaal is, ook in die
konteks van 'n (gereelde) aftrekkategorie met 'n beperkte samevoeging van subobjekte geld.
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Introduction

The classical commutator measures the obstruction for a pair of subgroups of a given group to
commute. Indeed, for a pair of subgroups X and Y of a group G, their commutator is trivial
precisely when every element of X commutes with every element of Y, i.e. zy = yx for all
x € X and y € Y. There are various generalizations of the classical commutator in universal
algebras, which have been even extended further to categorical contexts. Let us briefly mention
the generalizations we are going to study in this thesis.

S. A. Hugq [22] introduced the categorical notion of commuting pair of morphisms having the
same codomain (commuting morphisms), which gives rise to the notion of Huq commutator. In
the case of groups, for two subgroups X and Y of a group G, the inclusion maps X — G and
Y — G commute in the sense of Huq if and only if every element of X commutes with every
element of Y. In [21] P. J. Higgins introduced the Higgins commutator; a universal-algebraic
commutator, which generalizes the classical commutator of groups to Q-groups. A categorical
description of Higgins commutator has been given by S. Mantovani and G. Metere [30], who
have also shown that the Huq commutator is the normal closure of the Higgins commutator.
There is another notion of commutator (Smith commutator), introduced by J. D. H. Smith
[36] in Mal’cev (congruence permutable) varieties. Commutators of congruences have also been
investigated in more general varieties, such as congruence modular varieties by J. Hagemann
and C. Herrmann [20] (see also H. P. Gumm [18], and R. Freese and R. McKenzie [16]). The
categorical notion of commutator of equivalence relations has been introduced by M. C. Pedicchio
[33] in the context of Mal’cev category, and this has provided a first categorical approach to
commutator theory of congruences. In the same paper, the notion of a pair of equivalence
relations centralizing each other in a Mal’cev category is given. In [37] A. Ursini introduced BIT
varieties (also called ideal-determined varieties in H. P. Gumm and A. Ursini [19]), and in this
varietal setting, commutators of ideals (Ursini commutators) in the sense of Ursini [38], can be
obtained from Smith commutators of congruences (see [19]). A description of Ursini commutator
in a categorical context has been given by S. Mantovani [29]|, who also proved that the varietal
relationship between the Ursini commutator and Smith commutator extends to a categorical
setting. Recently, M. Gran, G. Janelidze, and A. Ursini [17]| introduced categorical notions
of weighted commutators and weighted centrality. The Huq, Higgins, and Ursini commutators
are all special cases of the weighted commutators. Similarly, both notions of commutation
of morphisms and centralization of equivalence relations are all obtained as special cases of
weighted centrality. Weighted commutators comprise of two notions of commutators, namely
weighted subobject commutator and weighted normal commutator, and the two are related in the
sense that the weighted normal commutator is the normal closure of the weighted subobject
commutator (see [17]).

J. Hagemann and C. Herrmann [20| discovered a lattice-theoretic characterization of the
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Smith commutator in a congruence modular variety, as the largest monotone binary operation C
defined on the congruence lattice of each algebra, satisfying the conditions (that): (a) C(R,S) is
always less or equal to the meet of R and S; (b) C(R, S) is preserved by images under surjective
homomorphisms, i.e. f(C(R,S)) = C(f(R), f(S5)), for every pair of congruences R and S on
an algebra X, and every surjective homomorphism f whose domain is X. In [35] the author
characterized the Huq commutator in the context of normal unital category with finite colimits,
as the largest monotone binary operation C defined for subobjects, such that: (a) C(H, K)
is contained in the meet of the normal closures of (H,h) and (K,k); (b) C(f(H), f(K)) <
f(C(H, K)), for every pair of subobjects (H,h) and (K, k) of X, and every morphism f whose
domain is X. Furthermore, the author showed in [34] that the Higgins commutator can be
characterized in a similar way in the context of ideal-determined unital category. Since weighted
commutators could be thought of as ternary operations defined on all subobjects of each object,
we show in Section 3.4 that weighted commutators admit a similar characterization, but as
ternary operations. We also show that the characterizations of Huq, Higgins, and Ursini/Smith
commutators can be recovered as special cases.

Recall that an equivalence relation on an object A in a Mal’cev category C can be identified
with a subobject in a category of points over A (that is, a category of split epimorphisms over
A), which, for instance, D. Bourn, N. Martins-Ferreira, and T. Van der Linden [13] called such a
subobject a local representation. In a Mal’cev category, a pair of equivalence relations centralize
each other precisely when their corresponding local representations commute in the sense of Huq
(see D. Bourn [5]). In a finitely cocomplete normal Mal’cev category, the Huq commutator of
a pair of subobjects of an object and the Smith commutator of a pair of equivalence relations
on an object, can always be constructed. So in the present work, it will be shown that the Huq
commutator of a pair of local representations is the local representation of the Smith commutator
of the equivalence relations corresponding to the original local representations. More generally,
since it is also possible to present weighted centrality in terms of commuting morphisms in a
category of points over a fixed object, similar description of weighted normal commutators in
terms of Huq commutators will be given.

An interesting class of morphisms is that of central morphisms; that is, those morphisms which
commute with the identity morphisms of their codomains. The notion of central morphisms has
been investigated, for instance, by D. Bourn [6], where the following have been shown: (a) In
every unital category, the class Z(X,Y") of central morphisms from X to Y forms a commutative
monoid; (b) commutative objects (those objects whose identity morphisms are central) are exactly
objects that admit internal commutative monoid structures; (c¢) in a strongly unital category,
Z(X,Y) is always an abelian group, and in particular, every commutative object is an abelian
object (that is, an object which admits an internal abelian group structure).

Z. Janelidze [25] introduced the notion of a subtractive category, which is a categorical gener-
alization of a pointed subtractive variety introduced by A. Ursini [39]. In addition, the following
“categorical equation” has been observed:

strongly unital = unital 4+ subtractive.

In this thesis, the notion of commuting morphisms is extended to a more general context, and
in particular to a subtractive category with finite joins of subobjects, where we show in Section
4.2 that commuting morphisms are related to the notion of partial subtraction structures [12].
We will generalize several results about central morphisms, commutative objects, and abelian
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objects in a (regular) subtractive category with finite joins of subobjects; in particular those of
[6], which were originally proven in a (strongly) unital context.
The thesis consists of the following chapters:

Chapter 1: In this chapter we recall the necessary background for the ensuing chapters.
In addition to already known materials recalled in this chapter, we prove Theorem 1.3.7, which
leads to useful facts about decomposition of certain regular epimorphisms in a regular strongly
unital category.

Chapter 2: This chapter deals with binary commutators in the sense of Huq, Higgins,
Ursini, and Smith. We recall some of their basic properties, and relationships among them. In
addition, we characterize the Higgins commutator in a normal strongly unital category C with
finite colimits; the same result has been already given (see Theorem 3.1 of [34]) in the context
of ideal-determined unital category.

Chapter 3: In this chapter we explore some other properties of weighted centrality and
weighted commutators, and also establish new relationships with the other commutators. In
Section 3.1 we recall an equivalent formulation of weighted centrality in terms of commuting
pairs of morphisms (in the sense of Huq) in a category of points over a fixed object, and this pro-
vides an alternative approach to see Smith centrality as a special case of weighted centrality. In
Section 3.2 we investigate regular images of weighted commutators under arbitrary morphisms.
We show (Theorem 3.2.6) that in a normal Barr-exact Mal’cev category C with finite colimits,
the weighted subobject commutator is preserved by regular images under arbitrary morphisms.
We deduce a similar result for the weighted normal commutator by applying the fact that the
weighted normal commutator is the normal closure of the weighted subobject commutator. In
Section 3.3 we describe Smith commutator in terms of Huq commutator of local representations.
More specifically, we explain (Theorem 3.3.1) that in a normal Mal'cev category C with finite
colimits, the local representation of the Smith commutator of a pair of equivalence relations R
and S is the Huq commutator of the local representations of R and S. As a corollary, we recover
an already known fact, given in [17] (see also [29]), that the 1—weighted normal commutator
(defined on normal subobjects) is the associated normal subobject (i.e. normalisation) of the
Smith commutator. In Section 3.4, the weighted subobject commutator is characterized (The-
orem 3.4.6) as the largest monotone ternary operation C' defined for subobjects in a normal
Barr-exact Mal’cev category C with finite colimits, such that: (a) C(X,Y,W) < X AY; (b)
C(f(X), f(Y), f(W)) = f(C(X,Y,W)), for subobjects (X, z),(Y,y), and (W, w) of an object
A, and every morphism f whose domain is A. A similar characterization is given in Theorem
3.4.7 for the weighted normal commutator. As special cases, we recovered already known char-
acterizations of Higgins, Huq, and Ursini commutators. In Section 3.5 we investigate another
relationship between weighted normal commutator and Huq commutator. More precisely, we
show (Theorem 3.5.1) that in a normal Mal’cev category C with finite colimits, the weighted
normal commutator can be obtained as the image of the kernel functor applied to the Huq
commutator of some morphisms in a category of points over a fixed object.

Chapter 4: This chapter is devoted to investigate commuting morphisms in subtractive
categories. In a subtractive category there is a fundamental notion of partial subtraction struc-
tures [12], which happens to be related to commuting morphisms. In Section 4.1 we show that
in a regular subtractive category the class of morphisms between X and Y which admit partial
subtraction structures forms an abelian group. In contrast with the unital context, in which com-
mutative objects are not necessarily abelian objects, in Section 4.2, we prove (Theorem 4.2.12)
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that in a subtractive category with finite joins of subobjects commutative objects are precisely
those objects which admit internal abelian group structures, which as shown already in Corol-
lary 2.7 of [12], are equivalent to those objects which admit (partial) subtraction structures. In
Section 4.3 we prove a stronger fact (Theorem 4.3.2) that central morphisms are precisely those
morphisms which admit partial subtraction structures in a regular subtractive category with
finite joins of subobjects. As a consequence, we obtain that in a regular subtractive category
C with finite joins of subobjects the class of central morphisms between X and Y admits an
abelian group structure; extending the result valid for strongly unital categories, given in [6]. In
addition, (thanks to Theorem 4.3.2) we extend to any regular subtractive category C with finite
joins of subobjects and cokernels, the following universal construction, usually known to hold in
a finitely cocomplete regular unital category (see e.g F. Borceux and D. Bourn [4|): For every
morphism f : X — Y there is a universal morphism ¢ : Y — ) which, by composition, makes
f central. As a particular case, an already known construction of abelian objects in regular
subtractive categories with cokernels (Theorem 4.3 of [12]|) can be recovered.

Chapter 5: In this chapter we explore commuting morphisms in a more general setting. In
Section 5.1 we describe commuting morphisms in several examples such as categories of pointed
sets, implication algebras, and some other “non-unital” categories. In Section 5.2 we show that
some known results about commuting morphisms can be generalized to a wider context. In par-
ticular, we show that in a pointed finitely complete category C with finite joins of subobjects,
the commutes relation is an example of a cover relation arising from a special kind of a monoidal
structure. In addition, we observe that when C is a subtractive category with finite joins of sub-
objects, monoids in C equipped with the monoidal structure whose corresponding cover relation
is the commutes relation, are exactly abelian objects.



Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration
Abstract
Uittreksel
Acknowledgements
Dedications
Introduction
Contents

1 Preliminaries
1.1 Regular categories . . . . . . . .. e
1.2 Unital categories . . . . . . . . ..
1.3 Subtractive categories . . . . . .. ... Lo
1.4 Mal’cev and Barr-exact categories. . . . . . .. ..o Lo
1.5 Ideal-determined categories . . . . . . . . .. ...
1.6 Protomodular categories . . . . . . . .. Lo
1.7 Semi-abelian categories . . . . . . . . ... L L e

2 Binary commutators
2.1 Higgins commutator . . . . . . . . . ..
2.2 Huqg commutator . . . . . . . . . L
2.3  Ursini and Smith commutators . . . . . . . ... ... ... L o

3 Weighted commutators
3.1 Weighted centrality . . . . . . . . . . .
3.2 Regular images of weighted commutators under arbitrary morphisms . . . . . . .
3.3 Huqg commutator of local representations . . . . . . . .. ... ... ... .....
3.4 Characterization of weighted commutators . . . . . .. .. .. ... ... ...,
3.5 Weighted normal commutator as the Huq commutator in points. . . . . . . . ..

4 Centrality in subtractive categories
4.1 Partial subtraction structures . . . . .. ..o o oo

ii

iii

iv

vi

12
15
22
23
24
25

26
26
31
34

38
38
49
93
29
66

69



Stellenbosch University https://scholar.sun.ac.za

CONTENTS

4.2 Commutativity in categories
4.3 Central morphisms in subtractive categories

5 Monoidal sum structures

5.1 Commuting morphisms in several “non-unital” examples
5.2 Monoidal sum structures and commutes relation

References

x1



Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Preliminaries

In this chapter we recall the necessary background for the ensuing chapters. As for a detailed
account of the categorical notions recalled in this chapter, we recommend [4].

Let us explain some notation we will be using. In a pointed category C, we will write 0 to
denote the null (zero) morphism between any two objects, and just 1 (instead of 1x) to denote
the identity morphism on any object X. For a category C with finite products and coproducts,
we will write A x B for the product (A x B,m,m) of A and B, where 7; and 7o denote the
first and second product projections respectively. Dually, we will write A + B for the coproduct
(A + B,iy,i2) of A and B, where i; and iy denote the coproduct inclusions. For morphisms
f:A— Bandg: A— Cin C, (f,g) will denote the unique morphism A — B x C' with
f = m(f,g9) and g = m(f,g). Dually, for morphisms v : U — W and v : V.— W in C,
[u,v] will denote the unique morphism U +V — W, with u = [u,v]i; and v = [u,v]ia. For
an object X in a category C, a subobject of X is a class of isomorphic monomorphisms with a
common codomain of X. We write (H, h) to denote the class of monomorphisms into X which
are isomorphic to a monomorphism h : H — X. Sub(X) denotes the class of all subobjects of
X, and it can be preordered by a relation < defined by:

(H,h) < (K, k) < h factors through k, i.e. h = ka for some morphism a: H — K.

For convenience, we will write H < K instead of (H,h) < (K,k). When C has pullbacks, the
meet exists for any two subobjects (H, h) and (K, k) in Sub(X), and is given by the pullback of
h:H— X and k: K — X. A category C has finite joins of subobjects when for every object
X of C, Sub(X) has finite joins.

1.1 Regular categories

In the categories Set, Gp, and Rng of (respectively) sets, groups, and rings, and more generally,
in varieties of universal algebras, every morphism can be factored uniquely through its image.
This is one of the key properties of reqular categories. Before we recall the definition of a regular
category, let us first recall several types of epimorphisms.

A morphism f: A — B in a category C is called an epimorphism if for every pair of parallel
morphisms u and v such that uf = vf, one has u = v. The dual notion of epimorphism is
monomorphism. In Set and Gp, epimorphisms are exactly surjective maps and surjective group
homomorphisms respectively. In general epimorphisms are not always surjective, for instance,
we will recall below that in Rng the inclusion Z < Q is an epimorphism but not surjective:
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Proposition 1.1.1. In the category Rng of rings, the inclusion i : Z — Q is an epimorphism
but not surjective.

Proof. The fact that the inclusion is not surjective is clear. Let f,g : Q — B be parallel
morphisms in Rng such that fi = gi. Writing (b/a) for an arbitrary element of Q, i(a) = a/1 for
all a € Z, and so f(a/1) = g(a/1). Therefore, f(a/1)f(1/a) = f(1/1) = g(1/1) = g(a/1)g(1/a)
for a € Z — {0}, and moreover, f(b/a)f(1/1) = f(1/1)f(b/a) = f(b/a) and g(b/a)g(1/1) =
g(1/1)g(b/a) = g(b/a) for all (b/a) € Q. We also see that f(1/a) = f(1/a)lg(a/1)g(1/a)] =
[£(1/a)g(a/1)g(1/a) = g(1/a). Hence, for (b/a) € Q, f(b/a) = £(b/1)f(1/a) = g(b/a), and this
means f = g. O

Definition 1.1.2. Let f: X — Y be a morphism in a category C.

(i) The morphism f is an extremal epimorphism if for each factorization f = mg where m is
a monomorphism, m s necessarily an isomorphism.

(i) The morphism f is a strong epimorphism if for each commutative square
X Y
C’ D
with m a monomorphism, there exists a morphism t : Y — C such that g = tf and
h = mt.

%
—_——

Lemma 1.1.3 (see e.g [4]). In an arbitrary category C, every strong epimorphism f : X — Y is
an extremal epimorphism. If C has pullbacks, a morphism f: X — Y is a strong epimorphism
if and only if it is an extremal epimorphism.

Proof. Suppose f: X — Y is a strong epimorphism, and f = mg, where m is a monomorphism.

In the commutative diagram
X Y
C Y

since f is a strong epimorphism and m is a monomorphism, there exists a morphism ¢ : Y — C
such that g = tf and mt = 1. We also have that mtm = m, but since m is a monomorphism,
tm = 1 and thus m is an isomorphism. It remains to prove that in a category C with pullbacks,
every extremal epimorphism is a strong epimorphism. Given that f : X — Y is an extremal
epimorphism in a category C with pullbacks, consider the commutative diagram

%

%
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X Y
gl lh
C D

where m is a monomorphism. In the diagram

—_

D —
m

C>——>D

we see that f factors through the pullback 75 of m along h. But since 7 is a monomorphism and
f is an extremal epimorphism, 7 is an isomorphism. Writing 75 ! for the inverse of m, it can
be easily checked that the composite 711772_1 : Y — C'is a morphism such that (7717r2_1)f =g
and m(mmy ') = h. O

Remark 1.1.4. In the previous lemma it has been implicitly shown that if m is a monomorphism
and t is a morphism such that mt is the identity morphism, then m is an isomorphism. Using
this fact it can be easily shown that

strong epimorphism 4+ monomorphism = isomorphism.

Newvertheless, the analogous “equation” for extremal epimorphism, from which the above follows
since strong epimorphisms are extremal epimorphisms, holds for rather obvious reason.

Proposition 1.1.5. In an arbitrary category C, the composite of two strong epimorphisms is a
strong epimorphism.

Proof. Let f: X - Y and g : Y — Z be strong epimorphisms. For each commutative diagram

-
!
N
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where m is a monomorphism, since f is a strong epimorphism, there exists a morphism w such
that uf = p and mu = sg. Similarly, since ¢ is a strong epimorphism and mu = sg, there
exists a morphism v such that u = vg and mv = s, and thus p = vgf. Therefore gf is a strong
epimorphism.

O
Definition 1.1.6. In a category C, a pair of morphisms f : X — Z and g: Y — Z s

(a) jointly epimorphic if for every pair of parallel morphisms w,v : Z = D such that uf = vf
and ug = vg, one has u = v;

(b) jointly strongly epimorphic when for each commutative diagram

if m is a monomorphism, then there exists a morphism ¢ : Z — M such that mp = q;

(c) jointly extremal-epimorphic when for each commutative diagram

if m is a monomorphism, then m is an isomorphism.

Remark 1.1.7. In an arbitrary category C, a morphism f is an (extremal) epimorphism if and
only if the pair (f, f) is jointly (extremal)-epimorphic. Similarly, f is a strong epimorphism if
and only if the pair (f, f) is jointly strongly epimorphic.

The next lemma is the analogy of Lemma 1.1.3 in the case of jointly strongly epimorphic and
jointly extremal-epimorphic pairs of morphisms, and nevertheless, Lemma 1.1.3 can be easily
deduced as a consequence of the previous remark. The proof is essentially the same.

Lemma 1.1.8. In an arbitrary category C, if a pair of morphisms f: X — Z andg:Y — Z
15 jointly strongly epimorphic, then it is also jointly extremal-epimorphic. When C has pullbacks,
apur f: X — Z g:Y — Z is jointly strongly epimorphic if and only if it is jointly
extremal-epimorphic.
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Proof. Suppose a pair of morphisms f: X — Z and g : Y — Z is jointly strongly epimorphic.
If f and g factor through a monomorphism m : M — Z as f = mr and g = ms, then the
diagram

commutes. Since f and g are jointly strongly epimorphic, there exists a morphism ¢ : Z — M
such that me = 1. Thus m is an isomorphism, since mp = 1 and m is a monomorphism. For
the second part of the lemma we only need to prove the “if ” part. Suppose a category C has
pullbacks, and a pair of morphisms f: X — Z and g : Y — Z is jointly extremal-epimorphic.
For every commutative diagram

M
m
T S
Q
¢
X——F—ZcG—Y

where m is a monomorphism, since in the commutative diagram

f
X Z ! Y
\\\ ™ ™ ///
N .
M XQZ MXQZ
r ) s
T ™1
M Q M
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the pullback mo of m along ¢ is a monomorphism, and the pair f,g is jointly extremal-
epimorphic, 7o is an isomorphism. Writing 75 ! for the inverse of ma, it can be easily checked
that the composite 7T17T51 : Z — M is a morphism such that m(ﬂlwgl) = ¢. O

Proposition 1.1.9. In a category C with equalizers, every jointly extremal-epimorphic pair of
morphisms is jointly epimorphic.

Proof. Let f : A— B and g: C — B be a jointly extremal-epimorphic pair of morphisms in
a category C with equalizers. For a pair of parallel morphisms « and v such that uf = vf and
ug = vg, both f and ¢ factor through the equalizer m : £ — B of v and v

///7 E(\\\

f B Y
v“u
D.
Since equalizers are monomorphisms, and the pair of morphisms f and g is jointly extremal-
epimorphic, m is an isomorphism, and this implies that v = v.

O

Definition 1.1.10. In a category C, a morphism f : A — B is a reqular epimorphism if it is
the coequalizer of a pair of morphisms.

Remark 1.1.11. The following can be easily observed:

o In every category C reqular epimorphisms are always epimorphisms, and this follows im-
mediately from the universal property of coequalizers.

e In a category C with equalizers, extremal epimorphisms are epimorphisms.

Proposition 1.1.12. In an arbitrary category C, every regular epimorphism is a strong epimor-
phism.

Proof. Let f: X — Y be a regular epimorphism, and k1, k2 be a pair of parallel morphisms such
that f is their coequalizer. For each commutative square

k

U— XX ——>»

! f
X Y
ko e
l t/// ‘/
g L7 h
L//
C D

D —
m
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where m is a monomorphism, it is not difficult to see that gk; = gks. But since f is the
coequalizer of k1 and ko, there exists a morphism ¢t : Y — C such that g = tf. Furthermore,
we see that mtf = hf, and since f is a (regular) epimorphism, the lower triangle also commutes,
i.e. h =mt. O

Next we recall the internalized notion of relations in a category C with finite limits.

Definition 1.1.13. In a finitely complete category C, a relation from X to Y is a span

X Y

such that ri and ro are jointly monomorphic, in other words, the factorization (ri,r2) : R —
X xY is a monomorphism. When X =Y, one says R is a relation on X. We shall denote a
relation from X to'Y by a triple (R,r1,72).

Let us also recall that in a finitely complete category C, a relation (R,r1,72) on X is
(i) reflexive if there is a morphism A : X — R such that /A =1 = ry/\;
(ii) symmetric if there is a morphism o : R — R such that rj0 = ry and ry0 = 71;

(iii) transitive if for the pullback

2

RXXR%R

T ‘/Tl
X

 —
R -

there is a morphism 7 : R X x R — R such that ri7 = r1m and ro7 = roms.
A relation (R,71,72) on X is an equivalence relation if it is reflexive, symmetric, and transitive.

Remark 1.1.14. In the category of sets, equivalence relations in the above sense (i.e. internal
equivalence relations) are essentially the usual ones. While in the category of groups, an equiv-
alence relation on a group G is essentially a usual equivalence relation on the underlying set of
the group G, which is also a subgroup of G x G, (i.e. a congruence on G).

Definition 1.1.15. Let C be a category with pullbacks. For every morphism f: X — Y in C,
the kernel pair of f is the pullback of f with itself in the diagram
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X x X T2
<ff> > X

(i) for every morphism f: X — Y, the kernel pair of f

J
m
X f

Remark 1.1.16. In a category C with finite limits,

determines an equivalence relation <X X X,7r1,7r2> on X;
<f.f>

(ii) every regular epimorphism is a coequalizer of its kernel pair.
Let us recall an even stronger notion of epimorphism.

Definition 1.1.17. A morphism f : X — Y in a category C is called a split epimorphism if
there exists a morphism s : Y — X, called a section of f, such that fs = 1.

In an arbitrary category C, if f: X — Y is a split epimorphism, with a section s, then for
every pair of parallel morphisms v and v such that uf = vf, one has u = ufs = vfs = v, and
this implies that split epimorphisms are epimorphisms. This also follows from the fact that f is
a regular epimorphism; being the coequalizer of the identity morphism of X and the composite
sf. Therefore in every category C, we have

split eptmorphism =- regular epimorphism =- epimorphism.
Definition 1.1.18 (see [2]|). A category C is reqular when
(a) C has finite limits;
(b) every kernel pair has a coequalizer;
(c¢) regular epimorphisms are pullback stable along any morphism.

