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Abstract

Data analysis frequently involves the extraction (i.e. recognition) of parts that are im-
portant at the expense of parts that are deemed unimportant. Many mathematical per-
spectives exist for performing these separations, however no single technique is a panacea
as the de�nition of signal and noise depends on the purpose of the analysis. For data
that can be considered a sampling of a smooth function with added `well-behaved' noise,
linear techniques tend to work well. When large impulses or discontinuities are present, a
non-linear approach becomes necessary.

The LULU operators, composed using the simplest rank selectors, are non-linear operators
that are comparable to the well-known median smoothers, but are computationally e�cient
and allow a conceptually simple description of behaviour. De�ned using compositions of
di�erent order LULU operators, the discrete pulse transform (dpt) allows the interpretation
of sequences in terms of pulses of di�erent scales: thereby creating a multi-resolution
analysis. These techniques are very di�erent from those of standard linear analysis, which
renders intuitions regarding their behaviour somewhat undependable.

The LULU perspective and analysis tools are investigated with a strong emphasis on
practical applications. The LULU smoothers are known to separate signal and noise ef-
�ciently: they are idempotent and co-idempotent. Sequences are smoothed by mapping
them into smoothness classes; which is achieved by the removal, in a consistent manner,
of block-pulses. Furthermore, these operators preserve local trend (i.e. they are fully
trend preserving). Di�erences in interpretation with respect to Fourier and Wavelet de-
compositions are also discussed. The dpt is de�ned, its implications are investigated, and
a linear time algorithm is discussed. The dpt is found to allow a multi-resolution measure
of roughness. Practical sequence processing through the reconstruction of modi�ed pulses
is possible; in some cases still maintaining a consistent multi-resolution interpretation.
Extensions to two-dimensions is discussed, and a technique for the estimation of standard
deviation of a random distribution is presented. These tools have been found to be e�ective
in the analysis and processing of sequences and images.

The LULU tools are an useful alternative to standard analysis methods. The operators
are found to be robust in the presence of impulsive and more `well-behaved' noise. They
allow the fast design and deployment of specialized detection and processing algorithms,
and are possibly very useful in creating automated data analysis solutions.



Opsomming

Data analise behels gereeld die skeiding van dit wat belangrik is van dit was as onbelangrik
beskou word. Baie wiskundige perspektiewe bestaan wat metodes verskaf vir die uitvoer
van sulke skeidings, maar geen enkele tegniek is 'n panasee aangesien die de�nisie van
sein en geraas afhanklik is van die doel van die analise. Lineêre metodes is geneig om
goed te werk vir data wat beskou kan word as 'n monstering van 'n gladde funksie. Die
teenwoordigheid van groot impulse of diskontinuïteite noodsaak 'n nie-lineêre benadering.

Die LULU operatore, saamgestel vanuit die eenvoudigste rang-orde selektors, is nie-lineêre
operatore wat vergelykbaar met die bekende mediaan gladstrykers is, maar is doeltre�end
berekenbaar en laat 'n konseptueel eenvoudige beskrywing van hul gedrag toe. Die diskrete
puls transform (dpt), wat saamgestel is uit verskillende orde LULU operatore, gee 'n
interpretasie van 'n ry in terme van pulse van verskillende skale, en skep so deur 'n multi-
resolusie analise. Hierdie metodes van analise is baie anders as die van standaard lineêre
analisie, wat intuïsies rakende hul gedrag ietwat onbetroubaar maak.

Die LULU perspektief en analise gereedskap word ondersoek met 'n klem op praktiese
toepassings. Die LULU gladstrykers is bekend daarvoor dat hul sein en geraas doeltref-
fend skei: hulle is idempotent en ko-idempotent. Rye word gladgestryk deur afbeelding op
gladheids-klasse; hierdie afbeelding word uitgevoer deur die verwydering, in a konsekwente
manier, van blok-pulse. Verder behou hierdie operators lokale orde (hulle is vol-orde-
behoudend). Die dpt word gede�nieër, sy implikasies ondersoek en 'n lineêre tyd algoritme
word bespreek. Daar word gevind dat die dpt 'n multi-resolusie maatstaf van grofheid toe-
laat. Praktiese ry verwerking deur die rekonstruksie van veranderde pulse word ondersoek.
Uitbreidings na twee dimensies en 'n tegniek vir die skatting van die standaard afwyking
van 'n lukrake verspreiding word ook bespreek. Hierdie gereedskap is gevind as e�ektief in
die analise en verwerking van rye en beelde.

Die LULU perspektief is 'n nuttige alternatief tot standaard analise metodes. Die opera-
tore is robuust in die teenwoordigheid van goed-geaarde en impulsiewe geraas. Hulle maak
die vinnige ontwerp van gespesialiseerde opsporing en verwerkings algoritmes moontlik, en
is baie nuttig vir die skep van geoutomatiseerde data analise oplossings.



The �nancial assistance of the National Research Foundation (NRF) towards this research
is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the
author and are not necessarily to be attributed to the NRF.



Acknowledgments

I would like to thank my supervisor Dr. Carl Rohwer for his continued support and
guidance during my studies, and for proofreading this thesis. I also wish to express my
gratitude to Prof. Hans Eggers for introducing me to the Physical Mathematical Analysis
program, and for the many informative conversations over the years.

The �nancial assistance of my parents, the National Research Foundation, and the HB and
MJ Thom Trust is gratefully acknowledged.



Contents

Introduction 6

Part 1. Theory and Tools 9

Chapter 1. The LULU framework 10
1.1. Sequences and norms 10
1.2. Operators 11
1.3. Smoothers and Separators 13
1.4. Smoothing perspectives 15
1.5. Local Monotonicity 20
1.6. The LULU operators 24
1.7. Trend preservation 31

Chapter 2. Taxonomy of operators 34
2.1. The basic LULU separators: Un and Ln 34
2.2. The LULU separators: UnLn and LnUn 36
2.3. Recursive LULU separators: Cn and Fn 38
2.4. Alternating bias separators: Z+

n and Z−n 39
2.5. Unbiased smoothers: Gn, G∞

n and Hn 40
2.6. Minimally destructive smoothers: An and Bn 41
2.7. Bias comparison 42
2.8. Comparison with the median smoothers 43
2.9. Comparison with linear smoothing techniques 47
2.10. A hybrid approach 52

Chapter 3. A multi-resolution decomposition 53
3.1. Consistency 59
3.2. E�cient implementation 61

Chapter 4. A multi-scale description of a sequence 71
4.1. Constraints on pulses 71
4.2. Properties of the resolution level operators 75
4.3. Norms and roughness 76
4.4. A roughness pro�le 78

Chapter 5. Practical reconstruction 85
5.1. Level based highlighting 85
5.2. Pulse based highlighting 89



5.3. Edge detection 92

Chapter 6. Two dimensional analysis 95
6.1. 2-d extension of basic operators 96
6.2. Row and column based decompositions 98

Chapter 7. Estimation of moments 102
7.1. Standard deviation from average pulse height 102
7.2. Accuracy 106
7.3. Extension to 2 dimensions 108

Part 2. Applications 111

Chapter 8. Noise analysis 112

Chapter 9. Share price smoothing 116

Chapter 10. Image processing 120
10.1. Highlighting of Cd-rich crystals 121
10.2. Edge detection using the discrete pulse transform 122
10.3. Image registration 124
10.4. Results 125

Closing remarks 127

Bibliography 128

Appendix A. The discrete pulse transform 130



Introduction

"We don't see things as they are. We see them as we are."
Anais Nin

Populations of micro-organisms can survive immense environmental changes due to a fast
evolutionary response made possible by short reproduction time and genetic diversity. With
an average generation of about 30 years, humankind on the other hand cannot absorb the
pressures of a changing environment through biological evolution alone. However, man has
evolved to possess the ability to gain knowledge (i.e. to learn), allowing the changing of
behaviour as a response to environmental changes. Through language (which is itself a
form of knowledge) and imitation, knowledge is transferred from generation to generation.
This knowledge is dynamic; constantly being re�ned and built upon. Analogous to how
only successful organisms survive (due to natural selection), some ideas die out while others
survive. We call this evolution of ideas, cultural evolution.

Whereas the currency of biological evolution can be said to be physical resources and the
e�cient manipulation thereof, one of the most important currencies of cultural evolution
is information. E�cient and useful ways of recognizing, manipulating, representing and
combining information are cornerstones of cultural evolution.

At �rst, most uses of information related directly to survival. As the knowledge and
infrastructure inherited from previous generations grew, survival became easier. The op-
portunities for the creation of knowledge not directly linked to survival thereby increased,
causing a profound shift in perspective: ideas became the `food' of man.

The shift from a direct perception of reality to a perception mediated by concepts has
not been without problems. In many cases interpretations and representations came to
be regarded as reality, which often results in con�icts about which interpretation is the
`true' one. Though this is unfortunately still occurring today, many now recognize the
subjectivity of interpretations and the impossibility of establishing absolute truths; the
so-called post-modern viewpoint. The language of Mathematics has mostly managed to
stay separate from the politics of information by rooting itself in the abstract.

Currently we live in what is called the information age. Technological advancements have
provided us with an overabundance of information; too much, in fact, for it all to get
personal human attention.

