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SUMMARY 

Citrus fruits are one of the most important fruit crops after deciduous fruit and vegetables 

cultivated in South Africa. The Citrus industry in South Africa, is seen as the third largest 

horticultural industry and is considered one of the most important horticultural crops due to its 

economic export value and local consumption. South Africa is currently the eleventh largest 

citrus producer in the world, and second largest in the Southern hemisphere. The growth of 

citrus production and the development of new cultivars in South Africa has become a priority 

that growers establish orchards on sites where citrus has been cultivated for many years. With 

the establishment of a new orchard symptoms associated with replant disease have been 

observed on these newly planted citrus trees like in many other parts of the world.  

The casual agents associated with citrus replant disease in South Africa have been 

regarded as the citrus nematode, Tylenchulus semipenetrans and the soilborne pathogens, 

Phytophthora nicotianae and Phytophthora citrophthora. Symptoms can be characterised by 

the appearance of small leaves, the formation of gummosis and trees showing low vigour with 

short internodes. Previous studies conducted in South Africa on citrus replant disease did not 

focus on the characterisation of fungal organisms present in replant sites that may play a role 

in replant disease. Therefore, the aim of this study was determining whether the basis of citrus 

replant disease is biotic or abiotic. This study also aimed to identify the exact pathogens 

involved and investigating the molecular characterisation of oomycetes. Phylogenetic 

analyses of Fusarium spp. associated with replant soils was conducted to determine the 

diversity of Fusaria associated with citrus in South Africa. 

Soil samples was collected from four orchards, aged between 37 and 47 in two major 

citrus producing areas. Representative soil samples from each orchard was used for 

nematode extraction and revealed that both juvenile and female citrus nematodes (T. 

semipenetrans) was present in the soil. The soil was subjected to six different treatments. The 

treatments included steam sterilisation, a 20% soil dilution, a mefenoxam, difenoconazole and 

cadusafos drench treatment and an untreated control. After treating the orchard soil two 

Carrizo citrange seedlings was planted per pot and left to grow for seven months in a 

glasshouse. Prior to planting and at trial evaluation the seedling length and weight was 

determined to compare the growth of the seedlings. Statistical analyses based on the growth 

response of citrus, revealed that all the treatments to some extent led to an increase in 

seedling growth. The steam sterilisation treatment showed to have the best effect on seedling 

growth eliminating pathogens in the soil, followed by the untreated control, mefenoxam, 

cadusafos, difenoconazole and soil dilution treatment. 

None of the biocide treatments indicated the involvement of specific biological agents 

targeted by each biocide. Isolations from the roots of the control bioassay seedlings in all 

orchards showed that isolates belonging to the ‘Fusarium solani’ species complex (FSSC) 
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dominated in all orchards. Fusarium oxysporum species complex (FOSC) isolates and 

oomycetes (Phytophthora nicotianae, Phytophthora citrophthora and Pythium irregulare) were 

also associated with the citrus roots at more or less similar frequencies within each orchard. 

Identification of Fusarium spp. was based on the phylogenetic analyses of the translation 

elongation factor 1-alpha (TEF) and RNA polymerase II second largest subunit RPB2 gene 

region.  

Phylogeny of the FSSC isolates showed that the citrus isolates grouped into four 

clades including a Neocosmospora solani clade (25 isolates), Neocosmospora croci clade 

(one isolate), an unnamed Fusarium spp. clade (13 Isolates) with F. falciformis as the most 

related known Fusarium spp., and another clade (one isolate) containing an unnamed 

Fusarium species. The citrus FOSC isolates grouped within the F. oxysporum phylogenetic 

species II. The FOSC citrus isolates were furthermore polyphyletic and distributed among two 

subclades, previously designated as Clade 3 (11 isolates) and Clade 4 (two Isolates). 

This study showed that the growth response (weight and length increases) of the 

seedlings in the bioassay are biological in nature. Phytophthora nicotianae, Phytophthora 

citrophthora, Pythium irregulare, Fusarium spp. within the FSSC and FOSC as well as the 

citrus nematode Tylenchulus semipenetrans are all shown to be associated with citrus tree 

roots and replant soil. The management strategies indicate that the applications could be 

possible substitutes for methyl bromide soil fumigation in orchards earmarked for replant. But 

ultimately the effective prevention of citrus replant disease using non-methyl bromide 

fumigation is dependent on knowing what is present in the soil and making the correct 

decisions based on this knowledge. 
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OPSOMMING 

Sitrus word gesien as een van die belangrikste vrugte naas sagtevrugte en groente wat in 

Suid-Afrika verbou word. Die Sitrusbedryf in Suid-Afrika word beskou as die derde grootste 

hortologie bedryf en word beskou as een van die belangrikste hortologiese gewasse, weens 

die ekonomiese uitvoerwaarde en plaaslike verbruik. Suid-Afrika is tans die elfde grootste 

sitrusprodusent ter wêreld en die tweede grootste in die Suidelike Halfrond. Die groei van 

sitrusproduksie en die ontwikkeling van nuwe kultivars in Suid-Afrika het 'n prioriteit geword 

dat produsente nuwe boorde op vooraf gevestigde sitrus boorde herbou en hervestig. Met die 

vestiging van 'n nuwe boord word simptome waargeneem wat algemeen geassosieer word 

met herplant siekte op nuut geplante sitrus bome. 

Die patogene wat algemeen geassosieer word met sitrus herplant in Suid-Afrika word 

beskou as die sitrus nematode, Tylenchulus semipenetrans en die grond gedraagde 

patogene, Phytophthora nicotianae en Phytophthora citrophthora. Simptome word gekenmerk 

deur die voorkoms van klein blare, die teenwoordigheid van gom op die bas en lote asook lae 

groeikrag met kort internodes. Vorige herplant studies was onvolledig in die karakterisering 

van herplant patogene teenwoordig in die grond. Hierdie studie het ook daarop gemik om die 

presiese patogene betrokke by herplant te identifiseer en die molekulêre karakterisering van 

oomycete te ondersoek. Filogenetiese analise van Fusarium spp. is uitgevoer om die 

diversiteit van Fusaria wat met sitrus in Suid-Africa geassosieer word te bepaal. 

Grond- en wortel monsters is van vier boorde in twee sitrus produserende gebiede, 

tussen die ouderdom van 37 en 47 versamel. Verteenwoordigende grondmonsters van elke 

boord is gebruik vir nematode-ekstraksie en het aan die lig gebring dat beide onvolwasse en 

vroulike volwasse sitrus nematodes (T. semipenetrans) in die grond teenwoordig was. Die 

grond is verder gebruik waar ses verskillende behandelings toegedien is. Die behandelings 

sluit in stroomsterilisasie, 'n 20% grondverdunning, en 'n mefenoxam-, difenoconasol- en 

cadusafos drenkbehandeling en ‘n onbehandelde beheer. Na die behandeling van die grond 

is dit in potte geplaas, waar twee Carrizo citrange saailinge per pot geplant is en vir sewe 

maande gelaat is om te groei in ‘n glashuis. Voor plant en tydens proefevaluering is die 

saailinglengte en gewig bepaal om die groei van die saailinge oor die tydperk van sewe 

maande te vergelyk. Statistiese ontledings gebaseer op die groeireaksie van sitrusplantjies, 

het aangetoon dat al die behandelings tot 'n mate gelei het tot 'n toename in saailinggroei. Die 

stoom behandeling het getoon om die beste uitwerking op saailingsgroei te hê wat patogene 

in die grond uitskakel, gevolg deur die onbehandelde beheer, mefenoxam, cadusafos, 

difenoconasol en grondverdunning. 

Geen biologiese agente is deur die teenwoordigheid van chemiese middel aangeteken 

nie. Wortel-isolasie vanuit die onbehandelde grond het aan die lig gebring dat oomycete 

(Phytophthora nicotianae, Phytophthora citrophthora and Pythium irregulare) en Fusarium 
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spesies wat deel uitmaak van die Fusarium solani spesies kompleks (FSSK) en Fusarium 

oxysporum spesies kompleks (FOSK) geassosieer word met herplant grond- en sitruswortels. 

Identifikasie van Fusarium spp. was gebaseer op die filogenetiese ontledings van die 

translasie verlenging fakor 1-alfa (TEF) en RNA polimerase II tweede grootste subeenheid 

(RPB2) geen streek. 

Filogenetiese analise van die FSSK isolate het getoon dat sitrus isolate in vier 

afsondelike klade groepeer. Hierdie klade verteenwoordig die, Neososmospora solani (25 

isolate), Neocosmospora croci (een isolaat), ‘n onbenoemde Fusarium spp. (13 isolate) met 

F. falciformis as die mees naverwante spesie en ‘n ander naamlose Fusarium klade (een 

isolaat).  Die FOSC sitrus-isolate was verder polifileties en versprei onder twee subklades, 

voorheen aangewys as Klade 3 (11 isolate) en Klade 4 (two Isolates). 

Hierdie studie het geoon dat die groeireaksie van die saalinge biologies van aard is. 

Phytophthora nicotianae, Phytophthora citrophthora, Pythium irregulare en Fusarium spp. 

binne die FSSK en FOSK sowel as die sitrus aalwurm Tylenchulus semipenetrans word almal 

geassosieer met sitrus wortels en herplant grond. Die bestuurstrategieë in hierdie studie dui 

daarop dat die toepassings moontlike plaasvervangers vir metiel bromied grondberoking kan 

wees. Effektiewe voorkoming van sitrus herplant siektes wat van nie-metiel bromied beroking 

gebruik maak, is afhanklik daarvan om te weet wat in die grond teenwoordig is en om die 

korrekte besluit te neem op grond van hierdie kennis.  
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CHAPTER 1 

Citrus replant associated pathogens and the management options of these 

pathogens 

 

INTRODUCTION 

Replant problems or -disease are terminologies used when describing a condition where 

newly planted, healthy nursery trees die after being planted into old orchard soils previously 

planted with the same or a related crop. The phenomenon is not only limited to citrus but can 

be characterised by the appearance of small leaves, the formation of gummosis and trees 

showing low vigour with short internodes (Derrick and Timmer, 2000). This leads to a reduction 

in plant growth, a delay in the start of the production period and ultimately lower yield of the 

orchard (Bent et al., 2009).  

The retarded and stunted growth of newly planted trees has been ascribed to biotic 

and abiotic factors. A build-up of phytotoxins in the soil, released by the decomposition of the 

remaining roots in the soil from the previous crop, has been reported as an abiotic factor that 

contribute to replant problems in citrus (Proebsting and Gilmore, 1941). Other abiotic factors 

may also be possibly involved such as nutrient imbalances and the deterioration of soil 

physical characteristics. Biological agents including several soilborne pathogens have also 

been proposed as causal factors (Mai and Abawi, 1981; Cronje et al., 2002; Bent et al., 2009). 

However, limited studies have been conducted that have attempted to identify pathogens other 

than those that are known major soilborne pathogens of citrus including Phytophthora and 

Pythium spp. along with the citrus nematode. Furthermore, studies on citrus replant, have 

often only investigated the involvement of a limited number of these major pathogens within a 

specific study. The pathogens can infect almost all parts of the tree, but usually infect their 

host through roots and wounds near the orchard soil surface and colonise the vascular tissue 

resulting in blockage of the vascular system (Ahmed et al., 2012; Das et al., 2016). The 

infection of mature trees is characterised by fibrous root rot, foot rot, leaf blight, the formation 

of gummosis on trunks and branches, girdling of the affected branches, leading to the death 

of the entire tree (Alvarez et al., 2008; Ahmed et al., 2012; Das et al., 2016). Young replanted 

trees can die rapidly due to trunk and branch canker infection with replant pathogens, 

especially when exposed to abiotic stress factors (Alvarez et al., 2008). Citrus growers can 

face major financial losses when the infections are severe enough for the orchards to become 

uneconomical, since replant problems limit the longevity and reduce the yield of trees. Affected 

orchards also need to be replanted prematurely. 

Fumigation with methyl bromide has been shown to significantly improve the 

productivity of replanted citrus orchards in South Africa. Orchards planted on soils where 
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methyl bromide soil fumigation was done prior to replanting, had a significantly higher net 

income and higher volume of exportable fruit, compared to replant sites where no pre-plant 

fumigation was applied (Le Roux et al., 1998). However, the use of methyl bromide as a pre-

plant fumigant is no longer an option. This is due to the phasing out of methyl bromide in 

January 2015 in South Africa (EPA, 2017). Finding alternatives to methyl bromide in citrus 

production is therefore important to control soilborne pathogens and nematodes involved in 

replant disease, in order to prevent a decrease in fruit production and quality. Many chemical 

fumigants have been evaluated as possible alternatives to methyl bromide, but most are 

effective against only fungal soilborne pathogens or only against nematodes (Duniway, 2002; 

Schneider et al., 2003; Ruzo, 2006). Therefore, mixtures of fumigants are often used to target 

all the biotic agents involved in a specific crop.  

For some other replant diseases, such as apple replant disease, effective 

management strategies that do not involve fumigation have been developed. These include 

for example the use of mixtures of brassica seed meals, which yield tree growth responses 

and yields similar to, or exceeding those of soil fumigation treatments (Mazzola et al., 2015). 

The development of these alternative strategies was only possible through the development 

of a good understanding of the biological agents involved, and monitoring these agents during 

the evaluation and optimization of management strategies. The known biological agents 

involved in apple replant disease include nematodes (Pratylenchus spp.), oomycetes 

(Phytophthora, Phytopythium and Pythium spp.) and fungi (Rhizoctonia spp. and 

‘Cylindrocarpon’-like fungi) (Mazzola and Manici, 2012). It is therefore important to know which 

biological agents are involved in replant disease of a specific crop.  

This literature study will seek to examine replant pathogens associated with replant 

disease on citrus. The epidemiology and symptoms of these pathogens and possible 

management practices will be reviewed. However, limited information is available on the 

aforementioned subjects. Therefore, a brief overview of the causative agents of apple replant 

disease and managements strategies will also be provided. Apple replant disease is the tree 

fruit crop where replant disease has been best studied. Reviewing these aspects can 

contribute to a better understanding of replant disease pathogens involved in the death of 

young citrus trees in South Africa.  

 

GLOBAL CITRUS PRODUCTION  

Citrus cultivation dates back to China about 2200 BC, where the earliest reference of citrus 

was found in ancient Chinese manuscripts and documents (Florida Citrus Manual BMP, 2012). 

The Citrus industry is the third largest horticultural industry after deciduous fruits and 

vegetables (FAO, 2015). Citrus is considered one of the most important horticultural crops, 

due to its economic export value and local consumption (Ahmed et al., 2012). Citrus is the 
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fourth largest global fruit production industry after bananas, watermelons, and apples, with an 

estimated 81.1 million tons of citrus produced worldwide during 2015/2016 (South African Fruit 

Trade Flow, 2016; USDA, 2017). The global export of citrus amounted to a total of 8.9 million 

tons for the 2015/2016 season (South African Fruit Trade Flow, 2016). The major export 

destinations for South African citrus are Europe and the Middle East, representing 37% and 

20% of total exports, respectively (CRW, 2017). 

The top eleven major citrus growing regions in the world firstly include China followed 

by Brazil, India, the United States of America, Mexico, Spain, Egypt, Turkey, Italy, Iran and 

South Africa (CGA, 2016a). In the Northern hemisphere, China is the leading producer with 

38 million tons per year followed by India, the United States of America and Mexico (FAO, 

2015; CGA, 2016b). South Africa, although only being the eleventh largest citrus producer in 

the world, is the second largest producer in the Southern hemisphere with a production 

forecast of 3.2 million tons for the 2014/2015 marketing year (FAO, 2015; CGA, 2016b). Citrus 

in South Africa is the second largest fruit crop after grapes in terms of production volumes. 

South Africa is furthermore the second largest exporter of citrus worldwide, with 1.7 million 

tons of fresh citrus exported during the 2014/2015 season (CGA, 2016a; CRW, 2017). Citrus 

is mainly cultivated in Mediterranean climatic regions and is therefore confined to areas with 

mild and almost frost free winters, where temperature seldom drop below 2°C. Citrus show 

internal freeze damage when temperatures drop to between -3°C to -1.6°C for longer than two 

hours. 

 

THE SOUTH AFRICAN CITRUS INDUSTRY  

Production areas 

South Africa is known for its diverse weather and climatic conditions and is globally 

known as a producer and exporter of citrus. In South Africa, more than 68 000 hectares (ha) 

are currently planted with citrus in different production regions. These are located in several 

provinces including the Limpopo, Mpumalanga, Western Cape, and Eastern Cape provinces; 

with Limpopo responsible for approximately 42% of the total citrus production and exports 

(CGA, 2016b). The main production areas in Limpopo include Tzaneen, Letsitele, Makhado 

(Louis Trichardt), Polokwane, Lephalale (Ellisras), Mokopane (Potgietersrus) and Modimolle 

(Nylstroom) (Capespan SA, 2015). The area under citrus production has steadily increased 

from ~53 224 ha in 2012 to 68 272 ha in 2016 (CGA, 2016b). The quantity of citrus produced 

and exported from these production regions has also increased over the past 5 years with an 

estimate of 1.4 million pallets exported in 2016 (CGA, 2016a; SA Fruit Journal, 2017).  

The most frequently planted citrus cultivars include Eureka lemons (Citrus sinensis, 

8 262 ha) and Nules clementines (Citrus reticulate, 15 930 ha). The most frequently used 

rootstocks that these cultivars are grafted onto are Citrus sinensis x Citrus trifoliata (Carizzo 
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citrage and Troyer citrage), Citrus jambhiri (Rough lemon) and Citrus paradise “Duncan” Macf 

x Citrus triofoliata (Swingle citrumelo).  

Orchard establishment cost 

The South African Citrus tree census of 2016 showed that 16% of the trees in current orchards 

are younger than 5 years old and 57% of the trees are between 6 and 20 years old (CGA, 

2016a; SA Fruit Journal, 2017). Citrus bud-wood sales have increased over the past 5 years, 

with an estimate of 5 million for 2016, with soft citrus bud-wood sales being the highest that 

currently represent the majority of new and replanting taking place in the South African 

industry (CGA, 2016b). 

 

PATHOGENS CONTRIBUTING TO REPLANT DISEASE ON CITRUS TREES 

The pathogens involved in citrus replant disease have not been studied extensively in South 

Africa although Le Roux et al., (1998) reported that oomycetes, nematodes and other 

soilborne fungi are probably involved. It is likely that the replant pathogens will include some 

of the known soilborne pests and pathogens of citrus. The major soilborne pathogens of citrus 

include the citrus nematode Tylenchulus semipenetrans, Phytophthora nicotianae and 

Phytophthora citrophthora (Le Roux et al., 1998). Fusarium solani is also a known soilborne 

pathogen of citrus, but its role as pathogen and symptoms caused have been somewhat 

unknown as it is also known as being involved with dry root rot of citrus (Labuschagne et al., 

1987). Although Pythium spp. have been associated with citrus tree roots (Maseko and 

Coutinho, 2002; Benfradj et al., 2017), their pathogenicity towards citrus is unknown. Pythium 

is a genus that is well known for being involved in replant diseases such as apple replant 

(Mazzola and Manici, 2012), and this group of pathogens will thus also be discussed in this 

section. The severity of disease is influenced by the virulence of the organism or infectious 

agent involved, the susceptibility and growth stage of the host and environmental conditions 

such as moisture and temperature (Dreistadt, 2012).  