Every variety of universal algebras is a regular category, and here regular epimorphisms are
exactly surjective homomorphisms. The category Top of topological spaces is not regular, as
regular epimorphisms (open surjective continuous functions) are not necessarily pullback stable.
However, the category Grp(Top) of topological groups is regular.

For a category C and an object I in C, the slice category (C | I) is one whose objects are
denoted by pairs (X,p) where X is an object in C and p : X — I is a morphism in C. A
morphism f : (X,p) — (Y,q) in (C | I) is a morphism f : X — Y in C such that ¢f = p.
The dual notion of slice category is coslice category, and is denoted by (I | C) for an object I in
C. We shall observe that if C is a regular category then for every object I in C the slice (resp.
coslice) category (C | I) (resp. (I | C)) is also regular.
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Proposition 1.1.19 (see e.g [4]). For a reqular category C and any object I in C, the category
(CLI) (resp. (I C)) is regular.

Proof. Let us first show that the category (C | I) has finite limits. Equalizers in (C | I) are
computed as in C: For a pair of parallel morphisms u, v : (X,p) — (Y,7)in (C | I), the equalizer
of uw and v in (C | I) is given by the morphism w : (A,pw) — (X,p), where w : A — X is
the equalizer of a pair u,v : X — Y. For a pair of objects (X, p) and (Y,r) in (C | I), their
product is given by the object (X x;Y,pm1), where X x; Y is the pullback of p along r in C,
and 7, o are pullback projections, with pmy = rme. Thus (C | I) has finite limits. Pullbacks in
(C | I) are computed as in C, and this implies the same for kernel pairs in (C | I). Therefore,
for a morphism f: (X,p) — (Y, r) its kernel pair is given by the pair

T, (X X X,p7r1> = (X,p), withm,me: X x X = X
<f,f> <f,f>

the kernel pair of f : X — Y in C. Let ¢ : X — @ be the coequalizer of 71 and o in C.
Then since fm; = fmo, f factors as f = ag through ¢ in C, and immediately one obtains a
morphism ¢ : (X,p) — (Q,ra), which is necessarily the coequalizer of 7; and 7 in (C | I).
Note that when f : (X,p) — (Y, 7) is a regular epimorphism, it is also the coequalizer of mp
and mo in (C | I), and so f = ¢. This implies that for a regular category C, a morphism
f:(X,p) — (Y,r) is a regular epimorphism in (C | I) if and only if f : X — Y is a regular
epimorphism in C. Since pullbacks in (C | I) are computed as in C, it follows that regular
epimorphisms are pullback stable along any morphism in (C | I).

O

Lemma 1.1.20 (see e.g [4]). In a regular category C, for a regular epimorphism f : X — Y
and any morphism g : Y — Z, the induced morphism

fXZf:XXZX—>Y><Zy
18 an epimorphism.
Proof. Using the following facts:

(a) for each commutative diagram

if square (2) and the outer rectangle (1) + (2) are pullbacks, then square (1) is also a
pullback;

(b) regular epimorphisms are pullback stable,
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it is easily seen that all the squares in the diagram
XxzX 1oV, x —1 5 x
i S e f

XxZYngZY%Y

f g

are pullbacks, and the morphisms d, e, 4, and j are all regular epimorphisms. But since regular
epimorphisms are epimorphisms, and the composite of two epimorphisms is an epimorphism, the
morphism f Xz f = di = ej is an epimorphism.

O

Let us now recall the fact about the existence of “ (reqular epi,mono)-factorizations” in every
regular category.

Theorem 1.1.21 (see e.g [4]). In a regular category C, every morphism factors as a regular
epimorphism followed by a monomorphism. This factorization is unique up to tsomorphism.

Proof. For a morphism f: X — Y, let w1, w2 be the kernel pair of f, and e be the coequalizer
of m1 and me. Since fm = fmy, there is a morphism m such that f = me

T f
X;f)ffi(:X%Y

T
g=eXye e m
I8
I'x 1 :II
<m,m> .

We shall prove that m is a monomorphism. For that it is enough to prove that, if rq, 79 is the
kernel pair of m then r; = ro. Since mem; = mems, there exists a morphism ¢ = e Xy e such
that r1q = em; = emy = roq. Applying the previous lemma, the morphism ¢ = e Xy e is a an
epimorphism, and therefore r; = r5. To prove the second part of the theorem, let us suppose
that f = m’e/, where €’ is a regular epimorphism and m’ is a monomorphism. Since the diagram

X ——»7T
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commutes and e is also a strong epimorphism (being a regular epimorphism), there exists a
morphism « making the upper and lower triangles commute. Clearly, « is a monomorphism, and
since €' is also an extremal epimorphism, it follows that « is an isomorphism. O

Remark 1.1.22. In a regular category C, if f is an extremal epimorphism then it is a reqular
epimorphism, since from the (regular epi, mono)-factorization f = me, m is an isomorphism.
More generally, in a reqular category, strong epimorphisms and reqular epimorphisms coincide.
As a consequence of this and Proposition 1.1.5, we obtain that the composite of two regqular
epimorphisms is again a regular epimorphism.

As a well-known fact, for each morphism g : X — Y and any object A in a category C with
products, the two commutative squares in the diagram

1xg
Ax X —AxXY

T2 ™2

T 1

XxA—Y xA
gx1

are pullbacks. Thus for a regular category C, the morphisms 1 x g and g x 1 are regular
epimorphisms if g is a regular epimorphism.

Proposition 1.1.23 (see e.g [4]). In a regular category C, the product of two regular epimor-
phisms is a regular epimorphism.

Proof. For regular epimorphisms f and g, the morphism f x g can be expressed as the composite
(1xg)(fx1) of two strong epimorphisms, and so it is a strong epimorphism and hence, a regular
epimorphism.

O

Next we recall the interchange property of limits (see e.g [3]), and we will briefly illustrate
how certain facts about limits and colimits are obtained from this property and its dual property
respectively. Given two small categories D and D', and a category C which admits limits of D
and I, for every functor F': D' x D — C and the corresponding functors

Fp:D' — CP and Fp :D — CY
assigning to every object D’ of D' and every object D of D, the functors
Fp(D',—-):D— C and Fp(—,D): D — C,

respectively, where Fp/(D', D) = F(D’,D) and Fp(D',D) = F(D',D), and morphisms are
assigned accordingly, the following hold
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lim F = lim <lim F]D;)  lim (lim FD/> .
D \ D D \ D
Intuitively, the above property shows that limits “commute” with limits. The interchange prop-
erty of limits and its dual property can be easily used to establish facts about limits and colimits
respectively. For example, for morphisms f: X — X’ and g : Y — Y’ in a category C with

finite limits, the interchange property of limits implies that

(X X ¥) x (X x¥) = (Xxx) » (yXy>,
<fxg,fxg> <f,f> <g,9>

i.e. the kernel pair of the product f x g is the product of kernel pairs of f and g. The same
is true for kernels, i.e. ker(f) x ker(g) = ker(f x g). Similarly, using the dual property in a
category C with finite colimits, if f = Coeq(r1,7r2) and g = Coeq(ky, k2) are coequalizers of pairs
of morphisms rq, 79 and k1, ko respectively, then

Coeq(rl + ki,7r0 + k‘g) = COGq(Tl, 7“2) + Coeq(k:l, kg) = f +g.

This means that in a category C with finite colimits, the sum of two regular epimorphisms is
again a regular epimorphism. In particular, coker(f) + coker(g) = coker(f + g).

The last notion of epimorphism that we are going to recall in this section is that of normal
epimorphism, and it only makes sense in pointed categories.

Definition 1.1.24. A morphism f: X — Y in a pointed category C is a normal epimorphism
if it 1s the cokernel of some morphism. The dual notion of normal epimorphism is normal
monomorphism; that is, kernel of some morphism.

In a pointed category C, normal epimorphisms are regular epimorphisms: If f is the cokernel
of u, then f is the coequalizer of u and the zero morphism. Furthermore, in a pointed category
C with kernels, normal epimorphisms are cokernels of their kernels: If f is the cokernel of u and
ker(f) is the kernel of f, then u factors through ker(f) as u = ker(f)a. So for any morphism
s such that sker(f) = 0, one has su = sker(f)a = 0, but since f is the cokernel of u, the
morphism s factors as s = Sf. Therefore f is the cokernel of ker(f).

A pointed regular category where every regular epimorphism is a normal epimorphism is
called a normal category [27]. According to [27], “a pointed variety of universal algebras is
normal if and only if it is a variety with ideals in the sense of K. Fichtner [8], also known in
universal algebra as a O-regular variety”.

We shall later make a remark on the two notions of normal subobjects; that is, normal
subobjects defined as normal monomorphisms and Bourn-normal subobjects [8]. We will specify
which notion of normal subobjects we will be working with in this thesis.

1.2 Unital categories
Definition 1.2.1 (see [7]). A category C is unital when
(a) C is pointed;

(b) C has finite limits;
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(¢) for each pair of objects X and Y in C, the pair of morphisms (1,0) : X — X x Y and
(0,1) : Y — X XY is jointly extremal-epimorphic.

For algebraic varieties, it is a well-known fact (see e.g Theorem 1.2.15 [4]|) that an algebraic
variety V is unital if and only if it is Jonsson-Tarski, i.e. its theory contains a binary term p and
a unique constant 0, satisfying p(x,0) = z = p(0,z). A set X together with a binary term p and
a constant 0, satisfying that p(z,0) = z = p(0, ) is called a unitary magma. One writes UMag
for the category whose objects are unitary magmas, and the morphisms are those which preserve
the binary term p and the constant 0. The categories UMag, Mon, CoM, Gp, Ab, and Rg of unitary
magmas, monoids, commutative monoids, groups, abelian groups, and rings respectively, are all
unital. The dual category Sets” of pointed sets is also unital.

Remark 1.2.2. For objects X and Y in a unital category C, the pair of morphisms (1,0) :
X — X xY and (0,1) : Y — X XY being jointly extremal-epimorphic amounts to the identity
morphism of X XY being a minimal element for those subobjects of X XY through which both
(1,0) and (0,1) factor. But as a general fact, in any poset where the meet of every two elements
exists, if there is a minimal element it is necessarily the minimum element. So since C has finite
limits, Sub(X xY') has meets defined via pullbacks, and therefore the identity morphism of X xY
is the join of (1,0) and (0,1); being the minimum element of those subobjects of X x'Y which
contain both (1,0) and (0,1).

Note that for objects X and Y in a unital category C, the pair of morphisms (1,0) : X —
X xY and (0,1) : Y — X x Y is also jointly epimorphic by Proposition 1.1.9.

Proposition 1.2.3. For a pointed finitely complete category C, the following are equivalent:
(a) C is unital;

(b) for each commutative diagram

R
(r1,72)

A— X xY «——— B,

(£,0) (0,9)

the morphism f x g: Ax B — X XY factors through (r1,r3).

Proof. (a) = (b). In the diagram
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since (f x ¢)(1,0) = (r1,ro)u and (f x ¢){0,1) = (rq,r2)v, one obtains factorizations u’
and v" of (1,0) and (0, 1), respectively, through the pullback (r},r}). Therefore (r},75) is an
isomorphism, and clearly f x g factors through (ry,r2) by t(rf,r5) =%, with (r},75)~! the inverse
of (r},rh).

(b) = (a). If (ri,r2) : R — X x Y is a relation such that (1,0) : X — X x Y and
(0,1) : Y — X x Y factor through it, then (b) implies that (ri,r9) is a split epimorphism, and
hence an isomorphism.

O

For objects X and Y in a pointed category C with finite products and coproducts, we write

to denote the unique morphism [(1,0), (1,0)] : X +Y — X x Y induced by (1,0) : X — X xY
and (0,1) : Y — X x Y, which, by the universal properties of coproducts and products, is equal
to the unique morphism ([1,0],[0,1]) : X +Y — X x Y induced by [1,0] : X +Y — X and
0,1]: X +Y — Y.

For objects X and Y in a regular unital category C with coproducts, the morphism (1.1)
above is a regular epimorphism: As seen in the commutative diagram

X+Y

X
; i
y [(1]2} X*xY 2

/c

X— X xY««———Y,
(1,0) (0, 1)

with me the (regular epi, mono)-factorization of the morphism (1.1), m is an isomorphism
since the pair (1,0), (0, 1) is jointly-extremal epimorphic. More generally, for every commutative
diagram
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in a regular category C, if u and v are jointly extremal-epimorphic, then the dotted arrow is a
regular epimorphism.

The kernel of the morphism (1.1) (when it exists) is denoted by a morphism kxy : X oY —
X +Y, where X oY is the co-smash product of X and Y.

1.3 Subtractive categories

A pointed subtractive variety (in the sense of Ursini [39]) is one whose theory contains a binary
term s and a unique constant 0, satisfying s(z,x) = 0 and s(x,0) = x. The notion of a subtrac-
tive category was subsequently introduced in [25], as a categorical generalisation of a pointed
subtractive variety.

Definition 1.3.1 (see [25]). A subtractive category is a pointed finitely complete category C
such that every left punctual reflexive relation in C is right punctual, i.e. for every relation
(ri,m) : R— X x X, if (1,1) : X — X x X and (1,0) : X — X x X factor through (r1,r2),
then (0,1) : X — X x X factors through (ri,r2) as well.

According to [25], a variety of universal algebras is a subtractive category if and only if it is
a pointed subtractive variety. The categories Gp, Ab, and Rng, of groups, abelian groups, and
rings respectively, are subtractive. In addition, the category of (nonempty) implication algebras
[1] (defined in Chapter 5 below) and the category of loops are subtractive categories.

The next proposition is the analogy of Proposition 1.2.3 in a subtractive category.

Proposition 1.3.2 (see [12]). Let C be a pointed category with finite limits. The following are
equivalent:

(a) C is subtractive;

(b) for any subobject (ri,72) : R — X XY and morphisms f : A — X and g: A — Y, if
(f,g) and (f,0) factor through (ri,rs), then (0, g) factors through (ri,r2) as well.

Proof. The implication (b) = (a) is obvious, so we will only prove the implication (a) = (b) :
Given that (f,g) and (f,0) factor through (r1,r3) in the diagram
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we see that the morphisms (1,1) and (1,0) factor through the pullback (r}, ). Therefore, by
subtractivity the morphism (0, 1) factors through (r}, r%), which implies that (0, g) = (fx¢)(0, 1)
factors through (r1,r9). O

Recall that in a pointed category C, a diagram

0— k> a2 sp— 9

is a short exact sequence if k is the kernel of g, and ¢ is the cokernel of k.
The following fact is usually called the upper 3 x 3 lemma.

Proposition 1.3.3 (see [27]). Let C be a normal subtractive category. In the diagram

0 0 0

0 A —— B ——
fl g1 h1

0 Ay — = By —— (s
f2 g2 ho

0 A3 —— B3 —— (3

0 0 0

where all the columns are short exact sequences, if the second and third rows are short exact

sequences, then the first row is also a short exact sequence.

Proof. See 27|, Lemma 5.1.
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Many of categories from classical algebras are both unital and subtractive. For example,
the categories Gp, Rng, and Ab are both unital and subtractive. Not all unital categories are
subtractive and vice-versa: The categories UMag and Mon of unitary magmas and monoids
respectively, are unital but not subtractive, and the category of (nonempty) implication algebras
is subtractive but not unital. Nevertheless, there is an interesting characterization of pointed
finitely complete categories which are both unital and subtractive, which we will recall later.

Definition 1.3.4 (see [7]). A pointed category C with finite limits is strongly unital if every left
punctual reflexive relation is indiscrete, in other words, for each object X, the pair of morphisms
(1,1): X — X x X and (1,0) : X — X x X is jointly extremal-epimorphic.

Recall

Proposition 1.3.5. For a pointed finitely complete category C, the following statements are
equivalent:

(a) C is strongly unital;

(b) for any subobject (ri,72) : R — X XY and morphisms f : A — X and g: A — Y, if
(f,g) and (f,0) factor through (ri,r2), then the morphism f X g factors through (ri,rs) as
well.

Proof. The implication (b) = (a) is obvious. To prove the implication (a) = (b), let
(ri,m2) : R — X XY be arelation such that (f,g) : A — X xY and (f,0) : A — X xY
factor through it. In the commutative diagram

g

A

the morphisms (1,1) and (1,0) factor through the pullback (r},r%), which is then an iso-
morphism since C is strongly unital. Now it immediately follows that f x g factors through

<T1,’f‘2>.
O

Here is the characterization of pointed finitely complete categories which are both unital and
subtractive:

Proposition 1.3.6 (see [25]). A pointed category C with finite limits is strongly unital if and
only if it is unital and subtractive.
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Proof. The “if” part is straightforward. As for the “only if ” part, let us first show that C is
unital, by proving that for each commutative diagram

R

(r1,72)

X —— X xY¢«—Y
(1,0) (0,1)

(r1,79) is an isomorphism. Using the previous diagram, we obtain the following commutative
diagram

R

(r1,72)

R— > X XY «—R,
(r1,r2) (r1,0)

which, after applying the previous proposition to it, implies the morphism 7y X ro factors through
(r1,m2). Therefore, the morphism (r1 X r2)(u X v), which is the identity morphism of X x Y, also
factors through (ri,r2). Hence (ri,r2) is an isomorphism. The second part of the “only if” is
rather straightforward: If for a relation (r1,r2) : R — X x X, the morphisms (1,1) : X —
X x X and (1,0) : X — X x X factor through it, then strongly unital forces (r1,72) to be an
isomorphism, through which (0, 1) factors.

O

The following theorem is a slight modification of Lemma 1.8.18 in [4], and it will be useful
in Chapter 3.

Theorem 1.3.7. Let C be a strongly unital category. Consider the following commutative dia-
gram

(1.2)
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with gp = m. If (R,r1,72) is the kernel pair relation of f, then (W x R,1 x ry1,1 x ry) is the
kernel pair relation of ¢.

(k1 ko), (K, k)« K —
w(kl,kz> = gsa<k’1,k’>
o) and (k7,k}) factor by

Proof. Let (K, k, k") be the kernel pair relation of ¢. Writing (k, k') =
(W x A) x (W x A), since gp = 71, we see that k1 = m1(ky, ko) =
mi(k}, kb)) = Kk{. Now we can see in the diagram below that (ki,k
(k1, (ka, kb)) through 1 x 71 and 1 X 7o respectively

(K1, k)

Since fry = ¢(0,1)r1 = ¢(0, 1)ra = fry and ¢(1,0) = ¢(1,0), the morphisms ((0,r1), (0,7r2)) and
((1,0), (1,0)) factor through ((k1,ks2), (K], k%)), which (respectively) mean that the morphisms
(0, (r1,r2)) and (1,(0,0)) factor through (k1, (ka, k5))

o Ko«
-7 2 S
- / ~
. .
a” >\// B
// 4 \\

S, WX R | (ky, (ka,K})) N
/ \
/ \) \

/ + Y
/ et \
/ is \
/ = \
/ 2/ \

Wr——5>Wx(AXA) ¢—<R.
(1,(0,0)) (0, (r1,m2))

Applying Proposition 1.2.3 to the previous diagram, the morphism 1 x (rj,r9) factors through
(k1, (ka, k5)). It remains to show that (kq, (ko, kb)) factors through 1x (r1,72). But since ¢(k1, ko) =
(ki kS) and o(k1,0) = ©(k],0) (since k; = K)), it follows by subtractivity that ¢(0,ks) =
©(0,k%). This means fko = ¢(0,1)ke = ©(0,1)k}, = fk}, which implies that (ko,k}) factors
through (r1,r2) via a morphism 7. Thus the diagram

1><<’I‘17 >
WXR%WX(AXA)

(k1,7) o

commutes, and hence the result follows. O

Remark 1.3.8. In a strongly unital category C, for each commutative diagram
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1,1 0,1
A (k) Ax A 0.0 A
)
h f

Q

1 g 0
A (1.3)

since the morphisms (1,1) and (0, 1) are jointly epimorphic, gp = m1. Using the previous theorem,
if (R,r1,72) is the kernel pair relation of f, then (A X R,1 x 11,1 X 19) is the kernel pair relation
of v.

As a consequence of Theorem 1.3.7, we can make the following useful observation:

Corollary 1.3.9. Let C be a regular strongly unital category. In diagram (1?) of Theorem 1.3.7,
if ¢ is a regular epimorphism, then it is of the form 1 x§: W x A — W x Q, where §: A — @
is the regular epimorphism in the (regular epi, mono)-factorization of (0, 1).

Proof. From Theorem 1.3.7, the kernel pair of ¢ is given by the pair 1 X r1,1 X ro, where rq, 79
is the kernel pair of ©(0,1). Let ¢ : A — Q be the regular epimorphism in the (regular epi,
mono)- factorization of ¢(0,1). Clearly, ¢ is the coequalizer of the pair 71,7y, and therefore the
morphism 1 X ¢ is the coequalizer of its kernel pair 1 X r1,1 X 9. Hence 1 x § is isomorphic to
@ since they are both coequalizers of 1 x r; and 1 X 7a.

O

In the next remark, we state an equivalent formulation of Corollary 1.3.9 in a category of
points over a fixed object. Before doing so, let us recall what a category of points over a fixed
object is. For each object A in a category C, we write Pt(A) to denote the category of points over
A, whose objects are triples (X,r,s), with X an object in C and r : X — A,s: A — X are
morphisms such that rs = 1. A morphism f : (X,r,s) : X — (Y, q,t) in Pt(A) is a morphism
f: X — Y in C, such that ¢f = r and fs = t. Note that this category is pointed; the zero
object is given by (A, 1,1) and the zero morphism between any two objects (X, r, s) and (Y, q,t)
is the composite tr : (X,r,s) — (Y, q,1).

Remark 1.3.10. Let C be a regular strongly unital category. Corollary 1.3.9 is equivalent to
the following statement: For any object W in C, every reqular epimorphism ¢ in Pt(W') whose
domain is (W x A, w1, (1,w)) can be chosen to be of the form 1 x ¢, with § a reqular epimorphism
i C
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The following fact will be useful.

Proposition 1.3.11. Let C be a regular category, and §: A —s Q be a regular epimorphism in
C. If k1, ko is the kernel pair of G, then the factorization (k1,ke) is the kernel of the morphism

1xg:(AxAm,(1,1) — (AxQ,m,(1,4)

in Pt(A)

(k1,k2
AXAHAXQ

titi

A N N A.
Proof. In the diagram
Ax A k1
<q,q> A
<k17 > (1) <17 1)
(K1, ko) (é%A)%AXA 1,9
1xk  (2) 1xd
1xq ~
AxA AxQ
|
2 (3) 2
A Q

2
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since diagram (3) and the outer diagram (1) 4 (2)+ (3) are pullbacks, the outer diagram (1) +(2)
is also a pullback. Recalling the computation of kernels in Pt(A4), diagram (1) + (2) being a
pullback implies (kq, ko) is the kernel of the morphism 1 x ¢ in Pt(A).

O

1.4 Mal’cev and Barr-exact categories

Definition 1.4.1 (see [15]). A category C with finite limits is a Mal’cev category when every
reflexive relation in C is an equivalence relation.

For varieties, the condition asking that every reflexive relation is an equivalence relation
corresponds to the existence of a ternary term p, satisfying that p(z,y,y) = x and p(z,z,y) = y.
A variety of universal algebras whose theory contains such a ternary term p is called a Mal’cev
variety [36], and p is called a Mal’cev term. The category Gp of groups is Mal’cev, with a
Mal’cev term p defined by p(z,y,z) = = —y + z. More generally, every variety containing
a group operation, i.e. a variety of {2—groups, is Mal’cev. Furthermore, the categories Heyt
and LCMag of Heyting algebras and left closed magmas respectively, are Mal’cev (see e.g [4]).
A magma is left closed [4] when it is furnished with a second binary operation written = \ ¥,
satisfying that x + (z \ y) = y and = \ (z + y) = y. There are Mal'cev categories which are
non-varietal; the dual category of elementary topos is such example.

Mal’cev, strongly unital, and unital categories are related in the following implications:

Mal’cev=- strongly unital=-unital.

At varietal level, strongly unital corresponds to the existence of a ternary term p satisfy-
ing p(x,0,0) = x and p(x,z,y) = y, while for the unital case p is only required to satisfy
p(2,0,0) =z = p(0,0,x). These are clearly weaker versions of a Mal’cev terms. Categorically,
the first implication (Mal’cev = strongly unital) follows immediately from the fact that every
right punctual reflexive relation is an equivalence relation, and so symmetry forces any such
relation to be also left punctual, and through transitivity it can be shown that it is indiscrete.

Let us also mention that (strongly) unital and subtractive categories can be used to charac-
terize Mal’cev categories in terms of categories of points over fixed objects. The characterization
in terms of (strongly) unital categories appears in [7], and it asserts that, a category C with
finite limits is a Mal’cev category if and only if, for each object A, Pt(A) is (strongly) unital. An
analogy of this characterization in terms of subtractive categories is given in [12]: A category
with finite limits is a Mal’cev category if and only if for every object X, the category of points
over X is subtractive.