We are almost ready to introduce the subject of this thesis, but �rst it is useful to highlight
a few important points that are implicit in the above discussion:
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• Information usage and volume is increasing and its manipulation becoming more
important in today's world. The increase in quantity necessitates more automated
data analysis tools.

• There is no absolute way to compare the value of di�erent informations (or inter-
pretations). Di�erent mathematical tools (or information processors) are useful
under di�erent sets of assumptions and for di�erent purposes.

• New interpretations and representations often provide a fresh eye on old data.
In essence, data has no meaning without a suitable perspective. For automated
analysis this perspective needs to be explicit (in contrast with unconscious human
data analysis).

Data analysis frequently involves the extraction (i.e. recognition) of parts that are impor-
tant at the expense of parts that are deemed unimportant; in other words, a separation into
signal and noise. Many mathematical perspectives exist for performing said separations,
however no single technique is a panacea as the de�nition of signal and noise depends on
the purpose of the analysis. The e�ectiveness of each depends on how well their implicit
assumptions mesh with the analysis goals.

In this thesis we cover theory and applications relating to non-linear multi-resolution de-
compositions based on the LULU operators. Our thesis being that they are an useful,
natural and computationally e�cient alternative in many areas of practical data analy-
sis. As the usefulness of a tool is closely coupled with what one wishes to achieve, we
cannot prove this categorically. Instead our aim is to illuminate the LULU perspective
by stating mathematical consequences, demonstrating the associated tools on constructed
and real data, and contrasting it with other perspectives. The idea being that through
understanding how this interpretation di�ers from others and seeing the ideas applied on
a variety of representative problems, the usefulness becomes apparent. We shall see that
with the addition of impulsive noise, a non-linear approach is naturally more robust. As
far as computational e�ciency is concerned, worst case calculation time is shown to scale
linearly with data size.

Besides a comprehensive reformulation and discussion of LULU theory as a practical tool,
this document contains the following contributions to the �eld: a comparison of the bias of
LULU smoothers, an analysis of the e�ects of some of the median smoothers in terms of
the LULU operators, discussion of di�erences between linear �lters and LULU smoothers
with an example of a hybrid approach, proof of basic consistency of the dpt based on Ln

and Un, an algorithm for the discrete pulse transform with average case run-time of order
approximately N1.2 and modest memory requirements, properties of the discrete pulse
transform and methods related to its use (including a technique for edge detection), a test
of the accuracy and extension to 2 dimensions of the technique of estimation of standard
deviation, and �nally three problems are analyzed using the theory and tools from the �rst
part. All proofs contained within are new.

7



Some of the ideas contained here are similar to those in Mathematical Morphology [15],
but followed a di�erent route in its conception. It was born out of practical needs and
later strengthened by a strong theoretical structure [9]. These techniques are an additional
instrument in the data analyst's toolbox, and is most e�ective used in conjunction with
existing tools.

We will start with the theory on which these practical techniques are built and the tools
that they provide for the data analyst in part 1. In part 2 the focus will shift to applying
these techniques on a few real-world problems: trend estimation, noise analysis, and image
processing.
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Part 1

Theory and Tools



CHAPTER 1

The LULU framework

This chapter serves as an introduction into the underlying theory from which the LULU
structure emerges. Proofs for theorems in this chapter, that have already been provided
by Rohwer [8], were omitted.

The LULU operators were primarily motivated by the smoothing of sequences using a
well de�ned set of operations. The smoothing comes as a results of viewing a sequence as
the sum of many seperate pulses and then removing the high resolution pulses. A multi-
resolution analysis of a sequence that relies on these smoothing operations later emerges
along with other helpful tools. Before we can move on to a de�nition of the operations
involved we need to de�ne our theoretical framework in which these exist. In this way we
will move from the general to the speci�c.

1.1. Sequences and norms

We are presenting tools for the analysis of data where the data is in the form of sequences.
For our purposes a sequence is just a list of numbers. The data sequence contains that
which of interest, the signal, and that which is not currently of interest, the noise.

Definition 1.1. Let X be the set of all bi-in�nite sequences of real numbers:

X = {x = {xi} : i ∈ Z, xi ∈ R}

In some cases the index of a sequence can be directly correlated to some external variable,
like time. In other cases there is only a loose connection between variable and index. In
all cases this is de�ned by circumstances and speci�cs not related to our analysis methods
and thus Somebody Else's Problem.

In real problems these sequences are generally �nite, but may be extended with zeros on
both sides to make them in�nite in length. We will also assume that all sequences are in
`1, i.e.

∑
i |xi| is bounded. Sometimes we may weaken these assumptions, requiring only

a sequence in which the total variation
∑

i |xi − xj−1| is bounded. In other words, the
sequence of local di�erences ∆x is in `1.

We de�ne addition and scalar multiplication for sequences in X , with which X becomes a
vector space.

Definition 1.2. For sequences x, y ∈ X and a real number α.
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(1) x + y = x⊕ y = {xi + yi} Addition
(2) αx = α¯ x = {αxi} Scalar Multiplication

Some sequences can be compared with other sequences using a relation, R:

Definition 1.3. The relation R results in a partial order on X , with

x R y ⇐⇒ xi R yi, ∀i, x, y ∈ X
and R ∈ {≤, =,≥}. Note that this relation does not result in a total order as not all pairs
of elements, x, y ∈ X , are generally comparable: sometimes neither (x, y) nor (y, x) is in
R.

When dealing with data in multiple dimensions it is often useful to be able to quantify
properties about the data in less dimensions in order for two distinct data sets to be
compared. There are many ways to do this, some more useful than others. We will de�ne
a few that are useful in our analysis methods. The p-norms map a sequence into a single
number and have a geometric meaning. The 1-norm of a sequence being the absolute
area between that sequence and the zero sequence. The 2-norm is the Euclidean distance
between a sequence and the zero sequence. By using the standard p-norms we can make
`1 ⊂ X into a normed space.

Definition 1.4. We de�ne the usual p-norms, with p ≥ 1 a real number or p →∞:

‖x‖p =

(∑

i

|x|p
) 1

p

‖x‖∞ = sup
i
{|xi|}

A measure which will prove useful later on is the total variation operator. The total
variation of an in�nite sequence exists as long as

∑
i |xi − xj−1| is bounded; it is a semi-

norm for the set of all such sequences. It is a norm for the set of sequences in `1. The
total variation of a sequence turns out to be a natural norm in the LULU framework, as
we shall see later.

Definition 1.5. The total variation operator, T , sums the local variation of a sequence
and is de�ned by:

Tx = ‖∆x‖1 =
N∑

−N

|xi+1 − xi|

1.2. Operators

We would like to consider the problem of smoothing a sequence. Before we can consider
�nding an operation that does what we intend we need to consider the set of all possible op-
erations. Furthermore, the ways these operations can be combined and manipulated must
be de�ned. We consider all mappings of sequences in X to sequences in X as operators,
and then de�ne the set of these operators:
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Definition 1.6. Let F (X) be the set of all operators on X :

F (X) = {A : X → X}

The �eld of linear �lters is well developed and has provided many tools for the data analyst.
Fourier analysis, wavelet decompositions and general linear �lters have proved their worth
in practice over the years.

Definition 1.7. An operator A ∈ F (X ) is linear if A(x+y) = Ax+Ay and A(λx) = λAx

for all x, y ∈ X and λ ∈ R.

The left distributivity of linear operators allows one to decompose an operation on a
complicated argument into the sum of operations on less complicated arguments. This
allows more straight-forward algebraic manipulation. We need to consider a larger class.

The operators which form part of the LULU framework are all non-linear. It is useful to
list the identities and basic operator de�nitions available for use. The notation (Ax)i = ai

gives a de�nition of an operator on sequences in terms of each element of the sequence; i.e.
the sequence [xi, . . . , xj ] is transformed to [ai . . . aj ].

Definition 1.8. For every A,B ∈ F (X ) and x ∈ X :
(1) (A + B) x = Ax + Bx Sum of operators
(2) Ix = x Identity operator
(3) (Ox)i = 0 Zero operator
(4) (αA) x = α (Ax) , α ∈ R Scalar associativity
(5) (AB) x = A (Bx) Operator composition
(6) (Ex)i = xi+1, ∀i Shift operator
(7) Nx = −x Negative operator
(8) (A + B)C = AC + BC Right distributivity
(9) A0 = I, An+1 = AAn, n ∈ Z Operator powers

Right distributivity of the operators (def 1.8.8) follows directly from the de�nition of
addition (def 1.8.1). The commutativity of operator exponents can be proved from the
above de�nitions using standard induction arguments.

Theorem 1.9. For A ∈ F (X ), we have that operator exponents commute:

AmAn = AnAm, n, m ∈ Z

In the previous section we de�ned how a relation can be used to de�ne a partial order on
X . We can now extend this concept to the set of operators, F (X ). This does not form
a total order relation as not all operators can be meaningfully compared. For example:
neither N ≥ I or N ≤ I is true in general.

Definition 1.10. For a relation R and two operators in F (X ), A and B, we de�ne

A R B to mean (Ax) R (Bx) for all x ∈ X
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An operator that preserves partial order relations between sequences is called syntone, or
monotone by Rohwer and Wild [13], and increasing by Serra [15].

Definition 1.11. An operator P on X is syntone (increasing, monotone) if and only if,
for all sequences x, y ∈ X ,

x ≥ y ⇒ (Px) ≥ (Py)

Clearly, any composition of syntone operators is in turn also syntone. One can apply a
syntone operator to each side of an inequality without changing the inequality. This is not
true for operators in general. The negative operator, for example, reverses the inequality
when applied on each side.

