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ABSTRACT 

 

The leadership-for-performance framework designed by Spangenberg and Theron (2004) aspires 

to explicate the structural relationships existing between leader competency potential, leadership 

competencies, leadership outcomes and the dimensions of organizational unit performance. The 

Performance Index (PI) and Leadership Behaviour Inventory (LBI) comprise the leadership-for-

performance range of measures. The PI was developed as a comprehensive criterion measure of 

unit performance for which the unit leader could be held responsible. The basic PI structural 

model has been developed to explain the manner in which the various latent leadership 

dimensions measured by the LBI affect the eight unit performance latent variables that are 

assessed by the PI. Although preliminary research suggests the basic PI structural model could be 

refined, continued research in this regard can only be justified if the basic PI measurement model 

is shown to be measurement invariant across independent samples from the target population. As 

part of ongoing research of the leadership-for-performance range of measures, this cross-

validation study investigated the extent to which the PI measurement model may be considered 

measurement invariant across two independent samples from the same population. Two samples 

were collected through non-probability sampling procedures and included 277 and 375 complete 

cases after imputation by matching. Item analysis and dimensionality analysis were performed on 

each of the PI sub-scales prior to the formation of item parcels.  No items were excluded based 

on item- and dimensionality analysis results. Two composite indicator variables (item parcels) 

were created from the items of each sub-scale and were treated as continuous variables in the 

subsequent statistical analyses. Structural equation modelling, using robust maximum likelihood 

estimation, was used to perform a confirmatory first-order factor analysis on the item parcels for 

each sample. The measurement model was fitted to both samples independently and close fit for 

each sample was established. The measurement model was cross-validated using a progressive 

series of measurement invariance tests. Results indicated the PI measurement model did not 

display full measurement invariance across the two samples although it did cross-validate 

successfully under the configural invariance condition. Statistically significant non-equivalence 

was found to exist in both the measurement error variances and the factor covariances (p<0,05), 

although the p<0,05 critical value was only narrowly surpassed in both cases. The measurement 

model did, however, display metric invariance across the samples as no significant differences 

were found between the factor loadings, suggesting the content of each item is perceived and 

interpreted in a similar manner across samples from the target population. When considered in 

combination, these results may be viewed as quite satisfactory as they indicate that the 
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measurement model does not appear to vary greatly when fitted to data from the two samples. As 

this study has established at least metric invariance of the PI, it therefore provides some basis of 

confidence for proceeding with subsequent research aimed at establishing the structural 

invariance of the basic PI structural model and eventually research that links the leadership 

behaviour to work unit performance as measured by the PI.  Limitations of this study are 

discussed. 
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OPSOMMING 

 

Die leierskap-prestasieraamwerk daargestel deur Spangenberg en Theron (2004) het as doel om 

die strukturele verwantskappe wat tussen leierskapbevoegdheidspotensiaal, 

leierskapbevoegdhede, leierskapuitkomste en die dimensies van organisatoriese eenheidprestasie 

bestaan eksplisiet te maak.  Die Performance Index (PI) en die Leadership Behaviour Inventory 

(LBI) verteenwoordig die huidige leierskap-gerig-op-prestasiemeetinstrumentreeks Die PI is 

ontwikkel as ‘n omvattende kriteriummeting van organisatoriese prestasie waarvoor die leier van 

die eenheid aanspreeklik gehou sou kon word.   Die oogmerk met die ontwikkeling van die 

basiese PI strukturele model is om die wyse waarop die onderskeie latente leierskapdimensies wat 

deur die LBI gemeet word die agt organisatoriese eenheidsprestasiedimensies wat deur die PI 

gemeet word, affekteer.  Ofskoon voorlopige navorsing daarop dui dat die basiese PI strukturele 

model verfyn sou kon word, sou voortgesette navorsing in hierdie verband slegs geregverdig kon 

word indien die metingsinvariansie van die basiese PI metingsmodel oor onafhanklike 

steekproewe uit die teikenpopulasie aangetoon sou kon word.  As deel van die voorgesette 

navorsing op die leierskap-vir-prestasieprodukreeks ondersoek hierdie kruisvalidasiestudie die 

mate waartoe die PI metingsmodel as metingsinvariant beskou kan word oor onafhanklike 

steekproewe uit dieselfde populasie.  Twee steekproewe is versamel deur middel van nie-

waarskynlikheidsteekproefnemingsprosedures en het 277 en 375 waarnemings ingesluit na 

imputasie deur middel van afparing.  Itemontleding en dimensionaliteitontleding is op elk van die 

PI subskale uitgevoer voor die vorming van itempakkies.  Geen items is op grond van die item-en 

dimensionaliteitontledingsresultate geëlimineer nie. Twee saamgestelde waargenome veranderlikes 

(itempakkies) is uit die items van elke subskaal bereken en is as deurlopende veranderlikes in die 

daaropvolgende statistiese ontledings hanteer.  Strukturele modellering is met behulp van 

maksimumaanneemlikheidskattingstegnieke gebruik om ‘n bevestigende faktorontleding op die 

itempakkies op elk van die steekproewe uit te voer.  Die metingsmodel is onafhanklik op die twee 

steekproewe gepas en nou passing is vir elk van die steekproewe gevind.  Die metingsmodel is 

vervolgens gekruisvalideer deur ’n reeks opeenvolgende metingsinvariansietoetse.  Die resultate 

het aangetoon dat die PI metingsmodel nie volle metingsinvariansie oor die twee steekproewe 

toon nie ofskoon dit wel suksesvol onder die konfigurale-invariansietoestand suksesvol 

gekruisvalideer het.  Statisties beduidende gebrek aan ekwivalensie (p<0,05) is gevind in beide die 

metingsfoutvariansies en die faktorkovariansies, ofskoon die p<0,05 kritieke waarde in beide 

gevalle slegs nouliks oorskrei is.  Die metingsmodel het egter metriese-ekwivalensie oor die twee 

steekproewe getoon insoverre geen beduidende versille in faktorladings oor steekproewe gevind 
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is nie.  Dit impliseer dat die inhoud van die items eenders waargeneem en geïnterpreteer is oor 

die twee steekproewe uit die tekenpopulasie.  Wanneer die resultate in in kombinasie beoordeel 

word is die gevolgtrekking heel bevredigend insoverre dit daarop dui dat daar nie groot versille 

bestaan wanneer die metingsmodel op die data van die twee steekproewe gepas word nie.  

Insoverre hierdie studie ten minste die metriese ekwivalensie van die PI aangetoon het baan 

hierdie studie die weg om voort te gaan met navorsing gerig op die strukturele ekwivalensie van 

die basiese PI strukturele model en uiteindelik dan ook navorsing gerig op die koppeling tussen 

leierskapgedrag en organisatoriese eenheidprestasie soos gemeet deur die PI  Beperkinge waaraan 

die studie onderworpe is word bespreek. 
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CHAPTER 1 

ON THE NEED FOR A CROSS-VALIDATED COMPREHENSIVE UNIT 

PERFORMANCE MEASURE 

 

 

1.1 INTRODUCTION 

 

To meet the challenge of sustained competitiveness and profitability in the context of immense 

international and domestic competition and change, organisations are increasingly focusing on 

the extent to which leaders are able to positively influence the performance of their individual 

followers and work units (Bass, Avolio, Jung & Berson, 2003; Bunderson & Sutcliffe, 2003; 

House, 1998; Kolb, 1996; Yukl, 2002).  This realisation has led researchers and practitioners to 

pay more attention to the relationship between leaders’ behavioural competencies and individual 

or work unit performance.  As the importance of contributions of work unit performance 

towards organisational performance has become increasingly acknowledged, so has the need to 

effectively measure work unit performance become a reality.   

 

This chapter discusses the need for a comprehensive work unit performance measure and 

provides examples of measures of work unit performance used in recent research.  The 

development and underlying structure of the Performance Index (PI) is discussed in relation to 

this need.   

 

1.2 UNIT PERFORMANCE MEASURES: THE NEED FOR A COMPREHENSIVE MEASURE 

 

Most research on workplace effectiveness has historically focused on performance outcomes at 

the individual employee level and comparatively less is known about work unit performance and 

its antecedents (Gelade & Ivery, 2003).  Although individual effectiveness is undoubtedly an 

essential component of superior work unit performance, many types of organisational behaviour 

(e.g. climate) and many indicators of organisational performance are more relevant to the work 

unit.  In addition, typical traditional measures of work unit performance characteristically fall 

short of what is required of today’s measures as they do not encompass all the performance 

dimensions for which the unit leader should be held accountable (Green, Madjidi, Dudley & 

Gehlen, 2001; Sale & Inman, 2003; Spangenberg & Theron, 2004).    
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In contrast, effective measures of performance should enable an organisation to identify what to 

improve on, and how best to use its limited resources more effectively in order to facilitate this 

improvement (Kanji, 2002).  Traditional measures fall short of this criteria in three ways.  Firstly, 

traditional measures almost exclusively focus on financial measures which tend to reflect the 

consequences of decisions, sometimes well after decisions have been made.  Thus, they are 

generally considered to be lagging indicators that have little predictive power.  Secondly, 

traditional measures tend to focus on outcomes, rather than processes that are at the core of 

management.  Process management requires more transversal measures, which traditional 

systems do not provide.  Thirdly, traditional measures are seen to promote a short-term vision 

and the overemphasis of conforming to conventional standards rather than seeking innovative 

solutions (Kanji, 2002).   

 

1.3 EXAMPLES OF MEASURES OF UNIT PERFORMANCE 

 

In a review of research in which measures of unit performance were employed, substantially 

fewer researchers used a more balanced approach to measuring unit performance that included 

both financial and non-financial measures, rather than only traditional financial measures (Sale & 

Inman, 2003).  Examples of traditional measures of work unit performance identified in recent 

research include: “the bosses’ perception of whether the unit was performing above average 

compared to other units reporting to the boss” (Javidan & Waldman, 2003, p.  231); profitability 

relative to targets or units sold (Avolio, Howell & Sosik, 1999; cited in Safferstone 1999, p.  103; 

Bunderson & Sutcliffe, 2002) or simply net operating profits before tax (Bunderson & Sutcliffe, 

2003).   

 

Similarly, in the non-profit context where the need for non-financial measures of performance is 

apparent, the effectiveness of non-profit organisations has proved a difficult concept to define 

and operationalise, although such organisations exist to render a public service and logically their 

effectiveness should be measured by how well they perform this service, and not only by financial 

performance.  Nonetheless, not-for-profit performance measures that are traditionally used tend 

to mirror that of for-profit organisations as they also focus on medium to short-term goal 

achievement, and have been criticised for the lack of emphasis placed on evaluating processes 

used to attain these goals that would sustain performance (Green et al., 2001).   
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In comparison, good performance measures should cover a broad spectrum of measures and 

provide data not only on financial success, but also an organisation’s strategic issues, such as 

quality, responsiveness and flexibility.  They should include multiple measures in order to avoid 

misleading interpretations resulting from the use of a single dimension or a narrow definition of 

performance (Sale & Inman, 2003).  Such measures should also achieve compatibility and 

integration and align core business processes, and be valid, reliable and easy to use (Kanji, 2002).  

A reason why traditional measures continue to be used so widely was proposed by Sale and 

Inman (2003) who recognised that although research indicates that pay is increasingly linked to a 

business unit or organisation’s ability to respond to its competitive realities, performance 

incentives (for example, gain sharing, profit sharing, and productivity dividends) are typically 

based on traditional financial performance measures.   

 

Although measures of work unit performance are far from perfect, the situation is not entirely 

one-sided.  In a review of performance measurement research, Forbes (1998) recognized that 

non-conventional, ‘emergent’ approaches to measuring effectiveness were increasingly being 

used.  An example that supports Forbes’ analysis includes Globerson and Riggs’ (1989) paper 

which called for measuring unit performance along several dimensions.  Globerson and Riggs 

(1989) promoted the use of operational performance criteria in addition to traditional financial 

measures that would allow managers to make better short-term operating decisions that promote 

long-term organisational productivity.  They included five types of operational measures in a 

matrix proposed for developing performance objectives and indicators, namely: (a) output 

quantity, (b) resource utilization, (c) operating efficiency, (d) quality and timeliness, (e) employee 

behaviour.   

 

A further example is the introduction of The Balanced Scorecard (BSC) by Kaplan and Norton 

(1992) that is considered by some as a great step forward towards overcoming some of the 

limitations of the traditional financial measures, and is widely used by businesses and therefore 

deserves a mention in this discussion (Lipe & Salterio, 2000).  The BSC includes financial 

measures, customer relations, internal business processes and organisational learning and growth 

activities (Kaplan & Norton, 1996a).  The BSC is fairly complex and relatively costly to develop 

and implement as it needs to be tailored to each unit’s goals and strategies, and allows for specific 

indicators to be chosen for each individual business unit.   However, the BSC is at a disadvantage 

in circumstances in which a generic, standardized work unit performance measure is required to 
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compare many leaders’ behaviours to their work unit’s performance for the purpose of 

improving leader effectiveness and ultimately unit performance.   

 

Recent research by Loughry (2002), Fay, Luhrmann and Kohl (2004), Gibson and Birkinshaw 

(2004), Gelade and Ivery (2003), and Watson and Wooldridge (2005) also support Forbes’ (1998) 

claim that more balanced approaches to measuring unit effectiveness are being employed.  

Loughry (2002) used two measures of performance to examine the relationship between peer 

monitoring levels in work units and the work units’ performance.  Overall unit performance was 

measured through the manager’s evaluation of the units’ overall performance including speed of 

service, guest courtesy, quantity of work, quality of work, cleanliness of area, teamwork and value 

of services provided by the unit.  Problem-free performance included managers’ evaluation of the 

degree to which the work units were free of employee behaviour problems such as absenteeism, 

tardiness, disciplinary problems, mistakes and accidents, and employee bickering.    
 

Similarly, Fay et al. (2004) asked managers to rate their units’ performance on six specific 

performance aspects, using 5-point Likert type scales with 5 referring to what the managers 

perceived to be a “very good result’’ and 1 referring to a ‘‘very poor result’’.  Three aspects 

referred to performance regarding the effectiveness of business processes: time wasted on 

process barriers; speed of core business processes; productivity; and three aspects assessed the 

financial side of centre performance: profits, business volume, and deviations from planned 

budgets.  A study by Gelade and Ivery (2003) evaluated the effectiveness of human resource 

management on performance.  For this research a composite measure of overall unit 

performance was computed by averaging the standardized scores for sales against target, 

customer satisfaction, staff retention, and clerical accuracy. 

 

Gibson and Birkinshaw (2004) measured unit performance using four items that required senior 

and middle management respondents to reflect on work unit performance over the last five years 

and indicate the degree to which they agreed with the following: (1) “This business unit is 

achieving its full potential”, (2) “People at my level are satisfied with the level of business unit 

performance”, (3) “This business unit does a good job of satisfying our customers”, and (4) “This 

business unit gives me the opportunity and encouragement to do the best work I am capable of”.  

An external validity check was conducted on this performance measure by comparing it to 

financial performance indicators, including return on assets (ROA), return on equity (ROE), and 

shareholder return over a five-year period for each company.  The measures of financial 

performance were found to be highly correlated with aggregated measures of subjective 
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performance as rated by senior managers, lending strong external validity to the subjective 

performance measure.   

 

In order to examine the influence of business unit managers on corporate-level strategy 

formulation, Watson and Wooldridge (2005) used a questionnaire formulated by Gupta and 

Govindarajan (1986, cited in Watson and Wooldridge, 2005, p. 148) to measure work unit 

performance.  This measure provides a weighted average of business unit performance from the 

following two questions:  (1) How important is each of the following dimensions of the 

performance to your organization: (a) return on investment, (b) profit, (c) cash flow from 

operations, (d) cost control, (e) development of new products, (f) sales volume, (g) market share, 

(h) market development, (i) personnel development, and (j) political-public affairs? (2) How 

effective is your organization on each of the following dimensions of performance: (a) return on 

investment, (b) profit, (c) cash flow from operations, (d) cost control, (e) development of new 

products, (f) sales volume, (g) market share, (h) market development, (i) personnel development, 

and (j) political-public affairs? For each dimension, respondents were asked to indicate the 

performance of the business unit relative to its industry competitors on a seven-point scale, and 

the importance of the dimension on a five-point scale.   

 

The above examples highlight similarities and shortcomings relating to how work unit 

performance is currently measured.  Firstly, the lack of consensus as to what a measure of work 

unit performance should include is quite apparent as almost all measures differed substantively.  

Secondly, traditional measures of unit performance which are typically lagging measures continue 

to be used in isolation, whereas a more balanced approach that includes both financial and non-

financial measures would allow researchers increased confidence in their research findings.  By 

far the most comprehensive measure used in recent research appears to be Gupta and 

Govindarajans’ (Watson and Wooldridge, 2005)  measure which was originally been designed for 

a study that researched resource sharing among business units.  However, this measure does not 

appear to have been used extensively as no other reference to it could be found in the literature 

survey, and there is no information on the theoretical model or validity and reliability of the 

measure.  Lastly, most of the measures are highly subjective.  Only the study of Gibson and 

Birkinshaw (2004) established the external validity of their performance measure.  The above 

examples of recent research that included measures of work unit performance support the 

conclusion by Spangenberg and Theron (2002) that there is no generic standardized measure of 

work unit performance that can serve as a criterion measure of work unit performance.   
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1.4 THE DEVELOPMENT AND UNDERLYING STRUCTURE OF THE PERFORMANCE INDEX 

 

This above mentioned shortage of generic and standardized measures of work unit performance 

that could serve as a criterion variable became apparent to Spangenberg and Theron (2002; 2004) 

when they needed to validate the Performance Management Audit Questionnaire, (Spangenberg 

& Theron, 1997) and more recently in the design of the Leadership Behaviour Inventory (LBI).  

The LBI is a comprehensive leadership questionnaire that serves to identify latent leadership 

dimensions on which a leader under-performs.  The LBI forms one component of Spangenberg 

and Theron’s (2004) envisaged leadership-for-performance framework.  The leadership-for-

performance framework aspires to explicate the structural relationships existing between leader 

competency potential, leadership competencies, leadership outcomes and the dimensions of unit 

performance (Theron, Spangenberg & Henning, 2004).   To develop and evaluate this 

framework, a comprehensive conceptualization of organizational work unit performance and a 

corresponding performance measure that could be used in conjunction with the LBI were 

required.   

 

In their review of available measures, Spangenberg and Theron (2004) identified two 

psychometric measures of organisational performance that were applicable to their needs, namely 

Nicholson and Brenner’s (1994) dimensions of perceived organisational performance, and the 

Unit Performance Questionnaire (UPQ) (Cockerill, Shroder & Hunt, 1993, cited in Spangenberg 

& Theron, 2004, p. 19).  As with the examples referred to in the above chapter though, neither of 

these performance measures covered the unit performance domain comprehensively enough to 

successfully serve the purpose of a work unit criterion measure (Spangenberg & Theron, 2004).  

In response to this need Spangenberg and Theron (2004) developed a generic, standardized unit 

performance measure, the Performance Index (PI), which encompasses the unit performance 

dimensions for which the unit leader could be held responsible. 

 

The PI was built on a comprehensive structural model of work unit performance effectiveness 

that was based on literature targeting financial and non-financial performance measures of 

organisational effectiveness (Spangenberg and Theron, 2004).  The resulting PI model is a 

synthesis of Nicholson and Brenner's (1994) systems approach, Conger and Kanungo's 

leadership outcomes (Conger and Kanungo, 1998), and Gibson, Ivancevich and Donelly’s (1991) 

time-dimension model of organisational performance.  The final version of the Performance 

Index questionnaire includes 56 questions which cover eight latent dimensions of unit 
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performance.  The dimensions, with a brief description of each dimension, are presented in Table 

1.   

 

TABLE 1 

BRIEF SUMMARIES OF THE PI UNIT PERFORMANCE DIMENSIONS 

(Theron, Spangenberg & Henning, 2004, p. 36) 

 

The PI uses a Likert-type scale with descriptive responses ranging from 1 (describes poor 

performance for the item) to 5 (describes exceptional performance for the item).  Respondents 

may select a non-observable rating as a last resort if they believe that they are not in a position to 

accurately evaluate the work unit on the particular dimension.   

 

1.  Production and 

efficiency 

Refers to quantitative outputs such as meeting goals, quantity, quality and cost-

effectiveness, and task performance. 

2.  Core people 

processes 

Reflect organisational effectiveness criteria such as goals and work plans, 

communication, organisational interaction, conflict management, productive clashing of 

ideas, integrity and uniqueness of the individual or group, learning through feedback and 

rewarding performance. 

3.  Work unit climate Refers to the psychological environment of the unit, and gives an overall assessment of 

the integration, commitment and cohesion of the unit.  It includes working atmosphere, 

teamwork, work group cohesion, agreement on core values and consensus regarding the 

vision, achievement-related attitudes and behaviours and commitment to the unit. 

4.  Employee 

satisfaction 

Considers individual’s satisfaction with the task and work context, empowerment, and 

career progress, as well as with outcomes of leadership, e.g. trust in and respect for the 

leader and acceptance of the leader's influence. 

5.  Adaptability Reflects the flexibility of the unit's management and administrative systems, core 

processes and structures, capability to develop new products/services and versatility of 

staff and technology.  It reflects the capacity of the unit to respond appropriately and 

expeditiously to change. 

6.  Capacity (wealth of 

resources) 

Reflects the internal strength of the unit, including financial resources, profits and 

investment, physical assets and materials supply and quality and diversity of staff.   

7.  Market 

share/scope/ 

standing 

Includes market share (if applicable), competitiveness and market-directed diversity of 

products or services, customer satisfaction and reputation for adding value to the 

organisation. 

8.  Future growth Serves as an overall index of projected future performance and includes profits and 

market share (if applicable), capital investment, staff levels and expansion of the unit. 



 8 
 

1.5 PREVIOUS RESEARCH ON THE PERFORMANCE INDEX MODEL FIT  

 

As a comprehensive criterion measure of unit performance, the PI model is intended to explain 

the manner in which the various latent leadership dimensions measured by the LBI affect the 

eight unit performance latent variables that are assessed by the PI.  Before such research may be 

conducted the PI should be cross-validated across samples of the target population.  Conducting 

cross-validation research would, however, not be appropriate without the foundation of prior 

research by Henning, Theron and Spangenberg (2003) and Theron, Spangenberg & Henning 

(2004) which investigated the internal structure of the PI.   

 

In their initial study, Henning et al. (2003) suggested hypotheses on the inter-relationships 

between the eight unit performance latent variables described above.  Confirmatory factor 

analysis was performed and the results indicated satisfactory factor loadings on the measurement 

model which supported acceptable measurement model fit.  The proposed structural model of 

the PI was also found to have good fit and these initial findings suggested that the eight 

dimensions of the PI model should be seen to influencing each other as illustrated in the 

structural model in Figure 1.   

FIGURE 1 

THE ORIGINAL PERFORMANCE INDEX STRUCTURAL MODEL 

(Theron, Spangenberg & Henning, 2004, p.  37) 
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However, the Henning et al. (2003) study also produced some unexpected findings as the results 

failed to find support for the hypotheses that there are directional linkages between Capacity and 

Production & Efficiency, Adaptability and Production & Efficiency.  In addition, preliminary 

analyses by Henning et al. (2003) suggested three elaborations to the initially proposed model.  In 

the case of two of the latent variables, factor fission was found to result in conceptually 

meaningful divisions of the original unit performance dimensions in question.  Results of the 

Henning et al. (2003) study suggested the inclusion of an additional path in the original model, 

representing the influence of market standing on the wealth of resources to which the unit has 

access.  The Henning et al. (2003) study also found empirical support for the addition of this path 

although the ex post facto nature of the study’s research design precluded the drawing of causal 

inferences from significant path coefficients.   

 

Based on these findings, Henning et al. (2003) proposed a theoretically meaningful refinement of 

the original PI structural model.  The Henning et al. (2003) study, however, chose not to follow 

up on these findings to refine the original unit performance model, but rather first to establish 

the merits of the simpler, initial model.  In a later study, Theron, Spangenberg and Henning 

(2004) tested the model fit of this elaborated model and found both the original and elaborated 

PI model to have acceptable model fit.  The results of the Theron et al. (2004) study mirrored the 

unexpected findings of Henning et al. (2003) as they failed to find support for the hypotheses that 

there are directional linkages between Climate and Production & Efficiency, as well as Capacity 

and Production & Efficiency, Adaptability and Production & Efficiency.   The results of the 

previous studies by Henning et al. (2003) and Theron et al. (2004) highlight a need to further 

investigate whether the additional alterations to the PI model as proposed by Henning et al. 