Recall that (see e.g Proposition 2.2.11 [4]) for a pullback preserving functor U : C — C'
between categories with finite limits, if U reflects isomorphisms and C’ is a Mal’cev category,
then C is a Mal’cev category as well. Let us apply this result to observe the following: For each
object X in a Mal’cev category C, the functor

do : Pt(A) — C,

which sends each morphism f : (X,r,s) — (Y, q,p) (resp. object (X,r,s)) to f: X — Y (resp.
X), is a pullback preserving functor which reflects isomorphisms, and therefore the category
Pt(A) is Mal’cev.
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In [14] it has been shown that a regular category is Mal’cev if and only if composition of
equivalence relations is commutative, i.e. RoS = So R for every pair of equivalence relations R
and S on a given object. Let us also observe that for each object X in a normal category C, the
category Pt(X) is normal. Recall that Pt(X) = ((X,1) | (C | X)), and since regular categories
are stable under slice and co-slice categories, it follows that Pt(X) is a regular category whenever
C is regular. It has been shown already that Pt(X) is pointed, so it remains only to show that
every regular epimorphism in Pt(X) is a normal epimorphism: For every regular epimorphism
f:(Ar,s) — (B,q,p) in Pt(X), f : A — B is a normal epimorphism in C. Since pushouts in
Pt(X) are computed as in C, to show that f is a normal epimorphism in Pt(X) it is enough to
show that the bottom square in the diagram

K —0
_l

is a pushout. But this follows immediately since the outer diagram is a pushout and 7 is a
(normal) epimorphism (or the fact that the first square is also a pushout).

Definition 1.4.2 (see [2]). A regular category C is called Barr-ezact when every equivalence
relation in C is a kernel pair relation.

In a general categorical context, equivalence relations which are kernel pair relations of some
morphisms are called effective equivalence relations. A simple example of a Barr-exact category
is the category Set of sets. In Set if R is an equivalence relation on X, then for the quotient
q: X — X/R, q(z) = q(2/) if and only if (z,2') € R, and this means R is the kernel pair
relation of ¢q. Some other examples of Barr-exact categories include each variety of universal
algebras and the dual of each elementary topos.

In normal Barr-exact categories the following important fact holds: For every object X there
is a bijection between the class of normal monomorphisms whose codomain is X and the class
of equivalence relations on X.

1.5 Ideal-determined categories

Let us recall the following classical facts: (a) Every congruence R on a group G is determined
by the equivalence class of the unit since

(z,y) € R o™y € [,

and (b) every normal subgroup of G is the unit class of a unique congruence on G. To explain
(b) we will show that for any normal subgroup H of G, the relation R defined by

(z,y) ERezlye H
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is a congruence on G whose unit class is H. Clearly, R is reflexive and thus, it is an equivalence
relation on GG. The normality of H will be used to show that R is a congruence. By definition,
(z,v), (a,b) € R if and only if v~ 'y € H and a~'b € H. But since H is a normal subgroup we
also have a~'z~!ya € H, which together with a='b € H, implies (ra) lyb=a tz~lyb € H, i.e.
(za,yb) € R. Let us show that R is closed under inversion: For (z,y) € R, x~'y € H implies
y~ 'z € H. Using the fact that H is a normal subgroup, zy 'zz~! = 2y~! € H and hence,
(z71,y71) € R. Thus R is a congruence on G. Lastly, (z,1) € R if and only if =1 € H, and
this shows that H is precisely the unit class of R. The uniqueness of R is straightforward. These
classical properties have been investigated in universal algebras, replacing normal subgroups with
ideals (i.e. “zero” classes of congruences), and for that the notion of ideal-determined varieties
(in the sense of [19]) was introduced; that is, those pointed varieties whose congruences are
completely determined by their ideals. Ideal-determined varieties were also called BIT varieties
in [37]. A categorical counterpart of an ideal-determined variety, called ideal-determined category,
has been introduced in [24|. In modern terms an ideal-determined category can be defined as
follows:

Definition 1.5.1 (see [24]). A normal category C with finite colimits is called ideal-determined
if normal monomorphisms are preserved by reqular images along regular epimorphisms.

Again going back to groups, a normal subgroup can be described in two equivalent ways:
(a) as a kernel of a group homomorphism; (b) as a unit class of a congruence. However, for
an arbitrary pointed category the two descriptions are not equivalent. Thus, there are two
notions of normal subobjects, namely, normal subobjects defined to be kernels, and Bourn-
normal subobjects [8], which in pointed categories are “zero” classes of equivalence relations.
These two notions of normal subobjects coincide under certain assumptions, that we will see
in the next section. Nevertheless, for the purpose of this project, we will only define normal
subobjects to be normal monomorphisms (kernels).

1.6 Protomodular categories

Protomodular categories were introduced in [9], and sometimes called Bourn-protomodular cate-
gories. In protomodular categories, most properties of categories of “group-like” structures hold.
In particular, in pointed Barr-exact protomodular categories, the two notions of normal subob-
jects coincide, that is, Bourn-normal subobjects are precisely normal monomorphisms (see, for
instance, Proposition 3.2.20 [4]).

Definition 1.6.1 (see [9]). A category C is protomodular when
(a) C has pullbacks of split epimorphisms along any morphism;
(b) For every morphism v : A — B in C, the “inverse image” functor v*, that is the functor
v*: Pt(B) — Pt(A)
induced by pulling back along v, reflects isomorphisms.

A pointed category C with finite limits is protomodular when the split short five lemma holds
(see e.g [4]), that is, for each commutative diagram
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q
%
X’l ﬁ Y/ Z/
S

with ¢ and p split epimorphisms
gs=1, pr=1,

and u = ker q,v = kerp the respective kernels, if ¢ and ¢ are isomorphisms then so is b. The
short five lemma holds for groups, and in particular, the category of groups is often used as a
leading and guiding example when studying protomodularity. Other classical properties such
as, (a) monomorphisms are precisely those morphisms with trivial kernels, (b) any congruence is
completely determined by the unit class, and (c¢) reflexive relations are equivalence relations, all
lift to pointed protomodular categories (see e.g [9], [8], [7]). From (c) we see that protomodularity
implies Mal’cev.

Theorem 1.6.2 (see [11]). Let V be a variety of universal algebras. V is protomodular if and
only if it has O—ary terms ey, ..., ey, binary terms $1,...,Sp, and (n + 1)—ary term p such that
p(x, s1(x,y), ..y Sn(x,y)) =y and s;(x,x) = e; for each i =1,....,n.

The categories of (abelian) groups, non-unitary rings, Lie algebras, crossed modules of groups,
and more generally, every variety of {2—groups are protomodular categories.

1.7 Semi-abelian categories

Although in this thesis we are working in a strictly weaker context than semi-abelian category
[23], we will end this chapter with a brief summary on the historical background of semi-abelian
categories.

Over the years different people were working to find a right categorical framework which
exhibits properties of “group-like” structures, just as abelian category allows a generalized treat-
ment of abelian groups. What are nowadays called old style axioms were conditions given in
different papers, which as mentioned in [23| required a “good behaviour” of normal epimor-
phisms and monomorphisms, to capture properties of groups, rings, and modules. The notion
of semi abelian categories serves the same purpose, it incorporates the old style axioms and also
acts as a bridge between the work done in the past and “modern categorical algebra”.

According to [23], “a pointed, Barr-exact, and protomodular category C with finite colimits
is called a semi-abelian category”.

Let V be a variety of universal algebras. According to [11], V is semi-abelian if and only if
its theory has a unique constant 0, binary terms sy, ..., s, and a (n 4+ 1) — ary term p such that
p(z,s1(x,y), ..., sn(z,y)) =y and s;(z,z) =0 for each i =1, ..., n.



Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Binary commutators

The classical notion of commutator of two subgroups has been generalized in several ways to
various types of universal algebras and further to certain categorical contexts. In this chapter we
study, in categorical contexts, the notions of binary commutators in the sense of Huq, Higgins,
Ursini and Smith.

2.1 Higgins commutator

The Higgins commutator [21] is a universal-algebraic commutator, which generalizes the com-
mutator of groups to Q-groups. In [30] the Higgins commutator has been defined categorically
for a pair of subobjects of an object in an ideal-determined category. The main aim of this
section is to characterize the Higgins commutator as the largest binary operation defined on all
subobjects of every object in a normal strongly unital category C with finite colimits, satisfying
certain conditions. The same characterization already appears in the author’s work (see [34]),
but given in the context of ideal-determined unital category; in the present work we replace the
condition that kernels are preserved by images under normal epimorphisms (in the definition
of an ideal-determined category C) with the condition that C is subtractive. So this section is
essentially as in |34].

Definition 2.1.1 (see [21|, [30]). Let (H,h) and (K, k) be subobjects of X in a normal strongly
unital category C with finite colimits. The Higgins commutator [H, K|y is obtained as the regular
image of the normal subobject Ky : H o K — H + K under the canonical morphism [h, k] :
H+ K — X in the diagram

HoK —> [H K]y

H+K———— X.
[h, K]

In a normal strongly unital category C with finite colimits, a binary operation [—, —] (defined
on all subobjects of every object) is said to be monotone when [H', K'] < [H, K] for subobjects

26
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(H',1), (H,h), (K',K'), and (K,k) of X, such that H' < H and K’ < K. The Higgins
commutator is monotone: For subobjects (H',h'), (H,h), (K',k’), and (K, k) of X in a normal
strongly unital category C with finite colimits, if H' < H and K’ < K, then there exist morphisms
a and 8 such that A’ = ha and k¥’ = kB. Furthermore, one obtains the following commutative
diagram

ti a+p axp
HOKTH—FKHHXK

o 7]

[H' K"y [, ]

[HaK]H X

in which, by the universal property of kernels, there is a morphism ¢ making the upper left
square commute. The Higgins commutator [H’, K|y is obtained as the image of kg g+ along
(W, K'] = [h, k](a + B), but since the morphism H' ¢ K’ — [H', K']y in the diagram is a strong
epimorphism, it can be seen that [H', K'|y < [H, K]y.

For a subobject (H,h) of X in any normal category with finite colimits, its normal closure,
denoted by (H,h), is a subobject of X given by the kernel of the cokernel of h: H — X.

Proposition 2.1.2 (see [34]|). For a pair of subobjects (H,h) and (K,k) of X in a normal
strongly unital category C with finite colimits, one has [H, K]y < H A K.

Proof. In the commutative diagram
10
KH,K 0o 1
HoK——H+K——>HxXxK

[h, k] qkma

[Ha K] H X q Q
where ¢ is the cokernel of h : H — X, we see that [H, K]y < H, with H — X the kernel of q.
Similarly, one can show that [H, K]y < K. Hence [H, K]y < H A K.
O

For a pair of objects H and K in a normal strongly unital category C with finite colimits,
ker[1,0] : HVK — H + K and ker[0,1] : KbH — H + K denote the kernels of the induced
morphisms [1,0] : H + K — H and [0,1] : H + K — K respectively. As observed in
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[30], for instance, it can be seen from the diagram below that the co-smash product H ¢ K
coincides with the meet HbK A KbH in H + K, since they are both kernels of the morphism

{(1) ?}:H—i—KHHxK

HbK/\K)bH KbH

|

HYK ker[1,0]

Furthermore, the Higgins commutator of the coproduct inclusions ¢; : H — H + K and 149 :
K — H + K, that we shall denote by [i1(H), i2(K)]n, is just the co-smash product H ¢ K as
seen in the diagram

HoK ——— [i1(H),i2(K)]n

Hik— 2= gk
[0 1] o 1]
HxK— S HxK.

Therefore, using the fact that the Higgins commutator is monotone, and, H < KbH and K <
HbK in H + K, we can apply Proposition 2.1.2 to conclude that

Ho K = [iy(H),is(K)|n < [KbH, HY K]y < KbH N HVK = Ho K.

For a pair of subobjects (H,h) and (K, k) of X in a normal strongly unital category C with
finite colimits, since H < KbH and K < HbK in H + K, it can be easily seen through the
diagram

KvH — [h,k](KbH)

A

H.‘Z%H—l—K%X

h



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BINARY COMMUTATORS 29

that H < [h,k|(KbH) in X. In a similar way it can be shown that K < [h, k](HbK) in X.
The following result is a special case of Lemma 5.1 of [17] but stated in a weaker context,
and the proof is essentially the same.

Lemma 2.1.3. Let C be a normal strongly unital category with finite colimits. If f : X - Y
and g : X' — Y' are normal epimorphisms, then the induced morphism fog: X o X' — Y oY’
15 also a normal epimorphism.

Proof. Consider the diagram

Ker(f + g) <a’ﬁ>> Ker(f) x Ker(g)

ker(f + g) ker(f) x ker(g)

1 0

0 1

00— Xo X' = X+ X — > X x X' —0
fog f+g fxg

0— YoV =Y +Y ——> YV xY' ——0

[0 1]

0 0.

Using the upper 3 x 3 lemma (Proposition 1.3.3), the morphism f ¢ g is a normal epimorphism
if and only if the dotted arrow is a normal epimorphism. We obtain the following commutative
diagram

r r’

Ker(f) ? Ker(f + g) : Ker(g)
S
ker(f) ker(f + g) ker(g)
[1,0] [0,1]
X : X+ X : X/
71 2
f I+yg 9
(1,0] [0,1]
Y : Y +Y’ : Y’
71 2

where 7, 5,7/, and s’ are morphisms induced by appropriate [1,0],i1,[0,1] and i2, respectively.
Clearly, rs = 1,7's = 0,78’ = 0, and r’'s’ = 1, and since ker(f)r = [1,0]ker(f + g) = ker(f)«
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and ker(g)r’ = [0, 1] ker(f + g) = ker(g), we see that r = « and r’ = . It is now clear that the

diagram
Ker(f + g)
S \

Ker(f % Ker(f) x Ker % Ker(g

commutes, and since the pair of morphisms (1,0) and (0, 1) is jointly extremal-epimorphic, the
dotted arrow is a normal epimorphism. O

The next theorem has been already proven for ideal-determined unital categories in [35].
However, using the previous lemma, an alternative proof can be obtained in a normal strongly
unital category with finite colimits.

Theorem 2.1.4. Let f : X — Y be a morphism in a normal strongly unital category C with
finite colimits and (H, h), (K, k) be a pair of subobjects of X. Then, f([H,K|n) = [f(H), f(K)]n-.

Proof. Let h'u and k’v be the (regular epi, mono)-factorizations of the composites fh and fk
respectively. Using Lemma 2.1.3, the induced morphism u ¢ v in the diagram

fH) o f(K) f(H, K]n)

woV I /
Ho K [H’K]H
(7, k]
f(H) + f(K) Y
wr §
[h, k]
H+ K X

is a normal epimorphism. Now f([H, K|y) = [f(H), f(K)]y follows by the uniqueness of regular
images.

O

Now we can state the main result, which has been already proven for an ideal-determined
unital category in [34].

Theorem 2.1.5. In a normal strongly unital category C with finite colimits, the Higgins com-
mutator is the largest binary operation C' on subobjects (defined on all subobjects of each object)
satisfying the following conditions:

(a) C is monotone;

(b) C(H,K) < HAK for each pair of subobjects (H,h) and (K,k) of an object X;
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(c) C(f(H), f(K))= f(C(H,K)) for each pair of subobjects (H,h) and (K, k) of an object X,
and every morphism f whose domain is X.

Proof. Let us suppose there is a binary operation [|—, —|] satisfying the conditions (a), (b), and
(c) above. Let (H,h) and (K, k) be a pair of subobjects of X. Since H < [h,k](KbH) and
K < [h,k](HPK) in X, we have

[[[h, K] (KDH ), [h, K] (HVK)|]
[, k(| Kb H, HYK])
< [h, k](KbH A HVK) (2.1)
[h, k)(H o K)
[

2.2 Huq commutator

The Huq commutator [22] is a purely categorical notion derived from the concept of commuting
morphisms, also introduced by Huq [22] in a context closely related to semi-abelian. The notion of
commuting morphisms has been investigated in various categorical contexts; in |5], for instance,
it is shown that commuting morphisms can always be defined in a unital category. In this section
we will recall some of the recent developments in the study of Huq commutator.

Definition 2.2.1 (see [22|). Two morphisms f: X — Y and g: Z — Y in a unital category
C are said to commute when there exists a (necessarily unique) morphism ¢ : X x Z —'Y making
the diagram

X
v/ N
XXZ---ne5Y
AN
Z

commute.

In the category of groups, for two subgroups X and Y of a group G, it can be easily shown
that the inclusion maps X < G and Y — G commute in the sense of Huq if and only if every
element of X commutes with every element of Y.

Definition 2.2.2 (see [22]|). For a pair of subobjects (H,h) and (K, k) of X in a normal unital
category C with finite colimits, the Huq commutator [H, K]q is the smallest normal subobject of
X for which the composites gk and gh, where q is the cokernel of [H, K]g — X, commute.

In a normal unital category C with finite colimits, the Huq commutator of a pair of subobjects
(H,h) and (K, k) of X always exists, and can be constructed as the kernel of ¢ in the diagram
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H
(1,0) N
e ke
HxK > X<er(q)[ ,K]q

Q « !
<N /
K

where @ is the colimit of the solid arrows (see [5]). Or equivalently (see Proposition 5.5 in [30])
as the kernel of ¢ in the following pushout

[h, k] ker(q)
H+K——> X< [H,K]g

= O
| S
S

-
HXKTQ.

The following is a general fact.

Lemma 2.2.3. Let C be a pointed category with finite colimits. For each commutative diagram

f coker(f)
X Y Z
e s (1) T
A . B 7 C

where e is an epimorphism, diagram (1) is a pushout if and only if g is the cokernel of k.
For the next proposition we copy the proof given in [35].

Proposition 2.2.4 (see [30],[35]). In a normal unital category C with finite colimits, the Huq
commutator is the normal closure of the Higgins commutator.

Proof. Let (H,h) and (K, k) be a pair of subobjects of X in a normal unital category C with
finite colimits. Consider the commutative diagram
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1 0
KH,K [ 0 1 ]
HoeK———>H+K—>»>HXK
e [h, k] (1) L
H K
[ ’ ]H m X coker(m) @

in which the morphism ¢ is given by the universal property of cokernels. Applying Lemma 2.2.3
to the diagram above, the square (1) is a pushout. Therefore the kernel of coker(m), which is
also the Huq commutator [H, K|g, is the normal closure of the Higgins commutator [H, K|y. O

The next theorem describes the Huq commutator of regular images of a pair of subobjects
under an arbitrary morphism.

Theorem 2.2.5 (see (35|, Theorem 3.2). In a normal unital category C with finite colimits, for
every pair of subobjects (H,h) and (K, k) of X and every morphism f whose domain is X, one
has

[f(H), [(K)lq = f([H, K]q).
We recall

Lemma 2.2.6 (see [35], Lemma 3.4). In a normal category C with finite colimits, for every
subobject (H, h) of X and every morphism f whose domain is X, one has

f(H) = f(H).

In a normal strongly unital category C with finite colimits, Theorem 2.2.5 follows from
Theorem 2.1.4 (as explained already in [34]), by applying the fact that the Huq commutator
is the normal closure of the Higgins commutator, and the following application of the previous
lemma:

f([H’K]H) = f([Ha K]H)

for subobjects (H,h) and (K, k) of an object X and every morphism f whose domain is X. To
make this more precise, for a morphism f : X — Y and a pair of subobjects (H, h) and (K, k)
of X in a normal strongly unital category C with finite colimits, we have

(2.2)

The Huq commutator has been characterized as follows:
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Theorem 2.2.7 (see [35|, Theorem 4.5). In a normal unital category C with finite colimits, the
Huq commutator is the largest binary operation [—,—] defined on all subobjects of each object,
satisfying the following conditions:

(a) [—,—] is monotone;

(b) [H,K] < HAK for each pair of subobjects (H,h) and (K,k) of X;

(c) [f(H), f(K)] < f([H, K]) for each pair of subobjects (H,h) and (K, k) of an object of X

and every morphism f whose domain is X.

2.3 Ursini and Smith commutators

In [38] the notion of commutator of a pair of ideals (Ursini commutator) has been introduced
in the context of BIT varieties [37|, also called ideal-determined varieties in [19]. An intrinsic
description of Ursini commutator in an ideal-determined category has been given in [29] following
a similar approach used in [30] to define the categorical notion of Higgins commutator. In this
section we will recall the categorical definition of Ursini commutator given in [29], and how it is
related to Higgins, Huq, and Smith commutators.

To begin, we recall the necessary background to define the categorical version of Ursini
commutator. Let C be an ideal-determined category, and (H, h), (K, k) be a pair of subobjects
of X in C. Observe that the morphism [h,1,k] : H + X + K — X is a regular epimorphism
since it is a split epimorphism. Following [29], we shall denote by © the morphism

([h,1,0],[0,1,0],[0,1, k]) = [(h,0,0),(1,1,1),(0,0,k)] : H+ X + K — X x X x X.

The morphism {2 is not a regular epimorphism in general, even for groups, so one can consider
its (regular epi, mono)-factorization

[<h7070>7<17 17 1>1<0107k>]
H+ X+ K X x X x X.

R

Definition 2.3.1 (see [29]). Let (H,h) and (K, k) be subobjects of X in an ideal-determined
category C. The Ursini commutator [H, K]y is the reqular image under [h,1,k] : H+ X + K —
X of the kernel Ker(Q2) of Q

Ker(Q) — [H, K|y

! |

H+X+K-—»X.
[h’lyk}

It can be seen in the diagram below that the Ursini commutator [H, K|y can also be constructed
as the kernel of the morphism ¢ in the pushout diagram on the right
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Ker(Q) > H+ X +K ——>R
[, 1, r

[HaK]U X q Q

Next we compare Ursini commutator with Huq and Higgins commutators. For subobjects (H, h)
and (K, k) of X in an ideal-determined unital category C, it can be easily seen that the right
hand side rectangle in the diagram

[(h,0,0),(1,1,1),(0,0, k)]

Ker(Q) ——— H+ X+ K XxXxX
53 [il’i3] <h7‘(‘1,0,k7r2>
Ho K % H+ K Hx K
H,K

[0 1]

commutes, and this implies there is a factorization § through the kernel Ker(£2). Now in the
diagram

8 Ker(2) » [H, K|y
HOK///2 e

fiis), H+ X+ K 51,k

H+ K ™ X

since [h, k] = [h, 1, k][i1, i3], it can be easily seen that the strong epimorphism H ¢ K — [H, K]y
induces a factorization of the Higgins commutator [H, K]y — X through the Ursini commutator
[H, K]y — X. But since, by definition, the Ursini commutator is always normal, and the Huq
commutator is the normal closure of the Higgins commutator, it follows that

[H, K]y < [H,K]o < [H, K]y < X.

The Ursini commutator is also different from Huq and Higgins commutators in the sense
that, it is invariant with respect to normal closures of subobjects, in other words, for subobjects
(H,h), (K,k) of X in an ideal-determined category C, [H, K|y = [H, K]y (see Proposition 4.5
in [29]). This is a property that both Huq and Higgins commutators do not satisfy even for

groups; implying that the above inequality may be strict.
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The Ursini commutator of two subgroups H and K of a group G is just the classical commu-
tator of their respective normal closures. This suggests that all the three commutators coincide
for normal subgroups.

Next we recall the construction of the Smith commutator.

Definition 2.3.2 (see [5],[33],[36]). Let (R,r1,72) and (S, s1,s2) be equivalence relations on an
object X in a reqular Mal’cev category C with finite colimits. Consider the pullback of s1 along
ro in the diagram

RXXS%S

R%

The Smith commutator R, S]s is given by the kernel pair relation of the normal epimorphism t
i the diagram

R

<17AST2> N

RXXS <p>

where T 1is the colimit of solid arrows. When the morphism t is an isomorphism, the Smith
commutator R, S]s is trivial, and it precisely means that R and S centralise each other.

In a normal Barr-exact category C, every equivalence relation is uniquely determined by its
zero class, i.e. the kernel of its quotient. These corresponding normal subobjects (kernels) are
called associated normal subobjects. For a normal subobject (H,h) of an object X, we write
(Rp,r1,72) to denote its associated equivalence relation, obtained as the kernel pair relation of
the cokernel of h.

In the next theorem we recall the description of Ursini commutator in terms of Smith com-
mutator in a categorical context, given in [29]. An independent proof has been given in [17].

Theorem 2.3.3 (see [29], Theorem 4.12). In a normal Barr-ezact Mal’cev category C, for a pair
of normal subobjects (H, h) and (K, k) of X, and their associated equivalence relations (R, m1,72)
and (R, 17,1h) respectively, the Ursini commutator [H, K|y is the associated normal subobject
of the Smith commutator Ry, Ri]s.