Definition 1.12. Any operator, P, is called variation diminishing if:

T (Px) ≤ T (x)

1.3. Smoothers and Separators

It is useful to now limit the set of available operators by choosing properties that we would
like our smoothing operators to have [9]. It is, for instance, reasonable to assume that the
indexing of a sequence or the measurement scale should not in�uence the smoothing. The
following axioms for a smoother formalizes this.

Definition 1.13. An operator P on X is a smoother if it satis�es the following translation
and scale invariance axioms:

• PE = EP, Translation Invariance: x-axis
• P (x + c) = P (x) + c, Translation invariance: y-axis
for each x, c ∈ X and c constant

• P (αx) = αP (x) , Scale Invariance
for each x ∈ X and scalar α ≥ 0

This di�ers slightly from the smoother axioms as speci�ed in Mallows [3]. The scale
invariance axiom of Mallows allows all values of α. This is unnecessarily strict for scale
independence. Restricting α to non-negative values allows more general operators like the
LULU -operators.

Definition 1.14. An operator P is a separator if it satis�es the following axioms:

• P 2 = P Idempotence
• (I − P )2 = I − P Co-idempotence

Rohwer [9] de�nes a separator as operator that is idempotent, co-idempotent and a smoother.
In de�nition 1.14 above, the requirement for the operator to be a smoother is dropped.
Hindsight has shown that it is useful to distinguish between operators that are idempotent
and co-idempotent without being smoothers and those that are idempotent, co-idempotent
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and smoothers [10]. As such it may be expedient to change the de�nition of a separator
to not require adherence to smoother axioms. One can now talk of a separating smoother
when both sets of axioms are satis�ed.

We will call mapping a sequence using an operator for which the smoother axioms hold,
smoothing the signal. Likewise, mapping a sequence using an operator for which the
separator axioms hold is called separating the `signal' and `noise' in the sequence (or just
separating the sequence). The meaning of signal and noise in this case is not determined
by some outside standard but according to the interpretation of the chosen operator itself.
The practical use of a separator then depends on what basis this interpretation is made.
As a trivial example, the identity operator is a separator that sees everything as signal
and nothing (the zero sequence) as noise, and is as such not useful, except for theoretical
consistency.

One can regard a smoother as a (possibly ine�cient) machine that separates signal and
noise. To achieve better results one can re-smooth the signal part to see if there is additional
noise that was not removed in the �rst pass. One can also put the noise part back into the
smoother to see if it yields more signal. This yields the two-stage smoother cascade shown
in �gure 1. This two-stage process gives the following separation into signal and noise.

signal =
(
P 2 + P (I − P )

)
x

noise =
(
(I − P )2 + (I − P ) P

)
x

An operator that is not idempotent is somewhat de�cient at noise extraction, because
P 2 6= P implies that (I − P ) P 6= 0. And thus more noise can be extracted by re-smoothing
the outputs of the operator. An operator that is not co-idempotent is de�cient at signal

x

Px (I−P)x

P2
x (I−P)Px P(I−P)x (I−P)2x

P P

P

Figure 1. Two stage smoother cascade
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extraction as (I − P )2 6= (I − P ) implies P (I − P ) 6= 0. In other words, more signal can
be extracted by re-smoothing the noisy part.

Separators are fully e�cient at signal and noise removal (by de�nition) in the sense that a
multiple stage separator cascade will not yield a better separation into signal and noise than
using only one stage. This property is needed for an optimally e�cient implementation as
it will only ever require one application of the smoother. Thus, the separator axioms can
be regarded as reasonable demands.

It only makes senses to discriminate between idempotency and co-idempotency for non-
linear operators as idempotency and co-idempotency always coincide for linear operators.
This may be why the importance of co-idempotence has seldom been recognized in the
past [9].

1.4. Smoothing perspectives

Let us recap for a moment. We are �nding our way in the dark. An axiomatic framework
has emerged. Our target area has been narrowed down slightly from the set of all possible
operations on sequences by moving towards some properties and away from others. We
are interested in the smoothing of sequences, but what exactly we mean by this has not
been de�ned. There is still a multiplicity of possibilities ahead. Where are we heading? A
choice of perspective is needed to light up the way ahead.

To clarify it is helpful to �rst look at some other related perspectives. In later chapters
these perspectives will be revisited to further highlight di�erences and similarities with
respect to the LULU perspective.

The Fourier Transform is one of the most important and ubiquitous analysis tools available.
It interprets a function, f(x), as the weighted linear sum of a set of sine and cosine functions
of varying frequency. For functions with period 1, we get:

f(x) = a0 +
∞∑

n=1

ancos(2nπx) +
∞∑

n=1

bnsin(2nπx).

In the Fourier perspective there is an implicit concept of smoothness: a function can be
smoothed by removing sinusoids of higher frequency. The degree of smoothing is deter-
mined by the chosen cut-o� point between low and high frequencies; decreasing the cut-o�
frequency will result in smoother sequences.

Another perspective is that of the wavelet decomposition: a sequence is decomposed by
projections onto a set of orthogonal spaces. We are only interested in pointing out how dif-
ferent analysis tools have di�erent perspectives on smoothing and smoothness, and discuss
only the simplest discrete wavelet decomposition: the Haar-wavelet decomposition.

Supposing one has a N0 = 2N element sequence, x, which is a sampling of a function, f ,
such that the coe�cients, αk,i, describe the sequence in terms of basis functions which are
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Haar wavelet function: ψ

Figure 2. Haar wavelet and the associated scaling function

translated versions of the Haar scaling function (�gure 2):

(1.1) xt =
N0−1∑

i=0

α0,iφ (t− i)

The coe�cients α0,i is then just the sequence xt. We have that the sequence x is in the
space B0, with the spaces Bj formed by the span of the translated scaling functions at
speci�c scales:

Bj = span
{
φi : φi(t) = φ

(
2−jt− i

)}

The Haar wavelet operator, Pk, projects the sequence x ∈ Bk−1 to its best least squares
estimate in the space Bk. For further smoothing this process is repeated, with each Haar-
operator mapping the output of the previous operator into a lower resolution space. With-
out going into unnecessary details, the best least squares estimate in the next lower sub-
space is obtained by replacing each pair in the sequence by its average.

The smoothed sequence, Pkx ∈ Bk, at level k then has coe�cients in terms of the level
k−1 coe�cients. Notice that the number of coe�cients at level k is half that at level k−1.

αk,i =
1
2

(αk−1,2j + αk−1,2j+1) where i = 0 . . . Nk − 1 with Nk =
Nk−1

2
The coe�cients α0,i is either obtained from the sampling of a function or simply come from
an arbitrary sequence. The di�erence between the projected sequence in Bk and the input
sequence in Bk−1 is the part of the sequence peeled o� as noise, and can be expressed in
terms of the Haar wavelet functions (�gure 2), it has coe�cients:

βk,i = αk−1,2i − αk,i

= αk−1,2i − 1
2
αk−1,2i − 1

2
αk−1,2i+1

=
1
2

(αk−1,2i − αk−1,2i+1) where i = 0 . . . Nk − 1 with Nk =
Nk−1

2
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We now express the smooth and rough part in terms of their basis functions: translated
scaled version of the scaling and wavelet functions respectively.

Pkx(t) =
Nk−1∑

i=0

αk,iφ
(
2−kt− j

)
∈ Bk

(I − Pk)x(t) =
Nk−1∑

i=0

βk,iψ
(
2−kt− j

)

Once again there is an implicit concept of smoothness: a frequency can be associated with
the wavelets, ψ(2k − ·); a higher k implies a higher frequency. Although the de�nition
of frequency is di�erent in the Wavelet perspective, this is similar to smoothing with the
Fourier Transform as described above. The sequence is smoothed by the removal of the
higher frequencies. A concept of resolution is also apparent: the factor by which the scaling
and wavelet functions are scaled.

The LULU perspective is di�erent. The basic units from which a sequence is constructed
are not sinusoids or wavelets, but block pulses.

A discrete sequence is considered as a sum of a collection of block pulses.

x =
∑

i

blockpulsei

Definition 1.15. A block pulse (hereafter just a pulse) is a sequence x with:

xi =





h i ∈ [p, p + w − 1]

0 otherwise
= h

w∑

m=1

δi,(p+m−1)

It is fully characterized by its position (p), height (h) and width (w). Furthermore, we call
it an upwards block pulse if h > 0 and a downwards block pulse if h < 0.

Figure 3 shows a pulse added to the zero sequence. We see that a pulse has a plateau.
While for some applications there may be a reason to exclude negative pulses, there is no
reason to do so out of principle. We are working with discrete sequences which implies that
the pulse width and position will always be natural numbers. For a sequence of length N

(extended before and after with zeros) the possible pulses have the properties:

position: p ∈ [0, N − 1] ⊂ N
width: w ∈ [1, N ] ⊂ N
height: h ∈ R ∼ {0}

At �rst glance, it seems that the LULU perspective is not much di�erent than smoothing
with wavelets. The Haar smoothing algorithm, discussed above, smoothes a sequence
by the removal of Haar wavelets, which consists of two consecutive pulses (of opposite
magnitude). A few negative properties of the Haar operators are investigated to show the
need for a fresh perspective.
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p

w

h

Figure 3. Single pulse added to the zero sequence

Since the Haar operators are linear the e�ect they have on any sequence, xi with i = 0 . . . N ,
is equal to the sum of the e�ect it has on the set of sequences {δi,jxi : j = 0 . . . N} with
δi,j the Kronecker-delta function. It is thus illuminating to consider the operator's impulse
response (�gure 4). Notice that due to the recursive averaging process the impulse energy
spreads as the sequence is smoothed. For a sequence with large amplitude impulsive noise
this e�ect may ruin the surrounding signal.