Soilborne pathogens that infect the root system and trunk of citrus trees are few in 

number, but cause a variety of symptoms, resulting in yellowing of foliage, dieback of terminal 

shoots and branches, poor growth, leaf drop, gradual decline, girdling and death of the entire 

tree (Graham and Menge, 1999; Graham and Timmer, 2003; Alvarez et al., 2008). Fibrous 

roots, which take up nutrients and water from the soil are primarily affected, followed by 

infection of major roots and trunk tissue. The roots and trunk tissue deliver water, nutrients 

and photosynthetic products between root- and shoot systems. Soilborne pathogens play a 

direct or indirect role in reducing fruit size, total yield, postharvest quality and tree survival 

under favourable pathogen conditions (Graham and Menge, 1999).  
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Phytophthora foot and root rot  

The genus Phytophthora belongs to the class Perenosporomycetes, placed in the Straminipila 

kingdom, under the phylum Oomycota (Riisberg et al., 2009). Phytophthora species are the 

most damaging and widespread soilborne fungi that attack citrus because they can infect any 

part of the tree at all stages of development (Erwin and Ribeiro, 1996; Graham and Menge, 

1999; Agrios, 2005). There are at least ten Phytophthora spp. capable of infecting citrus trees, 

but the greatest reduction in fruit yield can be attributed to Phytophthora nicotianae and 

Phytophthora citrophthora (Erwin and Ribeiro, 1996; Cacciola and di San Lio, 2008; Schutte 

and Botha, 2010). Abiotic stress, such as root asphyxiation, mineral disorders, and 

phytotoxicity can also affect the health of roots and enhance the appearance of Phytophthora 

disease symptoms (Dreistadt, 2012). 

Phytophthora nicotianae 

Phytophthora nicotianae was first isolated from tobacco at the end of the 19th century and is 

considered one of the most widespread oomycete plant pathogens, with a host range of more 

than 255 species (Cline et al., 2008; Panabières et al., 2016). P. nicotianae is usually found 

in subtropical areas, causes foot- and root rot, and seldom infect above ground tree parts. The 

pathogen can also sometimes cause brown rot on fruit in the canopy, and fallen fruit on the 

ground. Brown rot epidemics are associated with prolonged wet periods and a temperature 

range of 23°C to 32°C (Graham et al., 1998; Puglisi et al., 2017). Foot rot occurs when 

Phytophthora spp. infect the scion area near the ground level, which results in lesions that 

extend upward to the bud union on resistant rootstocks, or up the trunk into main branches 

(Graham and Menge, 1999; Graham et al., 1998, 2012; Graham and Feichtenberger, 2015). 

Foot- and root rot can be severe on susceptible rootstocks growing in infested orchard soil, 

causing tree decline and yield losses. In advanced stages, the production of new fibrous roots 

is slow and the tree is unable to maintain adequate water, mineral uptake, and nutrient 

reserves. This results in the reduction of fruit size and yield, loss of leaves, and twig dieback 

of the entire tree. Gorter (1977) ascribed root and collar rot symptoms associated with citrus 

in the Western Cape to Phytophthora nicotianae. Following the discovery of P. nicotianae, four 

studies were conducted to identify the distribution of P. nicotianae in South Africa. A study 

done by Wehner et al. (1987) reported that P. nicotianae was the only Phytophthora sp. 

isolated from citrus nursery plants and soil from the Eastern Cape, Limpopo, Mpumalanga and 

Gauteng provinces. Thompson et al. (1995) and Maseko and Coutinho (2002) both identified 

P. nicotianae as the most commonly isolated Phytophthora spp. from root and soil samples 

taken from citrus orchards and nurseries. The most recent study by Meitz-Hopkins et al. (2013) 

confirmed the finding that P. nicotianae is the most widely distributed Phytophthora species in 

the seven citrus producing provinces within South Africa. 
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Disease cycle 

Phytophthora nicotianae is a hemibiotrophic pathogen that can live as a parasite or saprophyte 

on another organism (Panabières, 2016). The pathogen can survive and infect a wide range 

of plants and plant organs but can also survive without a host. The disease cycle of P. 

nicotianae, similar to most Phytophthora spp., begins with the production of multinucleated 

sporangia on specialised hyphal structures (sporangiophores), releasing large numbers of 

uninucleate motile zoospores (Graham and Timmer, 2003; Walker and van West, 2007). 

Under optimal conditions, zoospores encyst, germinate to develop a germ tube and penetrate 

plant tissue. The optimum temperature for mycelial growth is 30°C to 32°C. Sporangial 

production is favoured by small deficits in matrix water potential (Graham and Timmer, 2003). 

The availability of free water and oxygen, together with nutritional depletion and light, stimulate 

the production of sporangia from mycelium. The indirect germination of sporangia to produce 

zoospores requires free water and a decrease in temperature. Under moist and at 

temperatures below 15°C, sporangia have the ability to germinate directly by producing a germ 

tube (Sharma, 1989). Zoospores are attracted to roots through chemotaxis and electrotaxis 

from root exudates released by living, damaged or stressed roots. They can also swim short 

distances by flagellar movements (Walker and van West, 2007).  

Phytophthora nicotianae is known to survive unfavourable conditions through the 

production of chlamydospores and oospores (Erwin and Ribeiro, 1996; Graham and Menge, 

1999; Graham and Timmer, 2003). Chlamydospore production occurs under unfavourable 

conditions including low oxygen levels, temperatures between 15°C and 18°C and nutrient 

depletion. Under unfavourable conditions chlamydospores can survive for several months. 

The water requirements for germination of chlamydospores are similar to those for sporangia. 

Germination is also stimulated when temperatures are favourable for root growth together with 

nutrients in the form of root exudates. At temperatures below 15°C, chlamydospores become 

dormant, and when favourable conditions return, they germinate. Chlamydospores can 

germinate indirectly to produce sporangia and zoospores, or directly to produce mycelium 

(Graham et al., 1998; Graham and Timmer, 2003). Oospores are thick-walled and resistant to 

desiccation and cold temperatures, and form when opposite mating types (A1 and A2) are 

present (Andres et al., 2003; Nerkar et al., 2012). The maturation of oospores are slower than 

chlamydospores. However, the requirements for oospore germination are almost identical to 

those of chlamydospores. Chlamydospores and oospores germinate and form sporangia that 

release zoospores, under well-aerated, moist conditions (Shivankar et al., 2015). 

Phytophthora citrophthora 

Phytophthora citrophthora was the first Phytophthora sp. reported from citrus in South Africa 

(Doidge, 1925). It was mainly associated with citrus foot and root rot in the Limpopo Province, 

and was later also reported from Mpumalanga, the Western Cape and Eastern Cape (Doidge 
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and Bottomley, 1931; Hector and Loest, 1937; Meitz-Hopkins et al., 2013). The reported 

symptoms include trunk and branch cankers, gum exudates on branches and similar root rot 

symptoms associated with P. nicotianae induced root rot (Alvarez et al., 2008, 2009b, 2011). 

P. citrophthora is also known to cause gummosis in other Mediterranean climates and is the 

most common cause of brown rot on fruit (Graham and Menge, 1999). Gummosis are 

observed where the inner bark of the scion is damaged. Small cracks form on the bark, 

exuding abundant gum. Citrus gum is water-soluble and wash away after heavy rains. Lesions 

can spread around the trunk, slowly girdling the tree, leading to the appearance of pale green 

leaves with yellow veins (Le Roux, 2003; Schutte and Botha, 2010). A study by Schutte and 

Botha (2010) showed that P. citrophthora is more active at moderate temperatures below 

30°C, and P. nicotianae at higher temperature >30°C. This confirmed the high activity and 

isolation of P. citrophthora in Mediterranean climatic areas (Alvarez et al., 2008; Schutte and 

Botha, 2010). Phytophthora citrophthora also infects the root cortex leading to the decay of 

fibrous roots. This is primarily a problem in seedbeds and nurseries, where frequent irrigation 

and high planting densities create favourable conditions for infection (Timmer et al., 1991). 

The root cortex of fibrous roots becomes soft, discoloured and appears water-soaked. The 

fibrous roots slough their cortex, leaving only the white, threadlike stele protruding at their 

ends, and giving the root system a stringy appearance (Graham et al., 1998, 2012; Graham 

and Menge, 1999; Le Roux, 2003). There is distinct genetic variation among P. citrophthora 

isolates associated with citrus (Spies et al., 2014). A study using isozyme analyses of P. 

citrophthora indicated that the species can be divided into three distinct subgroups. CTR 1 

included isolates of P. citrophthora from a wide host range including citrus and CTR 2 

comprised of Brazilian isolates from cacao. The third group, CTR 3 included Indonesian 

isolates also isolated from cacao like CTR 2 (Mchau and Coffey, 1994).    Cohen et al. (2003) 

found that P. citrophthora isolates from Corsica can be further divided into four clonal lineages, 

G1 to G2, based on sequence data of the internal transcribed spacer regions (ITS), random 

amplified micro-satellite (RAMS). Alvarez et al. (2011) subsequently reported that isolates 

representing lineages G1, G2 and G3 were also present in Spain. Spies et al. (2014) 

subsequently used random amplified polymorphic DNA (RAPD) marker data, and 

phylogenetic analyses of the ß-tubulin, cytochrome c oxidase subunit I and the ITS region to 

(i) confirm the presence of the G1 and G2 lineages in South Africa and (ii) show that the two 

lineages did not represent different phylogenetic species when isolates from South Africa and 

Spain were analysed (Spies et al., 2014).  Mating-type analyses showed that most isolates 

within the G1 lineage were sterile, although some could be identified as belonging to A1 mating 

type when paired with a fertile Phytophthora spp. The G2 lineage isolates were all A2 mating 

types (Spies et al., 2014). 
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Disease cycle 

The development of mycelia, sporangia, and release of zoospores in P. citrophthora are very 

similar to that mentioned above for P. nicotianae. The optimum temperatures for P. 

citrophthora mycelial growth are 23°C to 28°C, whereas those for P. nicotianae are 30°C to 

32°C (Timmer et al., 1989). Phytophthora citrophthora rarely produces chlamydospores and 

never produces oospores. Therefore, the mechanism of survival of the pathogen is uncertain. 

However, both species can persist as mycelium as well as chlamydospores in infected, living 

roots or as sporangia in the soil (Graham and Menge, 1999).  

Inoculum sources of P. nicotianae and P. citrophthora  

The way in which Phytophthora spp. are spread to new citrus orchards is mainly through 

infected nursery trees. The pathogen may be present in the soil or in the roots of nursery trees, 

without any disease symptoms being visible (Graham and Timmer, 2003). Other sources of 

inoculum of Phytophthora spp. include contaminated soil on equipment and vehicles that move 

from one infested orchard to non-infested areas, or within a nursery. Irrigation plays an 

important role in the distribution of the pathogens, especially where furrow and flood irrigation 

is used (Le Roux, 2003). Heavy rains can also result in pathogens being carried with surface 

water into canals or dams used for irrigation. Zoospores are usually carried over long 

distances by soil surface water, irrigation water, and hydroponic solutions (Fry and Grünwald, 

2010). Infested soil under citrus trees serves as an inoculum source for fruit infections when 

fruit touch the ground, or when contaminated soil is splashed onto fruit. When conditions are 

favourable, sporangia are produced on the surface of the fruit, and splashing- or windblown 

rain spread the sporangia throughout the canopy to other fruit (Graham and Menge, 1999). 

Wind, without rain, is not a major factor in the dispersal of Phytophthora spp., but wind-blown 

soil may contaminate fumigated soils. Various animals, such as birds, termites or snails are 

also involved in the dispersal of Phytophthora spp. inoculum, since they serve as vectors. 

Chlamydospores can survive in the gastrointestinal tracts and faeces of these vectors (Weste, 

1983; Alvarez et al., 2009a). 

 

Pythium spp. 

Pythium spp. belong to the family Pythiaceae, order Peronosporales in the Oomycota class 

and are more closely related to chromophyte algae than eumycotan fungi (Lévesque and De 

Cock, 2004). Pythium spp. are widely distributed and are important plant pathogens, but some 

species are also non-pathogenic and can even cause plant growth enhancements (Plaats-

Niterink, 1981). Pythium spp., can thus exist as parasites or saprophytes in soil, water, in other 

fungi, and on various plants and small marine animals (Martin and Loper, 2010). These 

oomycete species are widely distributed ranging from tropical to temperate and arctic to 

antarctic regions (Knox and Paterson, 1973; Plaats-Niterink, 1981; Hoshino et al., 1999). Plant 
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pathogenic Pythium spp. have a wide host range including some woody hosts for example 

apple, citrus, Eucalyptus, rubber and other woody trees and shrubs. Pathogenic Pythium spp. 

are known to cause necrosis of feeder roots on various tree crops and aerial symptoms such 

as wilting, chlorosis, and sparse leaf production of the entire canopy (Zea-Bonilla et al., 2007). 

Various conditions such as, the type of soil, host and the management strategies have an 

important impact on the Pythium populations, diversity and severity of symptoms expressed 

(Al-Sadi, 2012). 

The role that Pythium spp. play in citrus replant disease is still unknown, even though 

these species have frequently been isolated from the rhizosphere of diseased citrus trees 

(Maseko and Coutinho, 2002; Benfradj et al., 2017). The pathogenicity of the isolated species 

has not been tested in most of the studies reporting on the association of Pythium spp. with 

citrus. Thompson et al. (1995) reported that P. irregulare, P. aphenidermatum and P. ultimum 

are usually associated with citrus in South Africa. Pythium ultimum was the first reported 

Pythium spp. to cause root rot on citrus in Cambodia. But since its discovery, other studies 

have revealed that it is commonly associated with citrus in other countries like Australia, 

Japan, South Africa, Brazil, Canada, and China (Hendrix and Campbell, 1970; Ohazuruike 

and Obi, 2000; Kean et al., 2010). Benfradj et al. (2017) isolated P. ultimum, P. dissotocum, 

P. aphanidermatum, Phytopythium vexans and Phytopythium mercuriale from citrus trees in 

Tunisia and according to this study, two of these species were also in citrus nurseries in South 

Africa. Studies done by Citrus Research International (CRI) in South Africa showed that 

Pythium spp. occurs at significant levels in the irrigation water and potting media of citrus 

nurseries (personal communication, M. C. Pretorius, CRI, South Africa). However, to date the 

identity of these isolates along with the potential damage that they can cause, are unknown. 

The combination of Phytophthora and Pythium spp. present in citrus soils may lead to 

increased disease symptoms and rapid death of entire trees or orchards (Benfradj et al., 

2017). 

 

Taxonomy of the genus Pythium 

The identification of Pythium spp. is important for diagnosing diseases and developing and 

implementing control strategies (Kageyama et al., 2005). Until the advent of the sequencing 

and phylogenetic eras, Pythium species were identified using morphological criteria. The main 

criteria for morphological identification include whether the species is homothallic or 

heterothallic, the number of antheridium that can be observed per oogonium and the type of 

sporangia. The oogonium itself has various morphological characteristics, which include the 

difference in size of the oogonium and oospores, the oogonium wall and the character of the 

oospores in the oogonium. The oogonium wall can be ornamented or smooth and the 

oospores within the oogonium can be plerotic or aplerotic (Schroeder et al., 2013). Identifying 
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Pythium isolates to species level using only morphological structures are difficult due to 

heterothallism (two opposite mating types are required for sexual reproduction), absence in 

culture of reproductive structures that are important for identification, and similar and 

overlapping size ranges of the reproductive structures (Mathew et al., 2003; Kageyama, 2014). 

For morphological identification, Pythium are usually plated out on corn meal agar (CMA), 

potato-carrot agar (PCA), potato dextrose agar (PDA) and 20% (V/V) V8 juice agar with a 

colony morphology of chrysanthemum, cottony, rosette and semi-cottony on the agar 

(Kageyama, 2014). 

Molecular identification of Pythium spp. is more accurate than morphological 

identifications (Kageyama, 2014). Polymerase chain reaction (PCR) restriction fragment 

length polymorphism (RFLP) of the internal transcribed spacer region (ITS) and the 

cytochrome c oxidase subunit 2 (cox2) fragments can be used as a first step in molecular 

species identification. PCR-RFLPs can be used to first group isolates with similar sequences 

into PCR-RFLP groups when large collections of isolates are investigated. Only a subset of 

the isolates representing the different PCR-RFLP groups are then selected for sequencing 

and phylogenetic analyses (Lévesque and De Cock, 2004; Choi et al., 2015).  

Phylogenetic analyses of the ITS region of the genus Pythium have shown that the 

genus consists of eleven clades, named phylogenic clades A to K (Lévesque and De Cock, 

2004). Clade K has been re-described as a new genus Phytopythium, since the genus shares 

morphological characteristics with Pythium and Phytophthora and is phylogenetically distinct 

from the genus Pythium (De Cock et al., 2014). Lévesque and De Cock (2004) showed that 

the ITS sequence length of oomycetes is between 750 to 1050 base pairs (bp) and that of 

Eumycota are shorter, 300 to 700 bp. Robideau et al. (2011) first proposed the ITS region and 

the cytochrome c oxidase subunit 1 (cox1) region as barcoding regions for the oomycetes. A 

study by Choi et al. (2015) indicated that the cox2 gene region should be used as universal 

barcode for oomycetes, since it results in better amplification and PCR results compared to 

cox1.  

Some Pythium isolates remain difficult to identify to the species level, even when using 

phylogenetic analyses of barcoding genes and additional gene regions. Such isolates are 

referred to as belonging to species complexes, such as the P. irregulare species complex. 

Robideau et al. (2011) stated that Pythium isolates in the P. irregulare complex are unresolved 

using only cox1 and ITS sequences. Spies et al. (2011) also investigated the P. irregulare 

complex using the cox2 and 𝛽-tubulin regions in addition to the ITS and cox1 regions used by 

Robideau et al. (2011). Using these four gene regions, Spies et al. (2011) found that P. 

irregulare is genetically diverse and represents only one phylogenetic species. Furthermore, 

some isolates within the P. irregulare complex that were re-described as new species, for 
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example P. cryptoirregulare, are not phylogenetically distinct within the P. irregulare complex 

(Spies et al., 2011).  

 

Disease cycle 

Pythium species are present in abundance in cultivated soil near the root zone. Many species 

of Pythium are known to form sporangia and zoospores as asexual reproductive structures. 

Zoospores are formed in a vesicle and not in the sporangium itself. This is a characteristic trait 

that differentiate Pythium spp. from Phytophthora spp., (Plaats-Niterink, 1981). Hyphal 

swelling and the formation of sporangia are stimulated by Mg²⁺, K⁺ and Ca²⁺ ions while the 

germination of sporangia and mycelial growth is stimulated by root exudates and germinating 

roots (Yang and Mitchell, 1965; Stanghellini and Hancock, 1971). Pythium spp. can be 

homothallic or heterotallic and sexual reproductive structures are produced as survival 

structures (Pérez-Jiménez, 2008). Sexual reproduction occurs when an oogonia (female 

organ) and antheridia (male organ) are present. When the antheridial cell meets the oogonium, 

a fertilisation tube is formed which penetrates the oogonium and form a zygote also known as 

the oospore (Plaats-Niterink, 1981). Oospores go through a dormant phase before 

germination is initiated. Dormancy is lifted by external carbohydrate and calcium sources, high 

water potential, optimum pH levels and temperatures. Oospores serves as important survival 

structures and can survive for up to 12 years in the soil (Stanghellini and Hancock, 1971). 

Nzungize et al. (2012) stated that each Pythium species has an optimum growth temperature, 

which may vary between species. A characteristic shared amongst most Pythium species is 

the optimum temperature that is usually around 30°C and the maximum temperature are 

between 35 and 40°C (Souli et al., 2014). Pythium ultimum prefers temperatures that range 

between 10 and 15°C while the growth of P. irregulare is inhibited in warmer soil temperatures 

between 25 and 36°C. Greater yield losses will also be observed during higher temperatures 

than in cooler seasons (Petkowski et al., 2013). Soil pH not only influences the dormancy of 

oospores, but also disease expression in the host and the overall lifecycle of the pathogen.  