In the next chapter we will prove a stronger fact from which the previous description of Ursini
commutator in terms of Smith commutator can be recovered as a special case. In addition, we
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will obtain a characterization of the Ursini commutator as a special case of a characterization of
another notion of commutator.
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Chapter 3

Weighted commutators

The notion of weighted commutators, introduced and studied in [17], is derived from the notion
of weighted centrality, also introduced in [17]. We shall explore further properties of weighted
centrality and weighted commutators, and also investigate further relationships with the com-
mutators discussed in the previous chapter.

3.1 Weighted centrality

Let w: W — Az : X — A, and y : Y — A be morphisms in a pointed category C with
finite limits and colimits. A weighted cospan (w,z,y) in C is a diagram

w
X4ty

whereby w plays a role of a “weight”. Now consider the following pullback in C

W+X)xw (WH+Y) — 2 S WY
-
T (1,0]
W+ X W.
(1,0]

Weighted centrality is then defined as follows:

Definition 3.1.1 (see [17]). Let w: W — A, : X — A, andy : Y —> A be morphisms in
a pointed category C with finite limits and colimits. The morphisms x and y commute over w if
there exists a morphism

m: (W+X) XWwW (W+Y) = (W+X) X([170]7[1,0]) (W+Y) — A

making the diagram

38
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W+ X
%,
(1,i1[1,0]) 4
(W+X)xw (W+Y)---"--5 4
(i1[1,0),1) @»\
W+Y

commute. The morphism m is called an internal multiplication, and when such a morphism
exists, one says there is an internal multiplication X x Y — A over w.

As explained in [17], taking W = 0 in a unital category C with finite colimits, Definition
3.1.1 reduces to commuting morphisms in the sense of Huq, in other words, z : X — A and
y 1 Y — A commute over the zero morphism 0 — A if and only if they commute in the
sense of Huq. In the definition above one is not insisting on the uniqueness of an internal
multiplication whenever it exists. However, in some categorical contexts it can be shown that an
internal multiplication is necessarily unique whenever it exists. We shall observe the uniqueness
of internal multiplications in a pointed finitely cocomplete Mal’cev category C.

Let X, Y, and W be objects in a pointed finitely cocomplete Mal’cev category C. The diagram

™ ™2

W+ X (W4+X)xw (W+Y) W+Y

(i1,41) | | [1,0]m1

w

represents the product of (W + X, [1,0],41) and (W + Y, [1,0],41) in Pt(W). In the diagram

1,0 7
W+Xl—¥w—i»W+Y

“y o>
7 1111 N

i1 11

we see that the composite i1[1, 0] is the zero morphism from (W + X, [1,0],41) to (W +Y,[1,0],1)
in Pt(W). But since Pt(WW) is unital whenever C is a Mal'cev category (see [7|), the pair of
morphisms (1,41[1,0]) : (W + X,[1,0],41) — (W + X) xw (W +Y),[1,0]m1, (i1,41)) and
(i1[1,0],1) « (W 4+ Y,[1,0],41) — (W + X) xw (W +Y),[L,0]m1, (i1,41)) is jointly extremal-
epimorphic in Pt(W). Hence the pair of morphisms (1,41[1,0]) : W+X — (W+X)xw (W+Y)
and (i1[1,0],1) : W +Y — (W + X) xyw (W +Y) is jointly extremal-epimorphic in C, by
applying the following general fact: In a category C with finite limits, for an object A, if the
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pair of morphisms f : (X,r,s) — (Y,p,q) and g : (X',7',s") — (Y,p,q) is jointly extremal-
epimorphic in Pt(A), then the pair of morphisms f : X — Y and g : X’ — Y is jointly
extremal-epimorphic in C. It can now be concluded that in a pointed Mal’cev category C with
finite colimits, internal multiplications are necessarily unique. Furthermore, when C is a pointed
regular Mal’cev category with finite colimits, from the commutativity of the diagram

W+X+Y

<[i11 12, O]v [ila 07i2]>

X— W4+ X W+y)e— Y
W wamoy > WXy (WAHY) e—rmoa— Wt

it follows that the dotted morphism
[<17i1[170]>7 <i1[170]7 1>] = <[i17i270]7 [i1707i2]> W+X+Y — (W+X) xw (W+Y)

is a regular epimorphism. Its kernel is denoted by X @V Y — W + X + Y.
Letw: W — A, 2: X — A, and y : Y —> A be morphisms in a pointed category C with
finite limits and colimits. We write

1 w]:W+Y—>W><A
0 y

[(1) Z;]:W+X—>W><Aand{

to denote the morphisms
([1,0], [w, z]) = [(1,w),(0,2)] : W4+X — WxX and ([1,0], [w,y]) = [(1,w),(0,y)] : W+Y — WxY

respectively. Therefore, one obtains the following cospan in Pt(W)

W4+ X Wx A W4+Y

and furthermore, the following diagram
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(W—|—X, [LO]vil)

(W+X) xw (W+Y),[1,0]m1, (i1,41))

e
&
)

(3.2)

in Pt(W). Therefore in a pointed Mal’cev category C with finite colimits, weighted centrality
can be equivalently expressed by means of commuting morphisms in the sense of Huq as follow:

Proposition 3.1.2 (see e.g [32]). Letw : W — A, v: X — A, andy : Y — A be morphisms
i a pointed Mal’cev category C with finite colimits. The following statements are equivalent:
(a) the morphisms x and y commute over w;

(b) the cospan (3.1) Hug-commutes in Pt(W), i.e. the morphisms

o ] ealo V)

commute in the sense of Huq in Pt(W).
Proof. (a) = (b). If x and y commute over w, and
m: (W+X)xw(W+Y)— A
is the internal multiplication X x Y — A over w, it is easy to see that the diagram

(W+X7 [1,0],i1)

(W4 X) xw (W+Y),[1,0]m, (i1,i1)) _omm (W x Ay, (1, w))

(W +Y,[1,0],41)
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commutes, and this implies (b).

(b) = (a). Assuming that (b) holds, let us use the previous diagram to picture this situation. If
¢ = (a,m) is the cooperator of the cospan (3.1) in Pt(W), it can be easily seen after composing
further with m : W x A — A that the morphism my¢ = m is an internal multiplication
X XY — A over w. O

As mentioned before, for a normal subobject (X, x) of A in a normal Barr-exact category C,
its associated equivalence relation (Rx,r1,72) is given by the kernel pair relation of the cokernel
of z : X — A. Let us observe in the next lemma that in a normal Barr-exact Mal’cev category
C with finite colimits, the associated equivalence relation (Rx,71,72) can be computed as the
join of the diagonal (1,1) : A — A x A and the morphism (0,z) : X — A x A.

Lemma 3.1.3. For a normal subobject (X,z) of A in a normal Barr-ezact Mal’cev category C
with finite colimits, its associated equivalence relation (Rx,r1,72) is the join of the morphisms
(1,1) : A— Ax Aand (0,z) : X — A x A.

Proof. In this context the join of (1,1) : A — A x Aand (0,z) : X — Ax Ain A x A is just
the regular image of the factorization [(1, 1), (0,z)] = ([1,0],[1,z]) : A+ X — A x A, which we
shall denote by

[1 1]:A—i—X—>A><A.
0 z

Clearly, the diagonal (1,1) of A factors through (r1,72), and because C is Mal'cev, (Rx,r1,72)

is an equivalence relation on A
Rx
y (r1,72)
11
0 =z

A+ X A x A.

Since C is Barr-exact, let ¢ : A — @ be the quotient of the equivalence relation (Rx,r1,72).
It remains to show that ¢ is the cokernel of x, so that x is indeed the associated normal subobject
of (Rx,r1,r2) and vice-versa. Since gr; = gre, and from the diagram rie = [1,0] and ree = [1, z],
one has gr = qroeia = grieia = q[1,0]ia = 0. Writing coker(z) for the cokernel of z, from gz = 0,
we know that ¢ factors through coker(z). On the other hand, since

coker(z)rie = coker(z)[1, 0] = coker(z)[1, z] = coker(x)rze

and e is a (regular) epimorphism, one obtains coker(x)ry = coker(z)ry, which implies that
coker(z) factors through ¢, since ¢ is the coequalizer of r; and ro. Hence ¢ is the cokernel of
x. OJ

In a Mal’cev category C, an equivalence relation (R,r1,72) on an object A can be identified
with the subobject (ri,r9) : (R,71,AR) — (A x A, m,(1,1)) of (A x A,m1,(1,1)) in Pt(A)
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<T17T2)
s Ax A

R
AR lm <1,1ﬂ m
A

1 4,

called the local representation of (R,r1,72) (see e.g [13]). As explained in Proposition 2.3 of [5],
in a Mal’cev category C a pair of equivalence relations (R,71,7r2) and (S5, s1, s2) on an object A
centralize each other, if and only if, their respective local representations (ri,r2) : (R, r1, AR) —
(Ax A,m,(1,1)) and (s1, s2) : (S,s1,A5) — (A x A,m,(1,1)) Hug-commute in Pt(A4). Recall
that in a regular unital category C, a pair of composites gs and fr, where s and r are regular
epimorphisms, Hug-commutes if and only if f and ¢ Hug-commute as well (see e.g Proposition
1.6.4 in [4]). In other words, commuting in the sense of Huq allows “regular epi-cancellation”. As
a consequence of this, one can conclude that there is no a difference between the Huq commutator
defined for a pair of morphisms f and g (having the same codomain), and the Huq commutator
defined on their respective regular images. We will later establish a similar property for weighted
centrality. For now let us take the weight to be the identity morphism of A in Proposition 3.1.2.
Then using the previous fact (“regular epi-cancellation” for commuting morphisms in the sense
of Huq), one can replace the morphisms in (b) of Proposition 3.1.2 with their respective regular
images, which, as shown already, are the local representations of the equivalence relations asso-
ciated to normal subobjects (X, x) and (Y, y). Using Proposition 2.3 of |5|, through Proposition
3.1.2 we recover the following fact:

Remark 3.1.4. In a normal Barr-exact Mal’cev category C with finite colimits, two normal
subobjects x : X — A and y : Y — A commute over 1 : A — A, if and only if, their associ-
ated equivalence relations centralize each other (see also Remark 1.10 of [17] for an alternative
explanation).

We will end this section by proving a “regular epi-cancellation” property for weighted central-
ity, and we will do so in two parts: In the first part we consider a weighted cospan (w, zz’, yy'),
whereby 2/ and 3’ are regular epimorphisms, while in the second part we consider a weighted
cospan (ww’, x,y) where w' is a regular epimorphism.

Proposition 3.1.5. Let C be a normal Mal’cev category with finite colimits. Given a weighted
cospan

X' X A Y Y’

where ' and vy are reqular epimorphisms, the composites xx' and yy' commute over w if and
only if x and y commute over w.

Proof. Tt can be easily seen that the following is a diagram in Pt(V)
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(W + X', [1,0],i1) Lo (W + X, [1,0],41)

(1,41[1,0])

((W + XI) XWwW (W -+ Y/), [1, 0]7‘(’1, <i17i1>)

(i1[1,0],1)

(W +Y',[1,0],41) .y (W +Y,[1,0],i1).

According to Proposition 3.1.2; the morphisms zz’ and yy’ commute over w if and only if the
morphisms

1 w 1 w 1 w 1 w
e 1 / — 1 /
R P R P S P (S
Hug-commute in Pt(W). But since commuting morphisms in the sense of Huq allow “regular
epi-cancellation”, it follows that x and y commute over w, if and only if, the composites zz’ and
yy' commute over w.

O

The “second part” of the regular epi-cancellation of weighted centrality is not so straightfor-
ward, it is based on several facts that we are going to observe next.
Recall

Lemma 3.1.6. Let C be a normal Barr-ezact Mal’cev category with finite colimits. If f : X' —
X,9:Y — Y, and h : W' — W are normal epimorphisms, then the morphism

(h+f) xn (A4 g) : (W' + X) xyr (W' +Y") — (W + X) xp (W+Y)
18 a normal epimorphism.

Proof. Since (h+ f) xp(h+g) = (h+1) X (h+1))(1+ f) xwr (1+g)) and (1+ f) xp (1+g)
is already a normal epimorphism being the product of two normal epimorphisms in Pt(W'), it
remains only to show that (h+1) x5, (h+1) is a normal epimorphism. Consider the commutative
diagram
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(W' + X) xypr (W' +7) - Wty
\@ +1) xp (h+1) \%1
W+ X) xw (W+Y) = W+Y
T [1,0] ‘
T [1,0]
’ / .©
e X\ "o W \ |
/5741 5
W+ X W :
- [1,0] : . :
i

in which the back and front faces are pushouts, since they are pullbacks of normal epimorphisms.
To show that (h+1) x5, (h+1) is a regular epimorphism, it is enough to show that the diagram

, , (h+1)7r2
W+ X)xy W +Y) —— > W+Y

(h+1)m [1,0]

W+ X w
[1,0]

is a pushout. For that, if u and v are morphisms such that u(h+1)m; = v(h+1)ms, using the fact
that the back and right hand faces are pushouts (in the first diagram), we obtain factorizations
p and g respectively, and it can be easily seen that u and v factor through gq. O

For morphisms f: X' — X,g: Y’ — Y, and h: W — W in a normal Mal’cev category
C with finite colimits, we shall write f ®@" ¢ : X’ @V ¥/ — X @" Y to denote the morphism
induced by the universal property of kernels in the diagram

’ f®hg
X' QW Y et e X W Y

ht f+
W'+ X' +Y! . W+X+Y

([¢1,12,0], [¢1,0,42]) ([¢1,12,0], [¢1, 0, 22])

!/ ! / !
’ _— .
(W' + X' xyr (W +Y7) TR (W+X)xw(W+Y)
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Next we recall Lemma 5.1 of [17], and we will repeat the proof since we are stating it in a
weaker context.

Lemma 3.1.7. Let C be a normal Barr-ezact Mal’cev category with finite colimits. If f : X' —
X, g:Y — Y, and h: W — W are normal epimorphisms, then the induced morphism

felg: x' ey — xe"y
18 also a normal epimorphism.

Proof. Consider the diagram

Ker(h + f + g) e > Ker(h + f) X Ker(h) Ker(h + g)

ker(h + f + g) ker(h + f) Xier(n) ker(h + g)
0—— X/ ®W’ v’ SW' + X' +Y! N (W/ —{—X’) Xy (W’—G—Y') 0

fehg h+f+g (h+f) xn (h+g)

0— X"y ——>W+X+Y (W+X) xw (W+Y) ——>0

0 0

in which the rows and columns are short exact sequences. Applying the upper 3 x 3 lemma
(Proposition 1.3.3), f ®" g is a normal epimorphism if and only if the dotted arrow (r,r') is a
normal epimorphism. We consider the diagram
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p/
Ker(h) Ker(h + g)
p
ker(h) ker(h + g)
r
Ker(h + f)
S
W/ ‘ W/ + Y/
ker(h + f)
h h+g
[i1,12,0]
W/ + X/
[i1, 2]
w W+Y
h+f h+f+g
[i17i270}
W+ X W+X+Y

i1, i2]

in which the morphisms in the top face are induced by the appropriate morphisms in the middle
face, and moreover, pg =1, p'¢’ =1, rs =1, and r’s’ = 1. In the diagram

(qp',1)
Ker(h + f) Xker(n) Ker(h + g) &—= Ker(h + g)
™2
(1,¢'p) | | m P d
P
Ker(h + f) Ker(h)
q

the pair of morphisms (1,¢'p) and (gp’, 1) is jointly extremal-epimorphic in Pt(Ker(h)), and so
in C. It now follows from the commutativity of the diagram

/Kerh+f+g '\
(r,r’

Ker(h + f) 1%Ker h+ f) Xker(n) Ker(h + g) %Ker (h+g)
a'p) (ap',1

that the dotted arrow is a normal epimorphism.
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Remark 3.1.8. In the notation of Lemma 3.1.7, since the induced morphism f®"g is a (normal)
epimorphism, it follows (see e.g Lemma 2.2.3) that the bottom rectangle in the diagram

y fo"
Xy --------------- (A » X Wy
h+f+
W+ X'+ Y it W4+X+Y
<[i1,i2,0},[i1,0,i2]> <[i1,i270},[i1,0,i2])
(W' + X") xyr (W' +Y7) (W + X) x (W +Y)

(h+f) xn (h+g)

18 a pushout.

Now we are ready to state the “second part” of the regular epi-cancellation property of
weighted centrality.

Proposition 3.1.9. Let C be a normal Barr-ezact Mal’cev category with finite colimits. For a
weighted cospan

where w' is a reqular epimorphism, the morphisms x and y commute over the composite ww' if
and only if they commute over w.

Proof. If x and y commute over w and m : (W + X) xyw (W +Y) — A is an internal
multiplication X X Y — A over w, then clearly, the composite m((w' + 1) X, (W' + 1)) :
(W' + X) xyr (W' +Y) — A in the diagram
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/ (Lafo) ) (11,0,1)
W' X R (W X) s (W4 Y) ey y

w 41 (W' +1) Xy (W' +1) w +1

(1,i1[1,0]) (i1[1,0],1)
WH+X ———S W+ X)xy (W+Y)e——W+Y

is an internal multiplication X x Y — A over ww’. Conversely, if 2 and y commute over ww’,
and m’ is an internal multiplication X x Y — A over ww’, by pre-composing with the jointly
epimorphic pair [i1,i0] : W + X — W/ + X +Y and [iy,i3) : W +Y — W' 4+ X +Y it can
be seen that the outer part of the diagram

w +14+1

W +X+Y W+X+Y
[(1,41[1,0]), (i1[L,0],1)] [(1,41[1,0]), (i1 [1, 0], 1)] [w, z, ]
! /
(W' + X) xw (W' +Y) I (W+X)><W(Wfr¥n)

ml

commutes. But since the rectangle is a pushout, there is a factorization m of [w,z,y] through
[(1,41[1,0]), (i1][1,0],1)], and this is equivalent to saying that x and y commute over w. O

3.2 Regular images of weighted commutators under arbitrary
morphisms

It has been shown already in [17] that the weighted commutators are preserved by normal-
epimorphic images. In this section we investigate images of weighted commutators under arbi-
trary morphisms.

Definition 3.2.1 (see [17]). Let (X,x),(Y,y), and (W,w) be subobjects of an object A in
a normal Mal’cev category C with finite colimits. The weighted subobject commutator
(X, 2), (Y, y)lw,w) is obtained as the image under [w,z,y] : W + X +Y — A of the kernel of
the morphism [(1,41[1,0]), (¢1[1,0,, )] : W+ X +Y — (W + X) xw (W +Y)
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X Wy — (X, 2), YV, 9)](ww)

W+X+Y — A

[w, z, y]

Remark 3.2.2. The 0-weighted subobject commutator of (X,x) and (Y,y), that is when
W =0, is denoted by [(X,x),(Y,y)|o, and it is exactly the Higgins commutator of (X,x) and

(Y, y).

When a pair of morphisms commute in the sense of Huq, and when two equivalence rela-
tions centralize each other in the sense of Smith, both situations correspond to the respective
commutators being trivial. Let us observe next that the same thing happens between weighted
centrality and the weighted subobject commutator in a normal Mal’cev category C with finite
colimits. If (X, z) and (Y,y) commute over (W,w), and m : (W + X) xyw (W +Y) — Ais an
internal multiplication X x Y — A over (W, w), then the bottom square in the diagram

X ®W Y —> [(Xv (L‘), (K y)](W,w)

Waxty—@wmv g

<[i17i270]7[i1707i2]> 1

(W +X) xw (W+Y) —— A

is a pushout, and this implies [(X, ), (Y,y)]ww) = 0 (being inside the kernel of the identity
morphism of A). On the other hand, in the previous diagram if [(X,z), (Y,y)](ww) = 0, then
the composite X @'Y — W + X +Y — A is the zero morphism, and thus, by definition
of cokernel there is a morphism m : (W + X) xy (W +Y) — A making the bottom square
commute. But this means m is an internal multiplication X x Y — A over (W, w).

Definition 3.2.3 (see [17]). Let (X, z), (Y,y), and (W, w) be subobjects of an object A in a normal
Mal’cev category C with finite colimits. The weighted normal commutator N[(X, ), (Y,y)](w,w)
1s the kernel of q defined via the pushout

[w, z, y]

W+X+Y A

([#1,142,0], [#1, 0,42]) q

W+ X) xw (W+Y) ——'Q,
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or equivalently, the kernel of q in the diagram

2

W+ X)xw (W4+Y) > Q « A
(21/1 /
X <

where Q) is the colimit of the outer morphisms.

(3.3)

Remark 3.2.4 (see [17], Theorem 3.4). For subobjects (X, z), (Y,y), and (W,w) in a normal
Mal’cev category C with finite colimits, applying Lemma 2.2.3, the morphism q in the diagram
below is the cokernel of the weighted subobject commutator [(X,z), (Y, y)(w,w). Therefore the
kernel of q, which is the weighted normal commutator N[(X,x), (Y, y)](ww) by definition, is the
normal closure of the weighted subobject commutator [(X,x), (Y, y)](w,w)

X ®W Y ———> [(Xv l’), (K y)](VV,w)

[w, %, y]

W4+X+Y

([#1, 92, 0], [i1, 0, 22]) q
r

W+X)xw (W4+Y) — Q.

Again when W = 0 or w is the identity morphism of A in Definition 3.2.3, the respective
commutators are denoted by N[(X,x),(Y,y)]o and N[(X,z),(Y,y)]1, and called 0—weighted
normal commutator and 1—weighted normal commutator respectively. Note that the 0—weighted
normal commutator is exactly the Huq commutator. We shall describe the 1—weighted normal
commutator (for normal subobjects) in the next section. For now let us observe that, taking
w to be the identity morphism of A, and C to be an ideal-determined Mal’cev category (where
normal monomorphisms are preserved by images under regular epimorphisms), in the diagram
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X ®A Y —» [(va)7 (Y7y)]1

[1755,2,!]
A+ X+Y ——>» A

([i17i270]7[i1707i2]> q
r

(A+X)xA (A+Y) —> Q,

the square at the bottom being a pushout amounts to ¢ being the cokernel of its kernel
[(X,2), (Y, )l — A

Note that [(X,z),(Y,y)]1 — A is a normal subobject of A, since it is the image of the nor-
mal subobject X ®41Y » A + X + Y under the normal epimorphism [1,z,y]. But since
N[(X,x),(Y,y)]1 — A is the kernel of ¢ by definition of 1—weighted normal commutator, one
must have [(X, z), (Y, y)]1 = N[(X, z), (Y, y)]: in an ideal-determined Mal’cev category C. There-
fore, we have the following remark:

Remark 3.2.5 (see [17], Corollary 3.5). The 1—weighted subobject and 1—weighted normal com-
mutators always coincide in an ideal-determined Mal’cev category C.

We shall use the following data in the next theorem: A normal Barr-exact Mal’cev category C
with finite colimits, subobjects (X, z), (Y,y), and (W, w) of A and their images (X', 2), (Y',v/),
and (W' w’) respectively, under a morphism f: A — B as shown in the diagram

///>> !
W w

NS

Theorem 3.2.6. For subobjects (X, z),(Y,y), and (W,w) of A, and their respective images
(X', 2", (Y',y), and (W', w") under a morphism f : A — B in a normal Barr-ezact Mal’cev
category C with finite colimits, the following hold:

(a) F((X,2), (V)] wuw)) = (X 2), (Y 0) w5
(b) FINI(X, ), (Y 9)lww)) = NI(X"2"), (Y, 4w )

Proof. (a) Using Lemma 3.1.7, the induced morphism [®@"k : X@"WY — X' @"'Y” is a normal
epimorphism. Thus

f([(Xv x)v (Y7 y)](VV,w)) = [(X/’ x/)v (Yla yl)](W’,w/)
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follows by the uniqueness of regular images as seen in the diagram

X' ®W/ Y’ f([(X7x)a(Ky)](VV,w))
L®hk /
X ®W Y [ X7 JZ‘), (Y’ y)](W,w)
W+ X' +Y Wiy B.
% ﬁ
W+X+Y o) A

(b) Since the weighted normal commutator is the normal closure of the weighted subobject
commutator, we have

N[(le l‘/), (Yla y,)](W’,w’) = [(X/> $/)7 (Ylv yl)](W’,w’)
[ X, 1‘)7 (K y)](I/V,w))

(
(X, 2), (Y 9) vy
N[(Xv fL‘), (Y7 y)](W,w))7

(3.4)

whereby Lemma 2.2.6 is applied to conclude that f([(X, 2), (Y, 9)]gy.)) = F((X, 2), (Y, 9)] w)-
O

Remark 3.2.7. In the notation of Theorem 3.2.6, taking W = 0 in (a) and (b), we recover
Theorem 2.1.4 and Theorem 2.2.5 respectively. Taking w to be the identity morphism of A,
f([(Xa ZL‘), (Yay)]l) = [(X,,l"), (Ylay/)]l and f(N[(va)a (Y7 y)]l) = N[(X/,QTI), (Ylvy/)]l when
f is a regular epimorphism and C is an ideal-determined Mal’cev category (see, for instance,

Corollary 5.3 [17]).

3.3 Huq commutator of local representations

In this section the Smith commutator of a pair of equivalence relations and the Huq commutator
of the corresponding local representations are compared.