(2003) are required.  Prior to undertaking further research on the existence of possible interaction 

effects between the PI latent variables Climate, Adaptability, Capacity and Production and 

Efficiency it is, however, necessary to cross-validate the measurement model using independent 

samples within the sample population (Diamantopoulos & Sigauw, 2000).  If at least partial 

measurement invariance would be indicated, the structural invariance of the basic PI model 

proposed by Henning et al. (2003) would moreover have to be examined.  Only if the Henning et 

al. (2003) findings that no direct causal linkages exist between Climate and Production & 

Efficiency as well as between Capacity and Production & Efficiency, and between Adaptability 

and Production & Efficiency would hold up in a cross validation sample, would further research 

on the existence of possible interaction effects between the PI latent variables Climate, 

Adaptability, Capacity and Production & Efficiency be truly justified. 
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CHAPTER 2 

MEASUREMENT INVARIANCE 

 

 

2.1 RESEARCH OBJECTIVE: ESTABLISHING THE MEASUREMENT INVARIANCE OF THE 

PERFORMANCE INDEX  

 

Invariance research in general pertains to the question whether measurement and/or structural 

model parameters differ across different (cultural, gender, racial, age) groups sampled from 

different populations.  Vandenberg (2002, p. 141) illustrates the need for establishing the 

measurement invariance of an instrument across different populations through the following 

thought-provoking questions that reflect some of the typical situations researchers may be faced 

with:  

• Do individuals from different cultures interpret and respond to a given measurement instrument using the same 

conceptual frame of reference?  

• Do rating sources (for example in a 360-performance rating situation) use the same definition of performance 

when rating the same person on the same performance dimension? 

• Are there individual differences that trigger the use of different frames of references when responding to 

measures?  

• Does a process that is purposely altered such as an organisation intervention also change the conceptual frame 

of reference against which responses are made?  

 

Given the scenarios alluded to by these questions, it makes sense that establishing the 

measurement invariance of an instrument across groups should be a prerequisite to conducting 

substantive cross-group comparisons.  Without evidence that supports the invariance of an 

instrument, the basis for drawing scientific inference should be considered as severely lacking 

(Horn & McArdle, 1992, cited in Vandenberg & Lance, 2000, p.  9).  In addition, if invariance is 

not yet established for a measure such as the PI or if there is evidence that suggests the measure 

has significant variance across different groups within the same population, findings of 

differences between individuals and groups cannot be unambiguously interpreted which in turn 

raises questions about using the specific instrument within these groups (Steenkamp & 

Baumgartner, 1998).   
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Cross-validation is a specific application of the more general form of invariance research 

(Diamantopoulos & Sigauw, 2000).  This study takes the first step in the cross-validation process 

discussed above, as it poses the research question of whether there is convincing evidence that 

the current measurement model cross-validates successfully to an independent sample within the 

same population.  In answering this question this study examines if respondents from a different 

sample from the same target population interpret the PI indicators in a conceptually similar 

manner, through tests of measurement invariance (Byrne & Watkins, 2003; Diamantopoulos & 

Siguaw, 2000; Mavondo, Gabbott & Tsarenko, 2003).   

 

Tests of measurement invariance and structural invariance make-up the broader and longer-term 

process of cross-validation that seeks to establish the invariance of the PI measurement and 

structural model parameters across independent samples from the target population and, in doing 

so, support the generalization of the Henning et al. (2003) and Theron et al. (2004) findings on the 

PI across different samples from the target population.  Tests of measurement invariance test the 

assumption that the indicator variables are interpreted in a conceptually similar manner by 

examining the fit of the measurement model across independent samples from the target 

population.  In comparison, tests of structural invariance test the assumption that the underlying 

theoretical construct elicits the same conceptual frame of reference by examining the fit of the 

structural model across independent samples of the target population (Byrne & Watkins, 2003; 

Mavondo et al., 2003; Vandenberg, 2002).  As such, establishing the measurement invariance of 

the PI is a necessary prerequisite to establishing structural invariance (Mavondo et al., 2003; 

Pousette & Hanse, 2002; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). 

 

Although the importance of investigating invariance across qualitatively different groups within 

the same target population and/or independent samples from the same target population is self-

evident, it is not routinely established for measures used in organisational research even though 

specific aspects of invariance can be established by means of Confirmatory Factor Analysis 

(CFA) and Structural Equation Modeling (SEM) (Diamamtopoulos & Siguaw, 2000; Vandenberg 

& Lance, 2000).  The general lack of invariance studies is attributed to various factors (Lubke & 

Muthen, 2004; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000).  Firstly, the array 

of different types of invariance found in literature and the lack of agreed-upon terminology to 

refer to these different kinds of invariance is quite bewildering.  Secondly, testing for different 

kinds of invariance often involves considerable methodological complexities including testing 

measurement models that incorporate the latent and observed variable which researchers tend to 
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be unfamiliar with.  Lastly, there are very few clear guidelines that may be used to ascertain 

whether or not a measure exhibits adequate invariance. 

 

In recent years some authors, for example Byrne and Watkins (2003); Cheung and Rensvold 

(2000); Mavondo et al. (2003); Steenkamp and Baumgartner (1998); Vandenberg and Lance 

(2000), and Vandenberg (2002) amongst others, have endeavoured to clarify key invariance issues 

and proposed best practices for establishing invariance.  Although terminology used by these 

authors continues to differ (especially between researchers focusing on consumer research and 

those focusing on organisational behaviour) and is likely to confuse readers who are not experts 

in the field of invariance, there appears to be a narrowing towards a uniform understanding of, 

and approach towards invariance research.   

 

However, there appears to be an increasing awareness of the need to establish the invariance of 

instruments used in multigroup contexts or in the same population across time (Steenkamp & 

Baumgartner, 1998; Vandenberg, 2002; Mavondo et al., 2003).  This need is supported by the 

findings of Vandenberg and Lance (2000) that conducted an extensive review of studies that 

employed invariance methodology and found that there were many cases in which researchers 

would have made inaccurate inferences if they had not examined the invariance of the 

instrument(s) they were using.  Studies which examined the differences between groups, 

measured by differences in group means, were noted by Vandenberg and Lance (2000) as being 

particularly susceptible to inaccurate conclusions had they not established invariance.  

Vandenberg (2002) concluded that by establishing the invariance of the instruments being used 

researchers may conclude with more confidence that the observed differences between groups 

are a function of the substantive phenomenon being examined and not due to some 

measurement artefact. 

 

Based on the above discussion, the PI may only be considered invariant across groups if it meets 

the requirements of both measurement invariance and structural invariance.  Although this study 

only examines the measurement invariance of the PI across independent samples from the target 

population and not the structural invariance of the PI, it nonetheless forms part of the ongoing 

research of the leadership-for-performance range of measures designed by Spangenberg and 

Theron (2004).  Thereby this study takes the initial step towards establishing the degree of 

confidence with which the PI may be used across different groups within the target population.  
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Similarly, establishing the invariance of the PI will also enhance the confidence of findings of 

research that links the leadership behaviour to work unit performance.   

 

Furthermore, establishing the invariance (both measurement and structural invariance) of the PI 

across samples of the same population will justify future research in which the PI may be used 

for meaningful comparisons between groups, provided the invariance has been established 

between qualitatively different groups being compared (Durvasula, Andrews, Lysonski, & 

Netemeyer, 1993; Mavondo et al., 2003).  In particular, the theory-based claim that the PI 

measures work unit performance across all different types of organisations and industries may be 

examined through future cross-validation studies once invariance of the PI is established within 

these populations.  Other future research may include identifying global attributes of good and 

poor performing work units over time, or identifying specific changes in performance related to 

organisational transitions or interventions. 

 

2.2 RESEARCH QUESTIONS: TESTING FOR MEASUREMENT INVARIANCE 

 

Cross-validation of the measurement model refers to an examination of the invariance of the 

model across two or more random samples from the same population (Mels, 2003) and may be 

determined by investigating the stability of the model parameter estimates when the model is 

fitted to two samples from the same population simultaneously (Vandenberg & Lance, 2000).  

This cross-validation study uses specific measurement invariance tests to answer a sequence of 

questions or research problems that examine the extent to which the measurement model may be 

considered measurement invariant or not at all, and to determine the source of variance if it exists 

(Vandenberg & Lance, 2000).  The following series of steps and concomitant research questions 

capture the essential logic underlying the investigation of measurement invariance.   The research 

questions relevant to this specific study are thereby also explicated. 

 

Step 1: Establish if the measurement model when fitted to each sample independently display reasonable fit when 

no freed parameters are constrained.   

 

Prior to cross-validating the measurement model it is necessary to first establish whether the 

model fits on both samples independently.  Rejecting the null hypothesis of close fit would 

indicate that the measurement model does not adequately fit the data of one or both samples, 

and any further examination of the cross-validation of the PI using these two samples would be 
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questionable.  On the other hand, satisfactory model fit for both samples would justify further 

cross-validation analysis (Diamantopoulos & Siguaw, 2000).   The following research question 

should thus be answered at the outset: 

 

Research question 1: Does the measurement model display acceptable fit on the data of the two samples 

when fitted in separate, independent confirmatory factor analyses? 

 

Step 2: Establish if the measurement model, when fitted to the two samples simultaneously in a multi-group 

analysis with no freed parameters constrained, display reasonable fit.   

 

If the measurement model provides a close fitting account of the process underlying the 

observed variables the measurement model should show satisfactory fit when fitted to the data of 

both samples simultaneously with no freed model parameters constrained.  Although it is highly 

unlikely that the model will not show satisfactory fit under these conditions if it was shown to fit 

both samples independently, results that indicate the contrary would fail to support continuing 

with the cross-validation study.   Demonstrating that the measurement model fits the data of 

both samples taken from the same population would establish configural invariance (Vandenberg 

& Lance, 2000).  The following research question should thus be posed subsequent to answering 

the first research question in the affirmative: 

 

Research question 2: Does the measurement model display acceptable fit on the data of the two samples 

when fitted in a single multi-group confirmatory factor analysis without any constraint on parameter 

equality? 

 

Step 3: Establish whether the measurement model demonstrated acceptable fit when fitted to the two samples 

simultaneously in a multi-group analysis with all freed parameters constrained to be equal across the samples. 

 

The most stringent test of measurement invariance tests the null hypothesis (H01: Σg = Σg’ ) that 

the PI measurement model fits the data the same way across samples from the target population 

(Diamantopoulos & Siguaw, 2000; Vandenberg & Lance, 2000).  The null hypothesis implies that 

the same underlying process or measurement model is required to explain the observed (in 

contrast to the reproduced or estimated) population covariance matrices (Σg = Σg’) because the 

observed population covariance matrices are the same.   Conversely, if measurement models with 

different parameter estimates are required to account for the observed covariance in specific 
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samples it would imply that the covariance matrices differ and that underlying measurement 

models differ, albeit not to the extent of a lack of configural invariance.   If the same 

measurement model (i.e. configurally the same and in terms of parameter values the same) fits 

each data set to the same degree of acceptable fit (i.e., close fit) the combined measures of fit 

would indicate the same degree of acceptable fit.  This step tests the null hypothesis that apriori 

pattern of free and fixed factor loadings imposed on the measure’s components in terms of the 

measurement model is equivalent across groups (Horn & McArdle, 1992 cited in Vandenberg & 

Lance, 2000, p. 12).  Failure to reject the null hypothesis would mean the PI may be considered 

measurement invariant across the samples and subsequent tests of measurement invariance are 

not required.  It is for this reason that this test is termed the omnibus test of measurement 

invariance.   

 

The omnibus test constitutes a rather severe, stringent test.   For most social science research it is 

highly unlikely that full measurement invariance will be displayed because some difference 

between the samples is to be expected (Steenkamp & Baumgartner, 1998).  As it is almost a 

forgone conclusion that the null hypothesis will be rejected for this study and given that the 

results do not provide information on the source of variance, the omnibus test may possibly be 

considered a somewhat redundant exercise (Vandenberg & Lance, 2000).   Despite the odds 

being against a finding of full measurement invariance it nonetheless constitutes a logical and 

indispensable part of a systematic and rigorous procedure aimed at investigating measurement 

invariance.   In the context of this study, the omnibus test will thus be conducted in the hope that 

full measurement invariance might be found but ultimately because it constitutes sound 

methodological practice.   

 

If the hypothesis of measurement invariance can not be rejected under the configural invariance 

condition, the model may be said to have cross-validated successfully and further tests of 

measurement invariance would not be required (Vandenberg & Lance, 2000).   This would also 

imply that that the respondents of each sample employed the same conceptual frame of reference 

when completing the PI items and provide sufficient evidence of measurement invariance to 

justify other research that examines group differences in relation to the PI’s underlying constructs 

(Vandenberg & Lance, 2000).  The rejection of the null hypothesis would, however, imply that 

significant difference exist between one or more of the measurement model parameters when the 

model is fitted to the data of both samples simultaneously.  Further measurement invariance tests 
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would be required to determine the source and extent of this non-equivalence.   The following 

research question is thus indicated: 

 

Research question 3: Does the measurement model display acceptable fit on the data of the two samples when fitted 

in a single multi-group confirmatory factor analysis and all freed parameter estimates are constrained to be equal? 

 

Step 4: Establish whether the measurement model demonstrated acceptable fit when fitted to the two samples 

simultaneously in a multi-group analysis with all parameters constrained to be equal across the samples but for the 

slope of the  regression of the indicator variables on the latent variables. 

 

Upon rejection of the full measurement invariance hypothesis the question then needs to be 

asked whether the non-equivalence exists in the factor loadings of item parcels on latent variables 

across samples.  The null hypothesis states that the factor loadings of item parcels on latent 

variables are equivalent across both samples (H02: Λ
g

x = Λg
x

’).  On the one hand, rejection of the 

null hypothesis would imply that the factor loadings for like items differ across samples, which 

implies that the content of each item is being perceived and interpreted differently across samples 

(Byrne & Watkins, 2003).  This would constitute a somewhat disappointing outcome of this 

cross-validation study as the factor loadings really reflect the core of the measurement process.   

Logically the items would be expected to operate in the same manner across independent random 

samples from the target population (Pousette & Hanse, 2002; Vandenberg & Lance, 2000).  It 

would, however, not be an altogether improbable outcome as H02 would only be tested if H01 

would have been rejected and thus significant differences in some model parameters have to 

exist.   Rejection of H02 due to a limited number of significant differences in factor loadings 

would indicate partial metric invariance.   On the other hand, failure to reject the null hypothesis 

that the factor loadings are equal across both samples (H02) would mean that the measurement 

model displays metric invariance.  This would be a fairly satisfactory outcome as it would support 

the conclusion that the item parcels operate in the same way across samples in the way they 

reflect the underlying latent variables they are meant to reflect.   In addition, this outcome would 

justify further research that examines group differences in relation to the PI’s underlying 

constructs for similar samples within the target population.  At least partial metric invariance of 

the PI would indicate that the PI measurement model displays sufficient measurement invariance 

within the target population to warrant further examination of the structural relationship between 

the latent dimensions, including tests of structural invariance (Byrne & Watkins, 2003; 

Diamamtopoulos & Siguaw, 2000; Mavondo et al., 2003).  In doing so the differences in factor 
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loadings would, however, have to be taken into account.  The following research question is thus 

indicated: 

 

Research question 4: Are the factor loadings of item parcels invariant across the samples? 

 

Failure to reject the H02 metric equivalence null hypothesis would indicate that significant 

differences in parameter estimates that were detected by previous measurement invariance tests 

do not exist within the factor loadings.  The source and strength of these differences would thus 

still need to be determined as they have to exist elsewhere in the measurement model.   

Additional tests of measurement invariance are therefore required to examine the differences in 

parameter estimates of the model’s factor covariances and the model’s measurement error 

variances when fitted to both samples simultaneously (Vandenberg & Lance, 2000).   

 

Step 5: Establish whether the lifting of the equality constraint on the factor covariances and variances significantly 

improves the fit of the measurement model when fitted to the two samples simultaneously in a multi-group analysis. 

 

Testing for the equivalence of factor covariances between groups tests the null hypothesis that 

the phi matrices are invariant across both samples (H03: Φ
g

i j = Φg
ij).  Failure to reject the H03 null 

hypothesis would imply that both samples use “equivalent ranges of the construct continuum to 

respond to the indicators reflecting the construct” (Vandenberg & Lance, 2000, p.  39).  This 

would add credence to the finding of at least partial metric invariance because it would imply that 

the variance in the measurement model might be attributed to variance in measurement error.  

On the other hand, rejection of the H03 null hypothesis would indicate that significant variance 

exists between the factor covariances across samples.  This outcome is not desirable as it would 

serve to somewhat devalue the conclusion of at least partial metric invariance.  The following 

research question is thus indicated: 

 

Research question 5: Can significant differences between samples be attributed to differences in 

factor covariances between, and variances of, latent variables across samples? 

 

Step 6: Establish whether the lifting of the equality constraint on the measurement error variances significantly 

improves the fit of the measurement model when fitted to the two samples simultaneously in a multi-group analysis. 
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In comparison, it would be far more desirable to be able to attribute the source of significant 

variance between the samples to error variances.  This may be established by testing the null 

hypothesis of equal variance in the error terms associated with the indicator variables across 

groups (H04: θδ
g

j = θδg
j
’).  Rejection or acceptance of the null hypothesis would need to be 

interpreted in relation to the difference in factor covariances.  Failure to reject the null hypothesis 

for both tests of equal error variances and equal factor covariances would provide evidence that 

both samples respond to the indicator variables in an equivalent manner, in that the no significant 

variance exists across samples in terms of the error terms or factor covariances associated with 

the indicator variables.   This would be the most desirable outcome as it would suggest the 

operation of the measurement model does not differ greatly across both samples, thus supporting 

the conclusion that the measurement model is sufficiently invariant across the samples.  If no 

significant difference was found to exist in the factor covariances then all of the variance in the 

measurement model fit between the two samples may be attributed to non-equivalent error 

variances across samples.  This would be a better outcome than having to reject the null 

hypothesis of equal factor covariances discussed above, as it is more desirable to be able to 

attribute differences between samples to measurement error rather than to differences in item 

response across samples.  A further option is that significant differences across samples may be 

found to exist for both factor covariances and error variances, again not as desirable as not 

finding significant differences between samples, or being able to attribute significant differences 

to measurement error.   

 

Research question 6: Can significant differences between samples be attributed to variance in the 

error variances across samples, or to both error variances and factor covariances across samples? 

 

The foregoing proposed procedure consistently uses the fully unconstrained model as the 

baseline model in the multiple group analyses used to determine whether measurement invariance 

exists, and if not in which facet/facets of the measurement model the differences reside.  The 

fully or partially constrained measurement models are therefore compared each time to the same 

fully unconstrained measurement model to determine whether the full or partial equality 

constraints result in a significant deterioration in fit.  The question, however, needs to be 

considered whether a moving baseline model should not be used when the measurement 

invariance null hypothesis is rejected to determine how the measurement model parameters differ 

across the samples?  This study would justify the use of a fixed baseline model by arguing that 

reality expresses itself in the fully unconstrained model.  If, for example, the factor loadings of 
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item parcels on latent variables would not differ across samples, a model in which factor loadings 

are constrained to be equal across samples will not fit significantly poorer than the unconstrained 

model.  Moreover, in subsequent analyses aimed at locating the source of measurement 

invariance there would be no need to compare a model in which both the lambda-X and phi 

matrices are constrained to be equal to a model in which only lambda-X is constrained.  The 

lambda-X equality constraint is naturally built into the fully unconstrained model.   

 

The converse also could be argued.  If, for example, the factor loadings of item parcels on latent 

variables would differ significantly across samples, a model in which factor loadings are 

constrained to be equal across samples will fit significantly poorer than the fully unconstrained 

model.  Moreover, in subsequent analyses aimed at locating further sources of measurement 

invariance there would be no need to compare a model in which the lambda-X matrix is 

unconstrained but the phi matrix is constrained to be equal to a fully unconstrained model.  The 

lambda-X inequality is naturally built into the fully unconstrained model.   

 

2.3 STATISTICAL ANALYSIS TECHNIQUE 

 

Structural Equation Modelling (SEM) is used to perform a series of confirmatory factor analyses 

on the subscales of the PI using LISREL 8.53 for Windows (Du Toit & Du Toit, 2001; Jöreskog 

& Sörbom, 1998).   As stated by Steenkamp and Baumgartner (1998) there is general consensus 

that LISREL’s multigroup confirmatory factor analysis model represents that most powerful and 

versatile approach to testing for multiple sampling applications of measurement invariance.    

 

As an analysis technique SEM also has certain advantages that apply to this research Kelloway 

(1998).  Firstly, SEM affords social science researchers the opportunity to determine how well 

measures, used to represent latent constructs, reflect the intended constructs in a more rigorous 

and parsimonious way than the techniques of exploratory factor analysis traditionally employed 

by enabling researchers to specify structural relationships among the indicator variables and the 

specific latent variables they are meant to reflect (Bollen & Long, 1993; Kelloway, 1998).   SEM 

allows for explicit tests of hypothesis relating to the overall quality of the factor solutions, as well 

as the specific parameters comprising the model.   Secondly, SEM assists researchers in the use 

of complex predictive models by allowing for the testing and specification of these more 

complex “path” models as an entity in addition to testing the components comprising the 

model.   Lastly, SEM provides for the estimation of the strength of the relationship that exists 
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between latent variables, without being moderated by measurement error (Bollen & Long, 1993).   

As such, SEM may be considered a flexible, yet powerful approach to investigating various 

forms of measurement invariance in first- and higher-order measurement models.  



 21 
 

CHAPTER 3 

RESEARCH METHODOLOGY AND PREPARATORY DATA ANALYSES 

 

 

3.1 SAMPLING STRATEGY  

 

Two independent samples of completed PI questionnaires were required for this study.   These 

were collected through non-probability sampling procedures.   To be included in this research, 

unit managers had to manage work units that met the requirements of a work unit as defined in 

the introduction to the paper, and were in their current position for at least six months.  As the 

PI is a 360° instrument, work units were rated by the unit leader, as well as their superiors, peers 

and subordinates.  However, the need for as large a sample size as possible, necessitated a 

deviation from this ideal in some of cases, although this deviation was considered to be 

acceptable practice because the research requires the analysis of data on an individual level, and 

not on a collective work unit level. 

 

3.1.1 Sample A  

 

Sample A combined two data sets from previous research and includes a total of 313 completed 

PI questionnaires.   Of these completed questionnaires, 256 were gathered from part-time MBA 

students of the Graduate School of Business at the University of Stellenbosch during the 1998, 

1999 and 2000 intakes.   These MBA students occupied full-time positions in middle or senior 

management.   Out of a possible number of 115 eligible work unit managers, 60 participated in 

the study, which represents a satisfactory 52% participation (Spangenberg & Theron, 2002).  The 

other 47 completed questionnaires came from three different functional departments in a large 

fast moving consumable goods (FMCG) company and represented 47% participation as 100 

questionnaires were sent out (Henning et al.,, 2003).  No information on the number of 

completed units was available for the 47 completed questionnaires.  Although no demographic 

information pertaining to Sample A was available, it may be assumed that the sample is a fairly 

good representation of the target population because the MBA students are likely to represent 

diverse professions across different companies and industries in South Africa.   
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3.1.2 Sample B  

 

Sample B included 393 completed PI questionnaires rating the performance of 65 work units and 

was obtained through a Management Development Programme at the University of Stellenbosch 

which included a PI evaluation.  Out of 86 course delegates, 65 (7 female: 9%, 58 male: 91%) met 

the requirements to participate in the study.  These delegates occupied full-time positions in 

middle management and senior management within a large multinational mining group, and 

represented various professions within the mining industry such as engineering, finances, 

purchasing, logistics, safety, and human resources.  Delegates represented a wide array of ethnic 

groups and nationalities, and work units were spread across six countries as indicated in Table 2 

which provides further qualitative information for Sample B.  As the PI evaluation formed part 

of their development programme, delegates were motivated to participate.  A total of 556 

questionnaires were sent to unit managers and respondents, and 393 completed questionnaires 

were returned.  This figure represents a 71% response rate that can be considered quite 

satisfactory. 

TABLE 2 

QUALITATIVE INFORMATION FOR SAMPLE B 

 No. % 
Respondents at the various levels:  

Unit managers 
Superiors 
Peers 
Followers   
Total respondents 

 
52 
68 
116 
157 
393 

 
13 % 
17 % 
30 % 
40 % 

 
Unit managers’ position:  

Middle management 
Senior management 
Total 

 
40 
12 
52 

 
77 % 
23 % 

 
Gender of unit managers rated: 

Male 
Female  
Total no.  of work unit rated 

 
58 
7 
65 

 
91 % 
9 % 

Location of work unit operations: 
England  
Botswana 
Australia  
South Africa 
Ireland   
Namibia 
Total number of work units rated 

 
2 
2 
4 
44 
5 
9 
65 

 
3 % 
3 % 
6 % 
67 % 
7 % 
14 % 
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3.1.3 Possible limitations of sampling method  

 

To convincingly demonstrate that the PI functions effectively within the target population would 

require two independent random samples taken from the same population rather than non-

probability samples.  This ideal was clearly not met as both samples may not be considered truly 

representative of the target population of middle and senior managers within multiple companies 

and industries.  For example, Sample B only includes information from one company and one 

industry which is likely to have idiosyncratic cultures and operating procedures that may influence 

the manner in which the respondents perceive and rate work units.  As such, Sample B would be 

said to better represent the target population if more industries and companies within these 

industries were included, a consideration for future studies.  It would also better represent the 

target population if it included more female unit managers than the 9% included in the current 

sample.  In comparison, Sample A includes participants from various companies and industries 

and therefore may be considered to be more representative of the target population.   