The soil pH play an important role in the availability and uptake of minerals in the soil by the 

host, and can therefore be altered to supress disease (Martin and Loper, 1999). Pythium spp. 

are more abundantly found in soil with a pH ranging between 6.8 to 7.2, but Pythium has been 

found in soils with a pH above 8.0 (Martin and Loper, 1999). Conditions such as low light 

intensity, high moisture, low pH, high salt concentrations and temperatures above 28°C should 

be avoided due to the fact that Pythium is more dominant in these environments. Pythium spp. 

are distributed in the same way as Phytophthora spp., which was discussed previously. 
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Fusarium diseases on citrus 

Fusarium spp. are commonly found in soils of citrus orchards (Le Roux, 1985; Nemec et al., 

1989) and nurseries (Wehner et al., 1987). The most predominant Fusarium species 

associated with citrus is Fusarium solani (Menge and Nemec, 1997), however, Fusarium 

oxysporum has also been isolated from citrus roots and rhizosphere soil but at lower 

frequencies (Labuschagne et al., 1987). Yaseen and D’Onghia (2012) mentioned that Baker 

et al. (1981) and Nemec et al. (1980) implicated Fusarium solani as a possible causal agent 

of citrus blight. Citrus blight is an important decline disease affecting citrus in many countries 

(Yaseen and D’Onghia, 2012). The symptoms associated with citrus blight include, wilt, 

defoliation and dieback of the canopy, reduced water uptake and zinc accumulation (Baker et 

al., 1981; Yaseen and D’Onghia, 2012) that causes dieback and wilt of the entire canopy and 

the development of poor growth flushes (Derrick and Timmer, 2000; Futch et al., 2005). Blight 

infected trees seldom die, but trees stay in an unproductive state for many years after infection 

(Anderson and Calvert, 1970; Polizzi et al., 1992). Baker et al. (1981) and Nemec et al. (1980) 

further investigated and stated that F. solani is the possible causal agent of citrus blight. 

Fusarium solani is associated with fibrous and scaffold root rot, and seem to be the only 

disease symptoms related to blight. Blight symptoms are identical to the symptoms of dry root 

rot on citrus trees.  (Menge and Nemec, 1997). Nemec et al. (1980) showed that pathogenic 

strains of F. solani isolated from fibrous roots induced the same blight-like symptoms when it 

was re-inoculated on healthy roots. Blight- and dry root rot disease have been associated with 

climatic and soil factors, and that all the citrus rootstocks are susceptible to both diseases 

(Bender, 1985; Nemec and Myhre, 1992). 

Dry root rot is a sporadic, destructive and localized disease complex that may take 

years before severe symptoms develop. The disease severity usually increase in combination 

with other root pathogens, nematodes and abiotic factors (Dreistadt, 2012). Dry root rot is 

often observed on the crown and scaffold roots. Trees develop a moist, dark decay of the bark 

that overlays the wood infected by the pathogen. Over time the infected bark and wood dries 

and have a dry and brown stained appearance where pathogen colonization occurred 

(Graham and Menge, 1999; Adesemoye et al., 2011). Other more visible symptoms 

associated with dry root rot include wilting, defoliation, dull green leaf colour, die-back of small 

twigs and the production of small fruit. Under extensive root damage, the leaves suddenly wilt 

and dry on the tree (Dandurand and Menge, 1992; Yaseen and D’Onghia, 2012; Dreistadt, 

2012; Kunta et al., 2015; Marais, 2015). Overall, dry root rot symptoms observed in the canopy 

are like those caused by Phytophthora spp. and other agents that damage the roots or girdle 

the trunk. Nemec et al. (1978) found that abovementioned symptoms and physiological 

disruptions are due to fibrous root rot and necrosis of major roots infected by F. solani.  
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Fusarium taxonomy in the F. solani and Fusarium oxysporum species complex 

Fusarium solani was classified into the section Martiella by Booth (1971) and can be divided 

into 50 subspecific lineages. It is a well-known plant pathogen associated with a wide range 

of plants, causing a variety of diseases and symptoms (Kolattukudy and Gamble, 1995). The 

identification of Fusarium species at the morphological level is based on distinctive characters 

such as the shape and size of the macro- and microconidia (Leslie and Summerell, 2006). 

The presence and absence of chlamydospores, colony appearance, pigmentation and growth 

rate are also indications of F. solani. The macroconidia are relatively wide, straight and robust 

with 5- to 7-septa and present in abundance in the sporodochia. Microconidia is more oval, 

ellipsoid, reniform and fusiform with 0- to 2- septa. The monophialides is often long and the 

microconidia are present in abundance in the aerial mycelia. Chlamydospores are globose to 

oval with smooth or rough cell walls. The chlamydospores can be found within the hyphae 

(intercalary) or formed terminally on short branches and may be present in short chains (Leslie 

and Summerell, 2006).  

Fusarium solani can be divided into two different morphotypes, I and II (Chehri et al., 

2015). Morphotype I, produces short macroconidia (27.0 to 37.3 µm) with 3 to 5 septations, 

whereas morphotype II has longer macroconidia (36.6 to 46.2 µm) with 3 to 7 septa (Hafizi et 

al., 2013; Chehri et al., 2011, 2015). The macroconidia of morphotype I are narrower with 

sparse to abundant cottony forming mycelium, which are pale brown to brown, brown-greenish 

with a pale brown to yellowish brown pigmentation. Morphotype II has wider macroconidia, 

with white-creamy to white-greyish cottony mycelium colour. Pigmentation for Morphotype II 

may be absent or white-creamy with dark brown zonation (Hafizi et al., 2013). Two different 

coloured sporodochia (cream and blue) can be observed within Morphotype I, whereas 

morphotype II only produce cream sporodochia and chlamydospores can be observed in both 

morphotypes (Hafizi et al., 2013).  

Phylogenetic analyses revealed that there are variabilities among the members of the 

Fusarium solani Species Complex (FSSC), which led to the identification of three clades 

(O’Donnell et al., 1998, 2008; O’Donnell, 2000; Nalim et al., 2011). Clade 1 included two 

known species, Nectria illudens and Nectria plagianthi, which were used as outgroups in the 

phylogenetic analyses of F. solani isolates in this study (Chapter 3). Members of Clade 2 

consisted of pathogens that cause sudden death syndrome on soy-bean (Aoki et al., 2003, 

2005, 2012). A study done by Nalim et al. (2011) further indicated that members of Clade 2 

are paraphyletic. Clade 3 are known to contain the most common Fusarium spp. associated 

with plant diseases and include Fusarium falciformis and Fusarium keratoplasticum 

(O’Donnell, 2000; Zhang et al., 2006; O’Donnell et al., 2008; Short et al., 2013, 2014). The 

most haplotype-diverse species were also placed within Clade 3 (O’Donnell et al., 2008; Nalim 

et al., 2011; Short et al., 2014). 
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The Fusarium oxysporum Species Complex (FOSC) is known as an anamorphic 

species and widespread fungus found in soil (Kistler, 1997; Leslie and Summerell, 2006). F. 

oxysporum contains both pathogenic and non-pathogenic isolates (Gordon and Martyn, 1997). 

Pathogenic and non-pathogenic strains of F. oxysporum can be found in many native plant 

groups, in soils that have never been cultivated as well as in agricultural soils throughout the 

world (Gordon and Martyn, 1997; Gordon et al., 1992). The pathogenic F. oxysporum strains 

are referred to as formae speciales based on the host plant attacked. For example, isolates 

that are pathogenic towards banana are named F. oxysporum f.sp. cubense. A formae 

speciales usually has a narrow host range, usually consisting of only one host plant species 

(Gordon and Martyn, 1997). There are more than 70 described formae speciales (f. sp) 

causing diseases in over 100 plant species (Gordon and Martyn, 1997). Sequence analysis 

showed that many formae speciales are polyphyletic or paraphyletic meaning it is derived from 

more than one common evolutionary ancestor or ancestral group (O’Donnell et al., 1998; 

Skovgaard et al., 2001).  

The taxonomy of F. oxysporum was initially based on the morphology of the asexual 

reproductive structures, but as for all fungi this been complemented and to some extent 

replaced with phylogenetic sequence analyses. This is due to the limited number of 

morphological characteristics available for identifying in the F. oxysporum species complex 

(Hafizi et al., 2013; Lazarotto et al., 2014). A multi locus phylogenetic study indicated that F. 

oxysporum consists of three clades, designated as Clades 1, 2, and 3 (O’Donnell et al., 1998; 

2004). Subsequently, a fourth Clade was identified within the FOSC, with the addition of 

clinical isolates found by O’Donnel et al. (2004). The four clades were further divided into two 

phylogenetic species, PS I (Clades 1) and PS II (Clades 2, 3 and 4) (Laurence et al., 2014).  

 

Disease cycle 

Although F. solani has been implicated as a causal agent of citrus blight and dry root rot, 

controversy exists regarding its status as a pathogen and is usually regarded as a saprophyte 

and opportunistic pathogen within the roots, stems, and bark of citrus trees (Yaseen and 

D’Onghia, 2012). Dry root rot and citrus blight usually starts when the causal agent infects 

larger roots that have been injured by Phytophthora spp., water-saturated soil, mechanical 

damage or root burn caused by an overdose of fertilizers or pesticides. This infection of living 

tissue occurs from surrounding dead tissue where the fungus remains in an inactive state. 

Under frequent stress conditions the starch levels of the citrus tree drop, causing the natural 

resistance of the tree to break down, predisposing the citrus trees to infection (Dandurand and 

Menge, 1992). Infection of wood and cambial tissue is high during cool and wet seasons when 

the citrus tissue appears dormant and slow to heal (Graham and Menge, 1999).  
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After infection, the disease spreads into the crown, where the underground portion of 

the crown appear moist and dark, the moisture dries over time and the lesion stay on the 

wood. The fungus produces abundant macroconidia and microconidia on dead roots, leaves, 

bark and organic matter in the soil (Dreistadt, 2012). Macroconidia are relatively wide, straight, 

slightly curved with 3- to 7-septa and rounded ends. Microconidia are formed in round false 

heads on long mono-phialides. The microconidia can be oval, ellipsoidal or reniform with 0- to 

1-septum. Chlamydospores are abundantly produced in pairs on hyphae and in agar, with a 

globose to oval shape and can be smooth or rough walled (Snyder and Hansen, 2006). The 

development of dry root rot and citrus blight disease is enhanced by the presence of other root 

rot pathogens such as Phytophthora spp. and Pythium spp., (Polizzi et al., 1992). 

 

Inoculum sources 

Fusarium solani has a cosmopolitan distribution and can be found in numerous native soils. 

Perithecia are commonly observed on plant debris in wet tropical areas and serve as survival 

structures (Snyder and Hansen, 2006).  

 

Citrus nematode 

The citrus nematode (Tylenchulus semipenetrans) is a soilborne pest, and one of the most 

important parasitic root nematodes of trees causing severe damage on citrus (Ayazpour et al., 

2010; Le Roux, 2003). The damage citrus nematodes inflict on citrus is often called citrus slow 

decline (Dreistadt, 2012).  According to El-Borai et al. (2002), Thomas (1913) first discovered 

that the citrus nematode infects citrus trees in California, after which Cobb (1914) described 

the nematode as a new species and named it, T. semipenetrans. Since its discovery, T. 

semipenetrans has been recorded in every citrus growing region of the world (Duncan, 2005). 

The slow decline caused by T. semipenetrans results in a significant reduction in fruit yield 

and size (Duncan and Cohn, 1990). Leaves of severely infested trees are dull green and 

smaller than normal. Small twigs die back, giving the canopy a sparse appearance (Le Roux, 

2003). 

Life cycle 

Tylenchulus semipenetrans is a dimorphic species that exhibit sexual dimorphism at both the 

juvenile and adult stage. The life cycle is typical of a plant-parasitic nematode beginning as 

an egg, which contains the first juvenile stage (J1). The J1 then moults into the second stage 

juvenile (J2) within the egg, which will hatch from the egg and begin to search for new host 

roots (Dreistadt, 2012). The motile and vermiform J2 female moults into J3 and J4, and finally 

into a sedentary adult female. Female nematodes have the ability to reproduce without mating 

(parthenogenesis), although mating and sexual reproduction in the presence of a male may 
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occur. The development of a female juvenile into a sedentary adult requires feeding on the 

epidermis and superficial layers of the cortical parenchyma of the rootlets (Thorne, 1961).  

The nematode is a semi-endoparasite of the cortical cells, where the immature female 

penetrates the outer surface of the roots into the deep cortical layers, without reaching the 

endodermis. The female induces several nurse cells in the root cortex and establishes a 

permanent feeding site, while the posterior part of the nematode remains exposed in the soil 

(Van Gundy, 1958; Cohn, 1965; El-Borai et al., 2002). With maturation, the posterior part of 

the body swells and protrudes from the root surface while its elongated neck and head remain 

embedded in the cortex. The female becomes immobile and feeds from the nurse cells for its 

entire reproductive life. The mature female lays about 75 to 100 eggs, which are deposited 

through the excretory pore in a gelatinous matrix onto the fibrous root surface (Cobb, 1914). 

The length of the female life cycle from egg to egg can range from 6 to 8 weeks under optimal 

temperatures of 25°C to 30°C (Van Gundy, 1958; El-Borai et al., 2002; Agrios, 2005). Eggs 

hatch under wet and moist conditions, following irrigation or rain and when the soil temperature 

is above 20°C. The eggs can survive for up to nine years in the soil (Le Roux, 2003). The 

development of the J2 male into an adult is completed in seven days and does not require 

feeding. This is due to the fact that the feeding apparatus, the stylet, and oesophagus, of the 

adult males, are poorly developed and are difficult to observe.  

 

Infection sources 

Tylenchulus semipenetrans evolved in the Far East with citrus and was dispersed to many 

citrus growing areas of the world with nematode infested nursery stock. High nematode 

populations are commonly found in citrus orchards established in fine-textured soils or in 

sandy soils with high organic matter content. Fluctuations in soil salinity from high to low 

favours reproduction, while sandy soils poor in organic matter suppresses population increase 

to an extent (Timmer et al., 2003). The citrus nematode moves slowly through the soil, and 

under flood irrigation and irrigation with nematode infested water, nematodes are spread more 

rapidly from one tree to another (Le Roux, 2003). Low populations of the citrus nematode can 

survive in leftover roots and soil for up to 5 years after host removal (Dreistadt, 2012). 

 

MANAGEMENT STRATEGIES TO CONTROL CITRUS REPLANT PATHOGENS 

Disease management is highly reliant on the prevention of infection mainly through the 

production and use of clean planting material, disease-free soil, nursery hygiene, and the use 

of resistant rootstocks (Das et al., 2016). The improvement of drainage and aeration of the 

soil should also be maintained for adequate growth of root systems (Menge and Nemec, 

1997). In a study done by Le Roux et al. (1998) they noted that there can be differences in 

replant soils in terms of soilborne pathogens and plant parasitic nematode populations. It is 
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therefore important to identify the soilborne pathogens and nematodes in the soil prior to 

replanting. This will ensure the development of optimal management strategies that are 

effective against all the identified pests and diseases. Management strategies should also be 

effective under all the diverse soil conditions where citrus production occurs. It is also 

important that management strategies should be economically feasible and environmentally 

acceptable, making it suitable for use in replant disease management. 

Cultural practices 

Cultural control practices, such as sanitation and monitoring of soilborne pests and pathogens 

through fruit- and leaf baiting, should be used to detect, reduce and prevent infections. Plant 

material from nurseries should be free from citrus-specific pathogens. Inspection of fibrous 

roots in the nursery and orchard before planting is therefore recommended (Graham et al., 

2012).  

It is important to know the history of an orchard when planning to establish a new citrus 

block. Orchards not previously planted with citrus or similar species are probably free from 

citrus specific Phytophthora spp. and other soilborne pathogens damaging citrus roots. When 

planting the trees, the bud union should be planted well above the soil line, on raised soil beds, 

to avoid contact between the susceptible scion bark and potentially infected soil (Graham and 

Menge, 1999; Graham et al., 2012). If soils will be fumigated, it is important to remove dead, 

fungal contaminated and diseased parts of the tree, as well as dead trees and fruit from the 

orchard soil, otherwise fumigation will not be effective (Grout, 2003).  

 

Steam sterilisation 

The traditional approach is to heat the soil with steam at 100°C for about 30 to 40 minutes. 

Sheet steaming is the most frequently used steam soil sterilisation method and requires a 

temperature of 95°C at a depth of 30 cm (Bungay, 1994; Nerderpel, 1979).  Steaming the soil 

at high temperature alters the chemical composition of the soil to some extent and it is, 

therefore, important to lime the soil to decrease the accumulation of high concentrations of 

water-soluble and exchangeable manganese (Dawson et al., 1965; Rabie, 2001). If aerated 

steam is used, effective disease control can be reached at soil temperatures as low as 65°C 

(Gullino and Mezzalama, 1993). This method offers several advantages including the 

possibility of eliminating pathogens, without affecting certain components of the resident 

saprophytic microflora (Baker, 1970). Steaming the soil with temperatures of up to 50°C do 

not improve growth of trees in replant orchard soil (Otto, 1972). However, steam sterilising the 

soil with temperatures ranging from 65°C to 95°C can contribute to the increase in tree growth 

(Sharma and Bhardwaj, 1999).  

 

Stellenbosch University  https://scholar.sun.ac.za



 

18 
 

Resistant rootstocks 

There are no rootstocks that are tolerant toward all the putative biological agents involved in 

citrus replant. Most commercial rootstocks are to some extent resistant toward bark and root 

infections. There are some rootstocks known for having some resistance to Phytophthora spp. 

Swingle citrumelo (Citrus paradise Macf. x Poncirus trifoliate (L.) Raf.) is considered to be 

resistant due to the fact that it tolerates high populations of Phytophthora spp. in the soil 

(Graham, 1990, 1995; Graham and Menge, 1999; Le Roux, 2003). These rootstocks have the 

ability to regenerate fibrous roots after infection, but resistance is less effective in poorly 

drained soil (Adair et al., 2000; Castle et al., 2004). Volkamer lemon (C. volkameriana Tan. 

And Pasq.) is seen as tolerant to Phytophthora infection because new fibrous roots develop 

in the presence of Phytophthora spp. and when infection is observed on the roots (Graham, 

1995). Other rootstocks are susceptible to root rot and may suffer root loss when heavily 

infected (Graham, 1990, 1995). These susceptible rootstocks include Carrizo citrange (C. 

sinensis x P. trifoliata), sour orange (C. aurantium L.), Cleopatra mandarin (C. reticulate 

Blanco), sweet orange (C. sinensis L.), and Palestine sweet lime (C. limettioides Tanaka 

(Agostini et al., 1991; Timmer et al., 1991). Some of the Phytophthora resistant rootstocks 

may be susceptible to other diseases, show incompatibility towards commercial scion 

cultivars, are horticulturally unacceptable or fail to adapt to soil conditions (Bright et al., 2004; 

Feichtenberger et al., 1992).  

Commercial scion cultivars are susceptible to Phytophthora bark infection; however, 

some scion-rootstock combinations show moderate resistance toward infection 

(Feichtenberger et al., 1992; Graham and Feichtengerger, 2015).  

 

Cover crops and crop rotation 

The principle of crop rotation is to plant other species of crops in an orchard before replanting 

the soil with the desired crop (Biggs et al., 1997). This method can promote growth of newly 

planted trees through enhanced nutrient availability and by suppressing plant pathogenic 

nematodes, and it can also prevent the build-up of pathogenic microorganisms in the soil. In 

most cases, crop rotation can effectively control soilborne diseases (Mazzola and Gu, 2000). 