As explained before, if C is a normal Mal’cev category then for each object A in C, Pt(A) is
also a normal Mal’cev category. In addition, Pt(A) is Barr-exact if C is Barr-exact. Recall that
the local representation of an equivalence relation (R,r1,72) on an object A in a normal Barr-
exact Mal’cev category C is not just an ordinary subobject in Pt(A), but in fact, it is the normal
subobject in Pt(A) associated to the equivalence relation ((A x R, 71, (1,AR)),1 xr1,1 X ry) on
(Ax A m,(1,1))
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1xrs
AXxR—=AxA
1 Xro
<17 AR) 1 (17 1> m

Indeed, as seen in the diagram

<7’171> 1xXmr
R AXR— > Ax A

(r1,72) (I x71,1x72) 1

AxA— 5 (AXxA)x (AxA) — AxA,
((1,1)m, 1) m

where the left hand rectangle is a pullback, the local representation of (R,ry,r2) is the “unit
class” of the equivalence relation ((A x R, 71, (1,AR)),1 x 1,1 x ry). We shall investigate the
relationship between the Smith commutator of equivalence relations and the Huq commutator
of the corresponding local representations. It is well known that if the Smith commutator of
a pair of equivalence relations is trivial then the Huq commutator of the corresponding local
representations is also trivial. Before we make the above investigation, let us make some necessary
observations.

Given a pair of equivalence relations (R',r],r5) and (R,71,72) on an object A in a Mal’cev
category C, consider the pullback

RxiR—2 >R

3
™ -
R———A
2
and the cospan
R (1, Agry) R xuR (Apiri, 1) .
A || 7 (Apr, AR | | rhm AR“m
A A A
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in Pt(A). Note that the pair of morphisms (1, Agr}) : ¥ — R’ x4 R and (Agpr,1) : R —
R’ x o R is jointly extremal-epimorphic in C since the cospan above is jointly extremal-epimorphic
in Pt(A).

For morphisms G: A — Q, ¢ : A — Q', and A : A x Q — A x @’ in a normal category
C such that mA = m and A(1 X §) =1 x ¢/, in the commutative diagram

A\(/QJ\/ o

(0,1) (0,1)

in which p is induced by A through the universal property of kernels, it can be seen that ¢’ = pq,
and in addition, if § is a regular epimorphism then A =1 x p.

Now we can describe the Smith commutator of equivalence relations in terms of the Huq
commutator of the corresponding local representations.

Theorem 3.3.1. Let (R,r1,7r2) and (R',7},7}) be two equivalence relations on an object A in
a normal Mal’cev category C with finite colimits. The Smith commutator [R', R]s is the Hugq
commutator of the local representations of (R,r1,72) and (R, 7}, 75).

Proof. Consider the diagram
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(R T1, AR
N
\'(‘X"
U3 U \
(RIXAR,TQW1,<AR/,AR>) (Q,T, < AXA 7r1,<1 1>)
> v o
e
(R TQ,AR/

(3.5)

in Pt(A), where (Q, T, ¢(1,1)) is the colimit of the solid arrows. The morphism ¢ is the universal
arrow which, by composition, makes the local representations (r1,72) and (rh,r}) commute in
the sense of Huq (see e.g Proposition 1.9 [5]). In addition, from [5] we know that ¢ is a regular
epimorphism, and hence a normal epimorphism. So applying Corollary 1.3.9 through Remark
1.3.10, Q and ¢ can be chosen to be of the forms A x Q and 1 x § respectively, where § is a
normal epimorphism in C. Therefore, the colimit of the outer arrows in diagram (3.5) can be
chosen to be of the form (A x Q, 7y, (1,§)), and so diagram (3.5) transforms into the diagram

(R7 1, AR)

/!
(R, D). (36)

It is not difficult to see that the diagram of solid arrows
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\qu T2

(3.7)

obtained from diagram (3.6) by composing further with mo : A x Q — Q, commutes. Now if
¢ :A— @ and ' : R x4 R — Q' are morphisms making diagram (3.7) commute, then
clearly the morphisms 1 x ¢’ and (rfm, 5’) also make diagram (3.6) commute, and this implies
that there is a factorization A such that 1 x ¢’ = A(1 x ¢). As explained before (just prior to
this result), there is a morphism p : Q — @ such that 1 x p = Xand pg = ¢. Thus Q is the
colimit of the outer morphisms in diagram (3.7). By definition of the Smith commutator, the
kernel pair relation of ¢ is the Smith commutator [R’, R]s, but according to Proposition 1.3.11,
the kernel pair relation of § is also the kernel of 1 x ¢ in Pt(A). O

For normal subobjects (X, x) and (Y, y) of A in a normal Barr-exact Mal’cev category C with
finite colimits, we have already observed that their associated equivalence relations (Rx,r1,72)
and (Ry, |, ) respectively, are given by the regular images of the morphisms

11 and 11
0 = 0 y
respectively. As mentioned before, there is no a difference between the Hugq commutator defined

for a pair of morphisms f and g (having the same codomain), and the Huq commutator defined
on their respective regular images. So in the diagram

(A+ X,[1,0],i1)

(A X A, 1, <1, 1>>

(A—}-YV, [170]7i1)
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q is the universal arrow which, by composition, makes the morphisms

1 1 1 1
o o] =l ]

Hug-commute in Pt(A), if and only if, it is the universal arrow which, by composition, makes
their respective regular images (re,71) and (r},75) (which are also the local representations of
(Rx,r1,72) and (Ry,r},rh) respectively), Hug-commute in Pt(A). This essentially means that
(Q,7,q(1,1)) is the colimit of the solid arrows in diagram (3.8) if and only if (@, 7,¢(1, 1)) is the
colimit of the solid arrows in diagram (3.5), with R and R’ replaced by Rx and Ry respectively.
We have seen in the previous theorem that if (Q, 7, ¢(1,1)) is the colimit of the solid arrows in
diagram (3.5), then @ and ¢ can be chosen to be of the forms A x Q and 1 x ¢ respectively.
Furthermore, the kernel of 1 x ¢ in Pt(A) is the local representation of the Smith commutator
of (Rx,r1,r2) and (Ry,r},rh).

Now we are ready to characterize the Smith commutator in terms of 1—weighted normal
commutator (for normal subobjects).

The next result has been already proven in [17] (see also Theorem 2.3.3), so we just present
a different proof.

Corollary 3.3.2. Let (X, z) and (Y,y) be normal subobjects of A and, (Rx,r1,r2) and (Ry,7],75)
be their associated equivalence relations respectively, in a normal Barr-exact Mal’cev category C
with finite colimits. The 1—weighted normal commutator N[(X,x), (Y,y)]1 is the associated nor-
mal subobject of the Smith commutator [Rx, Ry]s.

Proof. Given that (A x Q,1,(1,4)) is the colimit of the solid arrows in the diagram

(A+ X,[1,0],i1)

o= {(a,B) 7 1xg

(A+X) xa (A+Y),[1,0]m, (i1,11)) > (Ame17<1,q">) < (Ax A m,(1,1))

(A + K [17 O]a Z.1)
(3.9)

in Pt(A), in a similar way as in the previous theorem, it can be shown that Q is the colimit of
the solid arrows in the diagram
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2

(A+X)xa(A+Y) >Q< A
1z kY
% /

in C. The kernel of § is the 1—weighted normal commutator N[(X, z), (Y, y)]1, and, as explained
immediately after the previous theorem, the kernel of 1 x ¢ in Pt(A) is the local representation
of the Smith commutator [Rx, Ry]s (given by kernel pair relation of ¢, see Proposition 1.3.11).
So § is the quotient of the Smith commutator [Rx, Ry|s, and hence its kernel N[(X,z), (Y, y))1
is the associated normal subobject of [Rx, Ry]s. O

59

(3.10)

3.4 Characterization of weighted commutators

In this section we give, in the context of normal Barr-exact Mal'cev category C with finite
colimits, characterization of weighted commutators. In addition, the known characterizations of
Huq, Higgins, and Ursini/Smith commutators will be recovered.

Let us first show that weighted commutators, as ternary operations

[—,—,—] : Sub(A) x Sub(A) x Sub(A) — Sub(A),

defined on all subobjects of each object A, are monotone: For (X, z), (X', 2'), (Y, y), (Y’
and (W, w) subobjects of A in a normal Barr-exact Mal’cev category C with finite colim-
its, if W/ < W, X' < X, and Y’ <Y, then there exist morphisms «, , and X such that
w' = wa, ¥’ =z, and 3y’ = yA. In addition, one obtains the following commutative diagram

o N -7
p% T
X'’ ®W/ Y’ © [(lex/)v(ylvy )](W’ D)
W+X+Y ] A
[N
OL)(@ 1
W'+ X + Y W] A

from which, using the fact that €’ is a strong epimorphism, it can be seen that

[(X/’ 37/)7 (Ylv y/)](W’,w/) < [(X7 ‘75)7 (Y> y)](W,w)

y), (W',

)7
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From the previous inequality we deduce the same for the weighted normal commutator, that is,

N[(X",2"), (Y g ) wrwry < NIX ), (V. 9)] (W),

by applying the following facts: (a) the weighted normal commutator is the normal closure of
the weighted subobject commutator; (b) applying normal closure preserves the order.

Proposition 3.4.1. Let (X,z), (Y,y), and (W,w) be subobjects of A in a normal Barr-ezact
Mal’cev category C with finite colimits. Then one has N[(X,z),(Y,y)|ww) < X AY and

Proof. 1t is not difficult to see that the outer part of the diagram

W+X+Y o .0)

([#1,42,0], [¢1, 0,42])

A
lq
W+X)xw (W+Y) ——Q

2 W+Y

coker(z)[w, y]

commutes. Therefore, by the universal property of pushouts, it immediately follows that coker(x)
factors through ¢ and this implies N[(X, z), (Y, y)](w,w) < X, since (X, T) is the kernel of coker(x)
and the weighted normal commutator N[(X, ), (Y,y)]w.w) is the kernel of ¢. Similarly, it can
be shown that N[(X,z), (Y, y)]ww) <Y, hence N[(X,z), (Y, ) ww) < XAY. The second part
of the theorem follows from this inequality:

(X 2), (Vo)) w) < NIK, @), (Vo) vy < KAY
O

Let X,Y, and W be objects in a normal Barr-exact Mal’cev category C with finite colimits.
We shall denote by ker[iq,i2,0] : Ker[iy,i2,0] — W 4+ X +Y and ker[iq, 0,4s] : Ker[iy, 0, 2] —
W + X +Y, the kernels of the morphisms [i1,i2,0] : W+ X +Y — W + X and [i1,0, 9] :
W+ X +Y — W 4+ Y respectively. Let us observe the following:

Lemma 3.4.2. For objects X, Y, and W in a normal Barr-exact Mal’cev category C with finite
colimits, Ker[iy,i2,0] A Kerli1,0,i3) = X @V Y.

Proof. Since X @V Y is the kernel of the morphism ([iy,i2,0], [i1,0,42]), in the diagram below
it is not difficult to see that X @V Y < Kerliy,i,0] and X @V Y < Kerliy, 0,42], and thus
X W'Y < Kerliy, 2, 0] A Ker[iy, 0, 2] follows



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. WEIGHTED COMMUTATORS 61

Xy Kerl[iy, iz, 0]

ker[i1,i2, 0]

Kerliy, 0, 2] ker[i1, 0, i2] v T
[i1,12,0] N
WX e W4 e (V)

On the other hand, if one replaces X @V Y with Kerl[iy,i2,0] A Ker[i1,0,4s] in the diagram
above, then by the universal property of products, the morphism Ker[i1, iz, 0] A Ker[iy, 0,i9] —
W + X +Y equals the zero morphism after composing with ([i1, 42, 0], [71, 0, i2]), and this implies
Ker[i1, i2,0] A Kerli1, 0,i2] < X ®" Y. Hence the desired result follows. O

For objects X,Y, and W in a normal Barr-exact Mal’cev category C with finite colimits, their
coproduct inclusions iy : W — W+ X +Y, i9: X — W+ X+Y, andiz: Y —W+X+Y
form the following weighted cospan

w
!
12 i3
X—W+X+Y Y.
In the next lemma we show that the weighted subobject commutator [(X,i2), (Y, 13)]w,,) and
weighted normal commutator N[(X,i2), (Y,13)]w,,) coincide.

Lemma 3.4.3. For objects X,Y, and W in a normal Barr-ezact Mal’cev category C with finite
colimits, we have

[(X7 i?)v (Y7 i3)](W,i1) = N[<X7 i?)v (Y7 i3)](W,i1) =X ®W Y.
Proof. The diagram
W+X+Y —————W+X+Y

([t1,12,0], [¢1, 0, 22]) ([i1,12,0], [¢1,0,22])

W+ X) xw (W+Y) = (W + X) xy (W +Y)

is clearly a pushout, and so by definition of weighted normal commutator, it follows that
N[(X,i2), (Y,i3)]w) = X @W Y. Also by definition of weighted subobject commutator, it
is clear that [(X,ig), (Y,i3)]w,y) = X @V Y.

0
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Again for objects X, Y, and W in a normal Barr-exact Mal’cev category C with finite colimits,
there is also the following weighted cospan

w

ker[i1, i2,0] ker[i1, 0, i2]

Ker[il,iz,()] — W4+ X+Y ¢&——r Ker[il, O,iQ]

in C. For this weighted cospan, for simplicity, we will write [Ker[iy, 2, 0], Ker[i1, 0, i2]] () and
N[Kerl[i1,i2,0], Ker[i1, 0,42]](y,,) to denote its weighted subobject commutator and weighted
normal commutator respectively.

Proposition 3.4.4. Let X,Y, and W be objects in a normal Barr-exact Mal’cev category C with
finite colimits. Then

[Ker[il, 0, iz], Ker[il, ’i2, O]](W,il) = N[Ker[il, O, iQ] y Ker[il, ig, 0]](W7i1) =X ®W Y.

Proof. Since X < Kerliy,0,1i2] and Y < Ker[iq,i2,0] in W + X + Y, and weighted commutators
are monotone, one has

X @'Y = N[(X,i2), (Y,43)] (i)
< N[Ker[il,o,iQ]aKer[il’iQ’OH(W’il)

o S (3.11)
< Kerliy, i2, 0] A Ker[iq, 0, i2]
=xg"y.
Similarly, since X @'Y = [(X,i2), (Y, 43)](w,,) it can be shown that
[Ker[i1, 0, 2], Ker[i1, i, 0]] sy = X @' V.
O

Let us take (X, ), (Y,y), and (W, w) to be subobjects of A in a normal Barr-exact Mal'cev
category C with finite colimits. Since X < Ker([iy, 0,i2] and Y < Ker[iy,72,0] in W+ X + Y in
the diagram

Ker[i1, 0, i2] ——— [w, z, y](Ker][i1, 0, i2])

T

we see that X < [w, x, y](Ker[i1, 0, i2]). In asimilar way it can be shown that Y < [w, z, y|(Ker[i1, i2, 0]).
For the weighted cospan
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[w, z, y](Kerli1, i2, 0]) A [w, z,y](Kerli1, 0, i2]),
we will denote its weighted subobject commutator and weighted normal commutator by

[[w, z, y](Ker[i1, 0, i2]), [w, z, y](Ker[iy, iz, 0])](1/1/,11;)

and
N[w, z,y](Kerli1, 0, i2]), [w, x, y|(Kerli1, i2, 0])] (w,w)

respectively.
Then we have the following useful result.

Proposition 3.4.5. For subobjects (X,x), (Y,y), and (W,w) of A in a normal Barr-ezact
Mal’cev category C with finite colimits, one has

[[wa €, y](Ker[ila 0, iQ])v [w’ €, y] (Ker[ih 02, 0])](W7w) = [(X? x)a (Y, y)](VV,w)

and
N[[wv €, y] (Ker[ilv 0, iQ])v [wa L, y] (Ker[ila i2, OD](W,w) = N[(X’ 33), (}/a y)](W,w)

Proof. Applying Theorem 3.2.6 (a), we have
[[w7 Z, y](Ker[z’l, 0, iZ]): [w7 €, y] (Ker[ib 02, 0])}(W,w) = [’LU, €, y]([Ker[ilv 0, i2]? Ker[ilv i2, O]](W,il))

= [w,z,y)(X @ Y)

= [(X,z), (Y, y)](VV,w)
(3.12)

We obtain the second part of the theorem by applying normal closure to the above equation. [
Now we are ready to state our main results for this section.

Theorem 3.4.6. In a normal Barr-exact Mal’cev category C with finite colimaits, the weighted
subobject commutator is the largest ternary operation C' on subobjects (defined on all subobjects
of each object) satisfying the following conditions:

(a) C is monotone;
(b) C((X,z),(Y,y), W,w)) < X AY for subobjects (X,x),(Y,y), and (W,w) of A;

(c) [(C((X, ), (Y,y),(W,w))) = C((X",2"), (Y, o), (W', w")) for subobjects (X, z), (Y, y), and
(W, w) of A, and their respective images (X', 2"), (Y',y/), and (W', w'), under every mor-
phism f whose domain is A.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. WEIGHTED COMMUTATORS 64

Proof. Suppose there is a monotone ternary operation [|—, —, —|] satisfying the conditions (a), (),
and (c) above. Let (X, z),(Y,y), and (W, w) be subobjects of A. We already know that X <
[w, z,y](Kerli1, 0,i2]),Y < [w,z,y](Ker[i1,i2,0]), and W = ([w, z, y](i1(W)), and thus

(X, z), (Y,y), W,w)|] < [|[w,z,y](Ker[i, 0, i2]), [w, z, y](Ker[i1, i2, 0]), [w, z, y] (i1 (W))]]
= [w, z, y]([| Ker[i1, 0, is], Ker[i1, 2, 0], i1 (W)]])

[
[
[w, z, y](Kerli, 0, 12] A Ker[iy, i2,0])
[
[

IN

w, z, y|(X @V Y)
(X7 1‘), (Y7 y)](W,w)

(3.13)
O
In a similar way we obtain a characterization of the weighted normal commutator below:

Theorem 3.4.7. In a normal Barr-exact Mal’cev category C with finite colimits, the weighted
normal commutator is the largest ternary operation C' on subobjects (defined on all subobjects of
each object) satisfying the following conditions:

(a) C is monotone;

(b) C((X, ), (Y,y), (W,w)) < X AY for subobjects (X,z),(Y,y), and (W,w) of A;

(c) F(C((X,x), (Y,y),(W,w))) = C((X',2"), Y',y), (W', w")) for subobjects (X, z), (Y,y), and
(W, w) of A, and their respective images (X', 2"), (Y',v/), and (W', w'), under every mor-
phism f whose domain is A.

Proof. Suppose there is a monotone ternary operation [|—, —, —|] satisfying the conditions (a), (),
and (c) above. Let (X, ), (Y,y), and (W, w) be subobjects of A. Then,

(X, z), (Y, ), (W, w)l] < [[[w, z, y](Ker[i1, 0, is]), [w, z, y](Ker[iy, iz, 0]), [w, z, y] (i (W)) ]
= [w, z, y]([| Kerliy, 0, i2], Ker[iy, i2, 0], i1 (W)]])
< [w, z,y](Ker[iy, 0, i2] A Ker[iy, i2,0])

= [w,z,y](X W'Y

= [(X,2), (Y, 9)](w,w)

= N[(X,2), (Y, 9)](wuw)-

(3.14)
0

Remark 3.4.8. Taking W = 0 wn Theorem 3.4.6 and Theorem 3.4.7, one obtains the char-
acterizations of Higgins commutator (Theorem 2.1.5 ) and Huq commutator (Theorem 2.2.7)
respectively.

We state a similar characterization for the 1—weighted normal commutator in the next propo-
sition.
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Proposition 3.4.9. 'In an ideal-determined Barr-ezact Mal’cev category C, the 1—weighted
normal commutator is the largest binary operation C on subobjects (defined on all subobjects of
each object) satisfying the following conditions:

(a) C is monotone;
(b) C((X,x),(Y,y)) < X AY for subobjects (X, x) and (Y,y) of A;

(c) F(C((X,z),(Y,y))) = CU(X",2"),(Y',y)) for subobjects (X,z) and (Y,y) of A, and their
respectwe images (X', 2") and (Y',y'), under every regular epimorphism [ whose domain
s A.

Proof. Let us suppose there is a binary operation [|—, —|] defined on all subobjects of each object,
satistying the conditions (a), (b), and (c) above. Now since [1,z, y] is a normal epimorphism and
N[(X,z), Y,y)l1 = [(X,z),(Y,y)]: in C an ideal-determined Mal’cev category, we have

(1(X, ), (V,y)[] < [[[1, 2, y](Ker[i1, 0, i2]), [1, , y] (Ker[i1, iz, 0])]]
= [1,z,y|([| Ker[i, 0, is], Ker[i1, iz, 0]|])
< [1, z,y|(Ker[i1, 0, i2] A Ker[iy, iz, 0]) (3.15)
=[1,z,9)(X 1Y)
=[(X,2), YV, 9)h
= N[(X,z), (Y,y)h-
O

We will now use the previous proposition to observe that 1—weighted normal commutator not
only coincide with the Ursini commutator in the case of normal subobjects, but even for arbitrary
subobjects in an ideal-determined Barr-exact Mal’cev category C. A key tool to showing this is
the fact that the Ursini commutator is invariant with respect to normal closures.

Corollary 3.4.10. In an ideal-determined Barr-exact Mal’cev category C, 1—weighted normal
commutator is the Ursini commutator.

Proof. For subobjects (X, x) and (Y,y) of A in an ideal-determined Barr-exact Mal’cev category
C, N[(X,z), (Y,y)h < N[(X,z), Y,y)h = [(X,2), (Y,y)lv = [(X, ), (Y,y)]u. To show the con-
verse inclusion, that is [(X, z), (Y, y)]v < N[(X, z), (Y, y)]1, it is enough to show that the Ursini
commutator satisfies the three conditions (a), (b), and (¢) in the previous proposition. It is not dif-
ficult to see that the Ursini commutator is monotone; since it is also constructed by taking regular
image of a kernel. In addition, [(X,z), (Y,y)v = [(X,z), (Y,y)]v = N[(X,z), YV,y)1 < X AY.
Furthermore, for every regular epimorphism f whose domain is A, we have f([(X, z), (Y,y)]v) =
FUXs2), (Yoy)lo) = fFINI(X,2), (YVoy)h) = NIF((X,2)), F(Y,y))]1- But since f is a regular
epimorphism, using Lemma 2.2.6, one has f((X,z)) = f((X,z)) = f((X,x)). Therefore,

)= (X
FUX2), (Y, 9)]o) = NIF(X,2)), F(Y,9)la
(X, z)

= N[f((X,2)), F(Y;9)h

N{f
[
= [F((X, )) H Y 9)lo
= [f((X,2)), F(YV,9)]v-

! Note that the 1— weighted subobjcet commutator and 1— weighted normal commutator coincide in an
ideal-determined Mal’cev category C.

(3.16)
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Hence, by the above proposition [(X,z), (Y,y)]luv < N[(X, ), (Y, y)]1. O

Remark 3.4.11. As a consequence of the previous corollary, Proposition 5.4.9 also gives a
characterization of the Ursini commutator in an ideal-determined Barr-ezact Mal’cev category

C.

3.5 Weighted normal commutator as the Huq commutator in
points.

It has been observed already in Proposition 3.1.2 that weighted centrality can be expressed in
terms of Hug-commuting morphisms in a category of points over a fixed object. In this section,
for subobjects (W, w), (X, z), and (Y, y) of A in a normal Mal’cev category C with finite colimits,
we establish a relationship between the weighted normal commutator N[(X,x), (Y, y)]w,w) and
the Huq commutator of the pair of morphisms

O XL 0L 0 — (W x A, (L)
and i i
o o [F VYL 0L — OV x Am (1))

Recall that for an object W in a pointed category C with finite limits and coproducts, the
kernel functor

Ker: Pt(W) — C

assigns to every object (A,r,s) the kernel Ker(r) of r, and every morphism f : (4,7,s) —
(B, u,v)

Ker(r) - -~ Ker(u)

f
—
T v

1

%ﬁ;
%?m

is assigned to the induced morphism Ker(r) --+ Ker(u). The kernel functor has a left adjoint
W+ (—):C— Pt(W),

which assigns to every object X and every morphism f : X — Y in C, the object (W +
X,[1,0],41) and the morphism 1+ f: (W + X,[1,0],i1) — (W 4+ Y, [1,0],i1) respectively
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Now we are ready to state the main result of this section.

Theorem 3.5.1. Let (X, z),(Y,y), and (W,w) be subobjects of an object A in a normal Mal’cev
category C with finite colimits. The weighted normal commutator N[(X,z), (Y,y)|(ww) is the
image of the kernel functor applied to the Huq commutator of the morphisms

|: ; 1: :| (W“‘X? [170]7i1) — (WX A77T1’<1’w>)

0
and
[ (1) Z } H(W Y, [1,0],i) — (W x 4,m, (1,w))
in Pt(W).