 

Based on the above, both samples cannot be said to constitute a representative section of the 

population of work units, which precludes the possibility of reaching any definitive conclusion on 

whether the PI could be used for all organisations and industries across the target population.  

Nonetheless sufficient fit between the measurement models of both data sets would constitute 

relevant, albeit limited evidence that the PI meets the requirements of measurement invariance 

and hence investigation into the PI’s structural invariance would be warranted.  Sufficient fit 

between the measurement models also would provide limited evidence that the PI may be used 

to assess the perceived performance or work units in the target population.   

 

The fact that the two samples do not constitute two independent probability samples from the 

same population moreover presents the PI measurement model with a more severe cross-

validation challenge than it would have faced had the samples been truly independent random 

samples from the same population.  Instead of cross-validating the measurement model across 

samples A and B a better option probably would have been to combine the data from the two 

samples and to randomly create two samples from the combined data set for the purpose of 

cross-validation.  Although the resultant samples still would not constitute representative samples 

from the target population for which the PI had been developed, the cross-validation would at 

least provide a more valid indication of the invariance of the measurement model parameters.  
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3.2 MISSING VALUES  

 

The most suitable method for managing missing values had to be chosen prior to data analysis.  

Table 3 summarises the missing values per dimension and Table 4 (page 29) presents the number 

of missing values per item.  Sample B had fewer (8,84%) missing values than Sample A (9,96%).  

A possible explanation for this improvement is that the data for Sample B was collected using a 

computerised version of the PI which does not allow respondents the option to leave a question 

blank although they may choose a non-observable option.  Unfortunately the paper-and-pencil 

version that was used to collect data for Sample A cannot impose a forced choice on respondents 

as the computerised version is able to. 

 

TABLE 3 

SUMMARY OF MISSING VALUES PER DIMENSION 

 % missing values 

Dimension Sample A Sample B 
Sample A & B 

combined 

N 313 393 706 

Product 4,28% 2,14% 3,09% 

Core people 2,52% 1,84% 2,14% 

Climate 1,60% 0,55% 1,01% 

Satisfaction 2,88% 2,88% 2,88% 

Adaptability 4,38% 1,85% 2,97% 

Capacity 10,68% 10,58% 10,62% 

Market standing 21,68% 27,41% 24,87% 

Future growth 37,12% 33,79% 35,92% 

 Total number of missing values 1640 1946 3586 

Missing values as a % of total values 9,36% 8,84% 9,07% 

 

Selecting the most suitable method of managing missing values was not a simple task as different 

methods require certain assumptions about the nature of the data and the reasons for the missing 

values that are not openly acknowledged or observable during the data gathering phase (Pigott, 

2001).  This section discusses the advantages and disadvantages of various methods for managing 

missing values in relation to this research and why imputation by matching was selected as the 

most appropriate response in this case.  In particular two questions had to be considered, firstly 

whether the reasons why PI values are missing can be ignored which refers to the assumption of 
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an ignorable response mechanism, and secondly whether the distribution of indicator variables 

may be assumed to be multivariate normal. 

 

3.2.1 The assumption of an ignorable response mechanism (MAR/MCAR) 

 

In their seminal work on the analysis on incomplete data, Little and Rubin (1987, cited in Davey, 

Shanahan & Schafer, 2001) distinguish between two types of ignorable missing data, namely 

missing completely at random (MCAR) and missing at random (MAR).  MAR is a related but 

weaker assumption than MCAR which holds a conditional assumption that the missing values 

have the same distribution as the non-missing values of the observed sample (Enders & 

Bandalos, 2001; Pigott, 2001).  If missing values are MCAR, cases with missing values are 

indistinguishable from cases with complete data.   In contrast, if missing values are MAR, cases 

with missing values differ from cases with complete data.  Whether a case returns a missing value 

on one or more variables is, however, not related to the state of the variables in question but 

rather to one or more other variables in the data set (Information Technology Services, 2005).   If 

missing values are considered to be MAR the reasons for the missing values may be ignored 

during the analysis of the data, which in turn allows the researcher to use most model-based 

methods of imputing missing values (Pigott, 2001; Roth, 1994).   The pattern of missing values 

across cases would be considered non-ignorable if that pattern is only explainable in terms of the 

state of the variables on which missing values are returned (Information Technology Services, 

2005).    

 

It is however difficult to obtain empirical evidence about whether the data in this research is 

MCAR or even MAR.  Without empirical evidence possible reasons for missing data have to be 

inferred in order to take the best decision (Pigott, 2001).  In this research, a number of reasons 

could be inferred that suggested it would not be appropriate to consider the missing values for 

the PI to be missing completely at random (MCAR) or missing at random (MAR), and that the 

reasons for the missing data should therefore be considered non-ignorable (Little & Rubin, 1987, 

cited in Davey et al., 2001).  On the one hand the PI provides respondents with the option to 

select a non-observable response for an item either if they feel the item is relevant to the work 

unit but they are not in a position to rate the work unit on this item, or if they perceive the item 

to be irrelevant or non-applicable to the work unit.   
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On the other hand though, there may well be additional reasons why respondents selected the 

non-observable option which directly relates to the value of that variable being measured.  For 

example, if a Sample for company X has many missing values for Projected Growth (dimension 

8) across various work units it may indicate the company as a whole is experiencing declining 

growth.  Pigott (2001) suggests that for cases in which the missing value is directly related to the 

value of that variable, the missing values should be considered not to be MAR and therefore 

should be non-ignorable.   Furthermore, Switzer, Roth and Switzer (1998) conclude there is 

reason to believe that non-random data loss might decrease covariance and power more 

significantly than in the case of random data loss.   

 

In contrast, research by Davey, et al.  (2001) illustrated that any attempt to identify and correct for 

selective non-response will represent an improvement in the accuracy of results over making no 

attempt at all.  They concluded that even when data are not strictly MAR, it is believed this 

assumption is likely to represent a reasonable approximation and therefore may be assumed.  

Similarly, Roth (1994) found little differences in the parameter estimates and the answers to 

research questions when less than 10% of the data was missing in random or systematic patterns.   

 

In summary, even though it may be argued that the data in this research is not MAR, Table 3 

illustrates that the missing values as a percentage of total values for Sample A is 9,36%, for 

Sample B is 8,84%, and for the Combined Sample is 9,07%, all of which are below 10%.  

Therefore all methods of managing missing values, including those which require an assumption 

of MAR, were considered in this study.  These methods were categorised as either: deletion 

methods, model based (distributional) methods, and non-model based methods of imputing 

missing values.   

 

3.2.2 Deletion methods 

 

List-wise and pair-wise deletion 

After a review of current literature, list-wise deletion (complete-case analysis) and pair-wise 

deletion (available-case analysis) were not perceived to be the best options for managing the 

missing values problem.  List-wise deletion involves deleting complete cases where there is 

missing values for any of the variables, whilst pair-wise deletion involves deleting cases only for 

analysis on variables where values are missing.  As such, both list-wise and pair-wise deletion 

methods result in a large loss of data in order for enough complete cases to remain in order to 
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estimate the desired model.   For example, in this study list-wise deletion would have resulted in 

Sample A being reduced to 81, and Sample B being reduced to 151 cases.  Pair-wise deletion 

would have resulted in covariance matrices with extreme variation in N-values.  Subscales would 

have been reduced to a minimum of 77 and maximum of 251 values for Sample A, and similarly 

a minimum of 173 and a maximum of 366 values for Sample B.   

 

Using only completed data for list-wise deletion, any partial information from incomplete cases 

that may be quite valuable is ignored.  This may distort the representivity of the original sample, 

especially if the subjects who are included in the analysis are systematically different from those 

who were excluded in terms of one or more key variables (Raghunathan, 2004).  Furthermore, 

pair-wise deletion has been found to potentially produce invalid estimates due to the varying 

samples used to estimate parameters (Pigott, 2001).  In particular, pair-wise deletion may yield 

non-positive definite correlation and covariance matrices in situations where three or more 

variables are involved.  Covariance or correlation matrices that are not positive definite may cause 

discrepancy function values to become negative which violates the requirement for discrepancy 

functions to be bounded below by zero (Browne, 1982 cited in Kaplan, 2000 pp.  88-89).    

 

Pair-wise deletion based correlation matrices also do not maximise any proper likelihood function 

and with respect to structural equation modelling, this will probably affect the chi-square 

goodness-of-fit test (Kaplan, 2000).  Even in the case where pair-wise deletion does not result in 

non-positive definite matrices, MCAR is assumed to hold for the subset of observations that 

remain (Kaplan, 2000).  List-wise and pair-wise deletion are therefore also likely to yield biased 

estimates in situations and are not recommended unless the amount of missing data is small and 

MAR can be assumed to hold (Pigott, 2001).  Given the above information, a more suitable 

method for managing missing data was sought for this research. 

 

3.2.3 Model based (distributional) methods  

 

Recent research strongly suggests that model based methods, in particular Full Information 

Maximum Likelihood and Multiple Imputations, are progressive techniques that have advantages 

over the more traditionally used deletion and non-model based methods (Enders & Bandalos, 

2001; Pigott, 2001; Sartori, Salvan & Thomaseth, 2005; Schafer, 1999).  Before these methods 

may be employed the research data has to meet the assumptions of multivariate normality and 

MAR discussed above. 



 28 
 

 

The assumption of multivariate normality 

To assume data has a multivariate normal distribution requires the data to be continuous and 

therefore to preclude the use of nominal (non-ordered categorical) and ordinal variables.  This is 

because these methods use the multivariate relationship between variables to compute estimates 

for missing data (Pigott, 2001).  As the individual item data in this study are ordinal and not 

continuous they do not meet this assumption.  However, as Schafer (1999) found through 

comparative research on different methods of managing missing data, this assumption can be 

relaxed to the assumption that the data is multivariate normal on condition that the categorical 

variables in the model are completely observed.  If categorical variables in the data have high 

rates of missing observations then methods using the multivariate normal assumption should not 

be used (Pigott, 2001).  In contrast, if only small amounts of missing observations or values are 

completely observed, model-based methods seems to be fairly robust in situations whereby data 

has a moderate departure from normality (Schafer, 1999).   

 

Whilst multivariate normality may be checked by looking at the skewness of the data per variable 

using techniques such as histograms (Pigott, 2001), skewness was not analysed as the literature 

reviewed revealed additional reasons why model-based methods are not well-suited to this 

particular research.  These model based methods and reasons for not using them are discussed 

below. 

 

Full information maximum likelihood 

Full Information Maximum Likelihood (FIML) uses an iterative solution, termed the EM 

algorithm, to compute a case-wise likelihood function using only those variables that are 

observed for specified cases.  By doing this it obtains estimates of missing values based on the 

incomplete observed data to maximise the observed data likelihood (Enders & Bandalos, 2001; 

Raghunathan, 2004).  Research indicates that FIML is a progressive technique with advantages 

over other methods (Enders & Bandalos, 2001; Roth, 1994).  For example, it has been found to 

reduce the bias that would result from the list-wise or pair-wise deletion of cases (Enders & 

Bandalos, 2001), and its estimation procedure is viewed as more efficient than that of other 

imputation methods (Du Toit & Mels, 2002).  In addition, Kaplan (1995) examined Chi-squared 

test for the related multiple–group approach and found that the mean, variance and rejection 

rules of the empirical chi-square distribution closely matched those of the appropriate central chi-

square distribution. 
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At the same time, researchers cite problems with using FIML such as the computation difficulties 

(Pigott, 2001) and the possibility of model misfit problems if the distribution is non-normal 

(Arbuckle, 1996 cited in Enders & Bandalos, 2001, p.435).  Moreover, a full sample is a necessary 

requirement of this research for the necessary analysis of the PI model and FIML only calculates 

the expected values of sufficient statistics and does not impute missing values.  Using FIML 

would thereby limit the analyses that may be conducted when compared with a complete data set, 

and it was not deemed suitable for this research.   

 

Multiple imputation 

In comparison to FIML, completed data sets are possible through multiple imputation (MI).  

Each of the multiple imputations produces a completed data set, which has to be analysed 

separately in order to obtain multiple estimates of the parameters of the model (Davey et al., 

2001; Raghunathan, 2004; Schafer, 1999).  The main advantage of MI as stated by Raghunathan 

(2004) is that it reflects the uncertainty in the estimates, whilst delivering plausible values.  In 

other words it corrects for bias by conducting several imputations for each missing value (Sartori 

et al., 2005).   

 

Although MI is therefore considered quite a robust method (Schafer, 1999; Schafer & Olsen, 

1998), the model used to generate the imputations will however only ever be approximately true.  

Additional shortcomings of MI are firstly, that it involves multiple and complex statistical analysis 

which means that it is often an impractical and cumbersome method to use for research.    

Typically up to ten imputed data bases are created.   Performing the multi-group measurement 

invariance analyses up to ten times and combining the findings into a summary finding seems 

somewhat unrealistic.   Secondly MI procedures available in LISREL 8.54 assume that the values 

are MAR and that observed variables are continuous and follow a multivariate normal 

distribution (Du Toit & Du Toit, 2001).  As discussed above individual responses to the PI items 

are given on a five point Likert scale and therefore should be viewed as ordinal in nature 

(Jöreskog & Sörbom, 1996a).   

 

In sum, model-based methods are widely considered more appropriate to use than non-model 

based methods and deletion methods.  Nonetheless, the data in this research does not meet the 

prerequisite of MAR and multivariate normality necessary for model-based methods, and 

therefore alternative non-model based methods of imputing missing values were explored.   



 30 
 

3.2.4 Non-model based methods imputing of missing values 

 

Non-model based methods of imputing missing values include single mean imputation and 

imputation by matching.  When compared with the model-based methods, non-model based 

methods are attractive options to use in this research as the data does not have to meet the 

assumptions of multivariate normality and categorical variables may be used.  Likewise, non-

model based methods save a large amount of data that would be lost by employing a deletion 

method.  However, they are not without their limitations. 

 

Single mean imputation 

Single mean imputation involves a straightforward procedure of replacing all missing values on a 

variable with the mean of all cases on that variable.  This method was not considered suitable as 

it will change the distribution of each variable with missing values by decreasing the variance.  In 

other words, the variance of these variables will be underestimated, and as Theron and 

Spangenberg (2004, p. 23) describe, “effectively wash out most of the structure that exists in the 

data”.  As such, single mean imputation is considered to be a fairly crude method and is not 

recommended as it will always produce biased results (Pigott, 2001). 

 

Imputation by matching (Similar response pattern imputation)  

Imputation by matching, often referred to as similar response pattern imputation, attempts to 

impute values from another case with similar observed values.  This is achieved by using a 

minimization criterion on a set of matching variables (Jöreskog & Sörbom, 1993).  If no 

observation exists that has complete data on the set of matching variables, imputation does not 

take place for that case (Enders & Bandalos, 2001).  Imputation by matching is not without its 

limitations as it is possible that unless the data are MCAR imputation by matching data, sets will 

be biased.  However, the estimated data has the benefit of preserving deviations from the mean 

and the shape of the distribution (Little, Cunningham, Shahar & Widaman, 2002) and therefore 

will not attenuate correlations as much as mean substitutions (Roth, 1994).   

 

The most suitable method for managing missing values for this research is the one that may be 

considered to enhance the inferential validity of research results the most (Raghunathan, 2004).  

Given the above comparison of all the methods, imputation by matching was deemed the most 

suitable method, particularly because missing values on the PI questionnaires do not necessarily 
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meet the assumption of ignorable response mechanism or the assumption of multivariate 

normality as discussed previously.    

 

Although the ideal is to use matching variables that will not be used in the confirmatory factor 

analysis, this was not possible in this study.   Rather, the items least plagued by missing values 

were identified.   Table 4 presents the number of missing values per item with items that were 

identified as matching variables for either Sample A or for Sample B highlighted in bold font.   

 

TABLE 4 

NUMBER OF MISSING VALUES PER ITEM  

  Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 
Sample A 14 10 8 28 7 6 3 
Sample B 0 1 4 36 1 4 1 

Total A&B 14 11 12 64 8 10 4 

  Item 8 Item 9 Item 10 Item 11 Item 12 Item 13 Item 14 
Sample A 4 4 8 8 1 4 33 
Sample B 1 5 2 5 9 6 32 

Total A&B 5 9 10 13 10 10 65 

 Item 15 Item 16 Item 17 Item 18 Item 19 Item 20 Item 21 
Sample A 0 7 5 4 7 5 7 
Sample B 1 0 0 6 6 1 1 

Total A&B 1 7 5 10 13 6 8 

  Item 22 Item 23 Item 24 Item 25 Item 26 Item 27 Item 28 
Sample A 5 11 20 15 9 5 6 
Sample B 7 13 26 20 7 5 6 

Total A&B 12 24 46 35 16 10 12 

 Item 29 Item 30 Item 31 Item 32 Item 33 Item 34 Item 35 
Sample A 5 5 4 13 14 17 22 
Sample B 9 9 1 6 7 4 20 

Total A&B 14 14 5 19 21 21 42 

  Item 36 Item 37 Item 38 Item 39 Item 40 Item 41 Item 42 
Sample A 10 16 18 103 14 16 11 
Sample B 5 8 29 120 10 21 15 

Total A&B 15 24 47 223 24 37 26 

 Item 43 Item 44 Item 45 Item 46 Item 47 Item 48 Item 49 
Sample A 28 44 124 87 96 59 58 
Sample B 26 70 175 157 171 84 85 

Total A&B 54 114 299 244 267 143 143 

  Item 50 Item 51 Item 52 Item 53 Item 54 Item 55 Item 56 
Sample A 28 23 163 155 116 78 69 
Sample B 44 38 168 192 111 71 84 

Total A&B 72 61 331 347 227 149 153 
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Missing values were imputed using the PRELIS programme (Jöreskog & Sörbom, 1996b).  To 

impute missing values for Sample A, a set of 8 items with four or less missing values per item 

were defined to serve as matching variables.  After imputation 277 cases with observations on all 

56 items remained in Sample A and 36 cases were eliminated.   To impute missing values for 

Sample B a set of 11 items with one or no missing values per item were defined to serve as 

matching variables.  Only 18 cases did not have values for all 56 items after imputation and had 

to be eliminated.  Sample B therefore included 375 complete cases.  Substantially more cases 

were retained for both Sample A and Sample B using imputation by matching than would have 

been retained through either listwise or pairwise deletion methods. 

 

3.3 ITEM ANALYSIS 

 

The architecture of the PI reflects the intention to construct essentially one-dimensional sets of 

items to reflect variance in each of the eight latent variables that collectively constitute the 

domain of work unit performance.  This intention should be verified through item and uni-

dimensionality analysis.  Item analysis is mostly used to identify and eliminate items from an 

instrument that do not contribute to an internally consistent description of the sub-scale in 

question.  The selection, substitution, or revision of items identified by item analysis assists test 

developers to improve instruments’ validity and reliability (Anastasi & Urbina, 1997).   In this 

case the item and dimensionality analyses were primarily performed to screen individual items 

prior to their inclusion in item parcels representing the latent variables of interest as aggregate 

indicator variables. 

 

3.3.1 Item statistics 

 

Item analysis was conducted on each sample before and after imputation.  Each of the eight PI 

sub-scales were item analysed independently through the SPSS Reliability Procedure (SPSS 13 for 

Windows, 2005) to identify and eliminate items not contributing to an internally consistent 

description of the unit performance facet in question.  Two items were flagged as potentially 

problematic for Sample A.  Item #24 refers to the level of satisfaction employees show with regards to 

salary and fringe benefits, whilst item #41 refers to the effectiveness of diversity policies or programmes towards 

ensuring continuous development of all staff, including the empowerment of previously disadvantaged people.  

However, the corrected item total correlations (0,466 and 0,396) and the increase in alpha 

affected by the removal of the items (0,04 and 0,01) argued against the removal of these items.  
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Likewise, two items were flagged as potentially problematic for Sample B, including item #24 

that was also identified as problematic for Sample A, and item #39 which referred to the growth or 

decline of profits over the last five year period.  The corrected item total correlations (0,441 and 0,286) 

and the increase in alpha affected by the removal of the items (0,05 and 0,09), however, did not 

support the removal of these items.   

 

3.3.2 Sub-scale reliability 

 

A summary of results of the item analyses for Sample A and Sample B are shown in Table 5 and 

Table 6 respectively.  For Sample A, five of the eight sub-scales returned Cronbach alpha values 

greater than 0,80, with Future Growth falling marginally below this cut off value (0,792).  

Capacity and Product displayed somewhat lower item homogeneity with Cronbach alpha values 

of 0,724 and 0,732.  In general the homogeneity found for all subscales on Sample A may be 

considered relatively high and therefore reasonably acceptable.   

 

In a similar vein, Sample B showed a relatively high level of homogeneity as five of the eight sub-

scales returned Cronbach alpha values greater than 0,80.  Market Standing fell slightly below this 

cut off value (0,794).  However, the remaining two subscales Production and Efficiency (0,777) 

and Future Growth (0,748) scales again provided some reason for concern.   

 

In these cases the effect that imputation has on reliability coefficients had to be considered.  As 

Table 5 and Table 6 highlight, imputation has an attenuating affect on internal consistency 

calculations when the number of valid cases increased with imputation, and the opposite affect 

when the number of valid cases decreased with imputation.  Thus, imputation served to improve 

the reliability coefficient of the Production and Efficiency sub-scale, but decreased the reliability 

coefficient of Future Growth. In general, though, given the intended use of the PI as a 

comprehensive criterion measure against which to validate leadership and other competency 

assessments, and given the number of items included in each sub-scale, the relatively high internal 

consistency found for most sub-scales both before and after imputation, is considered reasonably 

satisfactory.   
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TABLE 5 

RELIABILITY OF PI SUB-SCALES FOR SAMPLE A 

  Before Imputation After imputation (N=277) 
Scale Number 

of items 
Valid 
cases 

Alpha Mean Variance Alpha Mean Variance 

Product 5 304 0,732 19,07 10,441 0,777 18,8195 8,721 
Core people 9 308 0,833 31,77 37,857 0,852 31,3538 35,012 
Climate 7 305 0,866 25,47 25,895 0,884 25,2635 26,064 
Satisfaction 9 307 0,868 31,54 42,243 0,892 31,0108 38,388 
Adaptability 7 301 0,811 24,92 24,110 0,824 24,3069 21,018 
Capacity 7 291 0,724 24,41 27,974 0,815 22,8267 21,999 
Market standing 7 265 0,830 27,23 39,373 0,838 24,8989 21,743 
Future growth 5 258 0,792 20,29 31,329 0,748 17,0072 10,370 

 

TABLE 6 

RELIABILITY OF PI SUB-SCALES FOR SAMPLE B 

  Before Imputation After imputation (N=375) 
Scale Number 

of items 
Valid 
cases 

Alpha Mean Variance Alpha Mean Variance 

Product 5 353 0,805 19,01 8,395 0,803 18,9787 8,363 
Core people 9 351 0,855 31,79 39,632 0,845 31,8747 29,003 
Climate 7 384 0,892 25,07 23,068 0,890 25,0373 23,020 
Satisfaction 9 358 0,894 30,17 34,900 0,891 30,2213 34,772 
Adaptability 7 360 0,848 23,87 18,851 0,839 23,7920 18,449 
Capacity 7 250 0,779 23,34 16,571 0,758 23,2640 15,486 
Market standing 7 191 0,811 23,91 17,966 0,794 24,1093 17,082 
Future growth 5 191 0,799 16,92 9,867 0,745 16,8160 8,578 
 

 

3.4 DIMENSIONALITY ANALYSIS  

 

Conducting both item- and dimensionality analyses are important prerequisites for ensuring valid 

and justifiable conclusions of this study, particularly because the measurement model implied by 

the PI will not be tested by operationalising the eight unit performance latent dimensions in 

terms of the individual PI items but rather in terms of item parcels.   The PI was developed with 

the objective to construct uni-dimensional sets of items to reflect variance in each of the eight 

latent variables collectively comprising the work unit performance domain.  As such, 

dimensionality analysis serves to confirm the uni-dimensionality of each of the PI sub-scales.  

The relatively favourable item analysis statistics reported above (especially the Cronbach alpha 

values) provide insufficient evidence to conclude that the intention to construct uni-dimensional 

sets of items to reflect variance in each of the eight latent variables had been successful. Sub-

scales that fail the test of uni-dimensionality have to be analysed to determine if specific items 

with inadequate factor loadings should be removed and the dimensionality analysis repeated, or if 
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heterogeneous sub-scales have to be split into two or more homogeneous subsets of items 

thereby forcing the measurement and structural models to be revised (Anastasi & Urbina, 1997). 