However, the biological components that cause citrus replant disease are known to be stable 

once established in the soil and are difficult to control with cover crops and crop rotation since 

citrus trees are perennial and cannot be rotated frequently (Timmer et al., 2000). Rotation with 

annual crops for 1 to 3 years before replanting is advisable, but this is not feasible for the 

control of soilborne diseases in orchard systems due to the perennial nature of the crops 

(Mazzola and Gu, 2000).  
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Chemical control 

Fungicide treatments 

The use of fungicides to control soilborne diseases has resulted in a reduction of pathogen 

populations, increased fibrous root densities and in some cases, increased yields (Sandler et 

al., 1989; Timmer et al., 1989). The application of fungicides registered against Phytophthora, 

Pythium, and Fusarium alone, or in combination with a nematicide can be used to reduce root 

and foot rot on citrus trees. This may also result in improved tree vigour and health (Mckenzie, 

1985; Le Roux et al., 1991). There are a few fungicides available for the management of 

oomycete species. The standard treatment for this species, with systemic properties, are 

products with etridiazole and mefenoxam as active ingredient (Porter et al., 2009).  Ridomil 

Gold® 480 SL, is a group code 4 fungicide and contains mefenoxam as active which is a 

phenylamide. Mefenoxam is the most effective systemic fungicide with preventative and 

curative activity against Phytophthora and Pythium spp. in soil and plant tissue. Mefenoxam 

inhibit the ribosomal RNA polymerase with it’s single-site mode of action, thus inhibiting 

sporulation and growth of mycelium (Hu and Li, 2014). It is advisable to apply mefenoxam 

every alternative season and when planting new trees as well as applying a nematicide at 

transplant. A nematicide with active ingredient cadusafos, under the trade name of Rugby® 

10 ME, can be applied to control nematodes in the soil. It is advisable to apply cadusafos at 

an interval of two months as soon as the rain season start. Cadusafos is a contact action 

nematicide and only controls the mobile stages of the nematodes in the soil. The product must 

be drenched into the top layer of the soil by irrigation up to 20 to 35 mm.  

 

Fumigation  

Methyl bromide is a widely used fumigant for both pre-plant and post-harvest pest and 

pathogen control (Schneider et al., 2003). Fumigation with methyl bromide as a pre-plant 

fumigant has been used for more than 50 years to manage soilborne pathogens and pests 

(Duniway, 2002). Methyl bromide is volatile and can penetrate the soil for some distance from 

the point of application. It is a highly effective and easy to use fumigant, but was categorised 

as a Class 1 ozone-depleting substance and therefore the use and production of methyl 

bromide was phased out internationally in 2005 by the Montreal Protocol and US Clean Air 

Act (Duniway, 2002; Schneider et al., 2003; Desaeger et al., 2017). For developing countries, 

the reduction and use of methyl bromide was more gradual and the phased-out period was 

delayed until 2015. Since the phasing-out of methyl bromide as a pre-plant and post-harvest 

fumigant there is a high demand for alternative management strategies with the same desired 

effect as methyl bromide. There are a few fumigation alternatives that are currently being used 

with broad-spectrum activities in the soil, such as 1,3-dichloropropene (1,3-D), chloropicrin 

(CP), methyl isothiocyanate (MITC) and metam sodium (Duniway, 2002; Gilreath et al., 2005; 
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Desaeger et al., 2017). These chemicals can be used alone, or can be mixed with one or more 

of the above-mentioned alternatives. The main disadvantage that all the fumigants have 

compared to methyl bromide, is that they are less volatile and mobile, and are not uniformly 

distributed in the soil (Ruzo, 2006).1,3-Dichloropropene was initially developed as a soil 

nematicide and chloropicrin has strong fungicidal activity and is less effective against 

nematodes (Duniway, 2002; Ruzo, 2006).  

In South Africa 1,3-dichloropropene (1,3-D) and chloropicrin (CP) are used in 

combination as a soil fumigation for effective nematode, plant pathogenic fungi and oomycete 

control. Trials done by Schneider et al. (2003) and Jhala et al. (2011) for the control of citrus 

nematode (Tylenchulus semipenetrans) and soilborne fungi found that pre-plant soil 

fumigation with 1,3-D and CP had a positive effect on eliminating nematodes, fungi and 

oomycetes in the soil. However, the use of these chemicals provided little weed management, 

and is less active against dormant seeds in the soil (Schneider et al., 2003; Jhala et al., 2011). 

Soil fumigation in citrus replant situations can, however significantly contribute to long-term 

profitability of newly replanted orchard. 

 

APPLE REPLANT DISEASE AS A MODEL SYSTEM FOR REPLANT DISEASE 

Replant disease of apples have been extensively studied over the past decades. Although 

several studies initially ascribed several abiotic factors as being the cause of replant problems, 

it is now mostly accepted that the disease is caused by biological agents (Mazzola and Manici, 

2012). This has been shown using several approaches. In glasshouse studies the biological 

nature of the disease was shown convincingly by (i) the fact that apple seedlings show a 

significant increase in growth when grown in pasteurized soil relative to seedlings grown in 

untreated soil, (ii) adding 10 or 15% of untreated replant soil to pasteurized soil results in a 

reduction in seedling growth relative to seedlings grown in pasteurised soil and (iii) some 

biocide treatments result in a significant increase in apple seedling growth (Mazzola, 1998; 

Tewoldemedhin et al., 2011a). Under orchard conditions, trees on fumigated soil show an 

increased growth response in comparison to trees grown in untreated soil, further providing 

evidence for the biological nature of apple replant disease (Mazzola and Manici, 2012).  

 The biological agents involved in apple replant disease have been elucidated using a 

combination of approaches. Isolations studies have been conducted quite extensively in South 

Africa, Italy and the United states. The isolation studies were mainly done using seedling 

bioassays, since isolations from orchard tree roots result in an overwhelming number of 

saprophytic fungi, which mask the presence of pathogens (Mazzola, 1998; Tewoldemedhin et 

al., 2011a). Isolation studies have shown the association of oomycetes (Pythium spp., 

Phytopythium and Phytophthora spp.), fungi (Cylindrocarpon-like fungi, Rhizoctonia solani, bi-

nucleate Rhizoctonia, Fusarium spp.) and parasitic nematodes (Pratylenchus spp.). The 
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pathogens can be site specific, for example R. solani occurs in Italy and the USA in replant 

soils, but not in South Africa. Pratylenchus spp., which are known to be parasitic on apple, 

occur in replant orchards in all investigated countries, but only in some orchards. Isolations 

studies alone cannot prove the involvement of fungi and oomycetes with replant diseases. 

Therefore, pathogenicity assays have also been conducted to determine which of the 

associated species are involved. Pathogenicity studies have shown that only selective 

Pythium spp. (mainly P. ultimum, P. irregulare and P. sylvaticum), Phytophthora spp., a few 

bi-nucleate Rhizoctonia species, Rhizoctonia solani AG-5 and AG-6 and Cylindrocarpon-like 

fungi are involved (Mazzola, 1998; Manici et al., 2003; Tewoldemedhin et al., 2011a, 2011b, 

2011c).  

The involvement and pathogenicity of ‘Cylindrocarpon’-like fungi are not clear due to 

major taxonomic changes in this group of fungi. Furthermore, most ‘Cylindrocarpon’ species 

that were identified as containing pathogenic isolates, also contained isolates non-pathogenic 

to apple (Tewoldemedhin et al., 2011a; Lombard et al., 2014). In South Africa, Italy and the 

USA Fusarium oxysporum, although extensively isolated from replant seedling roots, were not 

pathogenic (Mazzola 1998; Manici et al., 2003; Tewoldemedhin et al., 2011a). The Fusarium 

spp., F. solani, F. sambucinum and F. avenaceum in general have low virulence towards apple 

seedlings and not all isolates within a specific species are pathogenic. Fusarium spp. are thus 

not considered as major apple replant disease pathogens (Mazzola, 1998; Manici et al., 2003; 

Tewoldemedhin et al., 2011b). Some studies have furthermore shown using pathogenicity 

studies that some of the known replant pathogens interact synergistically for example 

‘Cylindrocarpon’-like spp. and some Pythium spp. (Braun 1995; Mazzola 1998; 

Tewoldemedhin et al., 2011a).  

Another approach that has been used to determine which groups of biological agents 

are involved, is the application of biocides to apple seedlings under glasshouse conditions 

(Mazzola, 1998; Tewoldemedhin et al., 2011a). For example, the application of metalaxyl that 

target oomycetes, significantly improved the growth of seedlings in most replant soils in South 

Africa. This indicated an important role of this group of pathogens in South Africa 

(Tewoldemedhin et al., 2011a). The involvement of nematodes in some replant orchards has 

been shown through applications of fenamiphos (Mazzola, 1998; Tewoldemedhin et al., 

2011a). 

It is interesting that of the known apple replant pathogens, several are only able to 

incite disease on young trees. Once trees reach the age of 3-years, these pathogens are no 

longer damaging to trees. Therefore, the protection of trees at planting and in the early years 

of orchard establishment is very important (Mazzola and Manici, 2012). 

Elucidation of the biological agents involved in apple replant disease, as well as the 

development of molecular markers to rapidly quantify the pathogens from roots, has led to the 

Stellenbosch University  https://scholar.sun.ac.za



 

22 
 

development of sustainable management strategies. The best example is the use of brassica 

seed meals. A range of orchard trials were conducted by first evaluating single brassica seed 

meal species (Mazzola et al., 2015). These were shown to be ineffective when used 

independently (Cohen and Mazzola, 2006; Mazzola et al., 2009). However, knowledge on 

which brassica species suppressed specific pathogens were ultimately used to develop a 

mixture of seed meals that can be used effectively to manage apple replant disease. The 

mixture of seed meals applied and incorporated into soil, followed by plastic tarping of the soil, 

yielded tree growth improvement and yields that exceeded those attained with fumigation 

treatments (Mazzola et al., 2015).   

 

CONCLUSION 

Citrus are one of the most important deciduous fruit crops being produced in South Africa, 

contributing to the revenue produced from exporting fruit, mainly to Europe and the Middle 

East (CRW, 2017). Losses due to soilborne diseases are of economical concern for citrus 

growers in South Africa. Based on the literature study there are still many gaps in literature 

based on the etiology and management of citrus replant disease in South Africa. The 

pathogens involved have not yet been characterized using modern molecular studies 

combined with phylogeny and fundamental research into the causal organism complex. It is 

therefore important to accurately characterize the biological agents involved and to develop 

an effective, sustainable management strategy. This will provide the citrus industry with 

knowledge regarding the best approach for establishing replant orchards, leading to 

productive orchards with high quality fruit for the export market.  

 The aim of this thesis study was to better understand citrus replant disease in South 

Africa with the ultimate aim of developing a methyl bromide free management strategy. The 

objectives were to: 

1. determine if the basis of citrus replant disease is biotic or abiotic. 

2. determine the main oomycete, fungal and nematode species associated with citrus 

replant disease. 

3. conduct molecular characterization and/or phylogenetic studies on a selected group of 

fungi (Fusarium spp.) and oomycetes (P. citrophthora, P. nicotianae and P. irregulare) 

found to be associated with replant soils. 
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CHAPTER 2 

Identification and characterization of soilborne pest, diseases and abiotic 

factors potentially associated with citrus replant disease 

 

ABSTRACT 

Citrus replant disease is a soilborne disease that occurs when new orchards are established 

on sites where citrus has been cultivated for many years. Tree stunting and yield reductions 

are associated with replant disease. The causative agents (fungi, oomycetes and nematodes) 

involved in citrus replant disease in South Africa, have only been studied to a limited extent. 

The aim of this study was to investigate the etiology of citrus replant disease in South Africa 

in four orchard soils. Four citrus replant orchard soils were sampled in the Addo, Patensie, 

Hoedspruit and Letsitele production areas. Analyses of orchard soil samples showed that 

Pythium irregulare, Phytophthora citrophthora and Phytophthora nicotianae were present in 

the soil from all four production areas. Infestation levels of juveniles of the citrus nematode T. 

semipenetrans was significantly higher in the soil samples of the Patensie and Hoedspruit 

orchards, than in the other two orchard soils. The involvement of biological replant agents 

were further investigated by growing Carrizo citrange rootstock seedlings in a soil bioassay 

trial in the glasshouse, where six treatments were evaluated. Biological agents were involved 

in three of the orchard soils (Addo, Hoedspruit and Letsitele), since seedling growth (height or 

weight) was significantly higher for seedlings grown in pasteurized soil versus seedlings grown 

in the untreated control soil. Furthermore, a dilution of 20% of these replant soils into 

pasteurized soil resulted in a significant reduction in seedling growth relative to the control and 

the pasteurized treatments. In the Patensie orchard soil, the involvement of biological agents 

was unclear since soil pasteurized did not significantly increase seedling growth relative to the 

control seedlings. However, dilution of the Patensie soil did result in significantly lower 

seedling growth than the control. The remaining seedling bioassay treatments consisted of 

the independent application of three biocides including mefenoxam, difenoconazole, and 

cadusafos that target oomycetes, fungi, and nematodes respectively. None of the biocide 

treatments indicated the involvement of specific biological agents targeted by each biocide. 

The exception was the Letsitele orchard where oomycetes were likely involved due to a 

significant increase in the length of mefenoxam treated seedlings relative to the control. 

Isolations from the roots of the control bioassay seedlings in all orchards showed that isolates 

belonging to the ‘Fusarium solani’ species complex dominated in all orchards except the 

Letisitele orchard. Fusarium oxysporum species complex isolates and oomycetes 

(Phytophthora nicotianae, Phytophthora citrophthora and Pythium irregulare) were also 

associated with the citrus roots at more or less similar frequencies within each orchard. 
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INTRODUCTION 

Replant disease is a phenomenon that is observed in cases where young, healthy nursery 

trees are planted on old orchard sites, previously planted with the same crop or closely related 

species. Replant disease symptoms is characterised by newly planted trees that are stunted, 

with small leaves, exhibiting poor growth (Derrick and Timmer, 2000). The retarded and 

stunted growth of newly planted trees has been ascribed to the accumulation of phytotoxins 

in the soil, development of nutrient imbalances, deterioration of soil physical characteristics 

and the establishment of soil pathogens that damage the root systems of young trees (Cronje 

et al., 2002). The casual agents associated with citrus replant disease in South Africa 

according to a previous study done by Le Roux et al. (1998) include the citrus nematode, 

Tylenchulus semipenetrans and the oomycete pathogens, Phytophthora nicotianae and 

Phytophthora citrophthora. Previous citrus replant studies only focused on the involvement of 

Phytophthora spp. and the citrus nematode. It is therefore important to further investigate any 

possible pathogens involved in the disease complex instead of focusing only on Phytophthora 

spp. and the citrus nematode.  

The biological agents involved in apple replant disease are much more complex than 

what has been reported for citrus replant disease. Isolation and pathogenicity studies in Italy, 

South Africa, Australia and the United states have shown that various fungal (Rhizoctonia 

spp.), oomycete (Pythium, Phytopythium and Phytophthora) and nematode (Pratylenchus 

spp.) species are involved. These organisms have been shown to be cite specific, and it is 

therefore important to investigate several replant sites in order to determine the different 

replant pathogens involved. Phytophthora cactorum occurs worldwide in apple replant soils, 

whereas P. cambivorum has been reported less frequently. Many Pythium species have been 

associated with apple replant soils, but only a few are pathogenic. Some of the most virulent 

and wide-spread species include P. ultimum, P. irregulare and P. sylvaticum.  Only a few of 

bi-nucleate Rhizoctonia species are pathogenic, but some isolates within the bi-nucleate 

anastomosis groups are non-pathogenic (Dullahide et al., 1994; Mazzola, 1998; Manici et al., 

2003; Tewoldemedhin et al., 2011a, b, c; Mazzola and Manici, 2012). Rhizoctonia solani AG-

5 and AG-6 have only been identified in Italy and Washington State in the USA, where they 

are known as highly pathogenic species (Mazzola, 1998; Manici et al., 2003). ‘Cylindrocarpon’-

like fungi are known to be involved in apple replant disease although isolates in general have 

low virulence (Dullahide et al., 1994; Mazzola, 1998; Tewoldemedhin et al., 2011a). Several 

Fusarium spp. were also found to be involved with apple replant disease (Verma and Sharma, 

1999). However, the species involved are not clear due to recent major taxonomic changes in 

this group of fungi (Lombard et al., 2014). The Fusarium spp., F. solani, F. sambucinum. F. 

tricinctum and F. avenaceum have been identified as apple replant pathogens, but these are 

considered as unimportant in apple replant disease. This is due to most isolates within a 
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species not being pathogenic, and those isolates that are pathogenic having low virulence 

(Dullahide et al., 1994; Mazzola, 1998; Manici et al., 2003; Tewoldemedhin et al., 2011 b, c). 

Some studies have furthermore shown through pathogenicity studies that some of the known 

apple replant pathogens interact synergistically for example ‘Cylindrocarpon’-like spp. and 

some Pythium spp. (Braun, 1995; Mazzola, 1998; Tewoldemedhin et al., 2011a).  

Peach replant is also caused by biological agents, although the agents involved has 

been studied to a lesser extent than for apple replant. Replant in peach, have been shown to 

be associated with ‘Cylindrocarpon’ destructans, ‘Cylindrocarpon’ lucidum, Pythium spp., 

Phytophthora cactorum and Rhizoctonia solani (Jaffee et al., 1982; Browne et al., 2006; Bent 

et al., 2009). 

In citrus replant, the fumigation of soil with methyl bromide pre-plant significantly 

increased the net income and the total volume of exportable fruit compared to the untreated 

replant soils (Le Roux et al., 1998; Duniway, 2002; Schneider et al., 2003). However, this 

management option is no longer available, since methyl bromide was phased out for 

developing countries such as South Africa in 2015 (Duniway, 2002; Schneider et al., 2003; 

Desaeger et al., 2017). Finding alternatives to methyl bromide for citrus production on old 

orchard sites are important, since if soilborne pathogens and nematodes are not controlled, 

this can lead to significant losses in production and fruit quality.  

The increase in citrus production in South Africa has necessitated the establishment 

of new orchards on sites where citrus has previously been cultivated for many years (Burger 

and Small, 1983). Since our understanding of the biological agents involved in citrus replant 

disease is limited, it is important to elucidate the biological agents involved. This can ultimately 

lead to the development of sustainable management strategies that target the complex group 

of biological agents that might be involved in citrus replant disease. This study was therefore 

aimed at providing the citrus industry with knowledge regarding whether biological agents 

were involved and the specific agents involved.   

 

MATERIALS AND METHODS 

Soil sampling 

Root and soil samples were collected from four citrus orchards, aged between 37 and 47 

years, prior to removal of the old trees. The orchards were situated in two of the main citrus 

growing regions in South Africa, i.e. Eastern Cape (Addo and Patensie areas) and Limpopo 

provinces (Hoedspruit and Letsitele areas). In each orchard, 90 soil samples (250 kg) with 

some roots were randomly collected at a depth of 10 to 30 cm underneath the tree canopy, 

leading up to 360 soil samples in total. Sampling was conducted between April and May 2016. 

Between orchards, the shovel used to take samples were cleaned and sterilised by spraying 

with 70% ethanol. The 90 soil samples taken from each orchard, was pooled and mixed 
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together and subdivided for use in a glasshouse seedling bioassay trial. A small portion of the 

pooled soil per orchard were used to determine the physical characteristics of the soil 

(NviroTek Labs, Hartbeespoortdam) and another portion were used to quantify and identify 

oomycetes and parasitic nematodes present within the soil (Grimm and Alexander, 1973). 