Proof. Consider the commutative diagram

kx;m\x’g\\

(W +Y,[1,0],41)

(3.17)

in Pt(W), where (Q,7,¢(l,w)) is the colimit of the solid arrows. As explained before, the
morphism ¢ is a normal epimorphism, and using Corollary 1.3.9 through Remark 1.3.10, @ and ¢
can be chosen to be of the forms W x Q and 1 x § respectively, where ¢ is a normal epimorphism
in C. So diagram (3.17) can be re-presented as follows
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(W+X7 [1,0],i1)

(3.18)
Clearly, the diagram
W+ X
N

k\ 'm\xﬂ /?0,

(W+X) xw (W+Y) > Q « A

commutes in C, and moreover, in the same way as in Theorem 3.3.1 and Corollary 3.3.2, Q is
the colimit of the solid arrows. The weighted normal commutator N[(X,z), (Y, y)](w,w) is the
kernel of ¢, and now the result follows immediately from the fact that the kernel functor preserves
kernels: So the kernel functor sends the kernel of 1 x ¢ (as a morphism in Pt(WW)) to the kernel
of q. O
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Chapter 4

Centrality in subtractive categories

In a subtractive category C, we recall the notion of partial subtraction structure introduced in
[12]. In this chapter we show that there is an abelian group structure in every regular subtractive
category, determined by morphisms that admit partial subtraction structures. Furthermore, we
extend commuting morphisms to subtractive categories with finite joins of subobjects, and show
that they can be related to the notion of partial subtraction structures.

We will write S to denote the variety of subtractive algebras, that is, the variety that has only
a binary term s and a constant 0 in its theory, such that s(x,z) = 0 and s(z,0) = x.

4.1 Partial subtraction structures

Recall that (see e.g [12]) an object X in a subtractive category C is said to admit an internal
subtraction structure when there is a morphism s : X x X — X making the diagram

(1,1) (1,0)
X— X xX«— X

X

commute. More generally, we have the following definition:

Definition 4.1.1. Let C be a subtractive category. A morphism f: X — Y is said to admit a
subtractor along a morphism g 1Y — Z, if there exists a morphism ¢ :' Y x X — Z making
the diagram

(f, 1) (1,0)
X —YxX¢«———Y

69
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commute. We will call such a morphism ¢ a subtractor of f along g. When g is the identity
morphism of Y, we will just call ¢ a subtractor of f. Note that a subtractor of the identity
morphism of an object X (along the identity morphism of X) is just an internal subtraction
structure s on X, usually called a subtraction.

In the variety S of subtractive algebras, if f : X — Y admits a subtractor ¢ : Y x X — Z
along g : Y — Z, then it means for every x € X and y € Y, ¢(y,0) = g(y) and o(f(z),x) =0,
and this implies that

= ¢y — f(x),0) (4.1)

Moreover, for z,2’ € X and 5,3’ € Y one can observe that

9y — f(@)) — gy — f())

oy, x) — oy, 2"
oly—y,x—a') (4.2)
gy =) —g(f(z) — f(a)).

Thus we obtain the following:

Proposition 4.1.2. In the variety S of subtractive algebras, a homomorphism f : X — Y
admits a subtractor along g :' Y — Z, if and only if, for every pairs v,2’ € X and y,y' €Y,
one has

gy — f(x) —g(y' — f(a") = gy = ¥) — g(f(z) = f(z")).

Proof. If f admits a subtractor ¢ along g, then as observed above, for every pairs z,2’ € X and
v,y €Y,
9y — f(@) =9 = (@) = 9ly —¥) — 9(f(2) — f(a)).

Conversely, let us suppose for every pairs x,2’ € X and y,vy’ € Y, one has

gy — f(x)) —g(y' — f(a") =gy —¥) — g(f(z) — f(z")).

Define ¢ : ¥V x X' — Z by ¢(y,z) = g(y — f(x)). Clearly, o(f(x),z) = 0 and ¢(y,0) = g(y).
Furthermore, for pairs y,9' € Y and z,2’ € X,

oly—y o —a")=gly—y)—g(f(x)— f(a"))
=gy — f(x)) — gy — f(a")) (4.3)
=p(y,z) — o/, 2"),

and this means ¢ is a homomorphism. Therefore ¢ is a subtractor of f.
O

Remark 4.1.3. In the variety S of subtractive algebras, if a composite gf admits a subtractor
then it implies f admits a subtractor along g. We shall later prove in more general that the
converse is true when g is a reqular epimorphism (although it is not difficult to see it for the
variety S).
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The following notion has been introduced in [12|, although only a particular case was con-
sidered.

Definition 4.1.4. A morphism f : X — Y in a subtractive category C is said to admit a
partial subtraction structure along g, if there is a relation (r1,re) : R»—Y x X and a morphism
¢ : R — Z, such that the morphisms (f,1) : X — Y x X and (1,0) : Y — Y x X factor
through (ri,r2), and the diagram

commutes. For that we will say f admits a partial subtractor ¢ along g (with respect to a subobject
(r1,m9) : R—Y X X) or equivalently, f admits a partial subtraction structure along g. We will
mostly require g to be identity morphism of Y, and for that we will write a triple (f, (R,r1,72),¥)
to denote a partial subtraction structure on a morphism f.

Proposition 4.1.5. In the variety S of subtractive algebras, a morphism admits a subtractor as
soon as it admits a partial subtraction structure.

Proof. If a homomorphism f : X — Y in § admits a partial subtraction structure (f, (R, 71,72), ¢),
then for every x € X and y € Y, one has ¢(f(z),z) = 0 and ¢(y,0) = y. Therefore, for every
pair (y,x) € R, one has

= ¢y — f(x),0) (4.4)

Furthermore, since for every x € X the pairs (f(z),0), (f(x),x) € R, it follows by subtractivity
that (0,z) € R. Now we can observe that

f(@) =¢(f(2),0) = o(f(z),z) — ¢(0,2)
=0— (0, ) (4.5)
=0-(0— f(z)),
and moreover, for every pairs z,2’ € X and y,3’ € Y, one has
(y—f(@) = (¢ = [(2') =p(y,0 = (0 —z)) — o(y',0 = (0 — 2))

=y -y, (0-(0-2)) - (0-(0-2"))

= —y)—((0- (0~ f(z))) = (0 (0 f(z))))

=y —vy) — (fl2) - f(&),

which, according to Proposition 4.1.2, implies f admits a subtractor. O

(4.6)
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We shall extend the previous proposition to a general categorical context. A particular case
has already been obtained in [12], where it has been shown that in a subtractive category an
identity morphism admits a subtraction as soon as it admits a partial subtractor. Proving the
previous proposition in a categorical context is not so straightforward, it is based on several
facts about partial subtrators that we are going to observe first. We shall begin by proving the
following fact.

Proposition 4.1.6. In a regular subtractive category C, for each commutative diagram

R

u v

<T1 ) 7"2)

X%YXX%Y

N

if there is a morphism ¢ : R — Z such that ou = 0 and pv = g (i.e. ¢ is a partial subtractor
of f along g with respect to a monomorphism (r1,73)), then ¢ is necessarily unique.

Proof. Suppose ¢’ : R — Z and ¢ : R — Z are two morphisms such that ¢'u = 0, Qv =g
and pu = 0, v = g. Let (s1,82) : S — R x R be the joint kernel pair relation of ¢ and ¢/,
i.e. the kernel pair relation of (p,¢') : R — Z x Z. Clearly, the diagonal (1,1) of R factors
through (s1, s2), and since pu = 0 = ¢'u, the morphism (0, u) also factors through (si, s2). Now
consider the relation (T, t1,t2) given by the regular image of (s, s2) along the morphism 1 X 7o
in the diagram

(0, ) X

R xR

1 R (1,72)

It is clear the morphisms (1,r9) and (0,r2) = (0, 1)ry factor through (t1,%2), and therefore the
morphism (1,0) also factors through (¢1,t2) by subtractivity. Let w in the diagram above be a
morphism such that (1,0) = (¢1,t2)w. Pulling back (s;, s2) along the morphism 1 x v, we see
that the cube in the diagram

R
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R

Q.

AN - k g
. : > T S

A " /

R - T

(l,r182h)
(th,t5) (s1,s2)
1 (t1,t2)
.
RxY R xR
1xuv
© /
/ Wt
R Rx X
(1,0)

commutes, and also ] = s1k and vt, = sok. But since ps; = s, one has

oty = psik
= psok
= ot}
= gt}.

(4.7)

In a similar way since ¢’s; = ¢'sg, it can be shown that ¢t = gt}, and thus pt| = ¢'t|. In order
to conclude ¢ = ¢’, we will observe that the top rectangle of the previous cube is a pullback,
which will then imply #] is a (regular) epimorphism: If h and [ are a pair of morphisms such
that wl = eh, then since riv =1, rov = 0, [ = s1h, and the pair r1, 79 is jointly monomorphic,
then ryvriseh = r1seh and rouriseh = 0 = rossh, and this means the morphisms (I, 71 s2h) and
h make the back outer diagram commute, i.e. (1 x v){l,7r1s2h) = (s1,s2)h. But since the back
rectangle is a pullback, one obtains a factorization « through the pullback, which also turns out
to be the unique morphism such that tja = [ and ka = h. O

Remark 4.1.7. For morphisms f: X — Y and g: Y — Z in a reqular subtractive category
C, a subtractor ¢ of f along g in the diagram

X%YXX%

NS
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can be seen as a partial subtractor of f along g with respect to the identity morphism on Y X
X. Applying the previous proposition, it follows that a morphism can only admit at most one
subtractor.

We shall prove the following “cancellation” properties: In a regular subtractive category C,
for every diagram

€ f m

A B C D

where e is a regular epimorphism and m is a monomorphism,

(a) the morphism f admits a partial subtraction structure whenever the composite fe admits
a partial subtraction;

(b) the morphism f admits a partial subtraction structure whenever the composite mf admits
a partial subtraction structure.

We prove (a) above in the next proposition.

Proposition 4.1.8. Let C be a reqular subtractive category. If a morphism g: A — Y admits
a partial subtraction structure, then for any morphism e : X — A, the composite ge also admits
a partial subtraction structure. The converse is true when e is a regular epimorphism.

Proof. Suppose g : A — Y admits a partial subtraction structure (g, (R,r1,72),¢) as shown in
the diagram

Let (s1, s2) be the pullback of (r1,79) along (1 x e) in the diagram

S—— R
|

(s1,82) (r1,72)
Y x X —Y x A
1xe

Since (1 x e)(ge, 1) = (ri,r9)ue and (1 x €)(1,0) = (ry,r2)v, the morphisms (ge, 1) and (1,0)
factor through the pullback (s1, s2) by morphisms «’ and v’ respectively. Now with pu’ = ue and
pv’ = v, it can be easily seen in the diagram
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that (ge, (S, s1, s2), ¢p) is a partial subtraction structure on ge. To prove the second part of the
proposition, let us suppose ge, where e is a regular epimorphism, admits a partial subtraction
structure (ge, (R,71,72),¢), and morphisms u and v are respective factorizations of (ge, 1) and
(1,0) through (r1,re). Let (t1,t2) be the regular image of (ri,r2) along the morphism 1 X e.
Consider the diagram

(ger1,1) (ge,1) K (9,1)

where
(R X R, k‘l, k?g) and (X X X,Tl, 7'2)
<e!,e'> <e,e>

are the kernel pair relations of ¢’ and e respectively. The morphism A is the unique factorization
of v through k1 and ko, i.e. k1A = v = ko A. Using the commutativity of the right hand squares,
and the fact that e is a strong epimorphism, there is a factorization u’ of (g, 1) through (¢, ).
Now the rest of the dotted arrows are obtained as induced morphisms by the universal property
of kernel pairs. It can be seen that

wk18 = pur =0 = ko and pk1 A = pv =1 = pka .

Now we have obtained the following commutative diagram
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R xR

<el,e'>

(r1 kl, a)

ks ok
Xxx_ et Ty oxxx) (0 .
<e,e> B <e,e> ;

from which, by the uniqueness of partial subtractors, it follows that ki = k. But since €
is the coequalizer of the pair k1, ko, there is a unique morphism ¢ such that ¢ = ¢¢€’, and it can
be easily seen that ¢ is a partial subtractor of g. O

Lemma 4.1.9. In a subtractive category C, if a morphism f : X — Y admits a partial
subtraction structure along a composite mg : Y — Z, where m : W — Z is a monomorphism,
then f also admits a partial subtraction structure along g.

Proof. Suppose a morphism f admits a partial subtraction structure along a composite mg as
shown in the diagram

with m a monomorphism. Let us consider the pullback of m along ¢

T———W

_I

R—— 2.

Since pu = 0 = m0, there is a factorization h : X — T through the pullback, such that th = u
and rh = 0. Similarly, for the morphisms v and g, since v = mg, there is k : ¥ — T such
that tk = v and rk = g. These yield a partial subtraction structure on f along g as seen in the
diagram
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(r1,72)

RV (1,0)
X B Y x X e

O

In the next lemma we show that every partial subtraction structure on a identity morphism
gives rise to an internal subtraction structure. The same result is given in Theorem 2.5 of [12],
hence we copy the proof.

Lemma 4.1.10. In a subtractive category C, for each partial subtraction structure (1, (R,71,72), )

R

(r1,72)

on the identity morphism of X, the morphism (ri,re) is an isomorphism, in other words, X
admits a subtraction structure as soon as the identity morphism of X admits a partial subtraction
structure or, equivalently, if the identity morphism of X admits a partial subtractor ¢ with respect
to (r1,r2), then (ri,r2) is an isomorphism.

Proof. Consider the relation (t1,t2) : T — X x (X x X), obtained from pulling back (ri,rs) :
R— X xXalong 1 xs:X x (X xX)— X x X. Using generalized elements, T is defined as

follows: for z,y,z € X,
(2,(y,2)) € T & (2,5(y,2)) € R.

For every pair (z,y) € X x X, since (x,(y,y)) € T and (0,(0,y)) € T (for every y € X,
(y,v), (y,0) € R implies (0,y) € R), then by subtractivity, (z,(y,0)) € T, and this implies
(z,8(y,0)) = (x,y) € R. Hence, (ry,rs) is an isomorphism. O



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. CENTRALITY IN SUBTRACTIVE CATEGORIES 78

Proposition 4.1.11. In a subtractive category C, if a monomorphism f : X »— Y admits a
partial subtraction structure (f, (R,71,72), )

then the following statements hold:
(a) X admits a subtraction structure;
(b) the morphism (ry,rq) is an isomorphism;
(c) f admits a subtractor.
Proof. (a). Consider the pullback of (ri,r9) along f x 1 in the diagram

SJ% R

(s1,82) (r1,72)

XxX>>——Y x X.
fx1

Clearly, the pairs of morphisms (1, 1), u and (1,0), v f factor through the pullback as (s1, so)u’ =
(1,1),7v/ = uw and rv' = vf, (s1,s2)v" = (1,0), respectively. These data yield the following

commutative diagram
u/ S ’U/
I<31’ s2)
(L1 (1,0)

) )

which exhibits a partial subtraction structure on the identity morphism of X along f. Using
Lemma 4.1.9, the identity morphism of X admits a partial subtraction structure, and hence X
admits a subtraction structure, according to the previous lemma.
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(b). Let s : X x X — X be a subtraction on X. Now consider the relation (t1,ts) : T —
Y x (X x X), obtained from pulling back (ri,72) : R — Y xX along 1xs: Y x(XxX) — Y xX.
Using generalized elements, T is defined as follows: for y € Y and z,2’ € X,

(y,(z,2") € T & (y,s(z,2')) € R.

For every pair (y,x) € Y x X, since (y, (x,z)) € T and (0,(0,z)) € T (since for every z € X,
(f(z),x),(f(z),0) € R imply (0,z) € R), then by subtractivity, (y, (z,0)) € T, and this implies
(y,s(x,0)) = (y,z) € R. Hence, (r1,r) is an isomorphism.

(¢). Since the morphism (rq,r2) is an isomorphism according to (b), it is not difficult to see
that o(ry,72) 71, where (r1,79)~! denotes the inverse of (ry,rs), is a subtractor of f. O

Corollary 4.1.12. In a subtractive category C, if a composite mf : X — Z, wherem :Y — Z
18 a monomorphism, admits a partial subtraction structure then f also admits a partial subtraction
structure.

Proof. If mf admits a partial subtraction structure (mf, (R,r1,72),¢), just as in Proposition
4.1.11 (a), it can be shown that f admits a partial subtraction structure along m; that is by
showing that the composite ¢r, where r is the pullback of m x 1 along (rq,r2)

T—"——>R
_

(t1,t2) (r1,72)

Y xX>——7Zx X
m X 1

is a partial subtractor of f along m with respect to (¢1,t2). And using Lemma 4.1.9, it follows
that f admits a partial subtraction structure.
O

Proposition 4.1.13. In a subtractive category C, if an object X admits a subtraction s : X X
X — X, then the following hold:

(a) the pair (1,1) : X — X x X, (1,0) : X — X x X is jointly extremal-epimorphic;
(b) the pair (1,0) : X — X x X, (0,1) : X — X x X is jointly extremal-epimorphic.
Proof. (a) Let (ri,r2) : R ~— X x X be a monomorphism such that (1,1) and (1,0) factor

through it. In the diagram
u R v
(L,1) (1,0)

)

X— X xX¢——X
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we see that s(ry, 7o) is a partial subtractor of the identity morphism of X with respect to (ry,r2).
Hence, by Lemma 4.1.10, (ry,r9) is an isomorphism.

(b) Let (r1,72) : R — X x X be a monomorphism such that (1,0) and (0, 1) factor through it.
Consider the relation (t1,t2) : T — X x (X x X)), obtained from pulling back (ri,r2) : R — X xX
along 1 x s: X x (X x X) — X x X. Using generalized elements, T is defined as follows: for
x,y,z2 € X,

(x,(y,2)) € T < (z,s(y, 2)) € R.

Since for every x € X, one has (x,0),(0,x) € R, it follows that for every pair (z,y) € X x X,
(x,(y,y)) € T and (0,(0,y)) € T, and hence by subtractivity, (x,(y,0)) € T, which implies
(,5(y,0)) = (z,y) € R. Therefore, (ry,re) is an isomorphism.

Ul

Remark 4.1.14. (see [12]) As a consequence of (a) of the previous proposition, it immediately
follows that an object in a subtractive category can only admit at most one internal subtraction
structure.

Now we can use the “cancellation” properties, that is, Proposition 4.1.8 and Corollary 4.1.12,
to prove a categorical version of Proposition 4.1.5.

Theorem 4.1.15. Let C be a regular subtractive category. A morphism f: X — Y admits a
subtractor as soon as it admits a partial subtraction structure.

Proof. Let (f,(R,71,72),¢) be a partial subtraction structure on f, and f = me be the (regular
epi, mono)-factorization. Using Proposition 4.1.8, it can be concluded that the image m :
f(X) — Y admits a partial subtraction structure. Now applying Proposition 4.1.11 (c¢), it
follows that m admits a subtractor ¢. Hence, as seen in the diagram

Y%Y

(1,0) (1,0)
1xe ¢
Y xX —>»Yxf(X)--->Y

<f7 1> <m, 1>

X ———> [(X)

the morphism ¢(1 x e) is a subtractor of f.
O

So far we know that when a morphism f : X — Y in a regular subtractive category C
admits a subtractor, it is necessarily unique. Moreover, the image m : f(X) — Y in the (regular
epi, mono)-factorization f = me, also admits a subtractor. Hence, f(X) admits a subtraction
s: f(X) x f(X) — f(X) whenever f admits a subtractor. We will write ¢¢ and ¢¢ to denote
the subtractors of f and m respectively. The three subtractors, namely, ¢, ¢, and s are related
in (7) and (i7) in the remark below:
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Remark 4.1.16. Let f: X — Y be a morphism in a reqular subtractive category C, and me
be the (regular epi, mono)-factorization of f. If f admits a subtractor ¢y, then, as seen in the
previous theorem, (i) 5 = ¢¢(1 x e). Furthermore, for a subtraction s : f(X) x f(X) — f(X),
it is not difficult to see that the two composites f(X) x f(X) — Y on the rectangle

FOX) x f(X) —22 Y x f(X)

S ¢f

f(X) Y

m

are both subtractors of the identity morphism of f(X) along m. Hence by the uniqueness of
subtractors (see Proposition 4.1.6), (ii) ms = ¢¢(m x 1).

Let us proceed to show that there is a subtractive structure on certain classes of morphisms
in a regular subtractive category.

Definition 4.1.17. Let f : X — Y be a morphism in a reqular subtractive category C. Given
a morphism g : X — Y in C which admits a subtractor g, let us define f —g: X — Y to be
the morphism given by the composite ¢4(f, 1) : X — Y in the diagram

For every pair of objects X and Y in a regular subtractive category C, we write Z(X,Y") to
denote the class of all morphisms from X to Y which admit subtractors. As seen in the previous
definition, it is not necessary for f to admit a subtractor in order to define f — g. However, for
the morphism f — ¢ to also admit a subtractor, we will see that both f and g need to admit
subtractors. In other words, we will see that Z(X,Y") is closed under the “subtraction” in the
previous definition.

Lemma 4.1.18. Let C be a reqular subtractive category. For f € Z(X,Y), the morphism
(pf,m) 1Y x X — Y x X is a monomorphism.

Proof. To prove that the morphism (¢, 72) is a monomorphism, it is enough to show that k = £/,
where (K, k, k') is the kernel pair relation of (¢, m2). Writing (k, k') = ((k1, k2), (K1, k5)), from
<<,0f,71‘2><k1, ko) = <g0f,7T2><k/1, ké>, we see that ky = ké, and thus <g0f,71'2><0, ko) = <g0f,7'('2><0, ké)
It now follows by subtractivity that (@g, m2)(k1,0) = (@s, m2)(k],0). But since ¢¢(1,0) = 1 by
definition, we have k; = ¢¢(1,0)k1 = ¢(1,0)k] = k}. Hence, k = k'. O
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Proposition 4.1.19. In a reqular subtractive category C, for every pair of objects X and Y in
C, (Z(X,Y),—,0) is a subtractive algebra.

Proof. Clearly, the zero morphism 0 : X — Y is an element of Z(X,Y); its subtractor is
given by m : Y x X — Y, and in addition, for f € Z(X,Y), one has f —0 = m(f,1) = f
and f — f = ¢s(f,1) = 0. Now it remains to show that Z(X,Y) is closed under “—”. For
f,9 € Z(X,Y), since (pq, ) in the commutative diagram

g Y x X &
I«og, )
(f_g’1> : <170>

X —— Y xXe—Y
Pr

9

Y

is a monomorphism, we see that f — g admits a partial subtractor ¢y with respect to (pg,m2),
and hence, it admits a subtractor, i.e. f—g¢€ Z(X,Y). O

Having shown that Z(X,Y’) admits a subtraction structure for every pair of objects X and Y
in a regular subtractive category C, we will now proceed to show that this subtraction structure
is part of an abelian group structure on Z(X,Y). For that we are going to establish several
identities on the subtractive algebra Z(X,Y), sufficient to give an abelian group structure.

Lemma 4.1.20. In a regular subtractive category C, for f,g,h € Z(X,Y), one has (g — f) —
(h—f)=g—h

Proof. The morphisms ¢ (@, m2) and ¢p are both partial subtractors of h — f with respect
to (¢f,m2) as seen in the diagram

) Y x X &
<50f7 7T2>
(h=1f1) (1,0)

X—— ¥V xXe———
Ph

Ph—f 1

v

Y.

The uniqueness of partial subtractors forces ¢y ¢(¢, m2) and ¢, to be equal. Pre-composing
with (g, 1) we get

n—fler, m2)(9, 1) = pnlg, 1)
on-lg—f,1)=g—h (4.8)
(g—f)—(h—=f)=g—h
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Proposition 4.1.21. In a regular subtractive category C, the following identities hold:
(a) 0~ (0 g) = g, for every g € Z(X,Y);

(b) (f =(0—g)) —g = [, for every pair f,g € Z(X,Y).

Proof. (a). If we set f to g and h to 0 in the previous lemma, then we obtain 0 — (0 — g) = g.
(b). Again we apply the previous lemma and the fact that 0 — (0 — g) = g, so that (f — (0 —

9)—9=U~-0-9)-0-(0-g)=f-0=/
O

Proposition 4.1.22. Let C be a regular subtractive category. For f,g € Z(X,Y), one has
0f{Pg:m2) = Pr—(0—g)-

Proof. Since (f — (0 —g)) — g = f according to the previous proposition, it can be seen that the
diagram

N

o~ Y x X w
g7
<§997 7T2>
(1,0)
— > Y x Y

commutes. This implies that both ¢y (pg,m2) and ¢y_(_g) are partial subtractors of f with
respect to (@g,m2), and now the result follows by the uniqueness of partial subtractors.
O

As a corollary, we can make the following useful observation.