To confirm the uni-dimensionality of each sub-scale unrestricted principal axis factor analysis 

with Varimax rotation was performed on each of the eight PI sub-scales individually for each 

sample.  Principal axis factor analysis was chosen over principal components analysis as the 

statistical calculations in the former allows for the presence of measurement error, an intrinsic 

aspect of research into human behaviour (Stewart, 2001).  In contrast though, Varimax rotation 

was chosen over oblique rotation even though oblique rotation is considered a theoretically 

superior method to orthogonal rotation techniques as it had been found to provide better fit 

when interrelations between variables being measured are expected (Kerlinger & Lee, 2000; 

Stewart, 2001).  Varimax rotation was selected because the interpretation of oblique rotation is 

complex (Tabachnick & Fidell, 1989).  SPSS 13 for Windows (2005) was used for these analyses 

and the eigenvalue-greater-than-unity rule of thumb was used to determine the number of factors 

to extract.   

 

In addition, there is a possibility that only artefact factors which reflect differences in item 

difficulty value or variance may be extracted when uni-dimensionality is examined by performing 

factor analysis on a matrix of product moment correlations (Hulin, Drasgow & Parsons, 1983).  

Descriptive statistics were, therefore, calculated for the items of each sub-scale in order to 

determine the possibility of multiple factors appearing as an artefact of differential item 

characteristics such as skewness. 

 

3.4.1 Item factor loadings for Sample A 

 

Item factor loadings were generally satisfactory for Sample A as they varied between 0,422 and 

0,820, with 95% percent (53 items) exceeding the 0,500 cut off point.  The three items that 

returned a factor loading below 0,500 were items #41 (0,422), #55 (0,445) and #56 (0,470).  

Items #55 and #56 contribute towards the Future Growth sub-scale along with items #52, #53 

and #54.  A possible reason for low factor loadings may be that the number of missing values for 

items #52, # 53 and #54 were very high (52%; 49%; 37%).  A similar pattern was found for 

Sample B whereby items #52, #53 and #54 had very high percentages of missing items (43%; 

49%; 28%) and items #55 and #56 also displayed low factor loadings of 0,491 and 0,519, 

respectively.  As mentioned above, the imputation of missing values appears to affect certain 

statistics such as the coefficient of internal consistency and, given that items #55 and #56 had 
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the least number of missing values for the Future Growth sub-scale, it was considered 

inappropriate to delete either item.   

 

Similarly, the low factor loading and item statistics of item #41 cast doubt on its ability to 

contribute to an internally consistent description of the sub-scale.  Nonetheless, as item #41 

forms part of the Capacity scale, which passed its test of uni-dimensionality, and since deleting 

this item would not substantially raise the level of internal reliability of this sub-scale it was 

decided that it would be premature to exclude this item from the PI without further evidence to 

support this conclusion. 

 

3.4.2 Item factor loadings for Sample B 

 

In general, item factor loadings were satisfactory for Sample B as they varied between 0,308 and 

0,773, with 93% percent (52 items) exceeding the 0,500 cut off point.  In addition to item #55 

discussed above, the three items that returned factor loadings below the cut off point included 

item #14 (0,458), item #24 (0,460) and item #39 (0,308).   Interestingly, although they also 

appear theoretically related to the other items in the sub-scales, a clear overlap between these 

three items can easily be identified as they all either relate to profit and or rewards and benefits.   

• Item#14 falls within the Core People Processes sub-scale and refers to the application of 

rewarding unit managers and members for profits or performance, subordinate growth and creating a viable 

working group.  Other items in this sub-scale are quite varied and relate to: utilisation of goals 

and work plans, level of communication, level of decision-making, organisational interaction, 

conflict management, productive clashing of ideas, value placed on individual integrity and 

uniqueness, and learning through feedback.   

• Item #24 forms part of the Employee Satisfaction sub-scale and refers to salaries and fringe 

benefits.  As discussed above, other items in this sub-scale relate to satisfaction with leadership 

and satisfaction with work content and development. 

• Item #39 refers to the perception of profits over the past five years, whilst other items in the Capacity 

sub-scale refer to the adequacy of investment in the work unit in the past and more 

specifically to the financial resources, quality, physical resources and assets, as well as material 

supply available to the unit.  An additional item, item #41, refers to diversity of staff and 

logically stands out as different from the other items in this sub-scale.  It was found to be 

problematic for Sample A as discussed above.   
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A couple of hypothesis may be put forward to explain the poor performance of these items for 

Sample B when compared to Sample A.  On the one hand the actual wording of item #39 could 

have been interpreted by respondents as referring to the company’s profits and not the work 

unit’s profits, whilst other items in the Capacity sub-scale referred quite specifically to aspects of 

the work unit’s capacity.  Alternatively, item performance may have been limited due to the 

sampling strategy employed as Sample B consisted of only one company within the mining 

industry.  At the time of the survey, this company had been experiencing the negative effects of 

an inflated gold price on operating profits.  In addition, work units on mines may be seen to be 

somewhat removed from company profits and far more focused on operational targets, possibly 

because the selling price of their products (gold, platinum etc.), and thus profitability, is largely 

dictated by market forces.   

 

Future studies will have to answer the above tentative explanations and provide a clearer picture 

of to what extent these items are influence by situational factors, and if the specific items or sub-

scales should be refined.  For the time being, though, there is insufficient reason to exclude any 

of these items, particularly because their removal would not raise the reliability coefficient 

substantially, and each item may be seen to operationalise an important component of the latent 

variables being measured by their respective sub-scale. 

 

3.4.3 Dimensionality analysis results for Sample A 

 

The results of the principal axis factor analysis for Sample A are summarised in Table 7.  Two of 

the eight sub-scales failed the uni-dimensionality test, namely Employee Satisfaction and 

Adaptability.  The problem, however, could not be solved through the deletion of individual 

wayward items.  The Employee Satisfaction sub-scale presented clear, easily interpretable two-

factor orthogonal factor structures that could be defined according to a common theme in the 

items loading on each factor, namely 1) a Leadership Satisfaction factor and 2) a Work 

Satisfaction factor (see Table 8). 

 

The Leadership Satisfaction factor includes items that relate to the outcomes of leadership, such 

as respect, trust, quality of the supervision and acceptance of the leaders’ influence.  The Work 

Satisfaction factor refers to the degree to which employees appear satisfied with the task and 

work context, salary and fringe benefits, career development and empowerment.  Factor analysis 

and item analysis was performed on the new factors originating from a subdivided scale.  The 
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new factors were shown to have good internal consistency (0,900; 0,762) and all sub-divided 

items loaded satisfactorily on a single factor (0,511 < λ <0,729).    

 

TABLE 7 

PRINCIPLE AXIS FACTOR ANALYSES OF PI SUB-SCALE MEASURES FOR 

SAMPLE A 

Sub-scale KMO % Variance explained Min factor loading Max factor loading 
Product 0,802 42,527 0,566 0,762 
Core people 0,889 39,634 0,508 0,747 
Climate 0,870 52,422 0,671 0,820 

Satisfaction 
0,902 Factor 1: 35,612 

Factor 2: 22,633 
Single forced  factor: 49,714 

0,519 
0,499 
0,472 

0,870 
0,775 
0,854 

Adaptability 
0,822 Factor 1: 25,653 

Factor 2: 23,624 
Single forced  factor: 42,044 

0,495 
0,631 
0,511 

0,717 
0,731 
0,729 

Capacity 0,855 40,543 0,422 0,781 
Market standing 0,831 43,399 0,556 0,747 
Future growth 0,757 40,651 0,445 0,742 
 

TABLE 8 

FACTOR LOADINGS FOR THE SATISFACTION SUB-SCALE FOR SAMPLE A 

(ROTATED FACTOR MATRIX) 

 Factor 
 1 2 

Item 22 0,373 0,499
Item 23 0,519 0,423
Item 24 0,173 0,584
Item 25 0,218 0,775
Item 26 0,432 0,559
Item 27 0,852 0,294
Item 28 0,870 0,259
Item 29 0,815 0,292
Item 30 0,623 0,339

 

The descriptive statistics calculated for the items of the Employee Satisfaction sub-scale suggest 

that the two factors may have emerged as an artefact of the skewness of the items.  The 

descriptive statistics for this sub-scale for Sample A is given in Table 9.  Notably, four of the five 

items that loaded on factor one displayed significant negative skewness whilst none of the four 

items that loaded on factor two displayed significant skewness.  The meaningfulness of the 

themes shared by the items loading on the two factors on the other hand suggests that the 

skewness artefact hypothesis should be tempered.  Despite the meaningfulness of the foregoing 

factor fission the Satisfaction subscale was not subdivided for the current analysis.   When 

forcing the extraction of a single Satisfaction factor reasonably acceptable factor loadings (0,472< 

λ <0,854) for all items in this sub-scale were obtained. 
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TABLE 9 

DESCRIPTIVE STATISTICS FOR THE EMPLOYEE SATISFACTION SUB-SCALE 

FOR SAMPLE A 

   Item 22 Item 23 Item 24 Item 25 Item 26 Item 27 Item 28 Item 29 Item 30
Factor  2 1 2 2 2 1 1 1 1 

N Valid 277 277 277 277 277 277 277 277 277 
Mean  3,379 3,585 2,805 2,809 3,379 3,874 3,816 3,690 3,675 
Std.  Deviation 0,806 0,858 0,977 1,044 0,988 0,941 0,981 0,962 0,870 
Variance  0,649 0,736 0,955 1,090 0,975 0,886 0,962 0,925 0,756 
Skewness  0,168 -0,162 -0,023 -0,052 -0,251 -0,559 -0,505 -0,352 -0,416 
Std.  Error of Skewness 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 
Kurtosis  0,219 0,067 -0,038 -0,403 -0,076 0,159 -0,136 -0,172 0,496 
Std.  Error of Kurtosis 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 

 

In comparison, a somewhat more subtle argument needs to be mobilized in the case of the 

Adaptability sub-scale.  A clear two-factor orthogonal factor structure was identified.  Collective 

themes between items were not as evident.  Nonetheless it could be argued that factor 1 

represents a flexibility in existing processes and structures factor while factor 2 represents a 

capacity/potency to respond efficiently to future challenges/opportunities factor.  As the rotated factor matrix 

for Adaptability depicted below in Table 10 illustrates, items 31-34 share the flexibility in existing 

processes and structures theme and load on factor 1 whereas items 35-37 share the capacity to respond 

sufficiently to future opportunities and load on factor 2.  All items had factor loadings between 0,512 

and 0,727 on a unitary factor prior to factor rotation.   

 

TABLE 10 

FACTOR LOADINGS FOR ADAPTABILITY SUB-SCALE FOR SAMPLE A 

(ROTATED FACTOR MATRIX) 

 Factor 
 1 2 

Item 31 0,495 0,399
Item 32 0,717 0,264
Item 33 0,716 0,225
Item 34 0,521 0,194
Item 35 0,400 0,635
Item 36 0,226 0,731
Item 37 0,203 0,631

 

In order to retain the simplicity of the PI model and given the two-factor model was barely 

distinguished from a one-factor model (second factor eigenvalue of 1,021) the Adaptability sub-

scale was not subdivided into two factors.  When forcing the extraction of a single Adaptability 
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factor reasonably satisfactory factor loadings (0,538 < λ < 0,722) for all items in this sub-scale 

were obtained 

 

3.4.4 Dimensionality analysis results for Sample B 

 

The results of the principal factor analysis for Sample B are summarised in Table 11.  Three of 

the eight sub-scales failed the uni-dimensionality test, namely Employee Satisfaction, Capacity 

and Market Standing.   

 

TABLE 11 

PRINCIPLE FACTOR ANALYSES OF PI SUB-SCALE MEASURES FOR SAMPLE B 

Sub-scale KMO % Variance explained 
Min factor 

loading 
Max factor 

loading 
Product 0,808 45,622 0,566 0,723 
Core people 0,900 38,560 0,458 0,698 
Climate 0,883 53,736 0,688 0,773 

Satisfaction 

0,903 Factor 1: 37,151 
Factor 2: 22,743 

Single forced  factor: 49,599 

0,627 
0,553 
0,436 

0,861 
0,739 
0,824 

Adaptability 0,870 43,647 0,500 0,761 

Capacity 

0,810 Factor 1: 27,440 
Factor 2: 15,742 

Single forced  factor: 33,540 

0,596 
0,376 
0,294 

0,770 
0,835 
0,743 

Market standing 

0,808 Factor 1: 25,650 
Factor 2: 20,338 

Single forced  factor: 36,822 

0,439 
0,471 
0,519 

0,709 
0,690 
0,692 

Future growth 0,729 39,369 0,491 0,732 
 

Sample A and Sample B displayed almost identical patterns of factor loadings for Employee 

Satisfaction and Market Standing.  The problem could again not be solved through the deletion 

of individual wayward items for these two sub-scales.  As such, the Employee Satisfaction sub-

scale could easily be divided into two factors, namely 1) a Leadership Satisfaction factor and 2) a 

Work Satisfaction factor.  Despite the meaningfulness of the foregoing factor fission the 

Satisfaction subscale was not subdivided for the current analysis.   When forcing the extraction of 

a single Satisfaction factor reasonably acceptable factor loadings (0,436 < λ < 0,824) for all items 

in this sub-scale were obtained. 

 

The Market Standing sub-scale also presented a clear, easily interpretable two-factor orthogonal 

factor structure as illustrated below in Table 12 by the factor loadings.  These factors could be 

defined according to common themes shared by the items loading on them and related to 1) 

Market Dominance which included market share, competitiveness in markets, and diversity of 
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markets or products, and 2) Reputation, including competitiveness, customer satisfaction and 

reputation for adding value.  Factor and item analyses were performed on the new factors 

originating from the subdivided scales.  The new factors were shown to have reasonable internal 

consistency (0,732; 0,703) although if item #49 was deleted it would raise the Cronbach alpha of 

factor 1 slightly (0,010).  All sub-divided items loaded satisfactorily on a single factor (factor 1: 

0,439 < λ < 0,709; factor 2: 0,471 < λ < 0,690). 
 

TABLE 12 

FACTOR LOADINGS FOR MARKET STANDING SUB-SCALE FOR SAMPLE B 

(ROTATED FACTOR MATRIX) 

 Factor 
 1 2 

Item 45 0,610 0,334
Item 46 0,709 0,244
Item 47 0,678 0,098
Item 48 0,436 0,471
Item 49 0,439 0,269
Item 50 0,187 0,690
Item 51 0,205 0,688

  

Despite the meaningfulness of the foregoing factor fission the Market Standing subscale was not 

subdivided for the current analysis.  When forcing the extraction of a single Market Standing 

factor reasonably acceptable factor loadings (0,519 < λ < 0,692) for all items in this sub-scale 

were obtained. 

 

The Capacity sub-scale presented a somewhat more complex problem to resolve.  The factor 

loadings for the Capacity sub-scale for Sample B are summarised in Table 13. The two-factor 

model was easily distinguished from a one-factor model (second factor eigenvalue of 1,120).   

The two factors seem to distinguish between the wealth of human resource resources and the 

wealth of financial and physical resources.   Factor 1 seems to represent a Wealth of financial and 

physical resources factor while factor 2 seems to represents a Wealth of human resources factor.   Although 

loading primarily on factor 2, item #39 did nonetheless not load strongly on this factor.  This 

item assesses the extent to which profits showed growth over the past five year.  The fact that the 

item loaded moderately on factor 2 suggests that profit growth is perceptually associated with (or 

attributed to) the human resource capacity of the unit.  Despite the meaningfulness of the 

foregoing factor fission the Capacity subscale was not subdivided for the current analysis.   When 

forcing the extraction of a single Capacity factor reasonably acceptable factor loadings (0,453< λ 

<0,743) for all items in this sub-scale were obtained but for item #39 (λ =0,294). 
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TABLE 13 

FACTOR LOADINGS FOR CAPACITY SUB-SCALE FOR SAMPLE B 

(ROTATED FACTOR MATRIX) 

 Factor 
 1 2 

Item 38 0,599 0,190
Item 39 0,127 0,376
Item 40 0,143 0,835
Item 41 0,367 0,402
Item 42 0,770 0,176
Item 43 0,670 0,203
Item 44 0,596 0,180

 

 

3.4.5 Overall skewness 

 

Descriptive item statistics for Sample A and Sample B are provided as Appendix 1 and Appendix 

2.  The majority of items followed a negatively skewed and leptokurtic distribution.  More items 

in Sample A followed a significantly (p<0,05) negatively skewed distribution (18 items, 32%) 

when compared to Sample B for which 9 items (16%) displayed significant skewness, with 4 (7%) 

positively skewed and 5 (9%) negatively skewed.  These differences between the distributions for 

Sample A and Sample B suggest that the work units in Sample A were generally evaluated more 

positively with relatively few units being poorly evaluated when compared to Sample B where a 

somewhat more balanced evaluation of units were obtained.  Interestingly this may be explained 

by the fact that the majority of Sample A constituted part-time MBA students who tend to be 

high performers who are rewarded for good performance by their respective companies by being 

sponsored to do their MBAs.  Sample B included managers across a single company who 

attended a management development programme.  Almost all managers at a certain level within 

this company attend this programme, and therefore the sample is likely to show a balanced 

distribution between good and poorly performing work units.   

 

3.4.6 Discussion on the item- and dimensionality analyses  

 

Comparing the dimensionality analyses results for Sample A and Sample B shows support for the 

hypotheses of possible factor fission across the Employee Satisfaction, Adaptability, Capacity and 

Market Standing sub-scales that was identified in previous research (Henning et al., 2003; Theron 

et al., 2004).  Table 14 provides a dimensionality comparison between the sub-scales of Sample A 

and Sample B that highlights this pattern.  In this study, factor fission was found to result in a 
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conceptually meaningful division of Employee Satisfaction and Adaptability for Sample A, and 

Employee Satisfaction, Capacity and Market Standing for Sample B.  Table 14, however, also 

suggests that the uni-dimensionality assumption could have been rejected in Sample A with 

regards to Capacity and Market Standing if the eigenvalue greater than unity extraction rule had 

been slightly relaxed.  Moreover the same factor pattern to that found in Sample B would most 

probably appear in Sample A with regards to these two sub-scales if the extraction of two factors 

would have been forced.  In other words, examining the PI via different data sets essentially 

reveals different aspects of one reality, namely that a theoretically meaningful refinement of the 

unit performance model may be possible by splitting Market Standing, Satisfaction, Capacity and 

Adaptability.  For the purposes of this study, however, the original unit performance dimensions 

will not be extended as doing so would further complicate an already complex model.  It 

moreover, would defeat the ultimate purpose of the measurement and structural invariance 

studies namely to evaluate the generalizability of the basic PI measurement and structural model 

(Henning et al., 2003) across random samples from the PI target population.   If the hypothesised 

measurement model satisfactorily fits the data, it would support subsequent research which 

should investigate further refinements suggested in the foregoing results. 

 

TABLE 14 

DIMENSIONALITY COMPARISON BETWEEN SAMPLE A AND SAMPLE B 

Initial Eigenvalues per sub-scale 

Sample Factor 
Production 

and 
Efficiency

Core 
People 

Processes 
Climate Employee 

Satisfaction Adaptability Capacity Market 
Standing 

Future 
Growth 

A 
 

1 
2 

2,681 
0,702 

4,154 
0,764 

4,137 
0,895 

4,928 
1,089 

3,415 
1,021 

3,379 
0,916 

3,589 
0,981 

2,572 
0,825 

B 
 

1 
2 

2,813 
0,756 

4,069 
0,899 

4,222 
0,802 

4,918 
1,272 

3,597 
0,901 

2,955 
1,120 

3,194 
1,056 

2,547 
0,912 

 

In summary, although no conclusive evidence in this regard can be derived from the current 

samples, the foregoing analyses indicate that the PI items, for the most part, systematically reflect 

their designated latent unit performance dimensions with reasonable success and do not reflect 

artefact factors or an extensive amount of non-relevant information.  Results on the fit of the 

first-order measurement model for both Sample A and Sample B reported below tend to increase 

the confidence in this position.  To more convincingly substantiate the position that the PI 

successfully measures the performance construct as it had been constitutively defined, the 

nomological network in which the performance construct is imbedded would have to be 

evaluated via structural equation modelling.   
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3.5 VARIABLE TYPE AND ITEM PARCELLING 

 

Structural equation modelling (SEM) was used to perform a confirmatory factor analysis on the 

reduced data sets for both Sample A and Sample B, obtained after imputation of missing values.  

For this purpose, two indicator variables (item parcels) were created from each sub-scale.  The 

process of creating the indicator variables is discussed below.  The interest in applying parcels 

within SEM is largely based on its proposed advantages compared to single items.  These 

advantages are either related to the difference in psychometric characteristics between items and 

parcels or related to factor-solution and model-fit advantages accruing to models based on 

parcels (Little et al., 2002).   

 

3.5.1 Difference in psychometric characteristics between items and parcels 

 

Item parcelling has the potential to serve as a data analysis panacea for a variety of data problems, 

primarily non-normality, small sample sizes, small sample size to variable ratio, and unstable 

parameter estimates (Bandalos et al., 2001).  As the most frequently used estimators in SEM 

require normally distributed continuous variables, item parcels have been preferred over single 

items as indicators of latent constructs because they better approximate normally distributed 

continuous variables if used as indicators of latent constructs (Bentler & Chou, 1987).  By 

creating parcels, researchers can construct new variables that are closer to being continuous 

(better approximations to normally distributed continuous variables), which allows for a 

distribution closer to normal, and may therefore reduce distortion of estimates (Bandalos, 2002).  

Therefore parcels are more likely to meet the assumptions of Maximum Likelihood estimation 

than are individual ordered-categorical items.  In other words parcelling can be viewed as a 

heuristic approach to converting ordered-categorical data to continuous data with an eye toward 

minimising the attenuation caused by using ordered-categorical variables (Nasser & Takahashi, 

2003). 

 

3.5.2 Factor-solution and model-fit advantages and disadvantages 

 

Additional advantages of item parcels include that the composite score of an item parcel is 

normally more reliable than single item scores.  Item parcels also yield variance-covariance 

matrices that are amenable to linear factor analysis (Hagvet & Nasser, 2004).  Nasser and 

Takahashi (2003) also found that lower skewness and kurtosis and higher validity occur for 
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parcels than for individual items; specifically item parcels with more than two items were found 

to exhibit less skewness and kurtosis and higher reliability and validity (Marsh, Hau, Balla, & 

Grayson, 1998).  When compared with individual items, model-fit indices as measured by the 

root means squared error or approximation (RMSEA), comparative fit index (CFI), and the chi-

square test also improve systematically as the number of items per parcel increased, provided  

items had a uni-dimensional structure (Bandalos, 2002).   

 

3.5.3 Potential disadvantages of item parcelling  

 

Although it has many advantages, aggregating information from items into parcels is not without 

its problems.  As Holt (2003) and Little et al. (2002) emphasise, item parcels work best when 

constructed on uni-dimensional structures.  Item parcels drawn from items assessing a multi-

dimensional construct are themselves likely to be multidimensional in composition, leading to 

difficulties in interpretation.  An additional concern is that item parcelling may improve model fit 

for all models, even if they are misspecified (Bandalos et al., 2001).  This is because parcel-based 

models tend to cancel out random and systematic error by aggregating across these errors, 

thereby improving model fit.  As a result item parcelling may reduce the probability that 

misspecified models may be identified, and thus possibly increase the chance of Type II errors 

(failing to reject a model that should have been rejected) (Little et al., 2002). 

  

Nonetheless, there are very few solutions besides item parcelling or item-based analysis that may 

be used in this current research.  One such solution would be to create a subset of observed 

variables for model fitting and testing.  However, this is likely to result in some variables being 

discarded from a CFA.  These eliminated variables may contain valuable information on 

estimators and tests concerning the structural model (Nasser & Takahashi, 2003), which 

eliminated it as an option in this study.  Rather, item parcelling was considered the better option.   

 

3.5.4 Appropriateness of using item parcelling for this research 

 

Although individual PI items should be considered ordinal variables as a five-point Likert scale is 

used to capture responses, SEM on the PI in which each individual item serves as a manifest or 

indicator variable of the various latent unit performance facets would have resulted in a 

cumbersome and extensive exercise simply due to the number of items involved.  The ordinal 

nature of the data would have required the asymptotic covariance or asymptotic variance matrices 
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to be calculated which demands extensive memory and processing time when the number of 

variables are large (Jöreskog & Sörbom, 1996b).  In a cross-validation study such as this research, 

the comparison between two samples using individual items rather than parcels would exacerbate 

this problem.  Therefore it was decided to use items parcels for this research, but to remain alert 

to the potential consequences of doing so when considering model fit.   

 

3.5.5 Generating item parcels 

 

Although item parcelling is frequently used, there is no consensus amongst researchers on how 

items should be aggregated into parcels.  Nonetheless, research indicates that how well parcels 

work depends to a large extent on the specific allocations of items into parcels (Holt, 2003; Little 

et al., 2002).  There appear to be two main considerations when allocating items into parcels.  