We have stated our basic requirements for a smoother and separator in section 1.3. The
Haar wavelet decomposition obeys all the axioms, except translation invariance of the x-
axis. Shifting a sequence by one unit left or right changes which elements form the pairs that
are averaged. When a structure in the sequence crosses the border between two averaging
pairs, the operators are unnecessarily destructive. In practice it is often impossible to align
the sequence such that this does not happen. This is the so-called phase problem (�gure
5). Notice how one edge of the block pulse is eroded and the other preserved. For certain
pulse widths (non powers of two), no amount of shifting the sequence left or right lets the
two sides be smoothed similarly.

xxxxx
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Figure 4. Multi-stage Haar smoother impulse response for an impulse at
a speci�c position
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Figure 5. The phase problem: one edge of the block pulse is preserved
and the other is eroded.

We return to the LULU perspective and see what choices are made to avoid the above
problems. Choosing LULU operators as smoothers (def 1.13), translation invariance is
guaranteed and the phase problem avoided.

Linear �lters will generally cause a spreading of impulse energy as these �lters replace
each sequence element with a weighted average of its neighbours [4]. For sequences with
low-amplitude unbiased noise this approach tends to work well. For more general signals
with possible high-amplitude discontinuities and noise this can lead to unnecessarily large
distortions. The LULU operators are all non-linear and as a result do not automatically
su�er from these drawbacks. They are also separators and smoothers.

To be more speci�c, the LULU operators are all rank based selectors and compositions
(we will not use the term concatenation used by Tukey) of these. For a sequence smoothed
by a selector, any element in the smoothed sequence must be equal to an element in the
input sequence. [9, 4]

Definition 1.16. A rank based selector S maps a sequence x ∈ X onto Sx such that
every (Sx)i = xk ∈ Wi where Wi is a window of points including xi. The element selected
from the window, xk , is chosen based on relative ranks of all the points in the window.
The number of elements in the window is called the support of the operator.

As with the wavelet decomposition a concept of resolution can be de�ned. In the case
of the LULU perspective, the width of the pulse is a natural measure of resolution. A
narrower pulse is of higher resolution:

pulse resolution ∝ 1
pulse width

Analogous to the Fourier and Wavelet perspectives, where the high frequency components
can be removed to smooth a function, LULU smoothing is based on the removal of the
higher resolution (narrower) pulses from a sequence. The degree of smoothing is determined
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by the maximum width of pulses removed. We interpret the e�ect of the LULU operators
as pulse removals.

Definition 1.17. A pulse removal is a process whereby a sequence, x, is separated into
two sequences, s and n, where x = s + n. The sequence n must consist of a single pulse
as per de�nition 1.15 and can thus be characterized by a width, position and height. An
operator, P , is a pulse remover if it removes a set of pulses, {ni}, from an input sequence
x. Then Px = x−n where n =

∑
i ni. Each pulse ni is characterized by a width, position

and height.

1.5. Local Monotonicity

The Fourier and Wavelet perspectives implicitly de�ne measures of smoothness. We want
to highlight the related concept in the LULU perspective. The concept of local mono-
tonicity (see def. 1.18) is used to classify sequences into di�erent smoothness classes. This
classi�cation is done based on the relative local ordering of the elements in the sequence
and does not depend on the absolute magnitudes of the elements. We shall see later that
the smoothness class of a sequence and the narrowest pulse that are removed by the LULU

smoothers are related.

A monotone sequence is either non-increasing or non-decreasing. In `1 the only sequence
that is monotone is the zero sequence. This concept of monotonicity is extended to di�er-
entiate between global and local monotonicity. We de�ne local monotonicity by:

Definition 1.18. A sequence x ∈ X is n-monotone if and only if
{

xi, xi+1, . . . , xi+n+1

}

is monotone for each i.

Definition 1.19. The set of all sequences in X that are n-monotone is called Mn.

Clearly all sequences that are n + 1-monotone are also n-monotone. All sequences are
at least 0-monotone. We can say that the sets of monotone sequences, Mn, nest (�gure
6) such that Mn+1 ⊂ Mn. These sets are our smoothness classes which forms part of
the strategy to classify the multi-resolution smoothness of sequences. Standard (globally)
monotone sequences can also be said to be ∞-monotone according to de�nition 1.18.

For a sequence, x, consider the sequence of local di�erences: (∆x)i = xi+1 − xi. For
globally monotone sequences the sequence is either non-increasing or non-decreasing, i.e.
the local di�erences are not allowed to change between negative and positive slope. Thus
either all (∆x)i ≥ 0 or all(∆x)i ≤ 0. In contrast to this, locally monotone sequences can
have local di�erences of any sign as long as there is a constant section of su�cient length
between sections of opposite slope. For any sequence x ∈ Mn, if (∆x)j (∆x)k < 0 with
(∆x)i = xi+1 − xi then

|j − k| > n and
(∆x)i = 0 for i ∈ (j, k)
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M1

M2

M∞

M3

Figure 6. Nesting of monotonicity sets

In chapter 2 we shall see how the local monotonicity classes, Mn, are related to some
non-LULU operators. We will also see that the LULU operators map sequences onto
these classes. While this mapping cannot be a projection as the operators involved are
not linear, they are closer to projections than what one would expect. This will pave the
way for creating a multi-resolution decomposition of a sequence: a sequence is split into
di�erent sequences that lie in di�erent monotonicity classes, starting from the roughest
M0 to the smoothest M∞ (which only contains the zero sequence when in `1). Using a
norm one can compare the total sequence `energy' in the di�erent resolution levels. These
type of decompositions will be discussed in detail in chapters 3 and 4.

It is not immediately clear how the concept of local monotonicity relates to our view
of a sequence as the sum of a set of pulses. Before we can answer this question we will
need to split the concept of local monotonicity into upwards-monotonicity and downwards-
monotonicity.

Definition 1.20. With k ≥ 1, we call any segment
{

xi, xi+1, . . . , xi+k+1

}
of a

sequence x ∈ X a k-upwards arc (also called a cup) if xi > xi+1 = · · · = xi+k < xi+k+1.
A k-downwards arc (also called a cap) exists similarly if xi < xi+1 = · · · = xi+k > xi+k+1.
The sequence x is then upwards n-monotone (resp. downwardsn-monotone) if for every
k-upwards arcs (resp. k-downwards arcs) it contains, we have k ≥ n + 1. We say that a
n-arc has width n, referring to the length of the constant region.

M+
n is the set of all upward n-monotone sequences. M−

n is the set of all downward n-
monotone sequences.

Definition 1.21. A signal is n-monotone if and only if it is both upwards n-monotone
and downwards n-monotone:

x ∈M+
a , x ∈M−

b ⇒ x ∈Mmin{a,b}
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The concepts of upward and downward monotonicity classify sequences based on the min-
imum width of the upward and downward arcs present in the sequence. Figure 7 shows an
example of an n-upwards and n-downwards arc segment. In �gure 8 examples of sequences
that lie in di�erent monotonicity classes are given. The horizontal and vertical location
of the sequences in the grid is their degree of upward and downward monotonicity respec-
tively. The minimum length of all the arcs present in a sequence determines the degree of
monotonicity (as per de�nition 1.21) and thus the sequences on the diagonal lie in M0,
M1, M2 and M3 respectively.

In the LULU perspective pulses are obtained by the removal of arcs from a sequence. The
existence of an n-upwards or n-downwards arc in a sequence x points to the existence of a
downwards or upwards pulse of width n respectively (at that position).

n + 2

Figure 7. A sample n-downwards arc (top) and n-upwards arc (bottom)
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2
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Figure 8. Examples of sequences in the di�erent monotonicity classes.
The degree of local monotonicity is equal to the minimum arc length.
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Definition 1.22. Let {xi, . . . , xi+k+1} be an k-arc. By de�nition 1.20 we have that xi >

xi+1 = · · · = xi+k < xi+k+1 (or xi < xi+1 = · · · = xi+k > xi+k+1). An arc is removed by
setting the valley (or plateau) values {xi+1, . . . , xi+k} equal to the neighbouring element
that is closest in value. Let x∗ be the sequence x but with the arc in question removed,
then

x∗j =





xj if k /∈ [i + 1, i + k]

xi if k ∈ [i + 1, i + k] and |xj − xi| ≤ |xj − xi+k+1|
xi+k+1 otherwise

Using this de�nition an arc removal changes the sequence as little is possible while still
removing the arc completely. The only parts of the sequence that changes is the valley or
plateau part of the arc, which gets replaced by a neighbouring value (a selection operation).
The di�erence sequence x− x∗ is then a pulse of width k according to de�nition 1.15.