 

Physical and chemical characterization of soil 

The portion of soil per orchard sent away were subjected to standard chemical and physical 

soil analyses. Soil pH was determined in a KCl solution, while phosphorous content was 

determined using the Bray I method. The results from the different orchards were compared 

using analysis of variance (ANOVA) while the means were compared using the Fisher’s LSD 

test at a 95% confidence level (SAS software version 9.4). 

 

Quantification of oomycetes and nematodes from orchard soils 

Semi-quantitative analyses of oomycetes 

The presence of oomycetes (Pythium and Phytophthora) in the soils were determined using a 

leaf disk baiting method to analyse the portion of soil from each orchard subjected for 

oomycete quantification (Grimm and Alexander, 1973; Linde et al., 1994; Timmer et al., 1988, 

1990).   For each of the 10 soil samples, one ice tray, containing 14 cubicles were used. One 

teaspoon (5 mL) of soil was placed into each cubicle of an ice tray with 14 cubicles and filled 

with sterile distilled water to cover the soil.  Unsprayed lemon leaves were surface sterilised 

with 70% ethanol for 10 seconds and left to dry in the laminar flow. Two circular citrus leaf 

disks with a diameter of 5 mm were placed on the soil mixture in each cubicle and covered 

with cardboard. The ice trays were incubated for 48 hours at room temperature before 

removing the leaf disks. After removing the leaf pieces from the soil-water slurry, it was blotted 

dry on a paper towel to remove excess water before plating out the 28 leaf disks for each 

orchard soil. A total of four plates with seven leaf pieces (28 in total) each was plated out for 

each ice tray and sub-sample on corn meal agar (CMA, Sigma-Aldrich) amended with 

pimaricin-ampicillin-rifampicin-PCNB-hymexazol (PARPH) and corn meal agar (CMA, Sigma-

Aldrich) pimaricin-ampicillin-rifampicin-PCNB (PARP) selective medium as modified by 

Timmer et al. (1988). The Petri dishes were incubated in the dark for 48 hours at 29°C. After 

the incubation period, the number of leaf disks yielding hyphal growth into the medium were 

sub-cultured onto CMA medium for further morphological identification. Five inoculum plugs 

(5 mm2) of each oomycete isolate were plated in a sterile petri dish (65 mm) containing non-

sterile soil water extract (20 g soil suspension in 1L distilled water and filtered). The plates 

were incubated at 25°C under cool white fluorescent light for 24h until sporulation was 

observed (Jeffers, 2006). The plates were examined under a compound light microscope at 

different magnifications. Identification of Phytophthora spp. was identified up to genus level 
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based on sporangia characteristics (Gallegly and Hong, 2008). Pythium spp. was identified 

based on the presence of non-papillated round sporangia (Plaats-Niterink, 1981). From here 

on representative isolates based on the preliminary identification was used for further 

molecular identification.  

 

Nematode extraction and quantification  

Nematodes were extracted from each of 10 soil samples per orchard. For the extraction of 

juvenile nematodes, soil samples were subjected to the Baermann pan extraction method 

(Whitehead and Hemming, 1965). The plastic pan, plastic gauze and tissue paper were 

prepared and placed onto one another. Soil samples were mixed thoroughly before pouring 

250 cm³ soil from each sample onto the tissue paper and filling the plastic pan with sterile 

distilled water until the soil was saturated. The plastic pan was left to stand at room 

temperature for 48 hours allowing the juvenile nematodes to migrate through the tissue layer 

to the water in the plastic pan. After 48 hours, the plastic gauze with the tissue paper and soil 

was removed from the plastic pan and the remaining water, possibly containing nematodes, 

was washed through a 38 µm sieve using slow running water. The nematodes were then 

rinsed from the 38 µm sieve into a 250 mL beaker to a suspension volume of 100 mL. The 

suspension was mixed thoroughly by a stream of air bubbles and 1 ml of the suspension was 

drawn up using a 1 mL Eppendorf pipette and pipetted into a Hawksley nematode counting 

chamber. The citrus nematode juveniles were counted two times and the average for each 

sample was calculated. 

For the extraction of female citrus nematodes, five grams (5g) from the pooled soil and 

roots collected from each orchard were weighed off and washed with water to remove excess 

soil. The roots were cut into 1 cm pieces, placed in a blender with 250 ml water and blended 

for 20 seconds at low speed (Greco and D’Addabbo, 1990; Galeano et al., 2003). The blended 

roots were then collected in a three-layer Labotec Test sieve and washed through the sieves 

from the largest to smallest diameter (600µm, 150µm, 38µm) to collect the female nematodes. 

The nematodes were then washed with a 2% acidic acid solution into a small container with a 

38 µm mesh and stained with a Phenol solution (10 mL 1% acid fuchsin, 10 mL 1% orcein, 

200 mL distilled water, 188 mL phenol, 165 mL lactic acid and 318 mL glycerol) for 60 min 

(Greco and D’Addabbo, 1990; Fourie et al., 2017). After staining, the root tissue was rinsed 

with tap water and washed into a beaker. A 1 mL subsample was taken from the 100 mL 

nematode suspension and pipetted into a Peters’ counting slide, and observed under a 

microscope (Luc et al., 2005; Fourie et al., 2017). 
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Glasshouse seedling bioassay trail 

Plant material 

Carrizo citrange seeds were collected from the Citrus Foundation block near Uitenhage in the 

Eastern Cape province. The seeds were sown in March 2016 into seedling pots containing a 

steam pasteurized perlite and peat moss (50:50) mixture. After 3 months, the seedlings were 

selected for uniformity before being transplanted in treated or untreated soil.  

 

Trial treatments 

The soil from each of the four orchards were divided into six equal portions that each received 

one of six different treatments. Treatments included (i) steam pasteurization, (ii) 20% dilution 

of each orchard soil into the corresponding steam pasteurized soil, and the application of (iii) 

mefenoxam, (iv) difenoconazole, (v) cadusafos and (vi) untreated control. After the soils 

received the different treatments, the treated soil of each treatment was dispensed into six 

500 mL plastic pots. Prior to planting two Carrizo citrange rootstock seedlings per pot, the 

weight of each seedling was recorded. The height of each seedling was also recorded after 

planting. The potted Carrizo citrange seedlings were placed in a randomize block design in a 

glasshouse, located in Nelspruit at Citrus Research International (CRI). The temperature of 

the glasshouse was at ambient temperature and if temperature raised above 30°C, fans 

automatically switch on and decrease the temperature. The seedlings were watered as 

needed. The trial was repeated two weeks apart and left to grow for a period of 7 months.  

 

Steam pasteurization 

The required amount of soil from each orchard was placed in a cement mixer and mixed for 3 

min. After mixing the soil, the steamers were placed into black dustbins, together with the soil 

and was left to double pasteurize for 90 min (180 min total) at temperatures ranging from 82 

to 95 °C. Using running water, the steamers and the cement mixer were washed thoroughly 

between the treatment of soils from different orchards. 

 

Soil Dilution 

A 20% soil dilution mixture was prepared for each orchard by adding 20% (v/v?) of untreated 

control soil to steam pasteurized soil from the same orchard.  

 

Fungicide and nematicide treatments 

Mefenoxam (480 a.i. g/L) and difenoconazole (250 a.i. g/L) were used to target oomycetes 

and fungi respectively, while cadusafos (100 a.i. g/L) were used to suppress any potential 

nematodes in the soil. In different watering cans, mefenoxam at 0.2 ml/L, difenoconazole at 

1ml/L and cadusafos at 15 ml/L solutions was prepared using tap water. Of these solutions 
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500 mL was applied per pot. This resulted in 0.048g a.i. of mefenoxam, 0.125g a.i. 

difeneconazole and 0.75g a.i. cadusafos being applied per pot receiving these different 

biocide treatments. The soil was left to dry for two days before planting the seedlings, two per 

pot.  

 

Trial evaluation 

Seedlings growth measurements 

After seven months of growth, the glasshouse seedling trial was terminated. The number of 

dead seedlings per treatment was noted. The remaining seedlings were removed from the 

soil. The root systems were washed with sterile distilled water, removing excess soil, and 

seedlings were then left to air-dry on sterile tissue paper. The length of the above ground 

growth was measured using an electronic calliper and data logger. The total seedling mass 

(combined root and above ground mass) of each seedling were measured and compared to 

data taken at planting. Subsequently, the increase in seedling weight and height was 

calculated.  

 

Isolation for fungi and oomycetes from roots 

The roots of the untreated control seedling were used for isolations to determine which fungi 

and oomycetes colonized the roots of seedlings. After seedling weight measurements at trial 

termination, root systems were removed using a pruning knife (blades spray-sterilised with 

70% ethanol) and washed with sterile distilled water and left to air-dry on sterile tissue paper 

in the laminar flow cabinet. Thirty-six root pieces per pot, each approximately 10 mm in length, 

were removed from the root systems using a flame sterilised scalpel and plated out onto four 

different mediums in 90 mm Petri dishes, (i) 2% potato dextrose agar (Difco, Becton, Dickinson 

and Company) amended with 1 mL streptomycin sulphate solution (40 mg/L, Calbiochem, 

Merck) (PDA+s), (ii) 1.5% bacteriological agar (Difco, Becton, Dickson and Company) 

amended with streptomycin sulphate (40 mg/L, Calbiochem, Merck) and metalaxyl (250 a.i. 

g/L) (WA+s+m), as well as (iii) PARPH amended with benomyl (500 a.i. g/kg) (PARPH+B) and 

(iv) PARP amended with benomyl (0.2g/100mL) (PARP+B). Nine root pieces were plated onto 

each medium, thus eight 90mm Petri dishes per pot. Plates were incubated at 29°C for 2 to 3 

days. When fungal growth emerging from the roots was observed, subcultures representing 

each fungal colony was transferred to PDA+s Petri dishes (65 mm). The subcultured plates 

were incubated under the same conditions as mentioned previously. Growth that was 

observed on PARPH+B and PARP+B were purified by hyphal-tipping to WA and sub-cultured 

onto corn meal agar (CMA) Petri dishes (65 mm) and incubated at 29°C for further 

identification.  
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Five CMA inoculum plugs (5 mm2) of each oomycete isolate were plated in a sterile 

petri dish (65 mm) containing non-sterile soil water extract (20 g soil suspension in 1L distilled 

water and filtered). The plates were incubated at 25°C under cool white fluorescent light for 

24h until sporulation was observed (Jeffers, 2006). The plates were examined under a 

compound light microscope at different magnifications. Phytophthora nicotianae was identified 

by the sporangia being papillated and more ovoid in shape. The sporangia of Phytophthora 

citrophthora is also papillated but more asymmetrically in shape, and often with more than one 

apex. The preliminary identification of P. citrophthora at this stage was based on the presence 

of papillated sporangia with two apices (Gallegly and Hong, 2008). Pythium spp. was identified 

based on the presence of non-papillated round sporangia (Plaats-Niterink, 1981). 

The sub-cultured fungi and oomycetes were identified to the species level as described 

in the section below under “Molecular identification of isolated fungal species”. 

 

Isolation of nematodes 

No isolations of the female citrus nematode were made after seven months due to the lack of 

root development. There were not enough roots to extract female nematodes, and therefore 

not meaningful to compare the data before and after seven months. The isolation of juveniles 

from the soil would also not have given any meaningful information due to the females 

influencing the growth of the roots.  

 

Statistical analysis 

Two experimental trials were conducted. For each trial, the experimental design was a 

randomised block with the 24 treatment combinations (six treatments applied to soil from four 

production areas) replicated at random in four blocks. An experimental unit consisted of 10 

seedlings in total (five pots each containing two seedlings). The average increase in weight 

and length per seedling were calculated for each experimental unit. 

For each trial, the increase in weight and length per seedling were subjected to analyses of 

variance (ANOVA) using GLM (General Linear Models) Procedure of SAS software (Version 

9.4; SAS Institute Inc, Cary, USA). Trial results were also combined in one analysis of variance 

(John and Quenouille, 1977) after confirmation of trial homogeneity of variance using Levene’s 

test (Levene, 1960). Shapiro-Wilk test was performed on to test for deviation from normality 

(Shapiro and Wilk, 1965). Square root transformation was applied to improve weight increase 

deviation from normality (Snedecor and Cochran, 1980).  Fisher’s least significant difference 

was calculated at the 95% level to compare means for significant effects (Ott, 1998). A 

probability level of 95% was considered significant for all significance tests. 
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Molecular species identification of isolated fungal and oomycete isolates 

The sub-cultured oomycete (soil and root) and fungal (roots) isolates were classified into 

different groups based on their cultural and morphological characteristics on PDA+s for fungal 

and CMA media for oomycetes. Cultural characteristics used included colony size, texture, 

shape and colour. Oomycetes were further identified by observing the morphology of 

sporangia in non-sterile soil water extract under a compound light microscope as previously 

described in the section “Quantification of oomycetes and nematodes from orchard soils”. The 

Fusarium isolates were grouped according to the colour of the mycelia and growth pattern on 

PDA+s. Microscopic slides of five representative isolates from each group were prepared to 

observe the conidial shape, size and colour using a bright-field microscopy (Leslie and 

Summerell, 2006). The oomycete and fungal groups were identified as belonging to the 

families Peronosporaceae, Pythiaceae and Nectriaceae. All genera that have not been 

previously identified as being involved in replant disease associated with apples, peach and 

citrus were discarded. These genera included Penicillium, Alternaria and Trichoderma. The 

isolates of importance were stored for further identification. Oomycete isolates were stored in 

sterile distilled H2O with lemon leaf pieces, and the fungi was stored on ½ strength PDA slants 

and in sterile distilled H2O. 

 

DNA extraction 

DNA was extracted from 3-week-old fungal cultures growing on PDA+s and oomycete cultures 

growing on CMA+s. The DNA extraction protocol of Osmundson et al. (2013) was used with 

minor adjustments. Harvested mycelium was placed into 2-mL Eppendorf tubes with 0.5 mg 

glass beads and 500 µl 0.5M NaOH. The Eppendorf tubes were shaken for 5 min at 30 Hz 

using a Retsch Mixer Mill (Retsch MM 400, Germany) after which the tubes were centrifuged 

for 2 min at 13 500 rpm. Five microliters of the supernatant were extracted and added to a 

new 1.5 mL Eppendorf tube containing 495 µl Tris-HCL (100 Mm; pH 8.0) and vortexed.  

 

Polymerase chain reaction (PCR) and electrophoresis 

The ITS regions and 5.8S gene for the oomycete isolates were amplified using universal 

primers ITS-6 (5’-GAAGGTGAAGTCGTAACAAGG-3’) (Cooke and Duncan, 1997; Cooke et 

al., 2000) and ITS-4 (5’-TCCTCCGCTTATTGATATGC-3’) (White et al., 1990). In a total 

reaction volume of 25 µl, the PCR reaction contained 2 µl of DNA, 2X Promega G2 GoTaq 

Master Mix (Promega Madison, WI USA), 0.3µM of each primer and 9 µl PCR H2O. The PCR 

reaction conditions consisted of an initial denaturation step at 94°C for 5 min, followed by 32 

cycles of 30 s at 94°C, 30 s at 58°C and 30 s at 72°C, and a final extension step at 72°C for 5 

min. 
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The putative Fusarium spp. isolates were identified by amplifying the translation 

elongation factor 1-alpha (EF 1-α) gene using primers EF1 (5’-

ATGGGTAAGGARGACAAGAC-3’) and EF2 (5’-GGARGTACCAGTSATCATGTT-3’) 

(O’Donnell et al., 1998). A fragment length of 700 bp were amplified for the TEF-1α gene 

region. The PCR reactions contained 2 µl of DNA, 2X Promega G2 GoTaq Master Mix 

(Promega Madison, WI USA), 0.32µM of each primer per PCR reaction as described above 

and 9 µl PCR H2O. Reaction conditions consisted of an initial denaturation step at 95°C for 3 

min followed by 30 cycles of 1 min at 95°C and 45 s at 55°C, 1 min at 72°C with a final 

extension of 3 min at 72°C. All PCR reactions were performed in an Applied Biosystems 2700 

PCR machine (Carlsbad, California, USA). A non-template water control was also included in 

each PCR run.  

PCR products were separated by electrophoresis on a 1.5% (w/v) SeaKem® LE 

agarose gel (Lorenza Rockland, ME USA) in TAE running buffer (0.4 M Tris, 0.05 M NaAc, 

and 0.01 M EDTA, pH 7.5) after ethidium bromide staining. The GeneGenius Gel 

Documentation and Analysis System (Syngene, UK) were used to visualize the gel under 

ultraviolet (UV) light alongside a 100-bp DNA ladder (GeneRuler, Thermo Fisher Scientific, 

Waltham, Massachusetts, USA). 

 

Restriction fragment length polymorphism (RFLP) of oomycete species 

The ITS-PCR products of the oomycete isolates were used to obtain restriction fragment 

length polymorphism banding profile patterns, for the classification and identification of the 

organisms by using a single and double-restriction enzyme RFLP. In a total reaction volume 

of 20 µl the ITS-RFLP double-enzyme reaction contained 8 µl ITS-PCR product, 2 µl CutSmart 

buffer (BioLabs NEB, New England), 1 µl HhaI and 1 µl HinfI restriction enzymes (BioLabs 

NEB, New Enland) and 8 µl nuclease free water (Promega Madison, WI USA). For the single 

reaction, 1µl Hhal enzyme was used and 9 µl nuclease free water instead of 8 µl mentioned 

in the double restriction enzyme reaction. The restriction enzyme reactions were all incubated 

at 37 °C for 15 min. PCR-RFLP products were separated by electrophoresis on a 3% (w/v) 

SeaKem® LE agarose gel (containing ethidium bromide) in TAE running buffer (0.4 M Tris, 

0.05 M NaAc, and 0.01 M EDTA, pH 7.5) for 90 min at 75 V/cm. The GeneGenius Gel 

Documentation and Analysis System (Syngene, UK) were used to visualize the gel under 

ultraviolet (UV) light alongside a 100-bp DNA ladder (Promega, Madison, WI USA). Isolate 

that contained the same banding patterns were grouped into the same PCR-RFLP group.  

 

Sequencing of PCR products 

The PCR products were purified using the MSB Spin PCRapase Kit (Invitek, Berlin, Germany) 

according to manufacturer’s instructions. In the final step, DNA was eluted from the column 
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using 15 µl water.  The cleaned PCR products were then sent for sequencing to the DNA 

Sequencing Unit at the Central Analytical Facility (CAF) of Stellenbosch University. 

Sequencing was conducted using the forward and reverse primers used in the initial PCRs. 

Sequencing was conducted using the ABI PRISM Big Dye Terminator v3.1 Cycle Sequencing 

Ready Reaction Kit (Applied Biosystems, Foster City, California, United States) and an ABI 

3130xl DNA sequencer (Applied Biosystems, Foster City, California, United States)  

 

RESULTS 

Chemical and physical soil analyses 

Results of the physical and chemical analyses of the sampled soils in the different orchards 

showed that the different soils varied greatly with regards to their physical and chemical 

characteristics. This variation is illustrated in Table 1, where it is clear that in many cases there 

were significant differences (P ≤ 0.05; ANOVA not shown) in the levels of pH, different minerals 

and the clay, silt and sand percentages contained in the different soils from the different areas. 

There was no significant difference in soil pH between the Addo (6.36), Hoedspruit (6.60) and 

the Letsitele (6.50) soils. The soil pH of Patensie differed significantly from the other three 

areas, with a lower soil pH of 5.82 (Table 1). The pH of the soil should be adjusted according 

to the citrus needs during the period of planting and establishing new orchards. In this study, 

the pH of the soil was not adjusted prior to planting Carrizo citrange seedlings into the pots. 