According to Hagvet and Nasser (2004) parcels are acceptable indicators of the latent construct if 

1) they meet the parametric assumptions for uni-dimensionality, and 2) if items and parcels have 

content validity as measures of the latent construct.  The following recommendations based on 

Holt (2003), Hagvet and Nasser (2004), Hagvet and Zuo, (2000), Little et al. (2002), and Hall, 

Snell and Foust (1999), were considered when constructing item parcels for this research: 

 

Recommendation 1: Check for uni- or multi-dimensionality of factors 

Many authors recommend that item parcelling should only be used if the items to be parcelled 

are from a uni-dimensional sub-scale.  However, there is some argument for using item parcels 

regardless of their dimensionality.  As mentioned above, the number of items in the PI would 

make an analysis cumbersome if they were used as individual indicator variables.  In addition, 

there is evidence that the maximum likelihood (ML) method employed in this research cannot 

provide a reliable inference when the number of variables in an analysis becomes excessively 

large.  An excessive number of variables especially in relation to sample size are likely to result in 

misleading findings and invalid conclusions regarding the factor structure (Bernstein, Teng, 

Grannemann & Garbin, 1987; Kishton & Widaman, 1994, cited in Nasser & Takahashi, 2003, p. 

76).   

 

Furthermore, Hall et al. (1999) propose using sub-scale dimensionality in item parcelling for a 

different reason.  If multi-dimensional sub-scales are identified, isolated parcelling strategies 

could be used to capture similar facets of the structure into the same item parcel and different 

facets would be separated into different parcels.  In a comprehensive study on different item 
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parcelling strategies, Hall et al. (1999) found that generating item parcels in this way forces any 

unmodelled influence into the uniqueness terms, and thereby isolates the factor loadings and 

structural estimates as much as possible from the contamination of the secondary factor 

influence.  In contrast, when parcels are created without allocating items according to multi-

dimensional nature of the sub-scale, parcelling can obscure the true factor structure and result in 

biased parameter estimates and inflated indices of fit (Hall et al., 1999).   

 

Recommendation 2: Consider the normality and difficulty of the items 

Secondly, the normality/difficulty of the original items to be parcelled was important to consider 

as it was recommended that items with very non-normal distributions should be combined with 

other items in such a way as to maximise the normality of the resulting parcels.  As the PI has 

ordered, categorical items, this can be accomplished by combining items with opposite skew or 

distributional shape (Holt, 2003).   

 

Recommendation 3: Check content validity of parcels 

Thirdly, conducting a conceptual analyses of item content enables the researcher to check that 

items and parcels have content validity as measures of the latent construct (Hagvet & Zuo, 2000), 

and that they represent the facets underlying the dimension as far as possible (Little et al., 2002).   

 

Recommendation 4: Create the least number of parcels with the most items.   

Finally, it is recommended to create a limited number of parcels from the items available for each 

latent variable rather than numerous parcels containing only a limited number of items.  As the 

number of items in each of the eight PI sub-scales ranges from five to nine, it does not seem 

appropriate to create more than two item parcels for each sub-scale.   

 

3.5.6 Generating item parcels based on recommendations 

 

Based on the above recommendations, the following process was followed when forming item 

parcels.  Item parcelling was based on the item analysis and dimensionality analysis results 

obtained for Sample B, but checked against the results obtained for Sample A to ensure no 

contradictions were evident.  In the first step, all sub-scales were first subdivided according to 

alternate allocations of items according to highest to lowest factor loadings.  As discussed above, 

Employee Satisfaction and Market Standing could easily be divided into two item parcels 

representing conceptually meaningful division of the original sub-scale in question.  However, 
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item #39 of the Capacity sub-scale proved to be problematic and could not be easily allocated to 

either of the clearly identifiable factors and therefore items were allocated as though Capacity was 

uni-dimensional.  The second step involved comparing the skewness of items in each parcel from 

a uni-dimensional sub-scale in order to ensure that items with very non-normal distributions were 

balanced out between the parcels for each sub-scale.  This did not pose a problem for Sample B 

or Sample A.  It was not considered problematic that an item parcel from each of the Market 

Standing and in Employee Satisfaction sub-scales contained many significantly negatively skewed 

items for Sample A as both sub-scales were multi-dimensional.  The last step involved 

considering if any items were conceptually ill-fitted to the item parcel they were allocated to.  

There was no need to change the item allocations.   

 

Following the above process, two indicator variables were created from each sub-scale and are 

presented in Table 15.   These item parcels reduced the manifest variables in the measurement 

model from fifty-six to sixteen.  These composite indicator variables were treated as continuous 

variables, thus allowing for the analysis of the covariance matrix (Jöreskog & Sörbom, 1996b).  In 

the context of multi-group analyses, this sampling strategy was quite tricky to implement.  For 

example, it is hard to justify why the results of the dimensionality analysis for Sample B were used 

rather then those of Sample A.  Nonetheless, by using this complex item parcelling strategy it was 

hoped that more reliable indicator variables would be created, and that this would enhance the 

credibility of this study’s results. 

 

TABLE 15 

ITEM – PARCEL ALLOCATIONS FOR SAMPLE A AND SAMPLE B 

Sub-scale Items allocated to Parcel 1 Items allocated to Parcel 2 

Production and Efficiency 2; 3; 4 1; 5 

Core people processes 8; 10; 12; 13; 14 6; 7; 9; 11; 

Work unit climate 16; 18; 19; 20 15; 17; 21; 

Employee Satisfaction 23; 27; 28; 29; 30 22; 24; 25; 26 

Adaptability 31; 32; 34; 37 33; 35; 36 

Capacity 38; 39; 41; 42 40; 43; 44 

Market Standing 45; 46; 47; 49 48; 50; 51 

Projected Future Growth 52; 54; 55 53; 56 
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3.6 UNIVARIATE AND MULTIVARIATE NORMALITY 

 

Maximum likelihood is considered as the preferred method of estimation when fitting 

measurement models to continuous data.  However, maximum likelihood assumes multivariate 

normality, as does the alternative estimation methods for structural equation modelling with 

continuous data, namely true generalised least squares (GLS) and full information maximum 

likelihood (FIML) (Mels, 2003).  Although the assumption of multivariate normality may in some 

cases of single populations be justifiable, it is more complicated in a multigroup context.  As 

Lubke and Muthen (2004, p. 515) state “results from robustness studies in a single homogeneous 

population concerning the analysis of Likert-type data while violating the normality assumption, 

do not necessarily carry over to the multiple group situation, and group comparisons may have 

problems in addition to those encountered in single populations”.  In an empirical study, Lubke 

and Muthen (2004) found the source of unacceptable fit remains obscure in multigroup CFA of 

ordered categorical data whilst incorrectly assuming multivariate normality.  They concluded that 

a researcher would not know whether unfavourable measures of goodness-of-fit are really due to 

a violation of ML assumptions, due to threshold differences across items that result in structural 

differences, or due to the fact that the data are categorical and measures of GIF based on the 

assumption of normally distributed data do not function properly.  Inappropriate analysis of 

continuous non-normal variables in SEM can moreover result in incorrect standard errors and 

chi-square estimates (Du Toit & Du Toit, 2001).   

 

The univariate and multivariate normality of the composite indicator variables of the PI were 

evaluated by means of PRELIS (Jöreskog & Sörbom, 1996b).  The null hypothesis of univariate 

normality had to be rejected for five of the sixteen composite indicator variables for Sample A, 

and for six composite indicator variables for sample B.  This is consistent with the skewness 

findings reported earlier.  The results of the test for multivariate normality are given in Table 16.  

The assumption of multivariate normality is evidently not defensible in both samples A and B. 

 

TABLE 16 

TEST OF MULTIVARIATE NORMALITY FOR CONTINUOUS VARIABLES 

 Skewness Kurtosis Skewness and Kurtosis 
Sample N Value Z-Score P-Value Value Z-Score P-Value Chi-Square P-Value 

A 277 27,150 9,338 0,000 315,898 7,520 0,000 143,736 0,000 
B 375 20,804 10,197 0,000 318,739 9,208 0,000 188,779 0,000 
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Two possible solutions to the lack of normality were explored.  The first solution involved 

normalising the composite indicator variables using PRELIS.  Although the skewness and 

kurtosis of the indicator variable distributions significantly improved when normalised, the null 

hypothesis of multivariate normality still had to be rejected for both samples as shown in Table 

17.  This impasse occurs because indicator variables are normalised independently of each other.   

 

TABLE 17 

TEST OF MULTIVARIATE NORMALITY FOR NORMALISED CONTINUOUS 

VARIABLES 

 Skewness Kurtosis Skewness and Kurtosis 
Sample N Value Z-Score P-Value Value Z-Score P-Value Chi-Square P-Value 

A 277 24,903 7,353 0,000 308,704 6,121 0,000 91,537 0,000 
B 375 21,070 10,497 0,000 319,606 9,384 0,000 198,253 0,000 

 

As the normalised indicator parcels did not pass the test of multivariate normality, the second 

solution involved exploring alternative methods of estimation that are better suited to data that 

does not follow a multivariate normal distribution.  Methods that are recommended to fit 

structural equation models to non-normal data include, robust maximum likelihood (RML), 

weighted least squares (WLS) and diagonally weighted least squares (DWLS) (Mels, 2003).  Such 

methods provide an advantage over the use of normal scores in that solutions do not have to be 

interpreted in terms of transformed values (Du Toit & Du Toit, 2001).  For this study, robust 

maximum likelihood was selected as the method of estimation based on Mels (2003) 

recommendation that it be used if the assumption of a multivariate normal distribution does not 

hold. 

 



 51 
 

CHAPTER 4 

EVALUATION OF THE MEASUREMENT MODEL 

 

 

4.1 THE PI MEASUREMENT MODEL 

 

The PI was developed to measure the multifaceted construct of work unit performance.  The 

facets of the work unit performance construct were purposefully conceptualized in terms of eight 

unit performance dimensions to which specific constitutive meanings have been attached as 

shown in Table 1 (see page 7).  These unit performance latent dimensions were subsequently 

purposefully operationalized in terms of specific effect indicators (Babbie & Mouton, 2001).  

Specific items were written to function as relatively uncontaminated behavioural expressions of 

each latent work unit performance dimension.  Measurement model fit for independent samples 

indicates the degree to which the researchers have succeeded in their measurement intentions.  

As such, poor measurement model fit would question the extent to which the PI’s operational 

design is able to provide a comprehensive and uncontaminated empirical grasp on the work unit 

performance construct as defined.  It makes sense, therefore, to first establish whether the model 

fits on both samples independently before proceeding to investigate whether the parameter 

estimates can be considered equal across samples though tests of measurement invariance.    

 

Structural equation modelling (SEM) was used to perform a confirmatory first-order factor 

analysis on the parcelled data sets for each sample (Kaplan, 2000).  The conceptualisation of the 

unit performance construct, in conjunction with the architecture to the PI, implies a specific 

factor structure or measurement model.  Given that two manifest variables were created from 

each sub-scale, the measurement model underlying the PI can be shown in matrix format as 

equation 1.   

 

X = Λxξ + δ 1 

Where: 

- Χ is a 16x1 column vector of observable indicator scores;  

- Λx
 is a 16x8 matrix of factor loadings; 

- ξ  is a 8 x 1 column vector of first-order latent unit performance facets; and 
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- δ is a 16x1 column vector of unique/measurement error components comprising the 

combined effect on X of systematic non-relevant influences and random measurement error 

(Jöreskog & Sörbom, 1996b).   

 

The measurement model implies two additional matrices.  A symmetric 16x16 

covariance/correlation matrix Φ contains the correlations between the latent unit performance 

dimensions.  A diagonal 16x16 matrix θδ depicts the variance in the error terms associated with 

the indicator variables.  The diagonal nature of the θδ matrix implies that the error terms δ are 

assumed to be uncorrelated across the indictor variables.  If the measurement model would make 

provision for correlated error terms by freeing the off-diagonal elements of θδ, it would imply the 

existence of additional common factors, not reflected in the model, but which also underlie the 

response to the indicator variables (or possibly causal effects existing between the systematic 

error contained in the measurement error terms).  No substantive justification could in this case 

be found to free the off-diagonal elements of θδ. 

 

4.2 MODEL IDENTIFICATION 

 

Model identification needs to be examined prior to confronting the model with data.  Broadly 

speaking this involves determining whether one has sufficient information to obtain a unique 

solution for the parameters to be estimated in the model (Diamantopoulos & Siguaw, 2000).  In 

other words model identification considers if the nature of the model and the data would permit 

the determination of unique estimates for the freed parameters in the model.  This would be 

possible if for each free parameter there would exist at least one algebraic function that expresses 

that parameter as a function of sample variances/covariance terms (MacCallum, 1995).  There is, 

however, no such set of necessary and sufficient conditions that if satisfied would ensure that the 

model is identified.  At the very least, though, the following two important requirements have to 

be met (Diamantopoulos & Siguaw, 2000; MacCallum, 1995).  Firstly, a definite scale has to be 

established for each latent variable.  Secondly, the number of model parameters to be estimated 

may not exceed the number of unique variance/covariance terms in the sample observed 

covariance matrix (Diamantopoulos & Siguaw, 2000; MacCallum, 1995).  The measurement 

model depicted as equation 1 satisfies both these requirements.  The first requirement is met by 

treating each latent variable as a (0; 1) standardized variable (MacCallum, 1995).  The number of 

model parameters that are set free to be estimated (t=60) are also less than the number of non-

redundant elements in the observed sample covariance matrix ([(p+q)(p+q+1)]/2=136) whereby 
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p=the number of y-variables and q=the number of x-variables (Diamantopoulos & Siguaw, 

2000).  This results in the rather moderate degrees of freedom of 76. 

 

4.3 INDEPENDENT ASSESSMENT OF OVERALL GOODNESS-OF-FIT OF THE FIRST-ORDER 

MEASUREMENT MODEL FOR SAMPLE A AND SAMPLE B 

 

Prior to cross-validating the measurement model, it is necessary to fit the model on both samples 

independently.  Poor model fit for either one of the samples or both would cast doubt on the 

value of cross-validating the measurement model across these two specific samples.  LISREL 

8.53 (Du Toit & Du Toit, 2001; Jöreskog & Sörbom, 1996b) was used to determine the fit of the 

PI model shown as equation 1.  For the purposes of confirmatory factor analysis, the 

measurement model was treated as an exogenous model, simply for programming reasons.  The 

data was first read into PRELIS (Jöreskog & Sörbom, 1996b) to compute covariance and 

asymptotic covariance matrices to serve as input for the LISREL analysis.  The model fit was 

evaluated through an analysis of a covariance matrix due to the assumed continuous nature of the 

item parcels.  Robust maximum likelihood was used to estimate the parameters set free in the 

model due to the failure of the data to satisfy the multivariate normality assumption.   

 

No single measure of fit can provide a conclusive verdict on model fit (Bollen & Long, 1993; 

Schumacker & Lomax, 1996).  Evaluation of model fit should rather be determined through an 

integrative process that considers a variety of sources and is based on several criteria that assess 

model fit from different perspectives (Diamantopoulos & Siguaw, 2000; p. 82).  The full 

spectrum of indices provided by LISREL to assess the absolute and comparative fit of the 

proposed measurement model were therefore used to reach an informed decision concerning the 

model’s overall fit (Diamantopoulos & Siguaw, 2000).  The results of the model fit analyses are 

presented and discussed first for Sample A and then for Sample B. 

 

4.4 RESULTS FOR SAMPLE A  

4.4.1 Overall fit assessment for Sample A 

 

The full spectrum of indices provided by LISREL to assess the absolute and comparative fit of 

the proposed measurement model with the data from Sample A is presented in Table 18.  An 

admissible final solution of parameter estimates for the PI measurement model was obtained 

after 9 iterations.   
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TABLE 18 

GOODNESS-OF-FIT INDICATORS FOR SAMPLE A 

Degrees of Freedom = 76 
Minimum Fit Function Chi-Square = 141,42 (P = 0,00) 

Normal Theory Weighted Least Squares Chi-Square = 140,04 (P = 0,00) 
Satorra-Bentler Scaled Chi-Square = 128,83 (P = 0,00015) 

Chi-Square Corrected for Non-Normality = 156,95 (P = 0,00) 
Estimated Non-centrality Parameter (NCP) = 52,83 

90 Percent Confidence Interval for NCP = (25,35 ; 88,18) 
 

Minimum Fit Function Value = 0,51 
Population Discrepancy Function Value (F0) = 0,19 

90 Percent Confidence Interval for F0 = (0,092 ; 0,32) 
Root Mean Square Error of Approximation (RMSEA) = 0,050 
90 Percent Confidence Interval for RMSEA = (0,035 ; 0,065) 

P-Value for Test of Close Fit (RMSEA < 0,05) = 0,47 
 

Expected Cross-Validation Index (ECVI) = 0,90 
90 Percent Confidence Interval for ECVI = (0,80 ; 1,03) 

ECVI for Saturated Model = 0,99 
ECVI for Independence Model = 31,72 

 
Chi-Square for Independence Model with 120 Degrees of Freedom = 8723,93 

Independence AIC = 8755,93 
Model AIC = 248,83 

Saturated AIC = 272,00 
Independence CAIC = 8829,92 

Model CAIC = 526,27 
Saturated CAIC = 900,87 

 
Normed Fit Index (NFI) = 0,98 

Non-Normed Fit Index (NNFI) = 0,99 
Parsimony Normed Fit Index (PNFI) = 0,62 

Comparative Fit Index (CFI) = 0,99 
Incremental Fit Index (IFI) = 0,99 

Relative Fit Index (RFI) = 0,97 
 

Critical N (CN) = 210,97 
 

Root Mean Square Residual (RMR) = 0,015 
Standardized RMR = 0,029 

Goodness-of-fit Index (GFI) = 0,94 
Adjusted Goodness-of-fit Index (AGFI) = 0,89 

Parsimony Goodness-of-fit Index (PGFI) = 0,53 

 

The chi-square test statistic indicates whether the observed and estimated covariance matrices 

differ relative to sample size (Pousette & Hanse, 2002).  The Satorra Bentler chi square results 

from the use of robust maximum likelihood which has been chosen because it is better suited to 

multivariate non-normal data (Diamantopoulos & Siguaw, 2000).  The Satorra-Bentler χ² test 

statistic (128,83) is significant (p<0,01) thus resulting in a rejection of the null hypothesis of exact 

model fit (H0: Σ=Σ(θ)).  This means the first-order measurement model is not able to reproduce 

the observed covariance matrix to a degree of accuracy that could be explained in terms of 

sampling error only.  This result, however, is not surprising because the χ² value is used to 
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determine if significant variance is left unexplained, and significant unexplained variance is typical 

in social science research (Peterson et al., 1995).  As such, the null hypothesis that the model fits 

perfectly to the population may be considered to be rather unrealistic (Browne & Cudeck, 1993).  

Further difficulties of using the chi-square statistic include that it is sensitive to sample size 

(Diamantopoulos & Siguaw, 2000), and there is also no consensus about what χ² value represents 

a good fit, even though the χ² measure is the only statistically-based measure of goodness-of-fit 

available in SEM (Bollen, 1989, cited in Poulette & Hanse, 2002, p. 231; Hu & Bentler, 1995).   

 

It is, therefore, recommended that the chi-square statistic should be treated as a descriptive 

badness-of-fit measure (Pousette & Hanse, 2002).  This can be done by using the normed χ² 

measure to identify inappropriate models.  Normed χ² values less then 1,0 indicate an ‘overfitted’ 

model (Schumacker & Lomax, 1996) whilst ratio values more than 2,0 (or the more liberal limit 

of 5,0) indicate that the model does not fit the observed data and needs improvement (Pousette 

& Hanse, 2002).  For sample A, the normed χ² expressed as the Satorra-Bentler χ² estimate in 

terms of the degrees of freedom (χ2/df = 1,69) suggests that the measurement model 

demonstrates acceptable fit to the data.  Kelloway (1998), though, advises against a strong 

reliance on the normed χ² as the guidelines indicative of good fit have very little empirical 

justification.   

 

In most circumstances the hypothesised model is only an approximation to reality which means 

the χ² test statistic will follow a non-central χ² distribution with non-centrality parameter, λ.  The 

estimated λ assesses the degree of model fit by estimating the discrepancy between the observed 

(Σ0) and estimated population covariance (Σ~ 0).  The larger the estimated λ, the farther apart is 

the true alternative from the null hypothesis (Diamantopoulos & Siguaw, 2000).  For Sample A, 

the estimated λ value (52,83) is not very high.  The 90 percent confidence interval for NCP 

(25,35 ; 88,18) also ranges across acceptable values1.  This suggests that the estimated discrepancy 

between the observed (Σ0) and estimated population covariance (Σ~ 0) matrices is not very high, 

which indicates good model fit (Diamantopoulos & Siguaw, 2000). 

 

Root mean square error of approximation (RMSEA) focuses on the discrepancy between Σ and 

Σ(θ) per degree of freedom.  It is generally regarded as one of the most informative fit indices, 

                                                 
1 The researcher, however, has to confess that she would be rather hard-pressed to indicate exactly when the non-centrality 
parameter values would become unacceptable. 
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especially as it takes the model complexity into account (Diamantopoulos & Siguaw, 2000).  The 

RMSEA value indicates how well the model with unknown but optimally chosen parameter 

values would fit the population covariance matrix if it were available.  The RMSEA value (0,05) 

for Sample A meets the criteria of close or good model fit which is indicated by a value ≤0,05 

according to the guidelines provided by Browne and Cudeck (1993).  Likewise, the 90 percent 

confidence interval for RMSEA shown in Table 18 (0,035 ; 0,065) indicates that the fit of the 

structural model could be regarded as good.  In addition, a test of close fit performed by LISREL 

shows a high probability (0,47) of obtaining a RMSEA value of 0,05 in the sample given the 

assumption that the model fits closely in the population.  In symbol form therefore: 

P[RMSEA=0,05|H0: RMSEA≤0,05 is true]=0,47 

The null hypothesis that RMSEA is ≤ 0,05 can therefore not be rejected.  These results, 

therefore, all suggest that close model fit has been achieved. 

 

The expected cross-validation index (ECVI) expresses the difference between the reproduced 

sample covariance matrix ( Σ̂) derived from fitting the model on the sample at hand and the 

expected covariance matrix that would be obtained in an independent sample of the same size 

from the same population (Byrne, 1998; Diamantopoulos & Siguaw, 2000).   It focuses on overall 

error and is, therefore, a useful indicator of a model’s overall fit (Diamantopoulos & Siguaw, 

2000).  Since the model ECVI (0,90) is far smaller than the value obtained for the independence 

model (31,72) and also less than the ECVI value associated with the saturated model (0,99), the 

fitted model appears to have the greatest potential of being replicated in a cross-validation sample 

which indicates good model fit (Diamantopoulos & Siguaw, 2000).   

 

Indices of parsimonious fit refer to the benefit that amounts in terms of the extent to which fit is 

improved whilst taking into account the cost incurred in terms of degrees of freedom lost in 

order to attain this improved fit (Jöreskog & Sörbom, 1993).  In other words, the assessment of 

parsimonious fit acknowledges that model fit can always be improved by adding more paths to 

the model and estimating more parameters until perfect fit is achieved in the form of a saturated 

or just-identified model with no degrees of freedom (Kelloway, 1998).  The key is, therefore, to 

find the most parsimonious model that achieves satisfactory fit with as few model parameters as 

possible (Jöreskog & Sörbom, 1993).  The parsimonious normed fit index (PNFI = 0,62) and the 

parsimonious goodness-of-fit index (PGFI = 0,53) approach model fit from this perspective.  

PNFI and PGFI range from 0 to 1, with higher values indicating a more parsimonious fit, 

however, neither index is likely to reach the 0,90 cutoff used for other fit indices and there is also 
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no standard for how high either index should be to indicate parsimonious fit (Kelloway, 1998).  

They are more inclined to be meaningfully used when comparing two competing theoretical 

models and, therefore, not very useful indicators in this analysis (Kelloway, 1998).  Acceptable 

values for the PGFI according to Diamantopoulos and Siguaw (2000) generally tend to be 

somewhat more conservative even when other indices indicate acceptable fit. 

 

The values for the Aiken information criterion (AIC= 248,83) suggest that the fitted 

measurement model provides a more parsimonious fit than the independent/null model 

(8755,93) as well as the saturated model (272,00) (Kelloway, 1998).  Similarly, the values for the 

consistent Aiken information criterion (526,27) imply that the fitted measurement model 

provides a more parsimonious fit than both the independent/null model (8829,92) and the 

saturated model (900,87).   This, in conjunction with the ECVI results, indicates that the 

measurement model does not lack influential paths and, as such, may be considered the most 

parsimonious fit. 

 

Relative fit indices compare the ability of the model to reproduce the observed covariance 

matrix with that of a baseline model, usually the independence model that postulates no paths 

between the variables in the model (Diamantopoulos & Siguaw, 2000).  The closer the values 

are to 1 from 0, the better the fit with 0,90 generally considered indicative of a well fitting model 

(Diamantopoulos & Siguaw, 2000; Kelloway, 1998).  The indices of relative fit presented in 

Table 18 include the normed fit index (NFI = 0,98), the non-normed fit index (NNFI = 0,99), 

the comparative fit index (CFI = 0,99), the incremental fit index (IFI = 0,99), and the relative fit 

index (RFI = 0,97).  These aforementioned indices all exceed the critical value of 0,90 and 

therefore indicate good comparative fit relative to the independence model. 