It is important to realize that the removal of an arc possibly has side-e�ects. Another
wider arc might be created, or an neighbouring arc can change or be destroyed. As a result
not all all arcs present in a sequence will result in a pulse removal. We illustrate these
e�ects with an example. In �gure 9 there is a sequence with two downwards arcs and one
upward arc. The e�ect of removing each of these arcs using de�nition 1.22 is shown. If
the �rst arc is removed, the second arc is destroyed as a side e�ect. The removal of the
second arc destroys both the �rst and third arc and creates a new width 7 downwards arc.
Removing the third arc changes the right edge of the second arc.

1
2

3

1

2

3

Arc Removal

Figure 9. An example illustrating the e�ects that arc removals can have
on other arcs in the sequence.
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Neighbouring arcs can only be destroyed or changed if the arc and its neighbour is a
downwards and upwards arc that overlaps by two elements. For example, this will occur if
we have two arcs {xi, . . . , xi+k+1} and {xj , . . . , xj+m+1} such that j = i+k or j +m+1 =
i + 1. A new upward arc (or downward arc) is created if xi > xi+1 and xi+k < xi+k+1 (or
xi < xi+1 and xi+k > xi+k+1) and the result of an arc removal is that xi+1 = . . . = xi+k.

We see that the order in which arcs are removed a�ects what other arcs can be removed.
In the next section we will see that the LULU operators overcome this by implicitly
prioritizing the arcs.

We have discussed how some arcs are only uncovered when others are removed, but these
are always wider than the arc whose removal caused its appearance. Therefore the local
monotonicity class gives a hard limit on the minimum width of arcs that can be removed:
a sequence in Mn has no arcs (and therefore no pulses) of width n and smaller left for
removal. The upwards and downwards monotonicity classes have a similar role, except
that they only recognize upward and downward arcs respectively.

The above discussion makes it clear how the concept of local monotonicity relates to the
size of pulses that can be removed from a sequence. We have stated that a sequence is
smoothed by the removal of higher resolution (narrower) pulses. The local monotonicity
class then gives the degree to which this has been accomplished and is thus related to the
smoothness of a sequence. We call the monotonicity classes our smoothness classes.

1.6. The LULU operators

The LULU framework and its rami�cations have now been discussed su�ciently for us to
move on to the speci�c LULU operators. First the elementary building blocks are de�ned.
These are the protons and electrons with which the neutral atoms (the basic operators)
can be built [12] .

Definition 1.23. The elementary operators
∧

and
∨

on X are:

(1) (
∧

x)i = min {xi−1, xi} erosion
(2) (

∨
x)i = max {xi, xi+1} dilation

It is obvious from de�nition 1.23 that there exists an asymmetry in the de�nition of the
elementary operators. This asymmetry could easily have been reversed by letting (

∧
x)i be

equal to min {xi, xi+1} and making the corresponding change in
∨
. This is not important

as this asymmetry will fall away when we create our basic operators from these elementary
building blocks.

Now, let us see what these elementary operators actually do. They are selectors, therefore
only values in the input sequence are allowed in the output sequence.

The dilation operator
∨

widens downward arcs (caps) to the left and narrows upward arcs
(cups) from the right. Similarly, the erosion operator

∧
widens upward arcs (cups) to the
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right and narrows downward arcs (caps) from the left. This is visible in �gure 10. There
are two important e�ects that these operators have on arcs present in a sequences. First,
arcs of unit width are either widened or completely removed from the sequence by these
operators. Second, no new arcs can be created. We can call these operators arc-modi�ers,
as they only change the width of the arcs present in a sequences. These operators are not
idempotent as repeated applications will continue to widen some and narrow other arcs in
a sequence. The e�ects of these operators are stated without proof as we will later prove
the e�ect of compositions of these from �rst principles.

The elementary operators correspond to the erosion and dilation operations common in
Mathematical Morphology with a one dimensional structuring element two elements wide
[15].

Theorem 1.24. Properties of elementary operators. [13]

(1)
∧

and
∨

are syntone.
(2)

∧m ≤ I ≤ ∨m for all m ≥ 0
(3)

∨m ∧m ≤ . . . ≤ ∨∧ ≤ I ≤ ∧ ∨ ≤ . . . ≤ ∧m ∨m for all m ≥ 0

The syntoneness of the operators implies that the partial ordering of sequences relative to
each other will not be destroyed by the application of these operators.

Theorem 1.25.

(1)
∨m ∧m ∨m =

∨m and
∧m ∨m ∧m =

∧m

(2) (
∨m ∧m)2 =

∨m ∧m and (
∧m ∨m)2 =

∧m ∨m

The following is a direct result of this.

Corollary 1.26.
∧m and

∨m form a Galois connection

First we de�ne the set of operators that consist of compositions of the elementary operators.
Because we are ultimately interested in �nding separators as per de�nition 1.14, we de�ne

x

∨
x

∧
x

Figure 10. E�ect of elementary operators on upward and downward pulses
of width 1 and 2.
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the subset of this set which contains only the idempotent operators. We know that this set
is smaller than its superset because the elementary operators,

∧
and

∨
, are not idempotent.

Definition 1.27. C is the set of operators on X consisting of compositions of the elemen-
tary operators

∧
and

∨
:

C =
{

A : A is a composition of the operators
∧

and
∨}

Definition 1.28. L ⊂ C is the set of operators in C that are idempotent.

L =
{
A : A ∈ C, A2 = A

}

We will now de�ne our basic operators. These will form the building blocks with which we
create all the subsequent smoothers in the LULU framework

Definition 1.29. The basic operators are

(1) Ln =
∨n ∧n

(2) Un =
∧n ∨n

In theorem 1.25, we saw that the basic operators are idempotent, and thus in L. The
asymmetry in our de�nition of elementary operators did not carry over to our choice of
basic operators as they are asymmetric only in the sense that LnN = NUn for all n and
are thus `duals' of each other.

Definition 1.30. An operator A is a dual of an operator B if AN = NB.

When a result is proven for one of a pair of dual operators then a related property for the
other is also true. For example, by theorem 1.24, we know that

(1.2) Unx ≥ Ix

for any sequence x. The corresponding rule for Ln is now proven by duality. Apply the
negative operator on both sides of equation 1.2 to obtain NUnx = LnNx ≤ NIx = INx.
This is valid for any sequence x, therefore it is also valid for y = Nx. Then Lny ≤ Iy for
any sequence y.

Recall that the elementary operators change the width of arcs in a sequence. Let us consider
the operator Ln =

∨n ∧n. After application of
∧n all upward arcs will be of width n + 1

or larger. All downward arcs of width n and smaller are �ltered from the sequence and
the rest are narrower by n units. Following this by

∨n will restore the upward arcs and
the remaining downward arcs to their original sizes. The downward arcs (caps) of width n

and smaller can not be restored as they were destroyed. This may seem confusing as some
of the arcs that are removed are partly obscured by smaller arcs. The following theorem,
with its corollary, permits a more illuminating explanation.

Theorem 1.31. Un+1Un = Un+1 and Ln+1Ln = Ln+1
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Proof. Un+1Un =
∧n+1 ∨n+1 ∧n ∨n =

∧n+1 ∨
(
∨n ∧n ∨n) =

∧n+1 ∨n+1 = Un+1

using corollary 1.25. A similar proof exists for L. ¤

Corollary 1.32. Un = UnUn−1 . . . U1 and Ln = LnLn−1 . . . L1

We know that the operator Ln has the same e�ect as LnLn−1 . . . L1. Consider any sequence,
x ∈M0. Tthe arcs present have a width of at least 1. Performing L1 will widen all upward
arcs by 1 unit before restoring them to their original size. All downward arcs will be made
narrower by 1 unit before they are restored to their original size. The downward arcs
of width 1 cannot be restored since they were destroyed before they could be restored.
Therefore the output sequence will not have any downward arcs remaining of width 1. I.e.
the output sequence is in M−

1 . The plateau value of each unit width downward arc is
replaced by the maximum of the two neighbouring values. The Un operator replaces each
unit width upward arc with the minimum of the two neighbouring values. The following
two theorems play a key role in our understanding of Ln and Un as pulse removers and the
e�ect they have on the smoothness class of a sequence. Arcs are removed as speci�ed by
de�nition 1.22.

Theorem 1.33. For any sequence x ∈M−
n−1, we have Lnx ∈M−

n . All n-downwards arcs
in sequence x are removed:

Ln [ . . . , ∗, a b . . . b︸ ︷︷ ︸
n times

c, ∗, . . . ] = [ . . . , ∗, a b′ . . . b′︸ ︷︷ ︸
n times

c , ∗, . . . ]

where b > a, c and b′ = max {a, c}
Other structures in the sequence are left unchanged.

Proof. Ln is a smoother, therefore we can shift the indices of vector x without chang-
ing the smoothed result. We will use the notation ≤ k to mean a number less than or equal
to k when the speci�c value itself is not important.

From the de�nition of the elementary and basic operators we get:

(Lnx)i =

(
n∨ n∧

x

)

i

= max {min {xi−n, . . . xi} , min {xi−n+1, . . . xi+1} , . . . , min {xi, . . . , xi+n}}

For any monotone section,
[

xi, xi+1, . . . , xi+m

]
, shift the sequence such that i = 0.