Corollary 4.1.23. For f,g,h € Z(X,Y) in a reqular subtractive category C, one has (h—g)—f =
h—(f—(0-=g)). In particular, g — f =0— (f — g).

Proof. As follows by the previous proposition, since ¢ r(pg, m2) = ©f—(0—g)s Pre-composing on
both side of the equation with (h, 1), we obtain

c)0f<909a 7r2>< s 1> Spf (0— g)<h 1>
pflh—g,1) =h—(f—=(0—g)) (4.9)
(h=g)=f=h—=(f—(0—-9)).

Now in the equation (h —g) — f = h— (f — (0 — g)), setting h to 0 and g to (0 — g), we get
0-(0—-9g)—f=0—(f—=(0—(0—g))), which simplifies to g — f =0— (f — g).

O
We have the following technical lemma.

Lemma 4.1.24. In a regular subtractive category C, for f € Z(X,Y), let f = me be the (regular
epi, mono)-factorization. The following hold:
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(a) ms{0,e) =0— f;
(b) oy = ¢p(1 x 5(0,¢)),

where s : f(X) x f(X) — f(X) is the subtraction on the image f(X) and ¢y : Y x f(X) — Y
15 the subtractor of m.

Proof. (a). In the diagram

X oy Y x X
(0,€) 1xe |
FX) x f(X) ——"" 0 ¥ X (X)) ¢
. .
F(X) _ v

the commutativity of the upper rectangle is clear. Furthermore, since the lower rectangle also
commutes and ¢¢(1 x e) = ¢y (see Remark 4.1.16), it follows that ms(0,e) = ¢(0,1) =0 — f.
(b). Since 0 — f = ms(0, e) as observed in (a), it is not difficult to see that the diagram

commutes. Now by the uniqueness of subtractors it follows that po_r = ¢¢(1 x 5(0,€)).
O

Proposition 4.1.25. For f,g € Z(X,Y) in a regular subtractive category C, we have (0 — f) —
O0-g)=9—1F

Proof. Let me and m/e’ be the (regular epi, mono)-factorizations of f and g respectively. Further-
more, let us write s and s’ to denote the subtractions on the images f(X) and g(X) respectively.
Consider the diagram
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X x X 5% (f - g)(X) x (f — 9)(X)

(s(e x e),s' (¢! x €)) o
f(X) x g(X) (f —9)(X)

mx 1 p

Y x g(X) " Y

where pg, with ¢ : X — (f —¢)(X) and p : (f — g)(X) — Y, is the (regular epi, mono)-
factorization of the morphism f — g, and s” is the subtraction on the image (f —¢)(X). To show
that the previous diagram commutes, we will observe that both the lower and upper composites
X x X — Y on the diagram are subtractors of the identity morphism of X along f — g¢;
commutativity will then follow by the uniqueness of (partial) subtractors (Proposition 4.1.6).
First pre-composing with the diagonal (1,1) : X — X x X, we obtain

dg(m x 1)(s(e,e),s'(¢',e')) =0 and ps”{q,q) = 0.

On the other hand, pre-composing with (1,0) : X — X x X, we obtain
¢g<ms<e, 0)7 8/< >> ¢g<m >
¢g<f> € >
= (1 x €')(f,1) (4.10)
= ¢y(f,1) (apply Remark 4.1.16)

and ps”{(q,0) = pq = f — g. Therefore the above diagram commutes. Now we obtain (0 — f) —
(0 — g) = g — f by pre-composing with (0,1) : X — X x X on the two equal composites
X x X — Y, that is,

¢9(m X 1)(‘9(6 x 6)7 S/(e/ X 6/)><0, 1> = ¢9<m3<07 e>73/<076/>>
= ¢4(0— f,5(0,¢'))  (since ms(0,e) =0— f)

— 3,1 % 5(0, )0 — £,1) (411)
=0-g(0— f,1)  (since ¢¢(1 x 5(0,€)) = o)
:(O_f)_(o_g)7

which is the same as ps”(q x ¢)(0,1) = ps”{0,¢) =0— (f —g) = g — f by Corollary 4.1.23. O
Now we can state our main result for this section.

Theorem 4.1.26. In a reqular subtractive category C, for every pair of objects X andY , Z(X,Y)
has an abelian group structure.

Proof. We use the subtraction “—” on Z(X,Y’) to define a binary operation “+” by

f+g:f_(0_g)forfag€Z(X7Y)
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Using Proposition 4.1.21 (a), for every f € Z(X,Y), f+0= f =0—(0— f) = 0+ f. Furthermore,
for f € Z(X,Y), thereis 0 — f € Z(X,Y) such that

fHO=f)=f-0-0=-f)=f-f=0=0-f)—0-f)=0-f)+ [
For f,g,h € Z(X,Y), one has

(h+tg)+f=(h+g) —(0-f)
=(h-(0-9)—(0~F)

=h—-((0-f)—9) (applying Corollary 4.1.23) (4.12)
=h—(0—-(9—(0—f))) (applying Corollary 4.1.23)
B (0—(g+ 1))
=h+(g+/f)
Lastly, setting f to 0 — f in the previous proposition, we obtain f+¢g=(0—(0—f)) —(0—g) =
g—(0—f)=g+fforall f,ge Z(X,Y). O

Remark 4.1.27. For a pair of objects X andY in a reqular subtractive category C, the fact that
(Z(X,Y),4+,0) is an abelian group only depends on the following identities

(a) f—f=0and f—0=f;
() (h—g)—f=h—(f—(0-9g));
(¢c) (0—=f)=(0—g)=g—f forall f,g,h € Z(X,Y).

Note that 0 — (0 — h) = h is obtained from (b) by setting g to h and f to (0—h). More generally,
a subtractive algebra X is an abelian group, if and only if, (x —y) — 2z = 2 — (z — (0 — y))
and (0 —z) — (0 —y) =y —x for all x,y,z € X. If a subtractive algebra X satisfies only
(x—y)—z=2—(2—(0—1y)), then it is just a group.

4.2 Commutativity in categories

In this section we extend categorical commutativity to a pointed finitely complete category
with finite joins of subobjects. Our main aim is to investigate categorical commutativity in a
subtractive category C with finite joins of subobjects. Let us first fix notation, and also give
some necessary background.

For a pair of objects X and Y in a pointed finitely complete category C with finite joins
of subobjects, we write m : X xY — X X Y to denote the join of the canonical morphisms
(1,0) : X — X xY and (0,1) : ¥ — X x Y. The morphisms I; : X — X xY and
Iy :' Y — X xY denote the respective factorizations of (1,0) and (0,1) through the join
m: X*xY — X xY

I I
X — S XxY ey

(1,0) (0,1)

X xY.
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Remark 4.2.1. Note that for objects X and Y in a pointed finitely complete category C with
finite joins of subobjects, the morphism m : X xY — X X Y being the join of the morphisms
(L,0) : X — X XY and (0,1) : Y — X x Y implies the pair of morphisms I; : X — X xY
and Is : Y — X xY s jointly extremal-epimorphic, and hence jointly epimorphic.

When C is a pointed regular category with finite coproducts, the join of a pair of subobjects
(H,h) and (K, k) of X can be given by the regular image of the factorization [h, k| : H+ K — X.
This means for a pair of objects X and Y in a pointed regular category C with finite coproducts,
the join of (1,0) : X — X x Y and (0,1) : Y — X x Y can be given by the regular image of
the canonical morphism X +Y — X x Y in the diagram

XY
/ K
X+Y X xY.

o 7]

Remark 4.2.2. In a unital category C, for every pair of objects X and'Y the join m : X xY »—
X XY isndiscrete, i.e. X xY =X xY.

Definition 4.2.3. Let f : X — Z and g : Y — Z be morphisms in a pointed finitely complete
category C with finite joins of subobjects. The pair f, g is said to commute when there exists a
morphism ¢ making the diagram

X— XxY Y

N,

commute. When such a morphism @ exists it is necessarily unique, since the pair of morphisms
I and Iy is jointly epimorphic. The morphism ¢ is usually called the cooperator of f and g.

11 12
g

Remark 4.2.4. Note that when C is a unital category the previous definition coincides with the
definition of commuting morphisms in the sense of Huq [22].

Definition 4.2.3 allows us to explore categorical commutativity in a wide range of examples.
For now we are only going to focus on subtractive categories with finite joins of subobjects. We
shall describe what it means for a pair of morphisms having the same codomain to commute in
the variety S of subtractive algebras.

Given a subtractive algebra X in S, let us define the following recursive terms on X :

si(x1,x2) := s(z1,x2) and sp(T1,22, oy Ty Tnt1) = S(Sn—1(x1, T2, ..., Tn), Tnt1)
for n > 2 and each z; € X. Writing s,, explicitly using “—” instead of s,

Sn (1, 22y ooy Ty Tg1) = (( (21 — 22) — 23) — X4)eesy —Tp) — Tpg1)-
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When necessary, we may use — instead of s to simplify notation. In addition, when no confusion
may arise, we can drop the subscript when writing s, and just write s(z1,x2, ..., 2,) instead of
Sp(x1, T2, .oy ).

Let us describe X =Y for any pair of subtractive algebras X and Y in S. By definition X xY
is the subtractive algebra generated by the pairs (x,0) and (0,y), with x € X and y € Y. Thus,
an element in X %Y is either of the form

s((x,0), (0,41), ., (0, ) = (2,800, 91, ..., yn)) or s((0,9), (x1,0), ..., (zm,0)) = (s(0, 21, ..., Tm),y).
Thus,
X*Y ={(z,500,91,...,yn))|x € X,y € Y} U{(s(0,21,...,xm),y)|z; € X,y € Y}.

Let us write A = {(z,s(0,y1,...,yn))|z € X,y; € Y} and B = {(s(0,21,...,zm),y)|z: € X,y €
Y}, so that X xY = AU B. The union AU B is not disjoint, as for example, pairs such as (0,0)
and (0 —z,0 — y) can belong to either A or B. We will say two elements of X Y are of (a)
“same type” if they both belong to A or they both belong to B, for example (z,0) and (x,0—1y),
and, (0 — x,y) and (0,y); (b) “both type” if they belong to the intersection A N B, for example
(0,0) and (0 — z,0 — y); (c) “different type” if otherwise, for example (z,0) and (0, y).

Now given a pair of homomorphisms f : X — Z and g : Y — Z in the variety S of
subtractive algebras, commutativity of f and g is given by the necessary and sufficient conditions
for the existence of a homomorphism ¢ : X xY — Z in S, satisfying that ¢(x,0) = f(z) and
©(0,y) = g(y) for all z € X and y € Y. Since every element (x,s(0,y1,...,yn)) in X xY can

be expressed as (x,s(0,y1,...,4yn)) = s((z,0),(0,y1), ..., (0,y,)) (similarly (s(0,z1,...,2m),y) =
5((0,y), (x1,0), ..., (x1m,0))), if ¢ is a homomorphism, then it is defined by

o, 5(0,y1, ., yn)) = s(f(x), 9(y1), -, g(Yn))

and
90(3(07x17 "'7xm)v y) = S(g(y)v f<x1)7 SR f(xm))

We can further observe below that for an element of “both type”, that is an element of the form

(S(Oa T1yeeny :En)? S(O’ Y1y eeey ym))a

o is well defined:

S(S(Oa f(xl)v ) f(xn)),g(?ﬂ), "'7g(ym))
= @(S(O,xl,...,xn),s(o,yl, ...,ym))
= s(cp((),s((),yl, oy Ym)), e(21,0), p(z2,0), ...,go(xn,O)) (since ¢ is a homomorphism)

= S(S(O, g(y1), ey g(ym))v f(‘/El)? Xy f(x”))
(4.13)

For readability, we shall assume f and g are inclusions. Now the necessary and sufficient condi-
tions for the existence of a homomorphism ¢ : X xY — Z in § are given in the next theorem.

Theorem 4.2.5. Let f : X — Z and g : Y — Z be homomorphisms in the variety S of
subtractive algebras. The pair f,g commute if and only if the following identities hold:
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((l) 5($ay17y27"'ayTL)S(yv:L'lny,-- ) S(IL‘,S 0 :1:171"27"'7$m)ay17y2)"'7ynvy);
(6) s(z,y1, 92, s Yns S Y, Yo s U)) = S(2, 2, Y1, Y2, s Yns S0, Y1, Yy ooy Ui))
(c) s( )

(d) 3(:1/,.%'1,.%2, ooy Ty S($7y17y27 S ym)) = S(ya 8(07 Y1, Y2, ...,ym),.%'l,.%g, ...,.len,.’L').

/ ! / _ / / / .
s(y, x1, @2, ooy, s(y', 2, by, oy 2h, ) s(yy 1,9, .. xn,s(O,xl,xz,...,xm)),

Proof. As observed before, the homomorphisms f and g commute when there exists a homomor-
phism ¢ : X Y — Z in § such that ¢(x,0) = z and ¢(0,y) =y, for all x € X and y € Y.
Observe that equations (a) and (d) are obtained in a similar way; they are both obtained by
subtracting two elements of “different type” and then apply the homomorphism ¢ to it. Similarly,
equations (b) and (c¢) are obtained by subtracting two elements of “same type”, and then apply
the homomorphism ¢ to it. Equation (a) is obtained as follows:

s(x,yl,yg, ooy Yny S(Y, T1, T2, ey xm))

= s(cp(x, s(0,y1, ... yn)), go(s(O,xl, ey T )y y))
= @(3(1‘, $(0, 21, ..., Tm)), s(0,y1, ...,yn,y))

= s(x, $(0, 21,22, ey Tin ) Y1, Y2, ...,yn,y).

(4.14)

The other three equations are obtained in a similar way. For the “if” part, let us suppose the
four identities, namely, (a), (b), (¢), and (d) hold. We will show that the map ¢ : X xY — Z
defined by

90(x73(07y17 7y7’b)) = S(x7y17 7y7l)
and
o(s(0, 21, ooy T ), Y) = S(Y, 1, oey Tp)

is a homomorphism in S. Let us first show that taking

(8(0,1‘1, "'axn)a 3(07y15 ceey ym))

as an element of “both type”, and apply ¢ accordingly, the two images are always the same, i.e.
we need to show that

s(O,ml, s Ty YLy ooy Ym) = S(O,yl, coes Yy 1, ,a:n) (4.15)
Note that by setting 2, =0 for i = 1,2,...,m, and 3y = y; in (c), we obtain
s(y,xl,...,xn,yl) = s(y,yl,xl,...,wn). (4.16)
Using the previous equation, we get

8(07$17 cey Ty Y1, 7ym) = 8(O7ylax17 ooy Ty Y2, 7ym)

Applying the same process repeatedly to the term 3(0, L1y eeey Ty Yy oens ym), after m steps we will
obtain equation (4.15)

8(07 "B].? "'7"'Ijn7y1’ "'7ym) = S(O’ y17 "'7ym7$1) "'7‘,1?77/)'
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Next we show that ¢ is a homomorphism in S. Since X x Y is the union of two sets, without
loss of generality, we can just check that ¢ preserves subtraction when two elements of “same
type” and when two elements of “different type” are subtracted. More precisely, for elements
(', 500,915, 9p)), (80, 21, ooy ), ), and (2, 8(0,y1, ., yn)) in X « Y, we will show that

cp(s(x,x’% 5(0,91, -, Yn, s(0, ¥}, ...,y;))) = s(go(:z:, s(0,y1, ...,yn)),(p(xl, (0,91, ...,y;)))

and

go(s(x, $(0,21, ey Tm)), S(0, Y1, -y Yns y)) = s(gp(x, s(0,y1, .-, yn)),go(s(O, T1yeees xm),y))

For that, we have

8(90(1‘7 8(0,y1, "'71%1))790(1;/5 S(O,yll, ey yzly)))
= S(xaylayQa coos Yns S(IE/, ylla y/27 ’y;,)))

, L , ) (4.17)
= S(LU,.’I) s Y1, Y25 -5 YUn, S(anla y2) )yp)) (applylng (b))
= p(s(z,2), 50,41, -, Yn, (0,91, - 1))
and
5(90(1:7 3(07 Yty ey yn))a 90(8(07 L1y .eey -’,Um), y))
:S(x>ylay27"'aynvs(ya$1ax27"'7xm)) (4 18)
= S(l’, 8(0,131,1'2, "'7xm)’ylay23 <y Yn, y) (applylng (a))
= gp(s(:C, $(0,21, .y Tm)), S(0, Y1y +ovy Yns y))
O

Accordingly, commutative objects are defined as follows:

Definition 4.2.6. In a pointed finitely complete category C with finite joins of subobjects, an
object X s said to be commutative when the identity morphism of X commute with itself, that
18, when there 1s a morphism ¢ : X x X — X making the diagram

S
S
- %
Sk
S

S ¢omno e

commute.
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In the previous theorem, taking both f and ¢ to be the identity morphism of X, the equations
(a), (b), (c), and (d) all reduce to one equation, that is,
s(x, 21,22, oy 2y, s(2, 2, 2h, s xl)) = s(x, s(0, 2], xh, .o, x0), T1, T2y oy Ty, )

ey by

(4.19)

= s(x, o', 21, T2, ..., Ty, 8(0, 27, 25, .. 1)),
It can be seen that equation (4.19) is generated by the following two simple equations: (a)

(x—x1) —x9 = (xr—2x2) —271; (b) T — (21 — 22) = (x — 21) — (0 — 2) (which can also be seen as
a special case of Corollary 4.3.3 below). Thus:

Remark 4.2.7. In the variety S of subtractive algebras, a subtractive algebra X is commutative
if and only if the following hold for all x,y,z € X,

(¢) (x—y)—z=(r—2) -y
(b)) z=(y—2)=(x-y)—(0-2)
We can further make the following observation:

Proposition 4.2.8. In the variety S of subtractive algebras, for a subtractive algebra X the
following statements are equivalent:

(a) X is commutative;
(b) X is an abelian group.

Proof. If X is commutative then (z —y) —w=(r—w) —yand x — (w—2) = (z —w) — (0 — 2)
for all z,y,w,z € X. Now for z € X, weseethat 0—(0—z) = (z—2)—(0—z)=z— (z—x) =
x. As observed in Remark 4.1.27, a subtractive algebra X has an abelian group structure if
(x—y)—2z=2—(2—(0—-y)) and (0 —2z) — (0 —y) = y — « for all z,y,z € X. Clearly,
p— (= (0—y) = (&—2)— (0—(0—y) = (¢ —2) —y= (v —y) —zand (0—z) — (0—y) =
(0—(0—vy)) —x =y — x, and these give (a) = (b). The implication (b) = (a) is obvious. [

Our next task is to generalize the previous proposition to a general subtractive category with
finite joins of subobjects. We will first explain some notation and give some auxiliary facts.

For objects X and Y in a pointed finitely complete category C with finite joins of subobjects,
we will write 77 and 75 to denote the composites mym and mym respectively, in which m is the
joimm: XxY — X xY

I I
X — S XxY ey
m
(1,0) (0,1)
X xY.

Since the product projections 71 : X XY — X and w2 : X XY — Y are jointly monomorphic,
and m is a monomorphism, the pair 77,75 is also jointly monomorphic. Given a morphism
r: R — XY, we will write 7y = 7jr and ro = w5r. We see that n7l1 = 1, n31; = 0 and
mly =0, 3l = 1.
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Lemma 4.2.9. In a subtractive category C with finite joins of subobjects, for a morphism f :
X — Y, leto: XxY — Y be a morphism such that f = @I and pls is the identity morphism

of Y. The morphism (p,77) : X *Y — Y x X is a monomorphism.

Proof. Let (K, k,k’) be the kernel pair relation of (¢, n}). We will show that £k = k’. Letting
ik and k] = w1k kb, = w3k, since (o, 1)k = (@, 1)K, it follows that k1 =

]{21 = ﬂ'fk',k‘Q =
ik = 71k’ = k}. In the diagram
1xm T
Xx Y xY) /=X XxY ——X
2 1 X mo
('l <k1, <k2, k/2>> m ™2
(1,(0,0)) | .
VK X xY Y X
\ /"\ / (Lp,ﬂf)
\ 5\%
X I

in which § is a morphism such that k8 = I) = k'S, we see that (1,(0,0)) factors through
(k1, (k2, K5)) by . Therefore, we obtain the following commutative diagram

(1, (k2 k5))

K,

Y x (Y XY
K XY XY) — 5

(1, (k2 k5))

from which by using subtractivity, we conclude that (0, (ko, k%)) factors through (ki, (k2, k})).

Using the diagram

k
K—=XxY
/‘-‘ k’

’

N (i, (ka2 kG))  |m
s ’ 1 X m
K— X x (Y xY X xY
o X )\

we see that
mkX = (0, k2) = mlsky and mk'\ = (0, kb)) = mIok,
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which imply that kXA = Isko and &'\ = I3k} respectively. Hence ko = ploks = @Ikl = kb, and,
together with ki = k{, we have k = k'
O

As a special case of the previous lemma, we obtain the following:

Remark 4.2.10. In a subtractive category C with finite joins of subobjects, if X is a commutative
object, with the cooperator denoted by ¢ : X * X — X, then the morphism (o, 77) : X * X —
X x X is a monomorphism.

We recall:

Proposition 4.2.11 (see [12]|, Corollary 2.6). In a subtractive category C if X and X' admit
internal subtraction structures s and s’ respectively, then every morphism f : X — X' is a
homomorphism of subtraction, i.e. the diagram

XxX—5X

commutes.

Proof. 1t is not difficult to see that s'(fx f)(1,1) =0 = fs(1,1) and s'(fx f)(1,0) = f = fs(1,0).
But since X admits a subtraction s, the pair (1,1),(1,0) is jointly epimorphic (being jointly
extremal-epimorphic according to Proposition 4.1.13). Hence the diagram above commutes. [

Applying the previous proposition, every subtraction s : X x X — X in a subtractive
category is a homomorphism of subtraction, i.e. the diagram

(XxX)x(XxX)—" s xxXx

X xX . X,

in which s’ is the subtraction on X x X given by

(X xX)x (X xX) 5 (X x X) x (X xX) —"5 X x X,

\/

S/
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where i = ((mm, m7e), (Mo, Tom2)) is the “middle interchange”, commutes. Explicitly, the
commutativity of the previous rectangle, which represents s being a homomorphism of subtrac-
tion, means that

s{s(mymy, mma), 8(mamy, MoMa)) = 85

= s(s X 8)
s(smy, sma) (4.20)
s(s(my, mo)m1, s(m1, m2)7M2)
(

s(s(mymy, momy), s(mwime, TOMWI)).

And now we can state a categorical version of Proposition 4.2.8.

Theorem 4.2.12. For an object X in a subtractive category C with finite joins of subobjects,
the following statements are equivalent:

(a) X is commutative;
(b) X admits an internal subtraction structure;
(c) X admits an internal abelian group structure.

Proof. (a) = (b). Let ¢ : X ¥ X — X be the cooperator of the pair of identity morphisms of
X. By Remark 4.2.10 we know that (¢, 7]) is a monomorphism. Since the diagram

X*xX
I Iz
s
(1,1)

X—X

L0
) /

commutes, we see that 7] is a partial subtractor of the identity morphism of X with respect to

(p, 7). Now the result follows from Lemma 4.1.10.
(b) = (a). Since s(0,(0,1)) = s(s(1,1),s(0,1)) = s(s(1,0),s(1,1)) = 1, it is not difficult to

see that the diagram
X
0, 1)
1 % s(

XXX%XXX%X

(1,0) \—/
X 1
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commutes. Hence, pre-composing with the morphism m : X x X »— X x X, it can be easily seen
that the composite s(1 x s(0,1))m is the cooperator of the pair of identity morphisms of X.
(b) < (c). According to Corollary 2.7 of [12], an internal subtraction structure on an object
is always part of a unique internal abelian group structure on the same object.
O

Although we can deduce this fact from Theorem 4.1.26, we are going to explicitly extract
an internal abelian group structure from a subtraction s : X x X — X on an object X in a
subtractive category C. Using the subtraction s, addition p : X x X — X is defined by the
morphism p = s(1 x s(0,1))

1% s(0,1)
XxX —5XxX —5X.

p = s(m1, {0, m2))

Let us show that s(0,1) : X — X is the additive inverse of p; that is, showing that the square

(1,5(0,1))
SN X x X
(s(0,1),1) 0 p
X x X T X

commutes. Since s is a homomorphism, we have
p(1,5(0,1)) = s(1 x s(0,1))(1,(0,1))
s(1,5(0,1)s(0,1))
(1
(1

= s(1,5(0,(0,1))) (4.21)

=s(1,1) (since s(0,s(0,1)) =1)

and

(4.22)

Let us also show that p(1,0) =1 = p(0, 1) i.e. the diagram

(1,0)
—> X x X
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commutes. Clearly, p(1,0) = s(1 x s(0,1))(1,0) = s(1,0) = 1. We also see that p(0,1) =
s(1 x $(0,1))(0,1) = s(0,(0,1)) = 1.
We prove associativity by showing that the diagram

m17T1,8(0, m2m1)), T2) = 1
(XXX)XX<S<1IS< 2m1)), T2) =P X X % X

(w171, (momy, w2))

X x (X x X) s(m1,5(0,m2)) = p

(m1, 8(m1m2,5(0, m2m2))) = 1 X p

X x X X
s{m1,s(0,m2)) =p

commutes. Again we use the fact that s is a homomorphism to obtain

p(l X p)<7T17T1, <7['27T1,7T2>> S(T1, <0 7T2>><7i'1,S<7T17T2,8<0,7T27T2>>><7T17T1, <7T27T1,7T2>>

(
= s(mim1, (0, 1)s(mamy, s(0, m2))
= s(mim1, s(s(s(0,ma), a1}, 0))
= s(mim1, s(s(0,ma), m2m1))
= s{s(mm, 0, s(s(0, a1, 7)) (4.23)
= s(s(mm1, s(0, m2m1)), $(0, w2))
= s(my, $(0, m2)) (s{mm1, $(0, wom1)), T2)
=p(px1).