 

The critical sample size statistic (CN) refers to the size that the sample would have to reach in 

order to accept the χ² statistic as significant at the 0,05 significance level (Diamantopoulos & 

Siguaw, 2000).  The estimated CN value (210,97) falls above the recommended threshold value of 

200 which is regarded as indicative of the model providing an adequate representation of the data 

(Diamantopoulos & Siguaw, 2000) although this proposed threshold should be used with caution 

(Hu & Bentler, 1995).  The standardized RMR may be considered a summary measure of 

standardized residuals which represents the average difference between the elements of the 

sample covariance matrix and the fitted covariance matrix.  If the model fit is good the fitted 

residuals (S – Σ^) should be small in comparison to the magnitude of the elements in S 
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(Diamantopoulos & Siguaw, 2000).  The RMR (0,015) and standardized RMR (0,029) also 

indicate good fit as values less than 0,05 on the latter index suggest the model fits the data well 

(Kelloway, 1998).    

 

The goodness-of-fit index (GFI) and the adjusted goodness-of-fit index (AGFI) reflect how 

closely the model comes to perfectly reproducing the sample covariance matrix (Diamantopoulos 

& Siguaw, 2000).  The AGFI (0,89) adjusts the GFI (0,94) for the degrees of freedom in the 

model (Diamantopoulos & Siguaw, 2000; Jöreskog & Sörbom, 1993) and should be between zero 

and unity with values exceeding 0,9 indicating the model fits well with the data (Jöreskog & 

Sörbom, 1993; Kelloway, 1998).  Evaluating the fit of the model in terms of these two indices 

thus supports model fit, although AGFI index of 0,89 is slightly lower than the cutoff value.  

Kelloway (1998) states that GFI and AGFI should be used with some circumspection as 

guidelines for the interpretation are grounded in experience and therefore somewhat arbitrary.   

In sum, when the abovementioned model fit statistics are considered in unison, they seem to 

unanimously suggest that the model fits closely to the data of Sample A.  In addition, the model 

clearly outperforms the independence model as well as the saturated model and therefore it 

seems to fully capture the true complexity of the underlying PI model without the need for 

additional paths. 

 

4.4.2 Examination of residuals 

 

Residuals represent the differences between corresponding cells in the observed and fitted 

covariance matrices (Diamantopoulos & Siguaw, 2000; Jöreskog & Sörbom, 1993).  As such, 

residuals, and especially standardized residuals, provide valuable diagnostic information on 

sources of lack of fit in models (Jöreskog & Sörbom, 1993; Kelloway, 1998).  Standardized 

residuals can be interpreted as standard normal deviates (i.e. z-scores).  Large positive and 

negative standardized residuals with absolute values greater than 2,58 would be indicative of 

relationships (or the lack thereof) between indicator variables that the model fails to explain 

(Diamantopoulos & Siguaw, 2000).  Large positive residuals would indicate that the model 

underestimates the covariance between two observed variables.  Adding paths to the model that 

could account for the covariance should, therefore, rectify the problem.  Conversely, large 

negative residuals would indicate that the model overestimates the covariance between specific 

observed variables.  Rectifying this situation would, therefore, lie in removing some or all of the 
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paths that are associated with the indicator variables in question (Diamantopoulos & Siguaw, 

2000; Kelloway, 1998).   

 

The stem-and-leaf plot depicted in Figure 2 confirms the positive conclusion on model fit that 

was suggested by the fit statistics earlier as the distribution of standardized residuals appears to be 

distributed approximately symmetrical around a median standardized residual of zero.  The 

smallest (-2,02) and largest (2,49) standardized residual also fall well within the 0,01 significance 

limits.  Overall, the absence of large positive and negative residuals suggest that the observed 

covariance terms in the observed sample covariance matrix are estimated reasonably well by the 

derived model parameter estimates.   

 

 

FIGURE 2 

 STEM-AND-LEAF PLOT OF STANDARDIZED RESIDUALS FOR SAMPLE A 

 

The Q-plot displayed in Figure 3, provides an additional graphical display of residuals for Sample 

A by plotting the standardized residuals (horizontal axis) against the quantiles of the normal 

distribution (Diamantopoulos & Siguaw, 2000).  The Q-plot indicates good model fit as there is a 

relatively small angular deviation of the standardized residuals for all pairs of observed variables 

from the 45° reference line in the Q-plot, especially in the upper and lower regions of the X-axis.   
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FIGURE 3  

Q-PLOT OF STANDARDIZED RESIDUALS FOR SAMPLE A 

 

4.4.3 Model modification indices for Sample A 

 

Given the results presented thus far, the model depicted in equation 1 seems to fit closely to the 

data of Sample A and does not appear to indicate the need to consider the addition of one or 

more paths in order to improve the fit of the model.  Examining the modification indices 

calculated for the currently fixed parameters of the model provides an additional way of 

determining if one or more paths would significantly improve the fit of the model.  Model 

modification indices calculated by LISREL serve to estimate the decrease that should occur in the 

χ2 statistic if parameters that are currently fixed are set free and the model re-estimated.  

Modification index with large values (> 6,6349) identify currently fixed parameters that would 

improve the fit of the model significantly if set free (p < 0,01) (Diamantopoulos & Siguaw, 2000).  

Any alteration to the model as suggested by modification indices should, however, only be 

considered if such alterations are substantively justifiable (Diamantopoulos & Siguaw, 2000; 
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Kelloway, 1998).  In other words such alterations should make sense in relation to the theory of 

unit performance that underpins the PI.  

 

The modification indices calculated for the ΛX matrix identify nine additional paths that would 

significantly improve the fit of the PI measurement model for Sample A if they were set free.  

The largest modification indices suggests freeing the path from the Climate to Grow1 (15,40), 

from Core People Processes to Grow1 (13,59), and from Future Growth to Mark2 with large 

completely standardized expected change values for χ2 (0,69; 0,74, -1,05).  Although these 

modification indices suggest that substantial improvement in fit might be obtained from making 

one or more of these modifications, it is not possible to construct a theoretical justification for 

making any post hoc modifications to the measurement model based on this information.  The 

significant modification indices suggest that one or more of the items included in the item parcels 

also systematically reflect one or more other latent variables than those they were designed to 

reflect.  The primary question of interest is to what extent item parcels succeeded in reflecting the 

latent variable they were designated to reflect.  The question whether item parcels also (assuming 

satisfactory high completely standardized factor loadings) systematically other latent variables 

seem of secondary interest.   If a strategic decision would be taken to use complex items in the PI 

a prudent option would be to construct items with the explicit intent to reflect more than one 

latent variable and to fit a measurement model that reflects that design intention.  It would after 

all be pointless to allow for cross-loading in the measurement model when this is not reflected in 

the scoring key of the PI.    

 

Furthermore, the modification indices calculated for the ΛX matrix suggest freeing the path from 

the sub-scale Production and Efficiency to both Employee Satisfaction item parcels, Satis1 (7,03) 

and Satis2 (6,93), as well as from Capacity to Satis1 (8,50).  The magnitude of the modification 

index values taken in conjunction with the magnitude and sign of the standardized expected 

change values with completely standardized expected change values for χ2 of 0,19, -0,18, and -

0,29 respectively in this case, however, argue less convincingly for the freeing of the paths in 

question.    

 

For the purpose of this study a conservative approach of upholding the original design intentions 

of the PI will be followed and consequently no allowance will be made for cross-loading of item 

parcels even though it could significantly improve the fit of the measurement model.  The relative 
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small number of large modification index values calculated for the ΛX matrix moreover supports 

the previous relatively optimistic conclusion on model fit. 

 

4.4.4 Assessment of the first-order factor model 

 

The completely standardized factor loading matrix (ΛX) displayed in Table 19 reflects the 

regression of Xj on ξi and is used to evaluate the significance of the first-order factor loadings 

hypothesized by the proposed measurement model expressed as equation 1.  The completely 

standardized λ parameter estimates reflect the average change in standard deviation units in a 

manifest variable X directly resulting from a one standard deviation change in a first-order 

exogenous latent variable ξ to which it has been linked, holding the effect of all other variables 

constant.  The results depicted in Table 19 indicate that all proposed first-order factor loadings 

are significant (p<0,05).   The fit of the model should therefore deteriorate significantly if any of 

the existing paths in the measurement model would be pruned away by fixing the corresponding 

parameters in ΛX to zero and thus effectively eliminating the item parcels in question from their 

current sub-scales (Kelloway, 1998).  None of the existing paths in the model thus appear to be 

redundant and all item parcels thus significantly reflect the unit performance dimension it was 

designed to denote.  Moreover, Table 19 shows that the indicator variables generally load quite 

high on the first-order factors to which they have been linked.  The two item parcels Prod1 and 

Grow2 should, however, be singled out as two exceptions to the rule. 

 

TABLE 19 

COMPLETELY STANDARDIZED FACTOR LOADING MATRIX (ΛX) FOR 

SAMPLE A 

Product Core people Climate Satisfaction 
 

Prod1 
0,76 

(0,04) 
12,53* 

 
Core1 

0,86 
(0,03) 
18,04* 

 
Clim1 

0,93 
(0,03) 
20,19*

 
Satis1 

0,80 
(0,04) 
15,58* 

 
Prod2 

0,87 
(0,04) 
15,47* 

 
Core2 

0,86 
(0,03) 
17,61* 

 
Clim2 

0,88 
(0,04) 
18,50*

 
Satis2 

0,79 
(0,04) 
15,23* 

Adaptability Capacity Market standing Future growth 
 

Adapt1 
0,90 

(0,03) 
18,93* 

 
Capac1 

0,85 
(0,03) 
16,83* 

 
Mark1 

0,79 
(0,04) 
14,14*

 
Grow1 

0,88 
(0,04) 
15,03* 

Adapt2 0,85 
(0,04) 
17,03* 

 
Capac2 

0,80 
(0,04) 
15,11* 

 
Mark2 

0,78 
(0,04) 
14,62*

 
Grow2 

0,65 
(0,04) 
10,95* 

* t-values >⎪1,96⎪ indicate significant path coefficients; values in brackets represent standard error estimates 
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Examining the variance explained in the item parcels reveals a similar picture (see also Table 17, 

page 46).  The total variance in the ith item parcel (Xi) can be decomposed into variance due to 

variance in the latent variable the item parcel was designed to reflect (ξj), variance due to variance 

in other systematic latent effects the item parcel was not designed to reflect and random 

measurement error.  The latter two sources of variance in the item parcel are acknowledged in 

equation 1 through the measurement error term δi.  The measurement error terms δ thus does 

not differentiate between systematic and random sources of error or non-relevant variance.  The 

square of the completely standardized factor loadings λij given in Table 19 could be interpreted as 

the proportion systematic-relevant item parcel variance given that each item parcels loads on one 

latent variable only.  Since reliability could be defined as the extent to which variance in item 

parcels can be attributed to systematic sources, irrespective of whether the source of variance is 

relevant to the measurement intention or not, the completely standardized factor loading values 

shown in Table 19 could, therefore, be simultaneously interpreted as lower bound estimates of 

the item reliabilities (Diamantopoulos & Siguaw, 2000; Jöreskog & Sörbom, 1996a).   Thus, given 

the modification indices calculated for ΛX shown in Table 19 the extent to which the true item 

reliabilities would be under-estimated is not likely to be considerable and in most cases the item 

parcels seem to provide relatively uncontaminated reflections of their designated latent 

dimensions.   

 

The proportion of item parcel variance that is explained by the latent variable it has been 

designated to reflect in terms of the measurement model (i.e. equation 1) is indicated by the 

squared multiple correlations for the observed indicator variables as shown in Table 20.  Table 20 

again reveals that the success with which Prod1 and Grow2 provide operational measures of the 

respective latent unit performance dimensions they are meant to reflect is not quite satisfactory.  

These item parcels are providing relatively contaminated reflections of their designated latent 

dimension.  In the case of the latter item parcel this may be due to a problem for quit a number 

of units to practically apply the concept of future growth to their unit.   

 

TABLE 20 

SQUARED MULTIPLE CORRELATIONS FOR ITEM PARCELS FOR SAMPLE A 

Prod1 Prod2 Core1 Core2 Clim1 Clim2 Satis1 Satis2 
0,57 0,75 0,74 0,73 0,86 0,77 0,65 0,63 

Adapt1 Adapt2 Capac1 Capac2 Mark1 Mark2 Grow1 Grow2 
0,82 0,72 0,71 0,64 0,62 0,60 0,78 0,43 
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The phi-matrix of correlations between the eight latent unit performance sub-scales is shown in 

Table 21.  The off-diagonal elements of the Φ-matrix are the sub-scale correlations disattenuated 

for measurement error.  As the Φ-matrix is positive definite and off-diagonal entries do not 

exceed unity, the results tend to provide some support for the discriminant validity of the first-

order factors.  All of the 28 correlations are significant (p<0,01) although only 5 correlations are 

highly significant.   

 

TABLE 21 

COMPLETELY STANDARDIZED PHI (Φ) MATRIX FOR SAMPLE A 
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Product & Efficiency 1,00        

Core People 0,67 1,00       

Climate 0,60 0,83 1,00      

Satisfaction 0,63 0,89 0,86 1,00     

Adaptability 0,53 0,76 0,68 0,82 1,00    

Capacity 0,50 0,66 0,62 0,70 0,83 1,00   

Market Standing 0,60 0,71 0,67 0,75 0,82 0,88 1,00  

Future Growth 0,54 0,71 0,62 0,66 0,77 0,87 0,87 1,00 

 

 

These correlations are to a certain extent expected given the nature of the underlying unit 

performance model and the results obtained by Henning et al. (2003) that provides support that 

specific relationships may exist between latent variable as displayed in the PI structural model 

(Figure 1, see page 8).  As such, the nature of the phi matrix may be seen as an expression of the 

complexity of unit performance in the sense that the various sub-scales comprising unit 

performance may well directly or indirectly causally influence each other.  In particular attention 

may be drawn to the high correlations among two sets of latent variables, one set including 

Employee Satisfaction, Core People Processes and Climate, and the other set including Market 

Standing, Capacity and Future Growth.  It does not seem altogether unreasonable to argue that 

high correlations may well exist between these sets of latent variables as, for example, Core 
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People Processes may logically be related, if not a key determining factor, of Climate and 

Employee Satisfaction in a work unit.  Similarly, it may be suggested that it is logical to expect 

relationships among Capacity, Market Standing and Future Growth.  In summary, the above 

results suggest that the indicator variables do generally succeed in providing empirical grasp on 

the underlying latent variables they were meant to reflect.    

 

4.4.5 Summary of model fit assessment for Sample A 

 

The model fit statistics for Sample A seem to unanimously suggest that the model fits closely to 

the data of Sample A, and that the model fully captures the true complexity of the underlying PI 

model without the need for additional paths as it outperforms the independence and saturated 

models.  Analysis of residuals supported this conclusion as the standardized residuals were 

distributed approximately symmetrical around a median standardized residual of zero, no large 

positive and negative residuals were present, and the standardized residuals for all pairs of 

observed variables demonstrated only a small angular deviation of from the 45° reference line in 

the Q-plot.  These observations support the conclusion that the observed covariance terms in the 

observed sample covariance matrix are estimated reasonably well by the derived model parameter 

estimates.  Model modification indices calculated for the ΛX matrix identified nine additional 

paths that would significantly improve the fit of the PI measurement model for Sample A if they 

were set free.  The latter finding tends to temper the optimistic model fit conclusion to some 

extent although not overly so given the limited number of large values. 

 

Analysis of the completely standardized factor loading matrix and squared multiple correlations 

for ΛX indicated that in most cases the item parcels seem to provide relatively uncontaminated 

reflections of their designated latent dimensions, although there was some indication that Prod1 

and Grow2 could be providing relatively contaminated reflections of their designated latent 

dimension.  Lastly, the phi matrix identified two sets of sub-scales that are more highly correlated 

than the rest of the unit performance dimensions.  These correlations might be an expression of 

the direct and indirect causal influences existing between these latent variables.  Relationships 

between these variables do not, seem altogether unreasonable and are in fact hypothesized to 

exist by the basic PI structural model (Henning et al., 2003).  In sum, when the abovementioned 

results are considered in conjunction the measurement model depicted in equation 1 seems to 

closely fit the data of Sample A.   
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4.5 RESULTS FOR SAMPLE B  

4.5.1 Overall fit assessment for Sample B 

 

The full spectrum of indices provided by LISREL to assess the absolute and comparative fit of 

the proposed measurement model with the data from Sample B is presented in Table 22.  An 

admissible final solution of parameter estimates for the PI measurement model was obtained 

after 9 iterations.   

 

 

TABLE 22 

GOODNESS-OF-FIT INDICATORS FOR SAMPLE B 

Degrees of Freedom = 76 
Minimum Fit Function Chi-Square = 131,75 (P = 0,00) 

Normal Theory Weighted Least Squares Chi-Square = 129,71 (P = 0,00012) 
Satorra-Bentler Scaled Chi-Square = 115,77 (P = 0,0022) 

Chi-Square Corrected for Non-Normality = 142,12 (P = 0,00) 
Estimated Non-centrality Parameter (NCP) = 39,77 

90 Percent Confidence Interval for NCP = (14,67 ; 72,82) 
 

Minimum Fit Function Value = 0,35 
Population Discrepancy Function Value (F0) = 0,11 

90 Percent Confidence Interval for F0 = (0,039 ; 0,19) 
Root Mean Square Error of Approximation (RMSEA) = 0,037 
90 Percent Confidence Interval for RMSEA = (0,023 ; 0,051) 

P-Value for Test of Close Fit (RMSEA < 0,05) = 0,94 
 

Expected Cross-Validation Index (ECVI) = 0,63 
90 Percent Confidence Interval for ECVI = (0,56 ; 0,72) 

ECVI for Saturated Model = 0,73 
ECVI for Independence Model = 25,91 

 
Chi-Square for Independence Model with 120 Degrees of Freedom = 9658,77 

Independence AIC = 9690,77 
Model AIC = 235,77 

Saturated AIC = 272,00 
Independence CAIC = 9769,60 

Model CAIC = 531,38 
Saturated CAIC = 942,06 

 
Normed Fit Index (NFI) = 0,99 

Non-Normed Fit Index (NNFI) = 0,99 
Parsimony Normed Fit Index (PNFI) = 0,62 

Comparative Fit Index (CFI) = 0,99 
Incremental Fit Index (IFI) = 0,99 

Relative Fit Index (RFI) = 0,98 
 

Critical N (CN) = 306,40 
 

Root Mean Square Residual (RMR) = 0,013 
Standardized RMR = 0,028 

Goodness-of-fit Index (GFI) = 0,96 
Adjusted Goodness-of-fit Index (AGFI) = 0,93 

Parsimony Goodness-of-fit Index (PGFI) = 0,54 
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The Satorra-Bentler χ² test statistic (115,77) is significant (p<0,01) thus resulting in a rejection of 

the null hypothesis of exact model fit (H0: Σ=Σ(θ)).  The normed χ² (1,52) indicates that the 

measurement model is neither ‘over-fitted’ or ‘under-fitted’ but rather demonstrates acceptable fit 

to the data.  The estimated λ value for Sample B (39,77) is not very high.  The 90 percent 

confidence interval for NCP (14,67 ; 72,82) also ranges across acceptable values.   This implies 

good model fit as the estimated discrepancy between the observed (Σ0) and estimated population 

covariance (Σ~ 0) matrices is not very high (Diamantopoulos & Siguaw, 2000).  The RMSEA value 

(0,037) for Sample B easily meets the criteria of close model fit (Browne & Cudeck, 1993).  The 

90 percent confidence interval for RMSEA (0,023 ; 0,051) also indicates good fit.  Similarly, the 

test of close fit performed by LISREL shows that the conditional probability of the obtained 

RMSEA value of 0,037 under H0: RMSEA≤0,05 is sufficiently large (0,94) not to reject the close 

fit null hypothesis.  These results suggest that close model fit has been achieved for Sample B. 

 

The model ECVI (0,63) also provides support for good model fit as it is far smaller than both the 

value obtained for the independence model (25,91) and the ECVI value associated with the 

saturated model (0,73), and thus most likely to be replicated in a cross-validation sample 

(Diamantopoulos & Siguaw, 2000).  The parsimonious normed fit index (PNFI = 0,62) and the 

parsimonious goodness-of-fit index (PGFI = 0,54) approach model fit from this perspective, 

although, as mentioned above, these indices do not provide valuable information for the purpose 

of this analysis.  On the other hand, the model AIC (235,77) suggests that the fitted measurement 

model provides a more parsimonious fit than the independent/null model (9690,77) and the 

saturated model (272,00) (Kelloway, 1998).  Likewise, the model CAIC (531,38) indicates that the 

fitted measurement model provides a more parsimonious fit than both the independent/null 

model (9769,60) and the saturated model (942,06).   These results imply that the measurement 

model is indeed the most parsimonious and does not require additional paths. 

 

The indices of relative fit given in Table 22 all exceed the critical value of 0,90 and therefore 

indicate good comparative fit when compared to the independence model (Diamantopoulos & 

Siguaw, 2000; Kelloway, 1998).  These indices include the NFI (0,99), NNFI (0,99), CFI (0,99), 

IFI (0,99), and the RFI (0,98).  The estimated CN value (306,4) is substantially above the 

recommended threshold value of 200.  This implies that the model provides an adequate 

representation of the data (Diamantopoulos & Siguaw, 2000).  In a similar vein, the RMR (0,013) 

and standardized RMR (0,028) indicate good fit.  For Sample B, AGFI (0,93) and the GFI (0,96) 

both exceed 0,9 which indicates the model comes close to perfectly reproducing the sample 
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covariance matrix and therefore suggests good model fit (Jöreskog & Sörbom, 1993; Kelloway, 

1998). 

 

In summary, the above model fit statistics seems to indicate unambiguously that the model fits 

the data of Sample B closely.  The model outperforms the independence model and the saturated 

model repeatedly which also implies that it fully captures the true complexity of the underlying PI 

model without the need for additional paths. 

 

4.5.2 Examination of residuals 

 

The stem-and-leaf plot of the standardized residuals for Sample B is provided in Figure 4.   

 

FIGURE 4 

STEM-AND-LEAF PLOT OF STANDARDIZED RESIDUALS FOR SAMPLE B 

 

The distribution of standardized residuals appears to be distributed approximately symmetrical 

around a median standardized residual of zero.  The average standardized residual reported earlier 

(0,028) also suggested that on average the elements of the observed sample covariance matrix are 

accurately reproduced by the parameter estimates of the model.  However, the smallest (-4,30) and 

largest (5,40) standardized residuals fall well outside the 0,01 significance limits of ±2,58 which 

suggests that a number of the observed covariance terms in the observed sample covariance matrix 

are not estimated as well as they could be by the derived model parameter estimates.  This goes 
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against the relatively positive conclusion of model fit that was suggested by the fit statistics earlier.  

The number of large and small standardized residuals are, however small.  Only four (2,94%) large 

negative residual occur and only four (2,94%) large positive residuals. 

 

The distribution of standardized residuals around the 45° reference line on a Q-plot indicates 

departure from normality and/or specification errors in a model.  The Q-plot of standardized 

residuals for Sample B is presented as Figure 5.  The obvious nonlinear pattern and deviation of 

the standardized residuals from the 45° reference line both in the upper and lower regions of the 

X-axis on the Q-plot suggests that the model does not fit the empirical data adequately.  

Specification errors are also indicated by the presence of outliers on the Q-plot (Diamantopoulos 

& Siguaw, 2000).   

 

 
FIGURE 5 

Q-PLOT OF STANDARDIZED RESIDUALS FOR SAMPLE B 

 

Thus, although the abovementioned model fit statistics seem to unanimously suggest that the 

model fits closely to the data of Sample B and appears to capture the true complexity of the 

underlying PI model without the need for additional paths, the foregoing analysis of the 
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standardized residuals suggests that the addition of one or more paths may be required to 

improve the fit of the model.  Examining the modification indices calculated for the currently 

fixed parameters of the model provides an additional way of determining if the addition of one or 

more paths would significantly improve the parsimonious fit of the model for Sample B. 

 

4.5.3 Model modification indices for Sample B 

  

The modification indices calculated for the ΛX matrix identify four additional paths that, if set 

free, would significantly improve the fit of the PI measurement model for Sample B.  The 

modification indices suggest freeing the path from the Climate to Grow2 (9,67), from Employee 

Satisfaction to Grow2 (8,18), from Future Growth to Mark1 (8,43) and Mark2 (7,87) with 

completely standardized expected change values for χ2 (-0,22; -0,27; 0,25; -0,26).  Although these 

modification indices suggest that some improvement in fit might be obtained from making one 

or more of these modifications, they are not very strong and the expected changes in χ2 are not 

very large.  Furthermore, freeing these specific elements of ΛX does not appear to be easily 

justified.  The same conservative argument put forward in the case of Sample A will again be 

used here to justify maintaining the status quo. 