There was a significant difference (P < 0.0001; Table 1) in P levels (mg/kg) between 

Patensie (138.62 mg/kg), Addo (30.21 mg/kg) and Hoedspruit (4.57 mg/kg) soil, and no 

significance was observed between Hoedspruit (4.57 mg/kg) and Letsitele (7.52 mg/kg; Table 

1). There was a significant difference in soil Calcium (Ca) levels per area (P < 0.0001; Table 

1). Patensie soil had the highest Ca level (2260.21 mg/kg), statistically higher than any of the 

other areas. Hoedspruit (1532.42 mg/kg) and Addo (1181.83 mg/kg) had statistically similar 

Ca levels, but significantly differed from the Ca level in Letsitele (685.50 mg/kg; Table 1). In 

terms of magnesium (Mg) content significant differences were also observed between the 

different areas. Patensie (248.51 mg/kg) and Addo (299.12 mg/kg) soils had statistically 

similar Mg content. Hoedspruit at 420.57 mg/kg had significantly the highest Mg content of all 

the areas. Letsitele was the area with the lowest Mg content in the soil of 180.59 mg/kg (Table 

1). 

The clay percentage of the different soils showed significant variation (P <0.0001) 

where the percentage of clay in Patensie (21.70%) and Addo (21.20%) was statistically similar 

(Table 1). The clay percentage of Hoedspruit (16.50%) and Letsitele (13.10%) was 

significantly different from one another and that of Patensie and Addo (Table 1). Patensie soil 

had a significantly higher (P < 0.0001) silt percentage of 26.17% than Addo (17.59%). The silt 

content for both Patensie and Addo soils were also significantly higher than Hoedspruit 

Stellenbosch University  https://scholar.sun.ac.za



 

48 
 

(9.84%) and Letsitele (7.67%; Table 1). There was a significant difference (P = <0.0001) in 

the percentage sand of the soil from all four areas. Letsitele had significantly the highest sand 

percentage of 79.23% followed by Hoedspruit (73.66%), Addo (61.21%) and Patensie 

(52.13%; Table 1).  

 

Quantification of oomycetes and nematodes from orchard soils 

Semi-quantitative analyses of oomycetes 

Oomycete isolates were obtained from all four orchard soils and in total consisted of 91, 132, 

110 and 140 isolates from the Addo, Patensie, Hoedspruit and Letsitele orchards respectively. 

Pythium spp. were the most frequently isolated oomycete in all four orchards (Figure 1). 

Orchard soils from Letsitele and Patensie had the highest mean percentage (>90%) leaf discs 

colonized by Pythium spp. Phytophthora spp. were also isolated from the soil through 

soilbaiting. Letsitele had the highest mean percentage (≥90%) leaf discs colonized by 

Phytophthora spp., whereas Patensie, Hoedspruit and Addo had a lower mean percentage 

(≤40%) Phytophthora spp. colonized leaf discs (Figure 1).  

 

RFLP analyses of oomycetes 

Representative isolates obtained from soilbaiting were identified through Restriction fragment 

length polymorphism (RFLP) of ITS-PCR (Figure 2) amplicons and sequencing. Ten 

Phytophthora and ten Pythium isolates from each of the four orchards was selected for further 

identification based on morphology observed in non-sterile soil water extract. A total of three 

different RFLP groups were identified and from each RFLP group, three isolates were 

sequenced (Figure 2).  

Nucleotide sequence analyses of isolates representing the three-different oomycete 

PCR-RFLP groups resulted in RFLP group 1 being identified as P. nicotianae, RFLP group 2 

as P. citrophthora and RFLP group 3 as P. irregulare. Representative oomycete isolates, 

obtained from soilbaiting was identified through RFLP of ITS-PCR (Figure 2) amplicons and 

sequencing. Phytophthora nicotianae (lanes 6 and 12), Pythium irregulare (lanes 2, 3 and 8) 

and Phytophthora citrophthora (lanes 1, 4, 5, 7, 9 to 11) was identified as the oomycetes 

colonising citrus leaf disks from soilbaiting (Figure 2).  

 

Nematode extraction and quantification 

Citrus nematodes Tylenchulus semipenetrans, were isolated from all four orchard soils. 

Analyses of variance (ANOVA) of mean juvenile and female counts obtained from soil and 

root samples from the different orchards, indicated a significant difference in mean juvenile 

counts between areas (P <0.001; Table 2). With regards to the female counts, the ANOVA 

indicated no significant difference in female counts between areas (P = 0.788; Table 2). In 
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Addo no analysis for females could be done due to the trees in the orchard being very small 

without sufficient root mass (Table 3). Between the other three areas, Patensie, Hoedspruit 

and Letsitele, there were no significant difference between the female counts. The counts 

ranged from 1720 females per 10 g roots to 2140 females per 10 g roots (Table 3). With 

regards to juvenile counts, the mean juvenile counts in soils from Patensie (4290) and 

Hoedspruit (4940) were statistically similar but significantly higher than the mean counts 

recorded for the Addo (75) and Letsitele (1040) soils. The last two means were statistically 

similar but numerically there were a marked difference between the mean juvenile counts in 

the Addo and Letsitele soils (Table 3).  

 

Glasshouse seedling bioassay trail 

Seedling growth measurements 

A total of 18 seedlings died during the seven-month period in the glasshouse. These seedlings 

were excluded from all analyses. The analyses of variance of the seedling weight and length 

increase indicated no significant differences between trials (P = 0.5524). As a result, the data 

from the two trial repetitions could be combined in all the analyses. Further analysis showed 

that there was a significant production area x treatment interaction for mean weight increase 

(P <0.0001) and mean seedling length increase (P = <0.0001; Table 4). Therefore, the data 

of each area was considered separately.   

In Patensie, the mean seedling weight increase (1.76 g) for seedlings grown in steam 

pasteurized soil was statistically similar to the weight increase observed in the untreated soil 

(1.69 g; Table 5). However, the mean weight increase of seedlings in the soil dilution was 

significantly lower (0.68g) compared to the weight increases observed in both the steam 

pasteurized and untreated soils (Table 5). The biocide treatments performed, in terms of mean 

weight increase, statistically similar (mefenoxam and difenoconazole) or poorer (cadusafos) 

compared to the steam pasteurized treatment and the untreated soil (Table 5). The mean 

seedling length increase for Patensie seedlings grown in steam pasteurized soil, was 8.74 

mm. This value was statistically lower than that observed for the seedlings in the untreated 

control (10.38 mm) but significantly better compared to the soil dilution treatment (5.51 mm; 

Table 5). For this measurement, mefenoxam was the only biocide that caused a mean 

seedling length increase that was statistically similar to the untreated control (Table 5).  

The mean weight increase of seedlings grown in steamed soil from Addo was 1.94 g, 

and was statistically different from the untreated control (1.52 g) and soil dilution (1.20 g) 

treatments (Table 5). Both the cadusafos (1.44.g) and difenoconazole (1.41 g) treatments 

performed for this measurement statistically similar to the untreated control. The mefenoxam 

treatment caused a significantly lower mean weight increase compared to the untreated 

control (Table 5). In terms of the mean length increase of seedlings grown in the Addo soil, 
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the mean length increase for the untreated soil was 8.81 mm, statistically similar to that 

observed in the steam pasteurized (8.65 mm) soil and soil dilution (7.89 mm) treatments 

(Table 5). All three the biocides performed in terms of the mean length increase significantly 

poorer than the untreated control treatment (Table 5).  

In the steam pasteurized soil of Hoedspruit, the mean increase in seedling weight and 

length (2.02g and 10.02 mm) was statistically better compared to the untreated control (1.34 

g and 7.46 mm) and soil dilution (0.78 g and 6.30 mm) treatments (Table 5), respectively. In 

terms of mean weight increase all three biocides caused significantly lower increases 

compared to the untreated control (Table 5). The mean length increase caused by the 

mefenoxam (6.51 mm) and difenoconazole (6.21 mm) treatments were statistically similar to 

the untreated control while the increase seen for the cadusafos treatment (4.30 mm) was 

significantly lower than the untreated control (Table 5). 

In the steam pasteurized treated soil of Letsitele the mean seedling weight and length 

increases (2.12 g and 10.96 mm) was statistically higher than the untreated soil (0.86 g and 

5.03 mm) and soil dilution (0.53 g and 6.52 mm) treatment (Table 5). The mean weight 

increase seen in seedlings from the soil dilution treatment (0.53 g) were statistically similar to 

that of the untreated control (0.86 g). However, in terms of mean length increase of seedlings, 

the soil dilution treatment had a mean (6.52 mm) length significantly better than the untreated 

control (5.03 mm; Table 5). In terms of mean weight increase the different biocides had 

statistically the same effect as the untreated control treatment (Table 5). However, the mean 

length increase results showed that mefenoxam (7.23 mm) had a significantly better mean 

length increase compared to the untreated control. The cadusafos and difenoconazole (5.32 

mm) treatment had a mean length increase (4.64 mm) that was statistically the same as the 

untreated control (Table 5).  

 

Isolation of fungi and oomycetes from roots 

Root isolations from untreated control seedlings showed that Fusarium solani was the most 

predominant genus isolated in all four areas followed by oomycetes (P. citrophthora, P. 

nicotianae and P. irregulare) and Fusarium oxysporum (Figure 3). In three of the orchards 

(Patensie, Addo and Hoedspruit) isolates belonging to the Fusarium solani species complex 

was the most abundant species isolated (Figure 3). BLAST analyses of these isolates, showed 

that the isolates had 99.8% sequence identity to several Genbank accession belonging to the 

FSSC complex (Sandoval-Denis et al., 2017) including F. solani (LT746338), Neocosmospora 

spp. (LT746330) (Sandoval-Denis et al., 2017), Fusarium falciformis (KF255514) and 

Fusarium spp. (EF469980; O’Donnell et al., 2007). The F. oxysporum isolates was confirmed 

with a BLAST analyses (LT746314; Sandoval-Denis et al., 2017 and LT841210; Brankovics 

et al., 2016) of 99.8% identical sites. 
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Nucleotide sequence analyses of isolates representing the three-different oomycete 

PCR-RFLP groups resulted in RFLP group 1 being identified as P. nicotianae, RFLP group 2 

as P. citrophthora and RFLP group 3 as P. irregulare. Representative oomycete isolates, 

obtained from root isolations was identified through RFLP of ITS-PCR (Figure 4) amplicons 

and sequencing. Phytophthora nicotianae (lanes 1 to 16 and 20 to 36), Pythium irregulare 

(lanes 17 and 19) and Phytophthora citrophthora (lane 18) was identified as the oomycetes 

colonising citrus roots (Figure 4). The RFLP group 1 P. nicotianae sequences (769 to 877 bp) 

had 99.3% sequence similarity to published P. nicotianae sequences in Genbank (KT455619, 

KT337714, Yang and Hong, 2015; Sanahuja et al., 2016). The PCR-RFLP group 2 P. 

citrophthora sequences (785 to 825 bp) had 99.7% identity to published Genbank sequences 

in BLAST analyses (KU877816, Das et al., 2016). The PCR-RFLP group 3 P. irregulare isolate 

sequences (830 to 931 bp) from citrus roots had 99.7 % identity to P. irregulare (KC855076, 

Bahramisharif et al., 2014). 

 

DISCUSSION 

In this study, the etiology of citrus replant disease was investigated in four citrus replant 

orchard soils, one from each of four production areas in South Africa. The disease was shown 

to be caused by biological agents in three of the orchards, but not in the fourth orchard. The 

application of biocides (mefenoxam, cadusafos, difenoconazole) to the orchard soils was 

unable to conclusively show the involvement of specific groups of biological agents 

(oomycetes, nematodes or fungi). The exception was in the Letsitele orchard where 

oomycetes were likely involved. Nonetheless, several known and putative replant pathogens 

were found associated with citrus roots in a seedling bioassay for all four orchards. These 

agents included the oomycetes P. nicotianae, P. irregulare and P. citrophthora and fungi 

belonging to the FSSC and FOSC. Soil analyses of the orchards supported the presence of 

the three oomycetes. Juveniles of the citrus nematode T. semipenetrans were furthemore also 

identified in soil analysed from all four orchards, and thus likely also play a role in citrus replant 

disease in South Africa.  

In the current study, the growth response (weight and length increases) of the 

seedlings in the bioassay (glasshouse trial) indicated that, as with apple replant (ARD) disease 

(Tewoldemedhin et al., 2011a; Mazzola and Manici, 2012), the cause of citrus replant disease 

is biological in nature. This was true for three (Addo, Hoedspruit and Letsitele) orchards, but 

not the Patensie orchard. In the Hoedspruit and Letsitele orchards, the pasteurized control 

seedlings had a significantly higher increase in weight and length than the untreated control, 

whereas as for the Addo orchard this was only true for the weight increase. Hoestra (1968) 

and Sewell et al. (1992) indicated that weight rather than length increase is a better indication 

of apple replant disease severity, but that there is always a variation in severity between sites 
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as also seen in the current study. Further support for the biological nature of citrus replant 

disease in South Africa is provided by the fact that for all four orchards addling 20% of the 

untreated soil to steam sterilised soil resulted in significantly lower increase in weight 

compared to the steam and untreated control treatments. This can be attributed to the re-

inoculation of the pathogens and nematode containing orchard soils into the biological vacuum 

created by the 80% steam sterilised soil. This probably resulted in rapid growth and 

proliferation of the biological agents and consequently severe infection of seedling roots. For 

apple replant disease, a significant reduction in growth (length and weight) of the soil dilution 

treatment relative to the pasteurized treatment has also been reported for most replant soils. 

However, a significant reduction in growth of the soil dilution treatment relative to the untreated 

control has not been reported (Tewoldemedhin et al., 2011c). This might be due to a higher 

percentage of untreated soil (20%) used in the current study, than the 15% used by 

Tewoldemedhin et al. (2011c).  

In the current study on citrus in South Africa, the effect on seedling growth of the 

biocide treatments consisting of mefenoxam, cadusafos and difenoconazole provided no 

support for the involvement of biological agents of citrus replant disease, with the exception of 

the Letsitele orchard. The Letsitele orchard was the only orchard where seedlings grown in 

one of the biocide treatments had a significant higher growth (length or weight) than the 

untreated soil. In the Letsitele soil, oomycetes were likely involved since the mefenoxam 

treatment seedlings had a significantly higher increase in seedling length than the untreated 

control.  The fact that none of the biocide treatments resulted in an increase in seedling growth 

relative to the untreated control was unexpected, considering the association of several known 

citrus pathogens and parasitic nematodes with the roots and soil of all four orchards, as 

discussed below. A few reasons for the lack of response in improved seedling growth to the 

two biocide applications could firstly be that the biocide dosages were too high resulting in 

damage of the seedlings. For example, the cadusafos and difenoconazole treatments resulted 

in significantly lower height or weight increases of seedlings compared to the untreated in 

three of the orchards. Alternatively, it could be that the application of only one biocide resulted 

in the specific targeted group of pathogens being suppressed, but then resulted in the 

excessive proliferation of another group of pathogens that caused severe seedling damage. 

This has sometimes been reported in apple replant disease when management practices are 

applied that do not suppresses all of the biological agents involved (Mazzola and Manici, 

2012). In citrus, the negative effect of some biological agents on others have been reported, 

and could thus result in an increase in some groups when one specific group is suppressed. 

For example, the suppression of nematodes by cadusafos could have resulted in an increase 

and more aggressive infections by Fusarium solani. Chandel and Sharma (1989) and El-Borai 

et al. (2002b) found that Tylenchulus semipenetrans supressed the growth of F. solani while 
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it also reduced host infection by this pathogen in dual inoculations. It has furthermore also 

been found that citrus root infections by Phytophthora nicotianae were reduced by root 

infection by Tylenchulus semipenetrans (Chandel and Sharma, 1989; El-Borai et al., 2002a, 

b). 

The current study did not only focus on the pathogens previously identified to be 

associated with citrus replant disease, but investigated the involvement of other possible 

pathogens. In previous studies on this topic in South Africa (Le Roux et al., 1991, 1998; Cronje 

et al., 2002) soil from fewer orchards in one production area were evaluated, and only the 

presence of nematodes and Phytophthora spp. were investigated. In the current study, P. 

irregulare, P. nicotianae and P. citrophthora together with F. solani, F. oxysporum and the 

citrus nematode T. semipenetrans was the predominant pathogen species found to be 

associated with citrus replant disease. In previous studies that focused on citrus replant 

disease, it was shown that the citrus nematode, T. semipenetrans, two Phytophthora spp. (P. 

nicotianae and P. citrophthora) and F. solani were associated with the disease complex 

(Baines et al., 1978; Nemec et al., 1978, 1980; Labuschagne et al., 1987; Le Roux et al., 

1998). In the current study, it is clear that Pythium spp. also might play a role in citrus replant 

disease which was not previously indicated. However, pathogenicity studies will have to be 

conducted. In apple replant disease, Pythium species are known to play an important role 

(Mazzola, 1998). Other apple replant pathogens such as ‘Cylindrocarpon’–like fungi and 

Rhizoctonia spp. were not found to be associated with citrus replant disease in South Africa. 

It is possible that some of the FSSC and Phytophthora spp. identified in the current study, 

could interact in causing replant disease. Dandurand and Menge (1992) reported that the 

severity of citrus root rot caused by Phytophthora nicotianae and P. citrophthora were 

increased when co-inoculation with Fusarium solani was done.  

This indicates that the citrus- and apple replant disease complex differs from one 

another but that there are similarities. Methyl bromide was previously used to fumigate soils 

in replant situations as it had a broad-spectrum effect on oomycetes, soilborne fungi and 

nematodes (Le Roux et al., 1998). However, as this is no longer available, abovementioned 

soil survey prior to replanting gains major importance as it will determine which soil fumigants 

or mixture of fumigants to employ as chloropicrin and 1,3-dichloropropene does not have the 

same broad-spectrum efficacy (Jhala et al., 2011). Ultimately the effective prevention of citrus 

replant disease using non-methyl bromide fumigation is dependent on knowing what is present 

in the soil and making the correct decisions based on this knowledge.  
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TABLES AND FIGURES 

 

Table 1. Mean pH, phosphorous (P), calcium (Ca), magnesium (Mg), clay, silt and sand levels of sampled top soil (0-30 cm) from the four citrus 

producing areas of Patensie, Addo, Hoedspruit and Letsitele. 

Area 
pH 

P (mg/kg) 

Bray 1 

Ca 

(mg/kg) 

Mg 

(mg/kg) 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Patensie 5.82 b 138.62 a 2260.21 a 248.51 b 21.70 a 26.17 a 52.13 d 

Addo 6.36 a 30.21 b 1181.83 b 299.12 b 21.20 a 17.59 b 61.21 c 

Hoedspruit 6.60 a 4.57 c 1532.42 b 420.57 a 16.50 b 9.84 c 73.66 b 

Letsitele 6.50 a 7.52 c 685.50 c 180.59 c 13.10 c 7.67 c 79.23 a 

LSD 0.467 24.356 89.723 55.64 1.858 2.556 3.718 

P-value 0.010 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Means in a column followed by the same letter are not significantly different (P < 0.05) according to Fisher’s least significant difference test. 
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Table 2. Analysis of variance of mean juvenile and female Tylenchulus semipenetrans counts in sampled soil (juveniles) and roots (adult females) 

from the four citrus producing areas of Patensie, Addo, Hoedspruit and Letsitele. 