Suppose that xm ≥ x0 (the other case is similar). Because x ∈ M−
n−1 all downward arcs

have constant part of length ≥ n. Now assume that there exists no integer k ∈ [0,m]
such that xk − xk−1 > 0 and xk+n − xk+n−1 < 0. In other words, we do not allow the
monotone section to contain part of the plateau section of a n-downwards arcs. We then
have, xj ≥ xm for m ≤ j < 1 + m + n.

We see that xi with i = 0 . . . m remains unchanged after application of Ln:
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(Lnx)i = max {min {xi−n, . . . xi} ,min {xi−n+1, . . . xi+1} , . . . ,min {xi, . . . , xi+n}}
= max{≤ xi, . . . ,≤ xi︸ ︷︷ ︸

n times

, xi}

= xi

Now we look at the e�ect of Ln on arcs. For every m-arc
[

xi, xi+1, . . . , xi+m+1

]

shift x such that i = 0. We have:

x0 = a

xi = b for i = 1 . . . m

xm+1 = c

First suppose it is an upwards arc. Then b < a, c. We know that x ∈ M−
n−1, thus the

following must be true:

xj ≥ a when − n < j < 0, and
xj ≥ c when m + 1 < j < m + n + 1

Because of this and the fact that b < a, c is in every of the windows we want to calculate
the minimum of, we get for i = 1 . . .m:

(Lnx)i = max {min {xi−n, . . . xi} ,min {xi−n+1, . . . xi+1} , . . . ,min {xi, . . . , xi+n}}
= b = xi

We see that upwards arc are not changed by Ln.

Supposing the arc is a downwards arc, we have b > a, c. We also know that x ∈ M−
n−1,

therefore m ≥ n. The endpoints of the arc are either part of an upwards arc or lies inside
a monotone section, either way it has already been proven that they are not changed by
Ln.

Now we see what happens, after smoothing with Ln, with the values of the arc plateau.
For i = 1 . . . m and m = n we get:

(Lnx)i = max {min {xi−n, . . . xi} ,min {xi−n+1, . . . xi+1} , . . . ,min {xi, . . . , xi+n}}
= max{≤ a, . . . ,≤ a︸ ︷︷ ︸

n−i times

, a, c,≤ c, . . . ,≤ c︸ ︷︷ ︸
i−1 times

}

= max {a, c}
When m > n, at least one of the sets {xi−n, . . . xi} , {xi−n+1, . . . xi+1} , . . . , {xi, . . . , xi+n}
contains only elements in the range x1 . . . xm and thus the minimum of that set is b. The
minimum of the other sets are either ≤ a or ≤ b. Because b ≥ a, c we then get, for each
i = 1 . . . m:

(Lnx)i = max {min {xi−n, . . . xi} ,min {xi−n+1, . . . xi+1} , . . . ,min {xi, . . . , xi+n}}
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= b = xi

We see that a downwards arc is left unchanged when it is wider than n. When m = n the
constant segment is replaced by the maximum value of the endpoints of the arc.

Before application of Ln we have x ∈ M−
n−1, therefore all downwards arcs are of width n

or wider. All n-downward arcs are removed by setting the constant section to one of the
endpoints' values, thus creating a new constant section of length ≥ n + 1. This cannot
create a new arc of width ≤ n. Therefore, after every n-downwards arc is removed all the
remaining downwards arcs have length ≥ n + 1, and thus Lnx ∈M−

n . ¤

Since Un is the dual of Ln, its e�ect on sequences can be proven in a similar way.

Theorem 1.34. For any sequence x ∈M+
n−1, we have Unx ∈M+

n . All n-upwards arcs in
sequence x are removed:

Un [ . . . , ∗, a b . . . b︸ ︷︷ ︸
n times

c, ∗, . . . ] = [ . . . , ∗, a b′ . . . b′︸ ︷︷ ︸
n times

c , ∗, . . . ]

where b < a, c and b′ = min {a, c}
Other structures in the sequence are left unchanged.

From the above two theorems we see that the basic operators are pulse removers. These
pulses are separated by sections of zero value of length at least 1, because for any sequence[

. . . a b . . . b c . . . c d . . .
]
one cannot have b > a, c and c > b, d both true.

The sequence (I − L1)x will consist of upward pulses of width 1. Now L2 is applied. We
do not need to look at the individual e�ects of

∨2 and
∧2 because we have already proven

the e�ect of Ln for any n > 0. This smoother removes all downward arcs of width 2. The
sequence (L1 − L2)n contains only upward pulses of width 2. The sequence L2x is then in
M−

2 .

In this way all upward pulses up to width n are removed by Ln. The argument for Un is
similar, except that it removes downward pulses of length n and smaller. We now have
our LULU pulse removers. In �gure 11 a sequence is smoothed with L4. Although this
is not apparent from the noise sequence (I − L4) x all upward pulse of width 1 to 4 have
been removed.

To explicitly show the pulses of each width that were removed by the smoothing process
we can split (I − L4) x into four sequences. We do so in �gure 12. All removed pulses of
width i will be in the sequence (Li−1 − Li) x. The total noise removed by L4 is equal to
the sum of all these pulses: (I − L4) x =

∑4
i=1 (Li−1 − Li) x.

We have seen that the basic operators remove arcs of a speci�c width if all the smaller
arcs have already been removed. The following corollary regarding the range of the basic
operators is a direct result of this and corollary 1.32.

Corollary 1.35. If x is any sequence, i.e. x ∈M0. Then Lnx ∈M−
n and Unx ∈M+

n .

29



x

L
4
x (I−L

4
)x

Figure 11. Smoothing a sequence with L4.

x

L
1
x (I−L

1
)x

L
2
x (L

1
−L

2
)x

L
3
x (L

2
−L

3
)x

L
4
x (L

3
−L

4
)x

Figure 12. Smoothing with L4 is the removal of upward pulses of width
up to 4.

Rohwer and Wild [13] show that all the operators in C can be reduced to one of four types.
Furthermore, if the operator is idempotent, it can always be expressed as a product of the
basic operators (the pulse removers). The basic operators and compositions of them will
be investigated further in the next chapter.

Theorem 1.36. All operators, A : X → X , in C can be reduced to a product of one of the
following four types. While all idempotent operators in C, i.e. in L, can only be of type 1
or 3.

(1) A = Un1Lm1Un2Lm2 . . .
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(2) A =
∨s ∧t Un1Lm1Un2Lm2 . . .

(3) A = Lm1Un1Lm2Un2 . . .

(4) A =
∧s ∨t Lm1Un1Lm2Un2 . . .

with

(1.3) (m1 > m2 > . . .) , (n1 > n2 > . . .) and (0 ≤ s < t)

The idempotent compositions of the elementary operators,
∨

and
∧
, are always in one of

two standard forms, and are exactly those compositions where the number of each of the
two elementary operators are equal. Accordingly, they consist of compositions alternating
between the Ln and Un operators (hence the name LULU theory!).

We can reinterpret the two standard forms of idempotent compositions using the pulse
perspective. Expanding the two standard forms as given in theorem 1.36 using theorem
1.31 one gets:

Corollary 1.37. The operators, A : X → X , in L (i.e. the idempotent operators in C)
can be written in one of two possible forms:

(1) A = Un1 . . . Un2+1Lm1 . . . Lm2+1Un2 . . . Un3+1Lm2 . . . Lm3+1 . . .

(2) A = Lm1 . . . Lm2+1Un1 . . . Un2+1Lm2 . . . Lm3+1Un2 . . . Un3+1 . . .

with (m1 > m2 > . . .) , (n1 > n2 > . . .).

Using this result one can write any idempotent composition of the elementary operators
as the product of n1 + m1 of the basic operators. This expansion is an unique simple
form of an operator in L. Furthermore, the expanded equation now explicitly gives the
priorities with which di�erent sized pulses are detected and removed during the smoothing
of a signal.

Example 1.38. One can expand the idempotent operator

A = U7L5U2L3

uniquely using corollary 1.37 into the composition of 12 basic operators:

A = U7U6U5U4U3L5L4U2U1L3L2L1

The pulse removal priorities can now be read right-to-left: �rst upward pulses of width 1,
2 and 3 are removed followed by downward pulses of width 1 and 2 and so on. It will be
seen later that the expanded form is not necessarily more expensive computationally.

1.7. Trend preservation

The LULU operators exhibit strong trend preservation properties [9].
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Definition 1.39. An operator A on X is neighbour trend preserving (ntp) if, for each
sequence x ∈ X :

xi+1 ≤ xi ⇒ Axi+1 ≤ Axi, and
xi+1 ≥ xi ⇒ Axi+1 ≥ Axi, for every index, i

A ntp operator cannot invert the local ordering at any place in a signal. This also implies
that any constant region in a signal will stay constant (possibly with another value) after
application of a ntp operator. This is therefore an important shape preserving property.

An important consequence of neighbour trend preservation is that a ntp operator cannot
map a sequence into a rougher (lower) smoothness class [9].

Theorem 1.40. Let x ∈Mn and A ntp. Then Ax ∈Mn.

Compositions and convex combinations of ntp operators are also ntp:

Theorem 1.41. If A,B ∈ F (X ) is ntp, then AB is ntp.

Proof. For every index i, if xi+1 ≤ xi we have that Bxi+1 ≤ Bxi. Then A(Bxi+1) ≤
A(Bxi). The same goes when xi+1 ≥ xiand thus AB is ntp.

Theorem 1.42. If A,B ∈ F (X ) is ntp then αA + βB is ntp when α, β ≥ 0.