 

4.5.4 Assessment of the first-order factor model for Sample B 

 

The completely standardized factor loading matrix (ΛX) (Table 23) reflecting the regression of Xj 

on ξi, is used to evaluate the significance of the first-order factor loadings hypothesized by the 

proposed measurement model expressed as equation 1.  The results depicted in Table 23 indicate 

that all proposed first-order factor loadings are significant (p<0,05).   This means that none of 

the existing paths in the model appear to be redundant and all item parcels appear to significantly 

reflect the unit performance dimension they were designed to represent.   

 

The proportion of item parcel variance that is explained by the latent variable it has been 

designated to reflect in terms of the measurement model (i.e., equation 1) is indicated by the 

squared multiple correlations for the observed indicator variables shown in Table 24.  In most 

cases the item parcels seem to provide relatively uncontaminated reflections of their designated 

latent dimensions.  Of concern, however, are the values for Mark1, Grow2 and Satis2 as they 

suggest a large proportion of variance in these item parcels cannot be explained by the latent 

variable it is designed to represent.   These findings therefore suggest that these items might not 
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be satisfactory operational measures of their respective latent unit performance dimensions.  

Although the item parcels that were flagged as problematic in the two analyses, the R² pattern 

presented in Table 20 for sample A nonetheless agrees quite strongly (r=0,866) with the pattern 

presented in Table 24 for sample B. 

 

TABLE 23 

COMPLETELY STANDARDIZED FACTOR LOADING MATRIX (ΛX) 

Product Core people Climate Satisfaction 
 

Prod1 
0,80 

(0,03) 
16,97* 

 
Core1 

0,88 
(0,03) 
21,91* 

 
Clim1 

0,93 
(0,03) 
23,52 

 
Satis1 

0,80 
(0,03) 
17,65* 

 
Prod2 

0,87 
(0,03) 
19,09* 

 
Core2 

0,82 
(0,03) 
19,28* 

 
Clim2 

0,86 
(0,03) 
22,31*

 
Satis2 

0,73 
(0,04) 
14,46* 

Adaptability Capacity Market standing Future growth 
 

Adapt1 
0,86 

(0,03) 
20,93* 

 
Capac1 

0,83 
(0,03) 
17,50* 

 
Mark1 

0,68 
(0,04) 
12,57*

 
Grow1 

0,89 
(0,03) 
17,69* 

Adapt2 0,86 
(0,03) 
20,75* 

 
Capac2 

0,82 
(0,03) 
18,10* 

 
Mark2 

0,76 
(0,03) 
16,55*

 
Grow2 

0,68 
(0,04) 
11,99* 

* t-values >⎪1,96⎪ indicate significant path coefficients; values in brackets represent standard error estimates 

 

TABLE 24 

SQUARED MULTIPLE CORRELATIONS FOR ITEM PARCELS FOR SAMPLE B 

Prod1 Prod2 Core1 Core2 Clim1 Clim2 Satis1 Satis2 
0,64 0,76 0,78 0,67 0,86 0,75 0,64 0,53 

Adapt1 Adapt2 Capac1 Capac2 Mark1 Mark2 Grow1 Grow2 
0,74 0,75 0,70 0,67 0,47 0,58 0,78 0,47 

 

The phi-matrix of correlations between the eight latent unit performance sub-scales is shown in 

Table 25.  As the Φ-matrix is positive definite and off-diagonal entries do not exceed unity, the 

results tend to provide some support for the discriminant validity of the first-order factors.  All 

of the 28 correlations are significant (p<0,01) although only 3 correlations are highly significant.  

As mentioned above, correlations are to a certain extent expected given the nature of the 

underlying unit performance model and the results obtained by Henning et al. (2002) that 

provides support that specific relationships may exist between latent variable as displayed in the 

PI structural model (Figure 1, see page 8).  Comparable to Sample A, results for Sample B 

indicate strong relationships may exist between Employee Satisfaction, Core People Processes 

and Climate, but to a somewhat lesser extent between Market standing, Capacity and Future 

Growth.  The above results suggest that the indicator variables, for the most part at least, succeed 

in providing empirical grasp on the underlying latent variables they were meant to reflect.    
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TABLE 25 

COMPLETELY STANDARDIZED PHI (Φ) MATRIX FOR SAMPLE B 
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Product & Efficiency 1,00        

Core People 0,68 1,00       

Climate 0,56 0,87 1,00      

Satisfaction 0,64 0,87 0,89 1,00     

Adaptability 0,54 0,75 0,70 0,75 1,00    

Capacity 0,43 0,60 0,55 0,64 0,69 1,00   

Market Standing 0,60 0,70 0,65 0,74 0,74 0,78 1,00  

Future Growth 0,50 0,56 0,50 0,59 0,47 0,54 0,68 1,00 

 

4.5.5 Summary of model fit assessment for Sample B 

 

As with Sample A, the model fit statistics seems to indicate unambiguously that the model fits 

closely to the data of Sample B and fully captures the true complexity of the underlying PI model 

without the need for additional paths as the model outperforms the independence and saturated 

models repeatedly.  The stem-and-leaf plot and the Q-plot of the standardized residuals for 

Sample B did not, however, support this positive conclusion.  Rather, a number of large positive 

and negative residuals on the stem-and-leaf plot as well as outliers and a decidedly non-linear 

patter and deviation of the standardized residuals from the 45° reference line both in the upper 

and lower regions of the X-axis on the Q-plot, suggested that at least eight observed covariance 

terms in the observed sample covariance matrix are not estimated as well as they could be by the 

derived model parameter estimates.  Likewise, the analyses of the modification indices calculated 

for the currently fixed parameters of the model also suggested that the addition of one or more 

paths would significantly improve the parsimonious fit of the model for Sample B.  However, 

several reasons were presented against freeing these specific elements of ΛX, including the fact 

that this could not be theoretically justified without further research, and the fact that the 

modification indices and the expected changes values for λij were not very large.   
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Analysis of the completely standardized factor loading matrix and squared multiple correlations 

for ΛX indicated that in most cases the item parcels seem to provide relatively uncontaminated 

reflections of their designated latent dimensions, although there was some indication that Mark1, 

Grow2 and (to a lesser extent) Satis2 might not be satisfactory operational measures of their 

respective latent unit performance dimension.  The phi matrix identified three highly correlated 

sub-scales that may directly or indirectly causally influence each other.  Relationships among 

these three variables could be justified and presented no reason for concern. In sum, considering 

the abovementioned results in an integrated manner seems to support the conclusion that the 

measurement model depicted in equation 1 seems to fit closely to the data of Sample B.   

 

The finding that the same measurement model fits the data of Sample A and Sample B closely 

implies that the PI measurement model depicted as equation 1 demonstrates configural 

invariance (Vandenberg & Lance, 2000).   The number of latent variables and the same pattern of 

factor loadings are required to explain the observed covariance matrices in samples A and B.   To 

determine whether the magnitude of the measurement model parameter estimates significantly 

differ across the model fitted to Sample A and the model fitted to Sample B requires the 

establishment of a set of baseline multi-group model fit indices. 

 

4.6 EVALUATION OF THE UNCONSTRAINED MULTI-GROUP MEASUREMENT MODEL 

 

At least reasonable model fit is required of both Sample A and Sample B to justify cross-

validating the measurement model across these two samples.  For this reason the measurement 

model was fitted to both samples independently.  As the results for both sample A and B 

indicated close model fit, there is sufficient reason to investigate whether the parameter estimates 

can be considered equal across samples.  As a first step in this cross-validation process it is 

necessary to first describe the degree of measurement model fit when the measurement model is 

fitted to Sample A and Sample B simultaneously in a multi-group analysis with no parameters 

constrained.  The resultant global fit statistics will be used as a baseline to evaluate subsequent 

restrictions imposed on the model.  The following section presents a summary of the fit statistics 

for the model with no parameters constrained. 
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4.6.1 Model Identification for the multi-group model with no parameters constrained 

The question of model identification had to be examined prior to confronting the model with 

data to determine if the model and the data would permit the determination of unique estimates 

for the freed parameters in the model when used for cross-validation analyses on the two samples 

combined (Diamantopoulos & Siguaw, 2000).  The measurement model depicted as equation 1 

satisfies the two requirements suggested by Diamantopoulos and Siguaw (2000) and MacCallum 

(1995).  A definite scale is established for each latent variable as each latent variable is treated as a 

(0; 1) standardized variable.  In addition, the number of model parameters to be estimated 

(t=120) do not exceed the collective number of unique covariance terms for the observed sample 

covariance matrices for both Sample A and Sample B (272) (Diamantopoulos & Siguaw, 2000; 

MacCallum, 1995).  The degrees of freedom thus are 152. 

 

4.6.2 Goodness-of-fit of the multi-group measurement model with no parameters 

constrained 

 

The goodness-of-fit indices provided by LISREL to assess the absolute and comparative fit of 

the measurement model fitted to both samples simultaneously with no parameters constrained is 

presented in Table 26.  The question is how well the two sets of parameter estimates derived 

freely for the same model from the data of the two samples succeed in reproducing/explaining 

the observed covariance matrix.  An admissible final solution of parameter estimates for the PI 

measurement model was obtained after 14 iterations.   

 

The Satorra-Bentler χ² test statistic (256,77) is significant (p<0,01) thus resulting in a rejection of 

the null hypothesis of exact model fit (H0: Σ=Σ(θ)).  In a multi-group analysis, the chi-square is a 

measure of fit of the model across all groups and cannot be decomposed into a chi-square for 

each group separately (Du Toit et al., 2001).  This perspective also applies to the other fit indices.   

The normed χ² (1,69) indicates that the measurement model is neither ‘over-fitted’ or ‘under-

fitted’ but rather demonstrates acceptable fit to the data.  The estimated λ value (104,77) and the 

90 percent confidence interval for NCP (64,44; 152,99) imply good model fit, as the estimated 

discrepancy between the observed and estimated population covariance matrices is not very high 

(Diamantopoulos & Siguaw, 2000).   
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TABLE 26 

GOODNESS-OF-FIT INDICATORS FOR THE MULTI-GROUP MEASUREMENT MODEL WITH NO 

PARAMETERS CONSTRAINED 

Degrees of Freedom = 152 
Minimum Fit Function Chi-Square = 273,17 (P = 0,00) 

Normal Theory Weighted Least Squares Chi-Square = 269,75 (P = 0,00) 
Satorra-Bentler Scaled Chi-Square = 256,77 (P = 0,00) 

Chi-Square Corrected for Non-Normality = 416,13 (P = 0,0) 
Estimated Non-centrality Parameter (NCP) = 104,77 

90 Percent Confidence Interval for NCP = (64,44 ; 152,99) 
 

Minimum Fit Function Value = 0,42 
Population Discrepancy Function Value (F0) = 0,16 

90 Percent Confidence Interval for F0 = (0,099 ; 0,24) 
Root Mean Square Error of Approximation (RMSEA) = 0,046 

90 Percent Confidence Interval for RMSEA = (0,036 ; 0,056) 
P-Value for Test of Close Fit (RMSEA < 0,05) = 1,00 

 
Expected Cross-Validation Index (ECVI) = 0,76 

90 Percent Confidence Interval for ECVI = (0,70 ; 0,84) 
ECVI for Saturated Model = 0,42 

ECVI for Independence Model = 28,33 
 

Chi-Square for Independence Model with 240 Degrees of Freedom = 18382,70 
Independence AIC = 18446,70 

Model AIC = 496,77 
Saturated AIC = 544,00 

Independence CAIC = 18622,06 
Model CAIC = 1154,38 

Saturated CAIC = 2034,57 
 

Normed Fit Index (NFI) = 0,99 
Non-Normed Fit Index (NNFI) = 0,99 

Parsimony Normed Fit Index (PNFI) = 0,62 
Comparative Fit Index (CFI) = 0,99 
Incremental Fit Index (IFI) = 0,99 
Relative Fit Index (RFI) = 0,98 

 
Critical N (CN) = 466,13 

 
Contribution to Chi-Square = 141,42 

Percentage Contribution to Chi-Square = 51,77 
Root Mean Square Residual (RMR) = 0,015 

Standardized RMR = 0,029 
Goodness-of-fit Index (GFI) = 0,94 

 

The RMSEA value (0,046) meets the ≤0,05 criterion of close model fit (Browne & Cudeck, 

1993).  The 90 percent confidence interval for RMSEA (0,036 ; 0,056) indicates good fit.  

Similarly, the test of close fit performed by LISREL shows that the conditional probability of 

obtaining the observed sample RMSEA value of 0,046 under H0: population RMSEA ( 0,05 is 

1,00, which implies that the null hypothesis of close model fit cannot be rejected.  The model 

ECVI (0,76) is far smaller than both the value obtained for the independence model (28,33) but 

larger than the ECVI value associated with the saturated model (0,42).  This suggests that a 
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model more closely resembling the saturated model may have a better chance of being replicated 

in a cross-validation multi-sample analysis than the fitted model (Diamantopoulos & Siguaw, 

2000).  On the other hand, the model AIC (496,77) suggests that the fitted measurement model 

provides a more parsimonious fit than the independent/null model (18446,77) and the saturated 

model (544,00) (Kelloway, 1998).  Likewise, the model CAIC (1154,38) indicates that the fitted 

measurement model provides a more parsimonious fit than both the independent/null model 

(18622,06) and the saturated model (2034,57).   In contrast to model ECVI, the model AIC and 

CAIC results imply that the measurement model is indeed the most parsimonious and does not 

require additional paths. 

 

The indices of relative fit given in Table 26 all exceed the critical value of 0,90 and therefore 

indicate good comparative fit when compared to the independence model (Diamantopoulos & 

Siguaw, 2000; Kelloway, 1998).  These indices include the NFI (0,99), NNFI (0,99), CFI (0,99), 

IFI (0,99), and the RFI (0,98).  The estimated CN value (466,13) is substantially above the 

recommended threshold value of 200, which indicates that the model provides an adequate 

representation of the data (Diamantopoulos & Siguaw, 2000).  In a similar vein, the RMR (0,015) 

and standardized RMR (0,029) suggest good fit.  The GFI (0,94) exceeds 0,9, which indicates the 

model comes close to perfectly reproducing the sample covariance matrix and therefore suggests 

good model fit (Jöreskog & Sörbom, 1993; Kelloway, 1998). 

 

In summary, almost all of the above model fit statistics suggest that the measurement model with 

unconstrained parameters fits the data of Sample A and Sample B closely. The question 

subsequently arises whether the model parameters freely estimated from the data of the two 

samples differ significantly across the two samples.  The model might fit the data of both samples 

closely but the parameter estimates might nonetheless differ markedly across the two samples 

even though they represent the same target population.  If so, confidence in the original claims 

made by Spangenberg and Theron (2004) and Henning et al. (2003) would be seriously eroded.  

Consequently these results necessitate the further examination of the extent to which the 

measurement model cross-validates successfully across these two samples. 
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4.7 MEASUREMENT INVARIANCE TESTS  

4.7.1 Omnibus test: parameters set to be equal  

 

Cross-validation of the measurement model refers to the ability of the model to be invariant 

across two or more random samples from the same population (Mels, 2003) and may be 

determined by investigating the stability of the model parameter estimates when the model is 

fitted to two samples simultaneously from the same population.  The omnibus test of 

measurement invariance tests the null hypothesis (Σg = Σg’ ) that the model fits closely to the data 

across both samples simultaneously when all parameter estimates are set to be equal across 

samples (Vandenberg & Lance, 2000).  In effect the omnibus test compares the model fit 

obtained when the model is fitted to the data of two samples from the same population 

simultaneously with the condition that all parameter estimates are set to be equal across samples, 

with the model fit when the model is fitted with no parameters constrained.  Specifically the 

question is whether imposing the equality constraint on the model parameter estimates results in 

a significant deterioration in the model fit.  If a significant increase in the Satorra-Bentler chi-

square does not result from the imposition of the equality constraint the foregoing null 

hypothesis will not be rejected.  Failure to reject the null hypothesis means the PI may be 

considered measurement invariant across the samples and subsequent tests of measurement 

invariance are not required.  Rejection of the null hypothesis suggests that the model does not 

cross-validate well across different samples (Vandenberg & Lance, 2000).   

 

The decision of whether or not to reject the null hypothesis is based on the significance of the 

chi-square statistic and other overall goodness-of-fit indices.  The results for the omnibus test are 

given in Table 27.  The Satorra-Bentler χ² test statistic (358,04) is significant (p<0,01) which 

means that the null hypothesis of exact model fit should be rejected (Vandenberg & Lance, 

2000).  In contrast, the other fit indices almost unanimously indicate the model fits closely when 

fitted to the data from Sample A and Sample B simultaneously with all parameter estimates 

constrained to be equal.  These descriptive indices are summarised below. 

 

The normed χ² (1,69) indicates that the measurement model is neither ‘over-fitted’ or ‘under- 

fitted’ but rather demonstrates acceptable fit to the data.  The estimated λ value (146,04) and the 

90 percent confidence interval for NCP (97,72; 202,25) suggest good model fit, as the estimated 

discrepancy between the observed matrices is not very high (Diamantopoulos & Siguaw, 2000).  

The RMSEA value (0,046) meets the ≤0,05 criteria of close model fit (Browne & Cudeck, 1993), 
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and the 90 percent confidence interval for RMSEA (0,038; 0,054) indicates good fit.  The test of 

close fit performed by LISREL, moreover, shows that the conditional probability of the obtained 

RMSEA value of 0,037 under H0: RMSEA≤0,05 is sufficiently large (1,00) not to reject the close 

fit null hypothesis.   

 
TABLE 27 

GOODNESS-OF-FIT INDICATORS FOR OMNIBUS TEST  

Degrees of Freedom = 212 
Minimum Fit Function Chi-Square = 367,47 (P = 0,00) 

Normal Theory Weighted Least Squares Chi-Square = 370,50 (P = 0,00) 
Satorra-Bentler Scaled Chi-Square = 358,04 (P = 0,00) 

Chi-Square Corrected for Non-Normality = 754,16 (P = 0,0) 
Estimated Non-centrality Parameter (NCP) = 146,04 

90 Percent Confidence Interval for NCP = (97,72 ; 202,25) 
 

Minimum Fit Function Value = 0,57 
Population Discrepancy Function Value (F0) = 0,22 

90 Percent Confidence Interval for F0 = (0,15 ; 0,31) 
Root Mean Square Error of Approximation (RMSEA) = 0,046 

90 Percent Confidence Interval for RMSEA = (0,038 ; 0,054) 
P-Value for Test of Close Fit (RMSEA < 0,05) = 1,00 

 
Expected Cross-Validation Index (ECVI) = 0,74 

90 Percent Confidence Interval for ECVI = (0,66 ; 0,82) 
ECVI for Saturated Model = 0,42 

ECVI for Independence Model = 28,33 
 

Chi-Square for Independence Model with 240 Degrees of Freedom = 18382,70 
Independence AIC = 18446,70 

Model AIC = 478,04 
Saturated AIC = 544,00 

Independence CAIC = 18622,06 
Model CAIC = 806,84 

Saturated CAIC = 2034,57 
 

Normed Fit Index (NFI) = 0,98 
Non-Normed Fit Index (NNFI) = 0,99 

Parsimony Normed Fit Index (PNFI) = 0,87 
Comparative Fit Index (CFI) = 0,99 
Incremental Fit Index (IFI) = 0,99 
Relative Fit Index (RFI) = 0,98 

 
Critical N (CN) = 465,89 

 
Contribution to Chi-Square = 192,24 

Percentage Contribution to Chi-Square = 52,31 
Root Mean Square Residual (RMR) = 0,046 

Standardized RMR = 0,098 
Goodness-of-fit Index (GFI) = 0,92 

 

The results indicate that the model ECVI (0,74) is far smaller than both the value obtained for 

the independence model (28,33) but larger than the ECVI value associated with the saturated 

model (0,42).  This suggests that a model more closely resembling the saturated model may have 
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a better chance of being replicated in a cross-validation sample than the fitted model 

(Diamantopoulos & Siguaw, 2000).  In comparison, the model AIC and CAIC results imply that 

the measurement model is indeed the most parsimonious and does not require additional paths as 

the model AIC (478,04) provides a more parsimonious fit than the independent model 

(18446,70) and saturated model (544,00) (Kelloway, 1998).  Similarly, the model CAIC (808,84) 

indicates that the fitted measurement model provides a more parsimonious fit than both the 

independent model (18622,06) and the saturated model (2034,57).   The indices of relative fit all 

exceed the critical value of 0,90 and therefore indicate good comparative fit when compared to 

the independence model, and the estimated CN value (466,13) suggests that the model provides 

an adequate representation of the data (Diamantopoulos & Siguaw, 2000).  In a similar vein, the 

RMR (0,046) and standardized RMR (0,098) suggest good fit.  The GFI (0,92) exceeds 0,9, which 

indicates the model comes close to perfectly reproducing the sample covariance matrix and 

therefore suggests good model fit (Jöreskog & Sörbom, 1993; Kelloway, 1998).  

 

In summary, the descriptive fit indices, given in Table 27, suggest the measurement model with 

parameters constrained to be equal across Sample A and Sample B still fits closely.  The critical 

question, however, is whether the fit deteriorated significantly when the equality constraint was 

imposed on the model in comparison to the multi-group analysis in which parameters estimates 

were allowed to differ across samples.  If the model parameters do in fact differ across the two 

samples the multi-group fit will deteriorate when parameter estimates are constrained to be equal 

across samples.  This can be evaluated by calculating the difference in the Satorra-Bentler χ² fit 

statistic achieved under the constrained and unconstrained conditions respectively.  The χ² 

difference will itself follow a chi-square distribution with degrees of freedom equal to the 

difference in degrees of freedom between the constrained and unconstrained conditions (Mels, 

2003).  The results of this calculation are shown in Table 28. 

 

TABLE 28 

CHI-SQUARE DIFFERENCE TEST OF MEASUREMENT INVARIANCE 

Hypothesis  Chi-square 
value 

Degrees of 
freedom 

Critical χ² 
(p=0,05) 

Model with total invariance equality constraints imposed (H0) 358,04 212  

Model with no parameters constrained (Ha) 256,77 152  

Difference 101,27** 60 79,8 

(*= significant at the p<0,01 level; ** = significant at p< 0,05) 
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Table 28 reveals that the freeing of the equality constraint results in a significant improvement in 

the multiple-group model fit. This result is not altogether surprising, though, as in practical 

applications full measurement invariance frequently does not hold, especially in social science 

research where some differences between groups are to be expected (Steenkamp & Baumgartner, 

1998).  Moreover it needs to be considered whether the rejection of the measurement invariance 

hypothesis could not possibly be due to the fact that the samples were not truly two independent 

random samples from the same target population.  Failure to reject the null hypothesis would 

have implied that the respondents of each sample employed the same conceptual frame of 

reference when completing the PI items and provide sufficient evidence of measurement 

invariance to justify other research that examines group differences in relation to the PI’s 

underlying constructs (Vandenberg & Lance, 2000).   

 

A limitation of the omnibus test is that it is does not provide information on the potential source 

of measurement invariance.  As such, it is quite uninformative.  Further tests of measurement 

invariance that test a series of increasingly restrictive hypothesis are, therefore, required to 

identify the source of the non-equivalence (Vandenberg & Lance, 2000). 

 

4.7.2 Test of metric invariance (invariance of factor loadings) 

 

Given that the test of full measurement invariance could not support the conclusion of 

measurement invariance across the samples, a stronger test of factorial invariance may be 

employed (Vandenberg, 2000).  The test of metric invariance tests the null hypothesis (Λg
x = 

Λg
x

’) that the factor loadings of item parcels on latent variables are equivalent across both 

samples.  As such, tests of metric invariance have the null hypothesis that factor loadings for like 

items are invariant across groups (Vandenberg & Lance, 2000).  This test may be operationalised 

by fitting a model in which the lambda-X matrices, in addition to the number of factors and the 

factor loading patterns, are constrained to be equal across samples.   Failure to reject the null 

hypothesis will indicate that the factor loadings are invariant across both samples and that non-

equivalence, as indicated by the results of the configural invariance test, can be attributed to other 

parameter estimates in the measurement model.   