Source 

Juveniles  Females 

DF SS MS SL  DF SS MS SL 

Area 3 171401687,500 57133895,833 <0.001  2 924666,667 462333,333 0.788 

Error 36 275353250,000 7648701,389    51845000,000 1920185,185  

Corrected Total 39 446754937,500     52769666,667   

DF Degrees of freedom 

SS Sum of Squares 

MS Mean Square 

SL Significance level  
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Table 3. Mean juvenile and female citrus nematode counts from ten soil and root samples 

collected from four old orchards in the citrus producing areas of Patensie, Addo, Hoedspruit 

and Letsitele. 

Citrus producing areas 
Tylenchulus semipenetrans 

Juvenilea Femalesb 

Patensie 4290.0 ac 2140.0  

Addo     75.0 b * 

Hoedspruit 4940.0 a 1850.0  

Letsitele 1040.0 b 1720.0  

LSD 2508.0 1272.0 

a Mean count per 250 cm³ sampled soil 

b Mean count per 5 grams of roots 

c Means in a column followed by the same letter are not significantly different (P < 0.05) 

according to Fisher’s least significant difference test. 

* No females were extracted from the roots 
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Table 4. Analysis of variance of mean weight- and length increase of citrus seedlings grown in four putative citrus replant orchard soils subjected 

to six different treatments and grown for seven months under glasshouse conditions.  

Source 

Weight increase Length increase 

DF SS MS SL SS MS SL 

Trial 1 0.1119 0.1119 0.0717 0.2751 0.2751 0.5524 

Trial (Block) 2 0.1862 0.0931 0.0696 10.1700 5.0850 0.0030 

Area 3 3.3769 1.1256 <0.0001 54.1685 18.0561 <0.0001 

Treatment (TRT) 5 12.0491 2.4098 <0.0001 122.2909 24.4581 <0.0001 

Area x TRT 15 3.9281 0.2618 <0.0001 127.7945 8.5196 <0.0001 

Trial x Area 3 0.2295 0.0765 0.0876 1.5441 0.5147 0.5745 

Trial x TRT 5 0.06528 0.0130 0.8486 3.0483 0.6096 0.5594 

Trial x Area x TRT 15 0.3977 0.0265 0.6658 14.1776 0.9451 0.2849 

Error 45 1.4815 0.0329 34.5352 0.7674 

Corrected Total 94 21.8266 368.0045 

DF Degrees of freedom 

SS Sum of Squares 

MS Mean Square 

SL Significance level 
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Table 5. Mean seedling weight (g) - and length (mm) increases of citrus seedlings in response to six treatments applied to four different citrus 

replant orchard soils. 

Treatment 

Patensie Addo Hoedspruit Letsitele 

Weight 

(g) 

Length 

(mm) 

Weight 

(g) 

Length 

(mm) 

Weight 

(g) 

Length 

(mm) 

Weight 

(g) 

Length 

(mm) 

Pasteurized 1.76 bc 8.74 st 1.94 ab 8.65 stu 2.02 a 10.02 qr 2.12 a 10.96 q 

Untreated control 1.69 bcd 10.38 q 1.52 cdef 8.81 rst 1.34 fgh 7.46 uvw 0.86 jk 5.03 yz 

Mefenoxam 1.62 cde 9.76 qrs 1.16 hi 7.25 vw 1.03 ij 6.51 wx 1.03 ij 7.23 vw 

Cadusafos 1.26 ghi 8.66 stu 1.44 defg 7.41 uvw 1.03 ij 4.30 z 0.69 kl 4.64 z 

Difenoconazole 1.55 cdef 7.35 vw 1.41 efgh 7.99 tuv 0.76 kl 6.21 wxy 0.61 kl 5.32 xyz 

Soil dilutiona 0.68 kl 5.51 xyz 1.20 ghi 7.89 tuv 0.78 jkl 6.30 wx 0.53 l 6.52 wx 

LSDb 0.2602 1.2563 

P-value <0.0001 <0.0001 

a The soil dilution treatment consisted of diluting 20% of the untreated control soil into pastuerized soil. 

b t-LSD (least significant difference) was calculated at a 95% significance level. 

Mean seedling weight (g) and length (mm) increase of Carrozo citrange rootstock seedlings were determined 7 months after trial establishment 

in the four citrus replant soils receiving the different treatments. The data is the average of two experiment, with each treatment containing twenty 

replicates. Means in columns and rows followed by the same letter are not significantly different (P > 0.05) according to Fisher’s least significant 

difference test. 
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Figure 1. Average percentage (%) infested leaf discs following soilbaiting of citrus replant 

orchard soils collected from four major citrus producing areas.
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Figure 2. Restriction fragment length polymorphism (RFLP) analysis of the ITS PCR 

amplicons obtained from oomycete isolates from soilbaiting. Lanes 1, 4, 5, 7, 9 to 11 are 

Phytophthora citrophthora (two DNA fragments, 812-bp and 608-bp). Lanes 2, 3 and 8 

represent Pythium irregulare with two DNA fragments one 920-bp and one 480-bp. 

Phytophthora nicotianae are represented by lane 6 and 12 with only one DNA fragment of 

980-bp in size. The size fragments of a 100-bp DNA ladder are shown on the right and left 

side of the figure (lanes marked L). 
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Figure 3. The number of isolates of oomycete and fungal pathogens isolated from citrus seedling roots grown in untreated control replant soil 

for seven months. 
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Figure 4. Restriction fragment length polymorphism (RFLP) analysis of the ITS PCR 

amplicons obtained from oomycete isolates from root isolations. Lanes 1 to 16 and 20 to 36 

are Phytophthora nicotianae (one DNA fragment, 1000-bp). Lanes 17 and 19 represent 

Pythium irregulare with one DNA fragments 910-bp. Phytophthora citrophthora are 

represented by lane 18 with only one DNA fragment of 815-bp in size. The size fragments of 

a 100-bp DNA ladder are shown on the right and left side of the figure (lanes marked L).  
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CHAPTER 3 

Phylogenetic review of Fusarium and Neocosmospora species associated with 

Citrus in South Africa 

 

ABSTRACT 

Phylogenetic analyses were used in this study to determine the phylogenetic species identity 

and genetic diversity of ‘Fusarium solani’ Species Complex (FSSC) and the Fusarium 

oxysporum Species Complex (FOSC) isolates from four different citrus production areas 

(Addo, Patensie, Hoedspruit and Letsitele) in South Africa. The isolates (13 F. oxysporum and 

39 ‘F. solani’) were obtained from a previous citrus replant study (Chapter 2), which 

preliminarily identified the isolates as belonging to these two species complexes. The 

phylogenetic species identity of the isolates were determined separately for each species 

complex, using a concatenated multi-gene phylogeny of the translation elongation factor 1-

alpha (TEF) and RNA polymerase II second largest subunit (RPB2) gene regions. 

Phylogenetic analyses of only the TEF region, which has traditionally been used for 

identification of these fungal groups, were also conducted for each species complex. The 

FSSC multi-gene phylogeny yielded a better resolution of clades than the TEF phylogeny, 

although several of the main clades in the multi-gene phylogeny had low or no bootstrap 

support. The multi-gene phylogeny of the FSSC isolates showed that the citrus isolates 

grouped into four clades including a Neocosmospora solani clade (25 isolates), 

Neocosmospora croci clade (one isolate), an unnamed Fusarium spp. clade (13 Isolates) with 

F. falciformis as the most related known Fusarium spp., and another clade (one isolate) 

containing an unnamed Fusarium species. The latter citrus isolate was obtained from 

Patensie, and may represent a putative new species. The citrus Fusarium spp. isolates that 

were related to F. falciformis also represent a putative new species and were obtained from 

Limpopo (Hoedspruit and Letsitele) production regions. The citrus N. croci isolate was only 

obtained from Addo production area. The most widely distributed FSSC species from citrus 

was N. solani, which occurred in all four production areas.  The TEF phylogeny of the FOSC 

isolates resulted in a better resolution and support of clades than the multi-gene phylogeny. 

According to the TEF phylogeny, all the citrus FOSC isolates grouped within the F. oxysporum 

phylogenetic species II. The FOSC citrus isolates were furthermore distributed among two 

subclades, previously designated as Clade 3 (11 isolates) and Clade 4 (two Isolates) by 

O’Donnell et al. (1998, 2004). Both clades contained isolates from Patensie, Addo, Hoedspruit 

and Letsitele citrus production areas.  
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INTRODUCTION 

The Ascomycota is a large and important group of fungi, characterised and distinguished from 

other fungi by a saclike ascus carrying haploid ascospores (Alexopoulos et al., 1996). These 

fungi consist of over 32 000 species and form symbiotic, parasitic and saprobic relationships 

with both animals and plants (Hawksworth et al., 1995; Alexopoulos et al., 1996). The genus 

names of some members within the Ascomycota have recently changed. One of these include 

a change of some members of the genus Fusarium to the genus Neocosmospora. The genus 

name change was due to the fact that many genera within the Nectriaceae family were 

previously poorly characterised due to a lack of DNA sequence data and were thus solely 

identified based on phenotypic characters. These characters included, uniloculate ascomata 

that are yellow, orange-red to purple, with phialidic asexual morphs (Rossman et al., 1999). 

The identification of Fusarium species at the morphological level is based on distinctive 

characters such as the shape and size of the macro- and microconidia (Leslie and Summerell, 

2006). The genus name change of some members of Fusarium to Neocosmospora were 

based on a multi-gene phylogenetic analyses [translation elongation factor (TEF), internal 

transcribed spacer gene (ITS), RNA polymerase II second largest subunit (RPB1 and RPB2), 

the large subunit of the ATP citrate lyase (acl1), α-actin (act), β-tubulin (tub2), calmodulin 

(cmdA), histobe H3 (his3) and the nuclear large subunit 28S rDNA (NLSU) gene region] 

conducted for all available type and authentic strains of the known genera in Nectriaceae, as 

well as for genera of which no sequence data were previously available. These studies 

showed that the genus Neocosmospora contained members of some Fusarium spp., including 

some 'F. solani’ isolates, which were distinct from the genus Fusarium (Geiser et al., 2013; 

O’Donnell et al., 2013; Lombard et al., 2014, 2015)  

Members of the ‘Fusarium solani’ Species Complex (FSSC) are known as plant, 

human and animal pathogens (O’Donnell et al., 2008) and are frequently isolated from soil 

and mainly acts as decomposers. Some species act as parasites on plants, insects, humans 

and animals (Booth, 1971). ‘Fusarium solani’ is known to be associated with the roots of 

symptomless as well as declining citrus trees and are commonly found in citrus soils 

(Labuschagne et al., 1987; Smith et al., 1988). Characteristic symptoms of infection on citrus 

includes colonisation and discoloration of the cortical tissue of feeder roots (Adesemoye et al., 

2011). Aboveground symptoms are evident as leaves that turn yellow, dieback and wilting of 

branches and the overall weakening of the tree with reduced fruit quality (Adesemoye et al., 

2011). ‘Fusarium solani’ was classified into the section Martiella by Booth, (1971) and can be 

divided into 50 sub-specific lineages based on the molecular phylogeny of the Nectria 

haematococca-Fusarium solani species complex (O’Donnell, 2000a).  

At the phylogenetic level, there are many differences among the members of the 

FSSC. Three clades have been identified in the FSSC based on translation elongation factor 
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(TEF), internal transcribed spacer gene (ITS) and nuclear large subunit 28S rDNA (NLSU) 

phylogenies (O’Donnell et al., 1998, 2008; O’Donnell, 2000b; Nalim et al., 2011). Clade 1 

includes two known species, Fusarium illudens and Nectria plagianthi, members of Clade 2 

consists of pathogens that cause sudden death syndrome on soy-bean (Aoki et al., 2003, 

2005, 2012). A study done by Nalim et al., (2011) showed that members of Clade 2 are 

paraphyletic. Clade 3 is known to contain the most common Fusarium spp. associated with 

plant diseases and include Fusarium falciformis and Fusarium keratoplasticum (O’Donnell, 

2000a; Zhang et al., 2006; O’Donnell et al., 2008; Short et al., 2013, 2014). The most 

haplotype-diverse species were also placed within Clade 3 (O’Donnell et al., 2008; Nalim et 

al., 2011; Short et al., 2014). 

The Fusarium oxysporum Species Complex (FOSC) is known as an anamorphic 

species and is a widespread fungus found world-wide (Kistler, 1997; Leslie and Summerell, 

2006). It contains both pathogenic and non-pathogenic isolates (Gordon and Martyn, 1997). 

Pathogenic isolates of F. oxysporum usually cause Fusarium wilt on several agricultural crops 

and are divided into formae speciales (f. sp.) based on their host range, and may be further 

subdivided into pathogenic races (Hawksworth et al., 1995; O’Donnell and Cigelnik, 1999). 

The close association with plant roots, and the ability of pathogenic isolates to colonise the 

root cortex and xylem vessels leads to characteristic wilting symptoms by limiting water 

movement through the plant (Beckman and Roberts, 1995). Pathogenic and non-pathogenic 

strains of F. oxysporum can be found in many native plant groups, in soils that have never 

been cultivated as well as in agricultural soils throughout the world (Gordon and Martyn, 1997; 

Gordon et al., 1992). F. oxysporum isolates from uncultivated soil and native plants are known 

to be closely associated with plant roots, but are most often non-pathogenic to plants in native 

soils, even when high populations are present in some areas (Booth, 1971; Armstrong and 

Armstrong, 1978). Fusarium oxysporum is considered as a minor disease of citrus and only 

pathogenetic toward woody hosts under adverse conditions or when the plant is stressed by 

environmental conditions in South Africa (Labuschagne et al., 1987).  

The taxonomy of F. oxysporum was previously based on the morphology of the 

asexual reproductive structures. The limited variability of these characters led to a broad 

description of F. oxysporum (Snyder and Hansen, 1940), which did not reflect the inherent 

variability within the species complex (Kistler, 1997). There are to date more than 70 described 

formae speciales (f. sp) causing vascular wilt in over 100 plant species (Gordon and Martyn, 

1997). Phylogenetic analyses have shown that many forma speciales are polyphyletic or 

paraphyletic, meaning that it is derived from more than one common evolutionary ancestor or 

ancestral group (O’Donnell et al., 1998; Skovgaard et al., 2001). Previous phylogenetic 

studies, based on the translation elongation factor 1-α (TEF) and the mitochondrial small 

subunit rDNA (mtSSU) loci showed that F. oxysporum consist of three clades, designated as 
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Clades 1, 2, and 3 (O’Donnell et al., 1998; 2004). Subsequently, a fourth clade was defined 

within the FOSC, with the addition of clinical isolates found by O’Donnell et al. (2004). The 

four clades were further divided into two phylogenetic species, PS I and PS II (Laurence et al., 

2014). Phylogenetic species II (PS II) consists of Clades 2 to 4, and Phylogenetic species I 

(PS I) only consists of Clade 1 (Laurence et al., 2014).  

This study focused on the phylogenetic analyses of FOSC and FSSC isolates found in 

citrus orchard soils in South Africa, using DNA sequence data of the TEF and RNA polymerase 

second largest subunit (RPB2) gene regions. The isolates used in this study were collected 

from citrus root isolations in a previous study, where fungi associated with citrus replant 

disease were investigated. Preliminary Blast analyses of TEF sequences of the isolates 

showed that the isolates likely belonged to the FOSC and FSSC (Chapter 2). 

 

MATERIALS AND METHODS 

Isolate collection 

An isolate collection of 13 F. oxysporum and 39 ‘F. solani’ isolates (Table 1) from a previous 

study (Chapter 2) were used in this study. The isolates were obtained through a seedling 

bioassay with Carrizo citrange seedlings using soil from four different citrus orchards located 

in the Patensie, Addo, Hoedspruit and Letsitele citrus production areas in South Africa 

(Chapter 2).  

 

DNA extraction 

DNA of the selected Fusarium isolates was extracted from 3-week-old fungal cultures grown 

on 2% potato dextrose agar (Difco, Becton, Dickinson and Company) amended with 1 mL 

streptomycin sulphate solution (40 mg/L, Calbiochem, Merck) (PDA+s). The DNA extraction 

protocol of Osmundson et al. (2013) was used, with some modifications as described in a 

previous study (Chapter 2).  

 

Polymerase chain reaction (PCR) and electrophoresis 

Two gene regions, including the TEF and RNA polymerase II second largest subunit (RPB2) 

regions, were amplified and sequenced for the selected Fusarium isolates. The TEF 1-α and 

RPB2 sequences of the Fusarium isolates were obtained in a previous study (Chapter 2). A 

fragment length of approximately 700 bp was amplified for the TEF gene region. For the RPB2 

region, two separate but adjacent and overlapping regions within the RPB2 gene were 

amplified, using two primer pairs in separate PCR reactions. The first primer pair consisted of 

the RPB2-5F2 primer (O’Donnell et al., 2008; O’Donnell et al., 2010) and the fRPB2-7R primer 

(Lui et al., 1999). The second primer pair consisted of primers fRPB2-7F and fRPB2-11aR 

(Lui et al., 1999). The length of the fragment amplified with the first primer pair (RPB2-5F; 
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fRPB-7R) was 1186 to 2336 bp and for the second primer pair (fRPB2-7F; fRPB2-a11R) it 

was 2317 to 3314 bp (primers indicated in Table 2). This resulted in a total RPB2 fragment 

length of approximately 3841 bp. The PCR reaction and conditions was followed in the same 

manner as described previously (Chapter 2). The PCR products were separated by gel 

electrophoresis on a 1.5% (w/v) SeaKem® LE agarose gel (Lorenza Rockland, ME USA) in 

TAE running buffer (0.4 M Tris, 0.05 M NaAc, and 0.01 M EDTA, pH 7.5). 

 

Sequencing of PCR products 

The PCR products were purified using the MSB Spin PCRapase Kit (Invitek, Berlin, Germany), 

according to manufacturer’s instructions. The PCR products sequenced (both directions) by 

the Central Analytical Facility (CAF) of Stellenbosch University. The sequencing reactions 

were conducted using the ABI PRISM Big Dye Terminator v3.1 Cycle Sequencing Ready 

Reaction Kit (Applied Biosystems, Foster City, California, United States) according to 

manufacturer’s protocol. The sequencing primers were the same as those described in the 

previous section for amplifying each of the gene regions. The sequence products were treated 

with sodium dodecyl sulfate (SDS) and transferred onto Sephadex columns (Princeton 

Scientific) using a Tecan Freedom EVO 150 (Biorad, Germany) and centrifuged. The 

nucleotide order of samples was read in an ABI 3130xl DNA sequencer (Applied Biosystems, 

Foster City, California, United States) using a 50cm capillary array and POP-7 (Applied 

Biosystems, Foster City, California, United States). 

For each gene region (TEF and RBP2), forward and reverse sequences for each of 

the FSSC and FOSC isolates were aligned and edited in Geneious R 9.1.8 (Biomatters Ltd., 

Auckland, New Zealand) and a consensus sequence was constructed. Consensus sequences 

were run through the Basic Local Alignment Search Tool (BLAST) of the National Centre of 

Biotechnology Information’s nucleotide database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and 

the Fusarium ID database (Geiser et al., 2004) to confirm identity. Several reference 

sequences representing different ‘F. solani’, F. oxysporum and closely related species 

downloaded from GenBank (http://www.ncbi.nlm.nih.gov/Genbank), were selected based on 

previous published phylogenetic trees. Several ‘F. solani’ sequences from a phylogenetic 

study by Sandoval-Denis et al. (2017) related to Fusarium spp. on citrus were also used in 

this study. Sequences form each phylogenetic species within the FOSC representing the four 

clades were also included in the phylogenetic dataset.  

 

Phylogenetic analysis of FSSC and FOSC isolates 

Separate phylogenetic analyses were conducted for the FSSC and FOSC isolates. For each 

species complex, a single gene phylogeny of the TEF region was conducted using maximum 
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parsimony (MP) analysis and maximum likelihood (ML) analyses. A concatenated phylogeny 

consisting of the combined datasets of TEF and RPB2 was conducted using only ML analysis. 