Lastly, we will show that p is an abelian group operation. For that, we will show p(ma, 71) = p;
that is,

s(m1, 8(0, ma)) (ma, m1)

p{ma, m1) )
s )

{
{
5
{
{

9, (0, mp

V)

<0,S<0,7T2 >,8<
5(0,5(0,71)), s(
s(my, 8(0,m2)) = p.

, 1)) (4.24)

0
0,72))

S

)
)
)
)

)

Remark 4.2.13. In a subtractive category C with finite joins of subobjects, when X admits an
internal subtraction structure s : X x X — X, the join m: X * X — X x X

X +xX

X— X xX<——X
(1,0) (0,1)
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is an isomorphism, since the pair of morphisms (1,0) and (0,1) is jointly extremal-epimorphic
according to Proposition 4.1.13. Therefore, since the product X x X admits a subtraction structure
whenever X does, X X X 1is commutative, and so is X x X.

4.3 Central morphisms in subtractive categories

Definition 4.3.1. Let C be a pointed finitely complete category with finite joins of subobjects. A
morphism [ : X — Y 1is said to be central if it commutes with the identity morphism of Y.

We have the following characterization:

Theorem 4.3.2. Let C be a reqular subtractive category with finite joins of subobjects. A mor-
phism f: X — Y is central if and only if it admits a partial subtraction structure.

Proof. Suppose a morphism f : X — Y is central, and ¢ : X xY — Y is the cooperator
of f and the identity morphism of Y. According to Lemma 4.2.9, the morphism (p,77) is a
monomorphism. Therefore, as shown in the commutative diagram

X_*Y

f admits a partial subtraction structure. Conversely, if f admits a partial subtraction structure
then it also admits a subtractor. Now let re be the (regular epi, mono)-factorization of f.
According to Proposition 4.1.8, r : f(X) — Y admits a subtractor ¢y : Y x f(X) — Y, and
so the image f(X) also admits a subtraction s : f(X) x f(X) — f(X) by applying Proposition
4.1.9 (a). As seen before (see Remark 4.1.16), ¢¢(r x 1) = rs and this means the rectangle in
the diagram

(0, 5(0,¢)) rx1
X — (X)X f(X) ——= YV x f(X)

S ¢f

f(X) ; Y

commutes. Furthermore, using the fact that s is a homomorphism of subtraction, we have

5(0,5(0,€)) =s(s(1,1),5(0,1))e
s(s(1,0), (L, 1))e
,0)e

(4.25)

1
(s
s(1

267



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. CENTRALITY IN SUBTRACTIVE CATEGORIES 98

which means the left triangle commutes. Using the commutativity of the previous diagram, since
f=re=¢sp(rx1)(0,5(0,e)) = ¢7(0,5(0,€)), we see that the diagram

X f
1 x s(0,€) ofs
YxX —YxfX)—Y

(1,0)

Y 1

commutes. Hence, pre-composing with the morphism m : Y * X ~— Y x X, it can be easily seen
that the composite ¢7(1 x s(0,e))m is the cooperator of f and the identity morphism of Y.
OJ

As a consequence of the previous theorem, we can apply Proposition 4.1.2 to describe central
morphisms in the variety S of subtractive algebras.

Corollary 4.3.3. In the variety S of subtractive algebras, a homomorphism f : X — Y s
central if and only if the following identities hold for all x € X and y,y € Y :

(a) (y—f(x) -y =Wy—vy)— fl@);
) y——f@)=>H—-y)—(0-f(2).

As aresult of Theorem 4.3.2 and Theorem 4.1.26, we extend the following fact; already known
to be always true in a strongly unital category (see [6]).

Corollary 4.3.4. For every pair of objects X and Y in a reqular subtractive category C with finite
joins of subobjects, writing Z(X,Y) for the class of central morphisms from X to'Y, Z(X,Y)
has an abelian group structure.

The characterization of central morphisms in terms of partial subtraction structures not only
gave a simple description of central morphisms in the variety S of subtractive algebras, but, as
we will see, it also allows to associate to every morphism f : X — Y in a regular subtractive
category C with finite joins of subobjects and cokernels, a universal morphism g : ¥ — @
which, by composition, makes f central. More precisely, we will show that for a morphism
f X — Y in a regular subtractive category C with finite joins of subobjects and cokernels,
there is a universal morphism g : Y — @ for which the following diagram

1 1,0
x (VY] Vo« X (1,0) v

O
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commutes. This is an extension of Corollary 1.10 of [5].
Let us first prove the following technical lemma.

Lemma 4.3.5. In a reqular subtractive category C with finite joins of subobjects, if a morphism
f: X — Y admits a subtractor along a reqular epimorphism g : Y — Z, then the composite gf
18 central.

Proof. Consider the kernel pair relation

(Y X Y, ]ﬁ, kg)

<g,9>

of g, and let ¢y : Y x X — Z be the subtractor of f along g. It is clear that there is a morphism
A such that k1A = f = ko A. Now consider the diagram

M vxY)xx B0 vVxy

<g,9> <g,9>
1 k1 x1||kyx1 ki || ke
(f; 1) V% X (1,0)
0 of 9
Z.

It can be seen that both ¢g(k; x 1) and ¢y(k2 x 1) are subtractors of the morphism A
along gk; = gks. Hence, by the uniqueness of subtractors (Proposition 4.1.6), it follows that
wf(k1x1) = @f(kax1). Since gx1: Y xX — Zx X, is the coequalizer of the pair (k; x1), (kax1),
it follows that ¢ factors through g x 1 by a morphism ¢g¢, that is ¢ = @g¢(g x 1). Now it can
be easily seen in the diagram below that ¢, is a subtractor of gf, and this means gf is central

=
L=
X
>

ofy) (1,0)

(4.26)
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O

Remark 4.3.6. In a regular subtractive category C with finite joins of subobjects, it can be seen
that (see e.g diagram (4.26) above) if a composite gf is central then f admits a subtractor along
g. As shown in the previous lemma, the converse holds when g is a reqular epimorphism.

Theorem 4.3.7. In a reqular subtractive category C with cokernels and finite joins of subob-
jects, for every morphism f : X — Y there is a universal morphism q : Y —> @Q which, by
composition, makes f central. The universal morphism q is necessarily a regular epimorphism.

Proof. Let us consider the cokernel ¢ : Y x X — @ of the morphism (f, 1) in the diagram

(£,1)
X ———Y x X - d ”? Q?
il
& .
3

with ¢ = ¢(1,0). It can be easily seen in the diagram

1 1,0
X (f; 1) Vx X (1,0) v

that ¢ is the subtractor of f along ¢. In order to apply Lemma 4.3.5, we first need to show that
q is a regular epimorphism. For that, let us write me for the (regular epi,mono)-factorization
of q. Applying Lemma 4.1.9, f admits a subtractor ¢* along e, and this means, ¢*(f, 1) = 0
and ¢*(1,0) = e. Hence ¢* factors through the cokernel of (f, 1), that is, ¢* = Ap. We see
that me* and ¢ are both subtractors of f along g, therefore, my* = ¢. Now ¢ = mp* = mAy,
and by the universal property of cokernels it follows that A is a section of m, and hence m is
an isomorphism. Thus, ¢ = me is a regular epimorphism. Now we can apply Lemma 4.3.5 to
conclude that ¢f is central. If there is a morphism ¢’ such that ¢’ f is central, as observed already
in the previous remark, it means that f admits a subtractor ¢’ along ¢’. So by definition of ¢/,
¢ (f,1) =0 and ¢'(1,0) = ¢/, which implies that ¢’ factors as ¢’ = ap, since ¢ is the cokernel of
(f,1). Hence, ¢ = ¢/(1,0) = ap(1,0) = ag, and this shows that ¢ is the universal arrow which,
by composition, makes f central. O

Remark 4.3.8. In a regular subtractive category C with cokernels and finite joins of subobjects,
from the previous theorem it can be concluded that, for every morphism f and its associated
universal morphism q for which qf is central, the kernel [| f, 1|] of ¢ measures the lack of centrality
n f, in other words, f is central if and only if the kernel of q is the zero morphism.
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Remark 4.3.9. In a regular subtractive category C with finite joins of subobjects and cokernels,
taking f to be the identity morphism of X in the previous theorem, one recovers the following
fact (see Theorem 4.3 of [12]); that is, the associated abelian object of X is given by X in the
diagram

1,1) _
XQXXXL}X

where qx 1s the cokernel of the diagonal of X. But since abelian objects are exactly commutative
objects in a subtractive category C with finite joins of subobjects, we can conclude that the full
subcategory Com(C) of commutative objects in C is reflective.
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Monoidal sum structures

The notion of commuting morphisms gives rise to a binary relation (commutes relation) on the
class of morphisms (defined only for those pairs of morphisms having the same codomain). As
explained in [28], for a unital category C, the commutes relation is an example of a cover relation
[26] arising from a special type of monoidal structure on C, called a monoidal sum structure.
We will show that this fact extends to a pointed finitely complete category C with finite joins
of subobjects. More specifically, we will show that in every pointed finitely complete category
C with finite joins of subobjects, there is a monoidal sum structure on C whose corresponding
cover relation is the commutes relation.

5.1 Commuting morphisms in several “non-unital’ examples

Let us recall the following notation introduced in the second section of the previous chapter: For
a pair of objects X and Y in a pointed finitely complete category C with finite joins of subobjects,
we write m : X xY »— X x Y to denote the join of the canonical morphisms (1,0) : X — X xY
and (0,1) : Y — X x Y. The morphisms I} : X — X xY and I : Y — X x Y denote the
respective factorizations of (1,0) and (0, 1) through the join m: X *Y — X x Y. We write 7
and 75 to denote the composites mym and mem respectively.

Recall that, for a pair of morphisms f : X — Z and g : Y — Z in a pointed finitely
complete category C with finite joins of subobjects, the commutativity of f and g is defined by
the existence of a cooperator ¢ : X xY — Z, such that oIy = f and ¢ls = g. As explained
before, this reduces to the usual definition of commuting morphisms when the category C is
unital. In this section we will describe commuting morphisms in several “non-unital” examples.

Ezample 1. Consider a category Z whose objects are sets X equipped with a binary operation
“—" and a unique constant “0,” satisfying the following:

(a) z—0=ux,
(b) z —x =0;
(c) 0—x=0.

Morphisms in this category are maps which preserve the binary operation — and the constant
0. Let us quickly recall the definition of an implication algebra [1], and later explain that an
implication structure on a non-empty set gives rise to a binary operation — and a unique constant

102
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0, satisfying the previous axioms. An implication algebra is a set X together with a binary
operation “-” satisfying the following:

I1) (z-y) = =ux;
(12) (z-y) y=(y-2)

(13) - (y-2)=y-(x-2)

A classical implication “xz = 3" can be derived from the previous axioms, by setting z -z =
y-y=1and x = y := z -y (see [1] for details). Let us show that = -z = y-y. Using (12),

((z-2)-(y-y)-(y-y) = (y-y)- (x-2))- (z-2). We will show that ((z-z)-(y-y))-(y-y) =y-v,
which will also implies that ((y-y) - (z-z)) - (z-z) =z - .

(x-2)-(y-y) Wy =y (((z-2) (y-y) y) (using (I3)))
=y-((y-((z-2)-y))y) (using (13)) (5.1)
=y-y (since (y - ((z-2)-y)) -y =y by (I1)).

Let us also show that -1 =1and 1-2 =z : Using (I1), 1 -2 = (z - z) - * = x, which implies
that 1 = (1-2)-1 = x-1. Now we can define a subtraction on any non-empty implication algebra
by letting 0 =1 and

T—y:i=y- T
Clearly, z —x =0,z —0=1-z=z,and 0 —z=2-1=1=0.

The category Z is not unital: For objects X = {0,z} and Y = {0,y} in Z, the relation
R ={(0,0), (x,0),(0,y)} is a punctual relation from X to Y, but it is not indiscrete since (z,y) &
R. Let us now describe commuting morphisms in this category. Given two homomorphisms
f:X—Zand g:Y — Zin Z, the object X xY is given by the union

XxY ={(z,0)]z € X} U{(0,y)ly € Y}
The map ¢ : X xY — Z defined by

¢(x,0) = f(z) and ¢(0,y) = g(y),

is a morphism in Z if and only if

f(x) = f(x) —g(y) and g(y) =g(y) — f(x)

for all x € X and y € Y. And this is what it means for f and g to commute in Z. Let us also
describe commutative objects and central morphisms in Z. Using the previous calculations, an
object X is commutative if and only if for every pair x,2’ € X, x = x — 2’ and 2/ = 2/ — z. This
immediately implies that every element z of a commutative object X is 0, since x = x — z = 0.
Hence, in Z only the zero object {0} is commutative. Similar argument shows that only the zero
morphism is central.

Ezample 2. Another example of a “non-unital” category is the category Set™ of pointed sets.
For two pointed sets X and Y, the object X xY is given by

XY = {(z,0)]z € X} U{(0,9)ly € Y},
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which is exactly the coproduct of X and Y in Set*. Hence, any two morphisms in Set® always
commute.

Ezample 3. Consider a category C whose objects are semi-groups (X, +) equipped with a
unique constant “07, satisfying that 04+ 0 =0 and z 4+ 0 = 04 z. For objects X and Y in S, one
has

X*Y ={(z,0)|lr € X}U{(0,y)|ly e Y} U{(z+0,0+y)|lz € X and y € Y}.

On the set N of natural numbers, define + as follows:

Ly 0 if z=y=0,
TTY =11 otherwise.

It is not difficult to see that (N, +) is an object in C. In addition, NxN = {(1, 1), (n,0), (0, m)| n,m €
N} # N x N, and this shows that C is not unital. Now given morphisms f : X — Z and
g:Y — ZinC,amap ¢p: X xY — Z such that

p(x,0) = f(z) and »(0,y) = g(y)
is a morphism in C if and only if, for all z € X and y € Y,
f@)+9(y) = 9(y) + f(z) = g(y) + f(x) + 0.
In other words, f and g commute if and only if, for all z € X and y € Y,
f(@)+9(y) = 9(y) + fz) = g(y) + f(z) + 0.

Remark 5.1.1. Further ezamples of non-unital categories can be obtained by taking the product of
a unital category with any of the above examples, and commutes is obviously computed component-
wise.

5.2 Monoidal sum structures and commutes relation

For a pair of morphisms f: A — C and g : B — D in a pointed finitely complete category C
with finite joins of subobjects, consider the following commutative diagram

Ax B X9 CxD
(0,1)
<1,U> mi ma
g
I/ D.
AxB CxD
I
f
A

Using the commutativity of the above diagram we see that the diagram
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1
I2g

A%A*B%B
2

1
commutes, but since the morphisms I; and I are jointly strongly epimorphic, there exists a
unique morphism f % g: Ax B — C x D such that the diagram
fxg
AxB——>CxD

m1 m2

v

N
>C

commutes. It can also be seen that (f xg)I1 = Iif, (f xg)Ia = Izg, and 7i(f xg) = fnf. In
a same way it can be shown that 75(f * g) = gm3. We shall observe that for a pointed finitely

complete category C with finite joins of subobjects, % is a bifunctor
*x:CxC—C

on C, which assigns to each pair of objects A, B and each pair of morphisms f: A — C,g :
B — D, the object Ax B and the morphism fxg: AxB — C% D respectively. For morphisms

[: X =Y, f: X' —Y'. g:Y —Z and ¢ : Y — Z' in C, since the diagram
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commutes and the pair I, I5 is jointly epimorphic, it follows that (gx¢")(fx f') = gf x¢'f’, and
this means x preserves compositions. In a similar way, it can be shown that x preserves identity
morphisms. Hence, x is a bifunctor on C.

Definition 5.2.1 (see [28]). Let C be an arbitrary category. In the functor category C**C, a
diagram

P1 L1 ® L2 Pg

where Py and Py are the product projections C x C — C, is called a sum structure on C,
if for every object (C1,C2) in C x C, the (C1,C2)—components 1., o, and tag o, are jointly
epimorphic. A sum structure on C is usually denoted by a triple (Q), t1,t2).

In every category C with coproducts, there is a sum structure (+, i1, i2) given by the coproduct
+ and the coproduct inclusions 7; and i».

Remark 5.2.2. In a pointed finitely complete category C with finite joins of subobjects, (x, Iy, I2)
1s a sum structure on C, with 11 and Iy considered as natural transformations

Iltpl — % andIQ:PQ — %k
whereby for any two objects X and Y in C the (X,Y)—components I, and Iy . are just the
jointly epimorphic pair of morphisms It : X — X xY and Is : Y — X xY respectively. For a

morphism (f,g) : (X,Y) — (X', Y') in C x C, the naturalities of I and Iy can be seen in the
following commutative diagram

I I
X —— S XxYe—— Y
f fxg g
X X' %Y Y,
1 2

Next we recall what a cover relation on a category is.
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Definition 5.2.3 (see [26],[28]). A cover relation on a category C is a binary relation T on the
class of morphisms of C, defined only for those pairs of morphisms having the same codomain,
and it has the following two properties:

(i) if f T g and h is composable with f, then hf C hg;
(i) if f T g and e is composable with f, then fe C g.
A cover relation T is called a bicover relation if its inverse relation is also a cover relation.

As explained in [28], for instance, a sum structure (), ¢1,t2) on a category C induces a
bicover relation Cg on C, whereby for a pair of morphisms f : X — Z and g : ¥ — Z,
f Cg g is defined by the existence of a (necessarily unique) morphism ¢ making the diagram

X%X@Y%Y

N %

commute. For the coproduct sum structure (+,41,72) on a category C with coproducts, the
induced bicover relation [ is indiscrete, since for morphisms f and g having the same codomain,
f C4+ g is defined by the existence of the coproduct induced morphism [f, g].

Remark 5.2.4. For the sum structure (x, 11, 1I3) on a pointed finitely complete category C with
finite joins of subobjects, the induced bicover relation Ty on C is exactly the commutes relation,
in other words, for morphisms f and g having the same codomain, f T, g if and only if f and
g commute.

Definition 5.2.5 (see [28]). A sum structure (®,t1,t2) on a category C is preassociative if for
every three objects X,Y, Z in C there is a morphism

XY eZ) —25(XY)®Z
called the associativity morphism at X,Y, Z, such that the diagram

X%X@ Y®Z %Y@Z

L1 «

/

X®Y% (X®Y) ®Z%Z

commutes. The morphism « is uniquely determined, and it is natural in all three arguments.
The resulting natural transformation is called the associativity natural transformation, and when
it is a natural isomorphism, the sum structure (®,1,t2) is said to be associative.
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In a category C with products, for objects X,Y, and Z there is a canonical isomorphism
a = (my7y, (mam, m2)) making the diagram

X Xx(Yx2)—25vxZ

™ ™2

XXY%(XXY).XZ%Z
m m (5.2)

commute. Now for objects X, Y, and Z in a pointed finitely complete category C with finite joins
of subobjects, and the morphism « in diagram (5.2), consider the diagram

(X*Y)*Z———————/\ —————— > X * (Y« 2)
mo m1
(X*Y)x Z X x (Y *Z)
mj x 1 1xm)
(X xY)xZ - X x (Y x Z)

(5.3)

where mg, my, mi, and m denote joins of suitable pairs of (1,0) and (0,1). Let us explain how
the morphism X in diagram (5.3) is obtained. In the diagram
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1*]1 / 12
! (1 Xm’l)m1

XxY A X x (Y xZ2) Y xZ
1 \\ a(m6 X l)mo I>
XxY —— X«YV)*x L e—— 7
h & (5.4)
we see that
a(my x 1)moly = a{0,1)
= (mym, (mam, m2))(0, 1) (5.5)
= (0,(0,1))
and
(1 X mll)m1[212 = (1 X m'1)<0, 1>IQ

= (0, (0, 1)).
In a similar way it can be shown that
(1 x m})my(1x I) = (x}, (m3,0)) = a(mg x 1)mgl,

and thus, diagram (5.4) commutes. The morphism A in diagram (5.3) is then obtained (in
diagram (5.4)) from the fact that the pair of morphisms I : X xY — (X xY) x Z and
I, : Z — (X *xY) % Z is jointly strongly epimorphic. As a result we obtain the following
commutative diagram

XI%X* Y x7) %Y*Z

/

X*Y% X*Y *Z%Z

1P

(5.7)
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The morphism \ is an isomorphism; its inverse A™! is the morphism induced by the inverse of o
in diagram (5.2). Now we can make the following remark:

Remark 5.2.6. In a pointed finitely complete category C with finite joins of subobjects, the sum
structure (x, I, I2) is associative.

According to [28], an object I in a category C is a unit of a sum structure (®,¢1,t2) if for
every object X in C the morphisms ¢; : X — X ® [ and i3 : X — I ® X are isomorphisms.
Let us show that the zero object is a unit of the sum structure (%, I, I3) on a pointed finitely
complete category C with finite joins of subobjects: For every object X in C, since the pair of
morphisms 77 and 73 is jointly monomorphic, in the commutative diagram

* *

T .
0e—— s X ——— 5 X
Ip)
0 1
X
0 5
Lo
0xX

we see that Iy : X — 0% X is an isomorphism (being a monomorphism and a split epimor-
phism). In a similar way, it can be shown that I; : X — X %0 is an isomorphism. Hence,
the zero object 0 is a unit of the sum structure (x, I, 2), and according to [28], this means
(%, 11, I5,0) is a monoidal sum structure on C, that is, an associative sum structure that has a
unit. But as observed in Theorem 2.6.2 of |28|, for instance, a monoidal sum structure gives rise
to a monoidal structure on C. Now writing A for the associativity natural transformation of the
sum structure (%, I1,I3), and p = Iy : X — 0% X and f =1} : X — X x 0 for the left and
right units respectively, it follows that (x,0, A, p, 3) is a monoidal structure on a pointed finitely
complete category C with finite joins of subobjects. Furthermore, for objects X and Y in C,
writing m : X *Y — X xY and m’ : Y * X »— Y x X for the respective joins of the pairs
(1,L0): X — X xY, (0,1): Y — X xYand (1,0): Y — Y x X, (0,1) : X — Y x X, the
diagram
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Y x X

twm/
I

X xY

m
X ﬁ X*Y % Y
1 2

in which tw is a morphism such that m; = metw and 7o = mtw, commutes, and this implies that
there is a morphism tw* such that tw*l; = I and tw*Iy = I;. The morphism tw* is necessarily
an isomorphism. Therefore, the monoidal structure (x,0, A, p, ) on C is symmetric.

Next we give a characterization of monoids in the monoidal category (C, %), with C a pointed
finitely complete category with finite joins of subobjects.

Proposition 5.2.7. In a pointed finitely complete category C with finite joins of subobjects, an
object X is a monoid in the monoidal category (C,) if and only if X is a commutative object.

Proof. If X is a monoid in (C, ), with a : X * X — X the multiplication, then the diagram

I I
X—XxX—X

X

commutes, and this means that a is the cooperator of the pair of identity morphisms of X,
and thus X is commutative. Conversely, let us suppose X is a commutative object, and ¢ :
X x* X — X is the cooperator of the pair of identity morphisms of X. Clearly, the cooperator
is a multiplication on X, with the zero map 0 : 0 — X as a unit. Furthermore, using the
morphism A in diagram (5.7), and the fact that the morphisms I; and I are jointly epimorphic,
it can be seen after pre-composing with I; and I5 that the diagram

1
(X« X)*X 25 Xu X

|

X * (X xX) @

1*gol

XxX—F7—X

commutes, and this shows associativity. O
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Remark 5.2.8. For a pointed finitely complete category C with finite joins of subobjects, since
the monoidal category (C,*) is symmetric, every monoid is automatically commutative.

For C a subtractive category with finite joins of subobjects, we can observe the following:

Corollary 5.2.9. In a subtractive category C with finite joins of subobjects, an object X 1is a
monoid in the monoidal category (C,x), if and only if, it has an internal abelian group structure
in the monoidal category (C, x) (with the monoidal structure induced by the product).

Proof. According to Theorem 4.2.12, an object in C is commutative if and only if it is endowed
with an internal abelian group structure in (C, x). But since commutative objects are precisely
monoids in the monoidal category (C,x), the result follows. O
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