Proof. For an index i, if xi+1 ≤ xi then Axi+1 ≤ Axi and Bxi+1 ≤ Bxi. Then
(αAx + βBx)i+1 = αAxi+1 +βBxi+1 ≤ αAxi +βBxi = (αAx + βBx)i. It is similar when
xi+1 ≥ xi. Thus the combination is also ntp. ¤

¤

A further related property is di�erence reduction. This relates the di�erence between
successive elements in the data and the di�erence between these elements after an operator
is applied. Di�erence reducing operators must preserve or decrease the local variation at
any position in a sequence.

Definition 1.43. An operator A on X is di�erence reducing if, for each sequence x ∈ X :
|Axi+1 −Axi| ≤ |xi+1 − xi| , for every index, i.

These properties come together in full trend preservation, which is exhibited by all the
standard LULU operators.

Definition 1.44. An operator on X is called fully trend preserving (ftp) if it is ntp and
di�erence reducing.
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A di�erent but equivalent de�nition of full trend preservation for an operator A is that
both A and I −A are neighbour trend preserving. A separator splits a sequence into signal
and noise e�ciently. If a separator is ftp then both the signal and the noise mimic the
local order structure of the original sequence.

Compositions of ftp operators and combinations, α1Aa + . . .+αnAn, where the coe�cients
αi sum to 1 are all ftp. The following theorem provides general cases where an operator
inherits the ftp property [9].

Theorem 1.45. If A,B ∈ F (X ) are fully trend preserving, then:

(1) AB is ftp
(2) αA + (1− α)B is ftp with α ∈ [0, 1]
(3) I −A is ftp.
(4) A∨B, A∧B, and the morphological center (see page 41), if it exists, are ftp where

(A ∨B)xi = max {Axi, Bxi} and (A ∧B)xi = min {Axi, Bxi}
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CHAPTER 2

Taxonomy of operators

The LULU framework provides a general structure in which smoothers (see de�nition
1.13) can be designed. In section 1.6 we de�ned the pulse removal operators, Un and Ln,
which remove upward and downward pulses of width ≤ n respectively. Using these as our
building blocks we can construct many useful smoothers.

This chapter o�ers a selection of operator sets that are members of the LULU family.
Each of these operator sets has a di�erent interpetation of noise and signal, although all
of them can be understood in terms of the pulse perspective discussed in chapter 1. This
does not aim to be an exhaustive list. The aim is rather to provide an introduction to and
explanation of those operators which have so far proven most useful and as such it contains
ideas which may be exploited further in the design of related operators. Choosing which of
these operators to use in a speci�c case should be made according to the problem at hand
and by comparison of the analysis goals with the speci�c qualities of each operator. After
the discussion of the LULU operators, we compare them with a few related operators not
in the LULU family.

2.1. The basic LULU separators: Un and Ln

The basic LULU operators and their e�ect as pulse removers were discussed in the previous
chapter. We have also seen how any idempotent operator consisting of compositions of the
elementary operators can be expressed as a composition of the basic LULU operators with
explicit priorities for the removal of di�erent width pulses.

The roots of an operator are those sequences that are left unchanged by application of the
operator. Theorems 1.33 and 1.34 implicitly classify the root sequences of Un and Ln:

Corollary 2.1. For j ≥ n, we get that Unx = x if x ∈M+
j and Lny = y if y ∈M−

j .

The following result follows directly from theorem 1.24.

Corollary 2.2. Ln ≤ . . . ≤ L1 ≤ I ≤ U1 ≤ . . . ≤ Un

The basic separators form a nested set of intervals, all containing the identity operator.
Thus I ∈ [L1, U1] ⊂ . . . ⊂ [Ln, Un]. We call these the LU -intervals. A direct consequence
of this is that if (Lnx)i = (Unx)i for some i then neither Lj or Uj with j ≤ n will change
sequence x at element i.
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For any sequence, the basic LULU operators Ln and Un �nd a lower envelope and upper
envelope respectively lying in a speci�c smoothness class. We illustrate the e�ect of these
operators on a simple sequence for a few values of n (�gure 13). The smaller the value of n

the closer these envelopes are to the input sequence. As n gets larger more of the smaller
scale pulses gets removed, thus mapping the sequence into higher smoothness classes.

The LU -interval also gives a way to compare general smoothers with the best approxima-
tion in Mn for any of the p-norms [9]:

Theorem 2.3. Let x ∈ X . If P ∈ [Ln, Un], then for all y ∈Mn

‖Px− y‖ ≤ (2n + 1)
1
p ‖x− y‖p

The basic operators are smoothers. They are also idempotent and co-idempotent and
thus separators [9]. The basic separators have strong shape preserving properties. They
are neighbour trend preservation and di�erence reducing and as a result also fully trend
preserving. All the operators in L are thus also fully trend preserving by virtue of theorem
1.45.

n = 5

n = 15

n = 50

n = 100

Figure 13. E�ect of Ln and Un on a sequence of length 150 for n = 5, 15, 50 and 100
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2.2. The LULU separators: UnLn and LnUn

The most straightforward way of combining the basic operators is to follow one by the
other. This gives us two possibilities: removing the downward pulses �rst (UnLn) and
removing the upward pulses �rst (LnUn). As these are just compositions of the basic
operators and in L they automatically inherit the shape preservation properties of the
basic operators: they are ftp. They are also smoothers and separators [9]. We call these
our standard LULU separators.

These operators are in general not equal. In other words the basic operators, Un and Ln,
do not commute. This is due to a fundamental ambiguity regarding the classi�cation of
pulses. Figure 14 shows an ambiguous sequence and some possible interpretations.

The question is whether the sequence in �gure 14 consists of one downward pulse of width n

or two upward pulses of width n. The two operators UnLn and LnUn answer this question
di�erently. LnUn gives priority to the removal of downward pulses, so will detect one
downward pulse of width n. UnLn in turn removes upward pulses before downward pulse
and therefore detect two upwards pulses. By choosing one of the interpretations the other
one becomes unavailable. The one-dimensional median smoother, Mn, (see section 2.8)
gives a di�erent interpretation. In section 2.5, smoothers that rely equally on both of the
standard LULU separator interpretations are de�ned.

The di�erence between these two interpretations gives rise to the LULU-interval [UnLn, LnUn],
which in turn lies in the corresponding LU -interval [Ln, Un].

Theorem 2.4. Ln ≤ UnLn ≤ LnUn ≤ Un

The LULU-interval, [UnLn, LnUn], can be understood as the interval of ambiguity. The
magnitude of the ambiguity at a speci�c element in the sequence is the absolute di�er-
ence between the interpretations of the two operators: (|LnUnx− UnLnx|)i. There is no
ambiguity when these two operators agree on the smoothed value.

+

+

+

Signal Noise

LnUn

Mn

UnLn

Figure 14. Sequence illustrating the fundamental ambiguity associated
with removing pulses.
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The root sequences of the standard LULU operators, UnLn and LnUn, are those sequences
that are roots of both Un and Ln. From corollary 2.1 we get:

Corollary 2.5. For j ≥ n, we have LnUnx = x and UnLnx = x if x ∈Mj.

The LULU separators remove upward and downward pulses up to a speci�c width, therefore
we can formalize the e�ect they have on the smoothness class of a sequence x.

Theorem 2.6. Let x be any sequence. Then LnUnx ∈Mn and UnLnx ∈Mn.

Proof. x ∈ M0. From corollary 1.35 we have Unx ∈ M+
n and LnUnx ∈ M−

n . From
theorem 1.34 we know that Ln cannot create arcs of width less than or equal to n, thus
also LnUnx ∈M+

n . Then from de�nition 1.21 we have LnUn ∈Mn. The case for UnLn is
similar. ¤

By theorems 2.3, 2.4 and 2.6 the LULU separators are near-best approximations in Mn.

The operators UnLn and LnUn are biased towards the detection of upward and downward
pulses respectively. We would like to quantify this `bias' (this is not the strict de�nition of
bias involving the di�erence between an expectation value and a true value).

An unbiased operator is self-dual, i.e. it commutes with the negative operator: NP =
PN ⇒ PN − NP = 0. This suggests a way of quantifying the bias. Calculate and
compare the quantity ‖PNx−NPx‖2 for di�erent operators and a representative set of
sequences. Unfortunately, all information about the direction of the bias is lost in the
process. So rather use, for a sequence x of length N :

(2.1) sign
(

1
N

N−1∑

i=0

(PNx−NPx)

)
‖PNx−NPx‖2

Though the 2-norm is used here, other norms would work as well. Un and Ln are the
most biased LULU operators as they can only remove either upward or downward pulses,
and are therefore used for comparison. We create a sequence of length 100 consisting of
uniformly distributed noise in the range [−0.5, 0.5]. This sequence is smoothed with the
separators, Un, Ln, UnLn and LnUn for n = 1 . . . N . Now use equation 2.1 to quantify the
bias for each of these operators and every n. To get a result more representative of any
random sequence the experiment was repeated for 1000 random sequences and the results
averaged. We will use this technique again in section 2.7 to compare the bias of the rest
of the LULU operators.