 

Phylogenetic analyses of FSSC isolates 

The FSSC phylogenetic analysis of only the TEF data set was carried out by first aligning the 

TEF sequence data set in MAFFT v7.017 (Katoh et al., 2002; Katoh and Standley, 2013; 

http://mafft.cbrc.jp/alignment/server/), followed by editing in MEGA v7.0 (Kumar et al., 2016). 

A MP analysis was conducted in PAUP v4. The heuristic search option with ten random taxon 

additions, tree bisections and reconstruction (TBR) was used as branch swapping algorithm. 

All characters were unordered and of equal weight, and gaps were treated as missing data. A 

bootstrap analysis of 1 000 heuristic search replicates was performed to estimate the reliability 

of inferred phylogenies. A ML analysis for the same dataset was conducted using PhyML v3.0 

(Guindon et al., 2010; http://www.atgc-montpellier.fr/phyml/). The settings used for bootstrap 

were the same as that used for the MP analysis. The best-fit model was inferred using the 

Smart Model Selection (SMS) model test program (v1.8.1). The general time reversible model 

with gamma distribution and proportion invariable sites (GTR+G+I) was selected as the best-

fit model for nucleotide substitution in MP analyses. Both the gamma distribution parameter 

and proportion of invariable sites were estimated. Bootstrap values were based on 1 000 

repetitions and clades with bootstrap support ≥ 60% were considered significant with good 

support (Hillis and Bull, 1993; Figure 1).  

The concatenated phylogenetic tree of the TEF and RPB2 regions for FSSC was 

conducted by first aligning and editing the data in the same way as described for the TEF data 

set. A ML analysis was conducted using PhyML v3.0 (Guindon et al., 2010; http://www.atgc-

montpellier.fr/phyml/) and bootstrap values were based on 1 000 repetitions and clades with 

bootstrap support ≥ 60% were considered significant (Hillis and Bull, 1993; Figure 2). The 

outgroup for both the concatenated and single gene phylogenetic tree analysis consisted of 

two isolates, Nectria illudens (NRRL 22090; O’Donnell, 2000a) and Nectria plagianthi (NRRL 

22632; O’Donnell, 2000a) (Sandoval-Denis et al., 2017).  

 

Phylogenetic analysis of FOSC 

The alignment, MP and ML analyses for the FOSC isolates were conducted as described for 

FSSC. The TEF dataset for FOSC isolates used the Tamura-Nei (TN93+G) substitution 

model, where the gamma distribution parameter was estimated and the proportion of 

invariable sites were fixed. The conditions used for bootstrapping were the same as those 

used for MP analysis and clades with bootstrap support ≥ 60% were considered significant 

and highly supported (Hillis and Bull, 1993; Figure 3). The outgroups for the TEF dataset 
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consisted of two isolates, Fusarium commune (NRRL 22903; Skovgaard et al., 2001) and 

Fusarium circinatum (NRRL 25331; O’Donnell, 2000b). 

A multi-locus concatenated phylogenetic tree for the FOSC isolates was prepared in 

the same way as described for F. solani, using ML analysis. The outgroup consisted of two 

isolates, Fusarium polyphialidicum (NRRL 13459; O’Donnell et al., 2007) and Fusarium 

concolor (NRRL 25728; O’Donnell et al., 2010; Figure 4). 

 

RESULTS 

Phylogenetic analyses 

The MP and ML analyses of the TEF datasets yielded similar phylogenetic tree topologies for 

both the FSSC and FOSC isolates and the concatenated multi-gene phylogenies were only 

analysed using ML. Bootstrap values for both analyses are indicated on the TEF trees (Figure 

2 and 4). 

 

Phylogenetic analyses of FSSC isolates 

The multi-gene phylogeny of the FSSC isolates grouped into four clades including a N. solani 

clade (25 isolates), N. croci clade (one isolate), an unnamed Fusarium spp. clade (13 isolates) 

with F. falciformis as the most related known Fusarium spp., and another clade (one isolate) 

containing an unnamed Fusarium species (Figure 1). The latter citrus isolate (STEU 8454) 

was obtained from Patensie, and may represent a putative new species. The citrus Fusarium 

spp. (13 isolates; 91% bootstrap support) that were related to F. falciformis also represent a 

putative new species and were obtained from Hoedspruit and Letsitele production regions. 

Isolate STEU 8462 obtained from Addo, grouped with the ex-type N. croci sequence. The 

most widely distributed FSSC species from citrus, which occurred in all four production areas 

grouped with the ex-epitype strain (100% bootstrap support) of N. solani (NRRL 66304ET) 

(Sandoval-Denis et al., 2017).   

The TEF tree differed from the concatenated tree in a few instances. In the TEF tree, 

the clade containing the 13 FSSC isolates closely related to the F. falciformis reference 

sequences also had relative high bootstrap support (91%), but the F. falciformis reference 

sequences were unresolved (Figure 2). The sequences of STEU 8462 (Addo orchard) and the 

ex-type N. croci sequences were unresolved in the TEF phylogeny, but not in the multi-gene 

phylogeny. The clade containing the N. solani isolates differed in the TEF and concatenated 

trees, since in the TEF tree isolate STEU 8455 (Addo orchard) grouped with low bootstrap 

support (87%) with an unknown Fusarium spp. (NRRL46703), and not with the N. solani clade 

as in the concatenated tree. Furthermore, in the TEF tree STEU 8454 (Patensie orchard) 

grouped with the N. solani clade, unlike in the multi-gene tree (Figure 1 and 2).  
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Phylogenetic analysis of FOSC 

The 13 FOSC citrus isolates all grouped into phylogenetic species PS II within the FOSC, 

which was previously described by Laurence et al. (2014) (Figure 3 and 4). The isolates 

furthermore grouped into two of the four subclades described by O’Donnell et al. (1998; 2004).  

The concatenated tree of FOSC did not provide bootstrap support for most of the 

clades and sub-clades as described by Laurence et al. (2014) and O’Donnell et al. (1998, 

2004) (Figure 4). This can be since several gene regions were used to define the four clades 

described by Laurence et al. (2014). Due to the availability of TEF sequence data, a single 

gene phylogeny was conducted to compare the data with the multi-gene phylogeny for 

variability. For example, the clade 3 isolates within PSS II of the multi-gene phylogeny had low 

bootstrap support (81%) and included several sequences that did not group with this clade in 

the TEF phylogeny. Therefore, the TEF tree will be discussed in detail (Figure 3). 

In the TEF phylogeny, two of the 13 citrus FOSC isolates (STEU 8492 and STEU 8508) 

grouped into clade 4 (99% bootstrap) within F. oxysporum PS II clade (99% bootstrap); both 

isolates were from Hoedspruit. The most closely related species to these two citrus isolates 

was F. oxysporum f. sp. passiflorae (BRIP28044) (Rooney-Latham and Blomquist, 2001; 

Cizislowski et al., 2017). The remaining 11 of the 13 FOSC citrus isolates grouped into a well-

supported (86% bootstrap) clade known as Clade 3 (88% bootstrap; O’Donnell, 1998, 2004) 

within the PS II clade (73% bootstrap) (Figure 3). A subclade with 65% bootstrap support 

contained three citrus STEU isolates all from Hoedspruit (STEU 8499, STEU 8512 and STEU 

8494), along with some Fusarium spp. and F. oxysporum f.sp. sequences. There are good 

bootstrap support values (91%) that citrus isolates grouped within clade 3 of the FOSC and 

low bootstrap values was observed within clade 3 between the citrus isolates and 

representative isolates. The STEU 8516 (Letsitele orchard) isolate and STEU 8491 (Addo 

orchard), also within clade 3, grouped in two sub-clades that were distinct from the other citrus 

FOSC isolates within clade 3 (Figure 3). 

 

DISCUSSION 

Citrus is an important agricultural crop and is affected by a range of fungal pathogens, 

including Fusarium spp. that are known to be associated with a variety of symptoms, including 

dry root rot. Phylogenetic analyses were used in this study to evaluate the diversity and 

determine the phylogenetic species identity of Fusarium spp. isolates from the roots of citrus 

seedlings grown in soils obtained from old citrus orchards in South Africa.  To our knowledge 

this is the first study to investigate the phylogenetic diversity of both the FSSC and FOSC 

associated with citrus in South Africa. The citrus seedlings from which isolations were made 

showed symptoms of citrus replant disease. Preliminary identification of the isolates in a 

previous study (Chapter 2) indicated that the isolates grouped within the FSSC and FOSC.  

Stellenbosch University  https://scholar.sun.ac.za



 

76 
 

Phylogenetic analyses of the citrus associated FSSC and FOSC isolates from South 

Africa, confirmed that the isolates belonged to these two species complexes. The isolates 

furthermore represented some known and putative new species in the genera Fusarium and 

Neocosmospora. A concatenated multi-gene phylogeny of the FSSC isolates provided a better 

resolution of clades than the TEF phylogeny. In the multi-gene FSSC isolates showed citrus 

isolates (23 isolates) mostly belonged to N. solani s.s. The second largest group of FSSC 

citrus isolates (13 isolates) may represent a putative new species, with the most closely related 

known species being F. falciformis. The STEU 8454 sequence grouped with high bootstrap 

support in a clade related, but distinct from N. croci. The TEF phylogeny of the FOSC isolates 

provided a better resolution of clades than the multi-gene phylogeny. The 13 FOSC isolates 

from citrus all belonged to F. oxysporum PS II previously described by Laurence et al. (2014). 

Most of the citrus isolates (11), furthermore, belonged to FOSC Clade 3 described by 

O’Donnell et al. (1998, 2004), whereas only two isolates belonged to Clade 4 of O’Donnell et 

al. (1998, 2004).  

The thirteen citrus FSSC isolates from South Africa most closely related to F. 

falciformis, may represent a putative new species. The isolates had a restricted occurrence 

and were mainly found in the Hoedspruit area (12 isolates), whereas only one isolate was 

obtained was from the Letsitele production area. The F. falciformis sequences (DQ247075, 

DQ24713) to which the citrus isolates were related to were from isolates that were isolated 

from sand and from a human in the USA. Fusarium falciformis has been associated with 

infections in both humans and in plants, but the severity and pathogenicity toward plants are 

unknown (Zhang et al., 2006). Fusarium falciformis has never before been associated with 

citrus roots. 

Necospomara croci is a recently described species (Sandoval-Denis et al., 2017). This 

species along with FSSC isolates related to it, is associated with citrus in South Africa and 

Italy. In Italy, N. croci was also associated with citrus in Catania, and specifically orchards with 

dry root rot symptoms (Sandoval-Denis et al., 2017). Necosmospora croci belongs to FSSC 

Clade 3, which was described by O’Donnell et al. (1998, 2008). FSSC Clade 3, contains a 

group of important plant pathogens and human and animal opportunistic parasites (O’Donnell 

et al., 2008; Schroers et al., 2016). The morphological characteristics of N. croci are similar to 

those of the FSSC isolates. It can be distinguished from N. solani by the presence of a saffron 

diffusible pigment at 36°C and slower growth on artificial media (Schroers et al., 2016).  

Most of the citrus associated FSSC isolates (23) from South Africa belonged to N. 

solani. These isolates were widely distributed and occurred in all four of the investigated 

production areas. This is the first study, subsequent to the transfer of ‘F. solani’ to 

Neocosmospora to report this specie associated with citrus. Neocosmospora solani belongs 

to the FSSC clade 3 (O’Donnell, 2000a; O’Donnell et al., 2008; Sandoval-Denis et al., 2017). 
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FSSC clade 3 is known to contain Fusarium falciformis and Fusarium keratoplasticum (Zhang 

et al., 2006; O’Donnell et al., 2008; Short et al., 2013, 2014).  

The two citrus FOSC isolates from South Africa in Clade 4 (O’Donnell et al., 1998, 

2004) was only obtained from the Hoedspruit and Letsitele areas, whereas the other 11 FOSC 

citrus isolates from Clade 3 were from all four production regions. The two clades indicate that 

the isolates are polyphyletic and define evolutionary events. The clades are not informative in 

terms of pathogenicity towards citrus. The citrus FOSC isolates were related to several 

Fusarium oxysporum and F. oxysporum f.sp. sequences in the TEF phylogeny. It is known 

that housekeeping genes such as TEF, cannot differentiate between non-pathogenic F. 

oxysporum isolates and pathogenic F. oxysporum formae speciales. Therefore, the grouping 

of some of the citrus isolates with specific F. oxysporum formae speciales sequences, does 

not provide an indication of their pathogenicity (Leslie and Summerell, 2006).  

The results from this study indicated that the Fusarium isolates collected from citrus 

soils in South Africa were phylogenetically much more diverse than previously thought. The 

thirteen isolates representing putative new species within the FSSC and closely related to 

Fusarium falciformis should be further investigated. The N. croci, N. solani isolate and the 

FSSC isolate related to it, will be of particular interest in pathogenicity assays, since it has 

been associated with citrus dry rot in Italy (Sandoval-Denis et al., 2017). Morphological studies 

of all of the citrus isolates and pathogenicity testing should be done to determine whether the 

isolates are pathogenic to citrus. Future studies should furthermore focus on other citrus 

production areas such as the Western Cape and Mpumalanga to identify species in these 

areas and compare it to the findings in this study. The current study only included isolates 

from the Eastern Cape and Limpopo province.   
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TABLES AND FIGURES 

 

Table 1. Fusarium and Neocosmospora isolates originating from four citrus production areas 

(Patensie, Addo, Hoedspruit and Letsitele) used in phylogenetic studies. 

Strain number Species name Province Production area 

STEU 8448 * Neocosmospora solani Eastern Cape Patensie 

STEU 8449 * Neocosmospora solani Eastern Cape Patensie 

STEU 8450 # Neocosmospora solani Eastern Cape Addo 

STEU 8451 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8452 x Fusarium sp. Limpopo Letsitele 

STEU 8453 * Fusarium sp. Eastern Cape Patensie 

STEU 8454 * Neocosmospora solani Eastern Cape Patensie 

STEU 8455 # Fusarium sp. Eastern Cape Addo 

STEU 8456 ^ Neocosmospora solani Limpopo Hoedspruit 

STEU 8457 * Neocosmospora solani Eastern Cape Patensie 

STEU 8458 * Neocosmospora solani Eastern Cape Patensie 

STEU 8459 * Neocosmospora solani Eastern Cape Patensie 

STEU 8460 # Neocosmospora solani Eastern Cape Addo 

STEU 8461 # Neocosmospora solani Eastern Cape Addo 

STEU 8462 # Neocosmospora croci Eastern Cape Addo  

STEU 8463 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8464 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8465 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8466 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8467 # Neocosmospora solani Eastern Cape Addo 

STEU 8468 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8469 ^ Neocosmospora solani Limpopo Hoedspruit 

STEU 8470 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8471 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8472 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8473 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8474 # Neocosmospora solani Eastern Cape Addo 

STEU 8476 # Neocosmospora solani Eastern Cape Addo 

STEU 8477 ^ Fusarium sp. Limpopo Hoedspruit 

STEU 8478 * Neocosmospora solani Eastern Cape Patensie  

Stellenbosch University  https://scholar.sun.ac.za



 

84 
 

Strain number Species name Province Production area 

STEU 8479 * Neocosmospora solani Eastern Cape  Patensie 

STEU 8480 # Neocosmospora solani Eastern Cape Addo 

STEU 8481 ^ Neocosmospora solani Limpopo Hoedspruit 

STEU 8482 # Neocosmospora solani Eastern Cape Addo 

STEU 8483 # Neocosmospora solani Eastern Cape Addo 

STEU 8484 # Neocosmospora solani Eastern Cape Addo 

STEU 8486 x Neocosmospora solani Limpopo Letsitele 

STEU 8487 ^ Neocosmospora solani Limpopo Hoedspruit 

STEU 8488 ^ Neocosmospora solani Limpopo Hoedspruit 

STEU 8489 # Fusarium oxysporum Eastern Cape Addo 

STEU 8491 # Fusarium oxysporum Eastern Cape Addo 

STEU 8492 ^ Fusarium oxysporum Limpopo Hoedspruit  

STEU 8494 ^ Fusarium oxysporum Limpopo Hoedspruit 

STEU 8499 ^ Fusarium oxysporum Limpopo Hoedspruit 

STEU 8508 ^ Fusarium oxysporum Limpopo Hoedspruit 

STEU 8510 * Fusarium oxysporum Eastern Cape Patensie 

STEU 8511 # Fusarium oxysporum Eastern Cape Addo 

STEU 8512 ^ Fusarium oxysporum Limpopo Hoedspruit 

STEU 8514 x Fusarium oxysporum Limpopo Letsitele 

STEU 8515 x Fusarium oxysporum Limpopo Letsitele 

STEU 8516 ^ Fusarium oxysporum Limpopo Hoedspruit 

STEU 8517 x Fusarium oxysporum Limpopo Letsitele 

* Representing STEU isolates from Patensie production area 

# Representing STEU isolates from Addo production area 

X Representing STEU isolates from Letsitele production area 

^ Representing STEU isolates from Hoedspruit production area 
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Table 2. Primers, primer sequences and annealing temperatures used as putative molecular markers for the identification of Fusarium and 

Neocosmospora species. 

Target  

area Primers Sequence 

Annealing 

Temp (°C) References 

TEF EF1 / EF2 ATGGGTAAGGARGACAAGAC / GGARGTACCAGTSATCATGTT 55 O’Donnell et al., 1998 

RPB2 RPB2-5F2 / RPB2-7R GGGGTGACCAGAAGAAGGC / CCCATRGCTTGYTTRCCCAT 55 
O’Donnell et al., 2008; 2010 

Lui et al., 1999 

 RPB2-7F / RPB2-11aR ATGGGYAARCAAGCYATGGG / GCRTGGATCTTRTCRTCSACC 55 Lui et al., 1999 
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Figure 1: Maximum likelihood (ML) phylogenetic tree of Fusarium and Neocosmospora 

species which was based on the translation elongation factor 1-alpha (TEF) and RNA 

polymerase II second largest subunit (RPB2) sequence data. Bootstrap support values were 

calculated from 1000 replicates and bootstrap support of 60% and higher are shown. Nectria 

illudens and Nectria plangianthi was used as the outgroups. Isolates obtained in this study are 

indicated in bold.   
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Figure 2: Maximum parsimony (MP) and maximum likelihood (ML) phylogenetic tree of 

Fusarium and Neocosmospora species which was based on translation elongation factor 1-

alpha (TEF) sequence data. Bootstrap support values were calculated from 1000 replicates 

and bootstrap support of 60% and higher are shown. Nectria illudens and Nectria plangianthi 

was used as the outgroups. Isolates obtained in this study are indicated in bold.  
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Figure 3: Maximum parsimony (MP) and maximum likelihood (ML) phylogenetic tree of 

Fusarium species which was based on translation elongation factor 1-alpha (TEF) sequence 

data. Bootstrap support values were calculated from 1000 replicates and bootstrap support of 

60% and higher are shown. Fusarium circinatum and Fusarium commune was used as the 

outgroups. Isolates obtained in this study are indicated in bold  
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Figure 4: Maximum likelihood (ML) phylogenetic tree of Fusarium species which was based 

on the translation elongation factor 1-alpha (TEF) and RNA polymerase II second largest 

subunit (RPB2) sequence data. Bootstrap support values were calculated from 1000 

replicates and bootstrap support of 60% and higher are shown. Fusarium polyphialidicum and 

Fusarium concolor was used as the outgroups. Isolates obtained in this study are indicated in 

bold.  
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