 

The Chi-square difference test is used to establish if a significant (p<0,05) difference exists 

between the Satorra-Bentler Chi-square values for the model with metric invariance constraints 

imposed and the model with no parameters constrained (Mels, 2003).  If the fit does not 
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deteriorate significantly under the lambda-X equality constraint, equality of factor loadings can 

thus be assumed.  Failure to reject the null hypothesis would imply that slope of the regression of 

the item parcels on the latent variables they are designed to represent are the same across the two 

samples.  Parameter differences would, therefore, have to exist elsewhere in the model.  Should 

the chi-square difference be significant it would imply that the factor loadings differ across 

samples [i.e. the item calibration is different across samples].  The manner in which the items are 

calibrated to respond to an increase in the latent variable they were designed to represent would 

thus be different across the two samples.  This would constitute a somewhat disappointing 

outcome as it would imply that the PI fails in its attempt to measure the underlying unit 

performance construct in the same way across samples from the same population.  A Chi-square 

difference test is used to determine the difference between the Satorra-Bentler Chi-square values 

for the model with the factor loading equality constraints imposed and for the model with 

without equality constraints, taking into account the accompanying loss of degrees of freedom 

(Mels, 2003).  If the difference in Chi-square values is significant (p<0,05) the null hypothesis 

should be rejected, and the model may be considered to differ across the two samples in the 

manner in which the item parcels load on the latent variables.  A difference in Chi-square values 

that is not significant, on the other hand, would indicate that the null hypotheses that the lambda-

X matrices are the same across the two samples couldn’t be rejected (Mels, 2003).  The results of 

the Chi-square difference test are given in Table 29.   

 

TABLE 29 

CHI-SQUARE DIFFERENCE FOR TEST OF METRIC INVARIANCE 

Hypothesis Chi-square 
value 

Degrees of 
freedom 

Critical χ² 
(p=0,05) 

Model with factor loadings set to be equal (H0) 276,36 168  
Model with no parameters constrained (Ha) 256,77 152  
Difference 19,59 16 26,30 
(*= significant at the p<0,01 level; ** = significant at p< 0,05) 

 

The difference between the Chi-square values is not significant which indicates the fit does not 

deteriorate significantly under the factor loading equality constraints and that the null hypothesis 

of equal lambda_X matrices can not be rejected.  This suggests that the extent to which the 

content of each item is being perceived and interpreted in exactly the same way across samples 

(Byrne & Watkins, 2003).  The PI measurement model thus displays metric invariance.  This is a 

satisfying result as, without at least partial metric invariance, the envisaged subsequent tests of 

structural invariance would have been questionable.  Further tests of measurement invariance are, 
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however, now required to determine which model parameter estimates show significant variance 

when the measurement model is applied across both samples. 

 

4.7.3 Test for equivalence of factor covariances  

 

Having established that metric invariance justifies the use of further tests of measurement 

invariance to determine if the difference in parameter estimates that exist in the model are due to 

differences in factor variances and covariances and/or error variances.  Testing for the 

equivalence of factor covariances between groups tests the null hypothesis that the phi matrices 

are invariant across both samples (Φg
ij = Φg

ij ).  The main diagonal in the phi matrix represents 

the latent variable variance terms.  “Factor variances represent the dispersion of the latent 

variables (ξj) and thus represent variability of the construct continua within the samples” 

(Vandenberg & Lance, 2000, p. 39).  The off-diagonal elements in the phi matrix represent the 

covariance between the latent variables.    

 

Using the Chi-square difference test, the model fit with factor variances set equal to one and 

covariances (i.e., the off-diagonal elements of Φ) constrained to be equal across groups is 

compared to the unconstrained model.  Failure to reject the null hypothesis that Φg
ij = Φg

ij would 

imply that both samples use “equivalent ranges of the construct continuum to respond to the 

indicators reflecting the construct” (Vandenberg & Lance, 2000, p.39) and that the latent 

variables covary in the same manner across samples.  On the other hand, rejection of the null 

hypothesis of full phi matrix equivalence would signal differences in the covariance terms (Φij).   

The results of the Chi-square difference test for the equivalence of the full phi matrix across the 

two samples are given in Table 30.   

 

TABLE 30 

CHI-SQUARE DIFFERENCE TEST - EQUIVALENCE OF FACTOR VARIANCES 

AND COVARIANCES 

Hypothesis Chi-square 

value 

Degrees of 

freedom 

Critical χ² 

(p=0,05) 

Model with factor variances and covariances set to be equal (H0) 303,18 180  

Model with no parameters constrained (Ha) 256,77 152  

Difference 46,41** 28 41,34 

(*= significant at the p< 0,01 level; ** = significant at p< 0,05) 
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The difference between the Chi-square values is significant (p<0,05).  This indicates that the 

factor covariances and/or variances may not be considered invariant across both samples and 

that, to some extent, both samples do not respond to the indicator variables in exactly the same 

way.  Nonetheless, the difference between the Chi-square values is insignificant at p<0,01.  This 

implies that variance between the samples factor covariances and/or covariances may indeed be 

quite small.  It thus remains to be seen to what extent the variance in the measurement model 

that was established through previous tests may be attributed to the non-equivalence in the phi 

matrices across samples only, or may also be due to non-equivalence in error variances.  This 

question may be answered by testing for the equivalence of error variance across samples.   

 

4.7.4 Test for equivalence of error variances  

 

To shed more light on the question of where variance exists in the measurement model, a test is 

required to test the null hypothesis of equal variance in the error terms associated with the 

indicator variables across groups (θδg
j = θδg

j
’).  This test involves conducting a Chi-square 

difference test that compares the model fit when the error variances of the like factor pairs are 

constrained to be equal across groups, to the fit of the model with no parameters constrained to 

be equal.   

 

Failure to reject the null hypothesis would provide evidence that both samples respond to the 

indicator variables in an equivalent manner, in that the no significant variance exists across 

samples in terms of the error terms associated with the indicator variables.  Rejection of the null 

hypothesis would, however, imply some of the variance in the measurement model fit between 

the two samples, may be attributed to non-equivalent error variance across samples.   

 

The results of the Chi-square difference test are given in Table 31.  The difference between the 

Chi-square values is significant at p<0,05.  This indicates that the error variances may not be 

considered invariant across both samples.  Nonetheless, as the Chi-square difference is 

insignificant at p<0,01 that variance between the error variances across samples may indeed be 

quite small.   

 

In sum, when considering the information presented above collectively, the variance in the 

measurement model fit across Sample A and Sample B seems to exist in both the measurement 

error variances and factor covariances matrices.  Furthermore, this variance appears to be fairly 
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small for both the error variances and factor covariances due to the insignificance of the 

difference in Chi-square values at p<0,01.   

 

TABLE 31 

CHI-SQUARE DIFFERENCE TEST – EQUIVALENCE OF ERROR VARIANCES 

Hypothesis Chi-square 
value 

Degrees of 
freedom 

Critical χ² 
(p=0,05) 

Model with error variances set to be equal (H0) 287,87 168  
Model with no parameters constrained (Ha) 256,77 152  
Difference 31,10** 16 26,30 
(*= significant at the p< 0,01 level; ** = significant at p< 0,05) 
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CHAPTER 5 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

 

The objective of this cross-validation study was to establish the extent to which the PI 

measurement model may be considered measurement invariant across two independent samples 

from the target population.  A series of measurement invariance tests were used to test the 

stability of the model parameter estimates in order to determine the source of the variance and to 

what extent the measurement model may be considered measurement invariant or not at all 

(Vandenberg & Lance, 2000).  The results of the study failed to find support for the hypothesis 

that the measurement model fits the data of both samples in exactly the same way and thus the 

PI could not be said to display full measurement invariance.  As discussed previously, this finding 

is expected given the nature of social science research (Steenkamp & Baumgartner, 1998) and the 

omnibus test was conducted in the attempt to follow a prudent research process.  Moreover, the 

problem that the two samples were not two probability samples from the same target population 

but rather two convenience non-probability samples should also be borne in mind. 

 

The measurement model did cross-validate successfully under the configural invariance 

condition, which requires the apriori pattern of free and fixed factor loadings imposed on the 

measure’s components to be constrained.  This indicates that some of the measurement model 

parameter estimates show significant variance when the measurement model is applied across 

both samples.  Subsequent tests of measurement invariance were used to determine the source of 

non-equivalence evident in the omnibus measurement invariance test.  In contrast to the above 

results, the factor loadings of item parcels on latent variables was found to be equivalent across 

both samples, supporting the conclusion that the measurement model displays at least metric 

invariance across the samples.  Finding at least metric invariance is a satisfying outcome as it 

indicates the content of each item is perceived and interpreted in a similar manner across samples 

from the target population. 

 

Further investigation revealed that the differences in parameter estimates across the samples exist 

in both the error variances and the factor covariances (p<0,05) although these differences may be 

argued to be negligible as the differences in the parameter estimates for both the error variances 

and the factor covariances becomes non-significant at the p<0,01 level.  What is also important 
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to note is that the variance due to the error variances and the variance due to factor covariances 

appear equal.  These results suggest that the non-equivalence that exists in both the error 

variances and factor covariances is not very large, especially as the p<0,05 critical value is not 

surpassed by much in both cases.  When considered in combination, these results may be viewed 

as quite satisfactory as they indicate that the measurement model does not appear to vary greatly 

when fitted to data from the two samples. 

 

As part of ongoing research of the leadership-for-performance range of measures designed by 

Spangenberg and Theron (2004), this study takes the initial step towards establishing the degree 

of confidence with which the PI may be used across different groups within the target 

population.  As such, these results, in particular the result of metric invariance, provides sufficient 

support for the conclusion that the PI is successful in its attempt to measure the underlying unit 

performance construct in almost exactly the same way across these samples.  Although the results 

also indicate that some differences exist when the measurement model is fitted to both samples 

simultaneously and should be taken into account when examining the structural invariance of the 

PI, these results do not appear to threaten the conclusion that the PI is a credible measure of the 

work unit performance construct it was intended to measure.   

 

These results, therefore, justify continued research that seeks evidence of structural model fit 

through tests of structural invariance, or other research that examines the structural relationships 

between the latent dimensions of the PI and the possible refinement of the PI model as 

suggested by the measurement model modification indices.  Of particular interest are the 

previous research findings of Henning et al. (2003) and Theron et al. (2004) that suggest 

Adaptability, Climate and Capacity do not have a significant impact on Production & Efficiency.  

As this study has established at least metric invariance of the PI, it therefore provides some basis 

of confidence for findings of subsequent research that links the leadership behaviour to work 

unit performance as measured by the PI.   

 

Lastly, it is important to acknowledge certain limitations of this study.  Firstly, invariance across 

the samples used in this study may not be assumed to mean invariance across qualitatively 

different groups within the target population or across samples from other populations.  This 

study should, therefore, be replicated across other samples from the target population in order to 

further establish the measurement invariance of the PI.   
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Secondly, to convincingly demonstrate that the PI functions effectively within the target 

population this study should have employed the data from two independent random samples 

taken from the same population rather than non-probability samples.  A consideration for future 

studies is to ensure the samples better represent the target population through inclusion of 

multiple industries and companies.   As the samples in this study cannot be said to constitute 

representative sections of the population of work units, it is not possible to reach a definitive 

conclusion that the PI can be used for all organisations and industries across the target 

population using these results.  It is recommended that the study be repeated on the same data 

but that the two samples be combined and randomly divided into two samples.  These two 

samples would still not constitute probability samples from the target population but at least the 

current fear that the lack of full measurement invariance had been due to systematic differences 

between the two non-probability samples would have been allayed. 

 

A third potential limitation of this study that needs to be discussed relates to how factor loadings 

were fixed. The measurement model relating the eight latent unit performance dimensions 

measured by the PI to the sixteen item parcels can be expressed in terms of the following 

regression equation: 

 

X = τX + ΛXξ + δ 2 

 

Where: 

X represents a 16x1column vector X of item parcels; 

τX a 16x1 column vector of regression intercept terms; 

ΛX a 16x8 factor loading matrix of regression slopes; 

ξ a 8x1 column vector of exogenous latent variables; and 

δ a 16x1 column vector of measurement error terms. 

 

In equation 2 E[δ] and ρ[ξ,δ] are assumed to be zero but it is not assumed that E[ξ] or E[X] are 

zero.  In the present study the latent variables were assumed to have a mean of zero.  The 

observed item parcels, moreover were assumed to be deviations around the mean.  The 

measurement model depicted as equation 2 above thereby reduces to equation 1 depicted on p. 

51.  Since τX represents the means indicator variable scores when the latent variable it expresses is 

zero, the vector of intercept terms reduces to a vector of zeros and thus could be omitted from 

equation 1.  The present study thus did not examine the possibility of differences in intercepts of 
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the regression of item parcels on the latent variables they were meant to represent.  Equation 2 

would, however, suggest that H0: τg
X=τg’

X is a meaningful and relevant hypothesis to examine 

measurement equivalence across independent random samples from the same population (Chan, 

2000; Vandenberg & Lance, 2000).  The critical question is whether the manner in which 

observed item responses relate to the underlying latent variable remains the same across the two 

samples.  Only if the regression of the item parcel on the latent variable fully coincides in terms 

of intercept and slope would the same latent variable/trait inference from the same observed 

score obtained by individuals from two samples be justified. 

 

Moreover, in fitting the measurement model to the two separate samples the present study only 

freed the off-diagonal elements of the phi matrix to be estimated but not the diagonal elements 

of the phi matrix.  The latent variables were by implication assumed to be standardized (0,1) 

variables so that the latent variable variances were thereby fixed to one.  No unstandardiszed phi 

matrix with variance-covariance estimates is thus obtained but rather only a standardized phi 

matrix with estimates of the correlations between latent variables.  The latent variables variances 

are by definition then equal to unity.  The scale on which all latent variables are expressed is 

thereby calibrated in terms of standard deviation units.  When fitting a measurement model to a 

single group this solution to the problem that latent variables have no inherent scale seems 

preferable to fixing the factor loading of on indictor variable to unity for each latent variable.   

 

When examining possible differences in measurement model parameter estimates across groups, 

however, literature on the use of structural equation modelling in the evaluation of measurement 

equivalence (De Bruin, personal communication, 9 November 2006; Mels, 2003; Mels, personal 

communication, 28 March 2006; Nesselroade & Thompson, 1995) seems to favour the procedure 

of fixing the loading of the first indicator variable of each latent variable to one.  The scale of the 

first indicator variable thereby sets the scale for the latent variable.  To follow the standard 

procedure of fixing the variance of the latent variables to unity would from the outset assume 

that latent variable variances are equal to one and equal across groups (De Bruin, personal 

communication, 9 November 2006; Mels, personal communication, 28 March 2006).  In a cross-

validation study with two independent random samples from the same target population this 

could conceivably be the case.  Although the assumption might under these circumstances be 

quite reasonable it nonetheless to a certain degree negates the spirit and objective of a cross 

validation study to empirically examine the invariance of all measurement model parameter 

estimates across samples.  When however the two samples in question constitute independent 
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but not random samples from the same target population the decision to fix the latent variable 

variances to unity becomes somewhat more contentious (De Bruin, personal communication, 9 

November 2006). 

 

The present study used two item parcels to operationalise each of the latent PI dimensions.  

Fixing the factor loading of the first indicator variable of each latent variable to one for both 

groups to thereby scale the latent variables to the scale of the first indicator variable would, 

therefore have resulted in half the factor loadings in ΛX being fixed to one and only half of the 

factor loading matrix being evaluated in terms of metric invariance.  This moreover raises the 

concern that those factor loadings being fixed might in fact be concealing difference in regression 

slopes across samples. 

 

The decision on whether to fix the factor loading of the first indicator variable of each latent 

variable to one or to fix the variance of the latent variables to unity is therefore not that clear-cut.  

Moreover no single study should probably aspire to provide a final, definitive answer to the 

question whether measurement invariance exists across independent random samples from the 

same target population.  Nonetheless it probably would have been more prudent if the present 

study would have chosen to fix the factor loading of the first indicator variable of each latent 

variable to one rather than to fix the variance of the latent variables to unity and two set the 

latent variables free in the fully unconstrained solution.  It is thus recommended that, in repeating 

the study on the same data as suggested above, the factor loading of the first indicator variable of 

each latent variable should be fixed to one rather than fixing the variance of the latent variables 

to unity and that the main diagonal of the full phi matrix should be estimated [i.e., also the main 

diagonal].  Therefore when establishing whether the measurement model, when fitted to the two 

samples simultaneously in a multi-group analysis with no freed parameters constrained, display 

reasonable fit (Step 2; paragraph 2.2), the latent variable variances will form part of the freed 

model parameters.  Likewise when establishing whether the measurement model demonstrated 

acceptable fit when fitted to the two samples simultaneously in a multi-group analysis with all 

freed parameters constrained to be equal across the samples (Step 2; paragraph 2), the latent 

variable variances will again form part of the freed model parameters.  This will remain the case 

across all the steps outlined earlier. 

 

In the re-analysis of a random split of the current combined sample the use of more sophisticated 

approaches to the dimensionality analysis of the subscales should also be explored in addition to 
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the use of principle axis factor analysis and the extraction of factors with eigenvalues greater than 

unity.  Specifically exploratory principal factor analysis could be used to fit one and two factor 

models and to inspect the residuals, RMSEA and ECVI for the two models. 

 

In conclusion, and despite the shortcomings outlined above, this measurement invariance study 

provides reasonable, albeit limited and tentative, evidence that the PI measurement model 

demonstrates partial measurement invariance across these two samples from the same 

population.   
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APPENDIX 1 

TABLE 27: DESCRIPTIVE STATISTICS FOR SAMPLE A 
   Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12 Item13 Item14 Item15 Item16 Item17 Item18 Item19 

N Valid 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 

Mean  3,755 3,704 4,051 3,440 3,870 3,542 3,487 3,473 3,415 3,552 3,646 3,596 3,563 3,079 3,733 3,513 3,534 3,704 3,610 

Std.  Deviation 0,736 0,807 0,745 0,860 0,900 0,749 0,980 0,998 0,991 0,922 0,923 1,054 1,022 1,060 1,008 0,962 0,915 0,916 0,985 

Variance  0,541 0,651 0,555 0,740 0,809 0,561 0,961 0,997 0,983 0,850 0,853 1,111 1,044 1,124 1,015 0,925 0,837 0,840 0,971 

Skewness  -0,678* -0,119 -0,505* -0,020 -0,282 -0,012 -0,127 -0,266 -0,145 -0,225 -0,408* -0,609* -0,439* -0,104 -0,300* -0,073 -0,174 -0,489* -0,482* 

Std.  Error of Skewness 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 

Kurtosis  1,704* 0,137 0,367 0,483 -0,409 -0,031 -0,236 -0,098 -0,279 -0,045 0,331 0,143 -0,040 -0,328 -0,473 -0,318 -0,020 0,361 0,199 

Std.  Error of Kurtosis 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 

                     

    Item20 Item21 Item22 Item23 Item24 Item25 Item26 Item27 Item28 Item29 Item30 Item31 Item32 Item33 Item34 Item35 Item36 Item37 Item38 

N Valid 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 

Mean  3,513 3,657 3,379 3,585 2,805 2,809 3,379 3,874 3,816 3,690 3,675 3,484 3,563 3,386 3,112 3,581 3,549 3,632 3,018 

Std.  Deviation 0,923 0,941 0,806 0,858 0,977 1,044 0,988 0,941 0,981 0,962 0,870 0,923 0,929 0,892 0,908 1,028 0,953 0,937 0,961 

Variance  0,852 0,886 0,649 0,736 0,955 1,090 0,975 0,886 0,962 0,925 0,756 0,852 0,863 0,796 0,824 1,056 0,908 0,878 0,924 

Skewness  -0,246 -0,396* 0,168 -0,162 -0,023 -0,052 -0,251 -0,559* -0,505* -0,352* -0,416* -0,161 -0,500* -0,131 -0,018 -0,301* -0,178 -0,214 0,112 

Std.  Error of Skewness 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 

Kurtosis  0,040 -0,140 0,219 0,067 -0,038 -0,403 -0,076 0,159 -0,136 -0,172 0,496 -0,230 0,232 0,133 0,168 -0,420 -0,351 -0,468 0,147 

Std.  Error of Kurtosis 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 

                       

    Item39 Item40 Item41 Item42 Item43 Item44 Item45 Item46 Item47 Item48 Item49 Item50 Item51 Item52 Item53 Item54 Item55 Item56  

N Valid 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277 277  

Mean  3,097 3,296 3,343 3,292 3,422 3,357 3,386 3,538 3,361 3,765 3,560 3,505 3,783 3,440 3,220 3,509 3,610 3,227  

Std.  Deviation 0,997 0,916 0,949 0,954 0,888 1,129 0,838 0,942 1,090 0,884 1,036 0,837 0,895 0,971 0,736 0,899 0,872 1,054  

Variance  0,994 0,840 0,900 0,911 0,788 1,274 0,702 0,887 1,188 0,782 1,073 0,700 0,801 0,943 0,542 0,809 0,760 1,111  

Skewness  -0,020 -0,365* -0,247 0,015 -0,186 -0,266 0,066 -0,110 -0,451* -0,283 -0,515* -0,241 -0,263 -0,022 -0,208 -0,193 -0,276 -0,167  

Std.  Error of Skewness 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146 0,146  

Kurtosis  -0,157 0,220 0,044 -0,211 0,193 -0,435 0,329 -0,196 -0,204 -0,193 0,034 0,352 -0,431 -0,191 1,291* -0,069 0,348 -0,124  

Std.  Error of Kurtosis 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292 0,292  

* significant (p<0,05) 
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APPENDIX 2 

TABLE 28: DESCRIPTIVE STATISTICS FOR SAMPLE B 

   Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12 Item13 Item14 Item15 Item16 Item17 Item18 Item19 

N Valid 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 

Mean  3,776 3,739 4,035 3,563 3,867 3,608 3,605 3,488 3,507 3,576 3,536 3,643 3,555 3,357 3,616 3,552 3,520 3,605 3,488 

Std.  Deviation 0,741 0,778 0,729 0,753 0,861 0,745 1,015 0,880 0,877 0,895 0,833 0,884 0,911 0,995 0,926 0,914 0,833 0,871 0,898 

Variance  0,549 0,605 0,531 0,568 0,742 0,554 1,031 0,775 0,769 0,801 0,693 0,781 0,831 0,990 0,857 0,836 0,694 0,758 0,807 

Skewness  -0,251* 0,184 -0,387* 0,389* -0,144 0,231 -0,258* -0,105 0,135 -0,140 -0,185 -0,007 -0,429* -0,142 0,063 -0,155 0,118 -0,119 -0,142 

Std.  Error of Skewness 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 

Kurtosis  0,508* -0,806* -0,120 -0,267 -0,672* -0,262 -0,540* 0,055 -0,585* -0,109 0,290 -0,674* 0,242 -0,265 -0,656* -0,221 -0,296 -0,426 0,038 

Std.  Error of Kurtosis 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 

                     

    Item20 Item21 Item22 Item23 Item24 Item25 Item26 Item27 Item28 Item29 Item30 Item31 Item32 Item33 Item34 Item35 Item36 Item37 Item38 

N Valid 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 

Mean  3,512 3,744 3,299 3,403 2,680 2,899 3,269 3,755 3,712 3,568 3,637 3,477 3,475 3,317 3,187 3,408 3,347 3,581 3,280 

Std.  Deviation 0,859 0,880 0,844 0,847 0,922 0,959 0,962 0,877 0,929 0,865 0,851 0,846 0,787 0,826 0,941 0,917 0,854 0,842 0,800 

Variance  0,737 0,774 0,713 0,717 0,849 0,920 0,925 0,769 0,863 0,749 0,724 0,715 0,619 0,682 0,885 0,841 0,730 0,709 0,641 

Skewness  -0,076 -0,140 0,086 -0,024 0,080 0,131 0,001 -0,243 -0,221 -0,087 -0,121 0,085 0,167 0,010 0,046 0,064 -0,032 -0,082 0,018 

Std.  Error of Skewness 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 

Kurtosis  -0,269 -0,437 0,118 -0,007 -0,015 -0,226 -0,379 -0,314 -0,551* -0,177 -0,348 -0,331 -0,226 0,058 -0,360 -0,450 0,129 -0,055 0,670* 

Std.  Error of Kurtosis 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 

                     

    Item39 Item40 Item41 Item42 Item43 Item44 Item45 Item46 Item47 Item48 Item49 Item50 Item51 Item52 Item53 Item54 Item55 Item56  

N Valid 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375 375  

Mean  3,192 3,136 3,256 3,395 3,493 3,512 3,368 3,387 3,216 3,576 3,264 3,616 3,683 3,421 3,365 3,509 3,261 3,259  

Std.  Deviation 0,869 0,995 0,886 0,823 0,804 0,964 0,796 0,903 0,964 0,800 1,068 0,758 0,852 0,780 0,684 0,807 0,834 1,021  

Variance  0,754 0,989 0,785 0,678 0,646 0,930 0,634 0,815 0,929 0,641 1,141 0,574 0,725 0,608 0,468 0,652 0,696 1,043  

Skewness  0,208 -0,194 0,195 0,023 0,270* -0,007 -0,216 -0,009 -0,246 0,096 -0,344* 0,214 0,136 0,298* 0,596* 0,200 0,144 -0,051  

Std.  Error of Skewness 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126 0,126  

Kurtosis  -0,036 -0,287 -0,193 0,158 -0,301 -0,427 0,813* -0,037 0,342 0,124 -0,085 -0,312 -0,850* -0,118 0,235 -0,024 0,479 -0,111  

Std.  Error of Kurtosis 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251 0,251  

* significant (p<0,05) 
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