See �gure 15. For ease of exposition we call the average of the quanti�ed bias, calculated
using equation 2.1, the bias of the operator. As expected the absolute bias of Un and Ln is
always larger than that of UnLn and LnUn. Also, the bias of Un+1 is greater than that of
Un. The operators that are duals of each other have bias of equal magnitude but di�erent
direction. This also follows from the de�nition of duality as

AN −NA = NB −BN = − (BN −NB)
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Figure 15. Quantifying the bias for the basic and standard LULU operators.

if A and B are duals. The average size of the LU - and LULU−interval for a speci�c n can
be inferred from the distances in �gure 15 between the bias of Ln and Un and between the
bias of UnLn and LnUn respectively.

For very small n the standard operators are somewhat less biased than the basic operators.
As n increases the di�erence in bias between Un and LnUn (or Ln and UnLn) becomes less
pronounced. Recall that Un = UnUn−1 . . . U1 and Ln = LnLn−1 . . . L1 . Then:

(2.2) LnUn = LnLn−1 . . . L1UnUn−1 . . . U1

We apply the operators from right to left. All downward pulses up to width n will be
removed before any upward pulses are removed. There is then less chance of removing
upward pulses of length 1 . . . n making it harder for Ln to correct the bias of Un.

A sequence x of length N can be extended on both sides with zeros to get it in X . This
limits the maximum width of pulses to N . Then, we have LNUNx = 0. But UNx 6= 0 if x

contains values larger than zero. There must be wide upward pulses left that are removed
by LnUn for n = m. . .N , with m ≤ N generally the same order of magnitude as N .

The bias of LnUn and UnLn and the size of the LULU -interval that is a result of this
bias are sometimes useful (see section 2.6). Sometimes though, it would be preferable if
we could narrow this LULU-interval to arrive at less biased estimates There are a couple
of ways we could attempt to do this. The �rst method is to construct operators where
narrower pulses have higher priority than wider pulses, irregardless of their sign. Another
idea is to combine the two extreme interpretations and create an unbiased smoother out
of them. Operators based on both of these ideas are discussed below.

2.3. Recursive LULU separators: Cn and Fn

Definition 2.7. The operators Cn and Fn are de�ned recursively by:
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(1) Cn+1 = Ln+1Un+1Cn, C0 = I

(2) Fn+1 = Un+1Ln+1Fn, F0 = I

According to this de�nition, these operators start by removing pulses of single width before
removing pulses of width 2, which in turn are removed before pulses of width 3, and so on.
In other words, narrower pulses of any sign are removed with higher priority.

The recursive LULU operators are smoothers and separators [9]. They are in L and thus
also fully trend preserving. Recall that this means that for any n the local ordering of the
input sequence is preserved by the smoothed sequence and the extracted rough part.

The following theorem states that these two operators form an interval (which we will call
the recursive LULU -interval) that always lie inside the standard LULU -interval [9]. In
section 2.7 we compare the bias of the recursive LULU operators with the bias of some
other operators. The relative sizes of the intervals can then be gauged from their di�erence
in bias. In practice we �nd that this interval is much narrower than the standard interval.

Theorem 2.8. Ln ≤ UnLn ≤ Fn ≤ Cn ≤ LnUn ≤ Un

A direct result of theorem 2.6 is:

Corollary 2.9. Let x be any sequence. Then Cnx ∈Mn and Fnx ∈Mn.

The discrete pulse transform, which is one of the most powerful tools in the LULU frame-
work, makes extensive use of the recursive LULU separators. It is described in chapter
3.

2.4. Alternating bias separators: Z+
n and Z−n

The recursive LULU operators lessens the bias of the standard LULU operators by �rst
removing smaller pulses of any sign before moving on to larger pulses. For each pulse width
the recursive operators still have a preference for either upward or downward pulses.

The alternating bias separators alternately bias pulses of di�erent signs. At one pulse
width there is a preference for pulses of one direction and for the next pulse width the
preference is for the other direction. This is an attempt to balance the bias somewhat.

Definition 2.10. The alternating bias separators, Z+
n and Z−n , are de�ned recursively:

(1) Z−n+1 =





Ln+1Un+1Z
−
n if n is even

Un+1Ln+1Z
−
n if n is odd

(2) Z+
n+1 =





Ln+1Un+1Z
+
n if n is odd

Un+1Ln+1Z
+
n if n is even

with Z+
0 = Z−o = I.
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The positive and negative sign in Z+
n and Z−n refers to the bias these operators have for

pulses of width 1. Z+
n has a preference for removing upward pulses of single width and Z−n

has a preference for downward pulses of single width.

These operators map sequences into Mn:

Theorem 2.11. Let x be any sequence. Then Z+
n x ∈Mn and Z−n x ∈Mn.

There exists no partial order relating these two operators, so they do not form an interval
like the standard and recursive LULU operators. However they are smoothers, separators
and ftp as the others.

2.5. Unbiased smoothers: Gn, G∞
n and Hn

The standard LULU operators are both biased equally, but one towards positive pulses
and the other towards negative pulses. One can create an unbiased smoother from them
by taking their average.

Definition 2.12. (Gnx)i = 1
2 ((LnUnx)i + (UnLnx)i)

This set of operators satis�es all the smoother axioms and is fully trend preserving (using
theorem 1.45). Unfortunately, idempotence is lost, as there may still be arcs of width n or
smaller left in the sequence after application of Gn. In general, one can apply the operator
repeatedly until it converges. Figure 16 demonstrates how after one application of G1

arcs of width 1 remain. In this example, applying the operator again yields an unbiased
smoothed sequence that is unchanged by further applications of G1.

Definition 2.13. The operator G∞
n is de�ned as repeating the operator Gn until conver-

gence.

x

G1x

G2x

L1U1x ≥

U1L1x

Figure 16. Example showing how G1x /∈M1. Another application yields,
G2

1x ∈M1, an unbiased smoothed sequence.
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G∞
n is an unbiased smoother that smoothes a sequence by removing arcs of width n and

smaller. It inherits full trend preservation due to theorem 1.45. The following theorem
gives the guaranteed rate of convergence [9].

Theorem 2.14. ‖LnUnGnx− UnLnGnx‖∞ ≤ 1
2 ‖LnUnx− UnLnx‖∞

Similar to how the recursive LULU separators in section 2.3 are de�ned with respect to the
standard LULU separators, it is possible to de�ne the recursive unbiased smoother, Hn:

Definition 2.15. The unbiased smoother, Hn, is de�ned recursively as Hn+1 = G∞
n+1Hn

with H0 = I.

As this operator is a composition of ftp operators, it is also ftp. The recursive unbiased
operator lies in the recursive LULU -interval [Fn, Cn]. This interval is generally very narrow
and as such this operator does not di�er much from Cn and Fn in practice. The operators
G∞

n and Hn are mappings into the smoothness class Mn.

Theorem 2.16. Let x be any sequence. Then Hnx ∈Mn and G∞
n x ∈Mn.

Both of these operators are idempotent, but neither is co-idempotent since G∞
n (I −G∞

n )
and Hn (I −Hn) are not zero in general (which experimentation with random sequences
will quickly show), and as such they do not satisfy the separator axioms.

2.6. Minimally destructive smoothers: An and Bn

For some purposes one may wish to smooth a sequence without distorting the input se-
quence excessively. For example, one may want to remove impulsive noise while not losing
all high frequency content in the process.

The operator Bn, which is the morphological center of LnUn and UnLn [15], does this by
keeping elements of the input sequence unchanged if they fall in the LULU -interval. At
sequence elements where the input sequence lies outside of the LULU -interval the values
are clipped to the edges of the interval. The width of the LULU -interval can be controlled
by varying the parameter n. Refer to �gure 15 for an idea of the size of the LULU -interval
for noisy sequences. Although this depends on the input sequence in question, for long
sequences the range of values for n that give good (and similar) results tends to be quite
wide.

Definition 2.17. (Bnx)i =





xi, if xi ∈ [UnLn, LnUn]

(UnLnx) xi, if xi < (UnLnx)i

(LnUn) xi, if xi > (LnUnx)i

We can also de�ne a variant of the morphological centre. Instead of clipping the values
that lie outside the LULU -interval, one can replace these by a value directly in the middle
of the LULU -interval. The operator Gn is the average of the two biased LULU separators
UnLn and LnUn and lies in the middle of said interval.
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Definition 2.18. (Anx) i =





xi, if xi ∈ [UnLn, LnUn]

(Gnx)i otherwise

There exists variations of these operators that may be useful. We will not de�ne all
possibilities, but one can use the operator or G∞

n instead of Gn or base these operators on
the recursive LULU -interval.

Sometimes one does not need to have a smoothed value at every point in a sequence. Then,
instead of de�ning behaviour for when the sequence lies outside of the LULU interval, one
can regard those segments as unde�ned. This makes it possible to use only those values
which has a high likelihood of not being spoiled by noise. It can be be argued that this is
superior to attempting to recreate those data points. A downside of this is that one cannot
use techniques which require a fully de�ned sequence.

2.7. Bias comparison

We now compare the bias for some of the above operators using the same procedure as
in section 2.1. Noise from an unbiased uniform distribution is smoothed with some of the
biased operators de�ned in this chapter for di�erent values of n. Unbiased operators are
self-dual, so we quantify the bias of an operator by testing how far it is from being self-dual.
This is repeated 1000 times in order to calculate averages. The results are in �gure 17.
For comparison the results for the basic and standard LULU operators are plotted again.
Their bias is much larger than that of the recursive and alternating bias operators, which
decreases relatively quickly as n is increased.

We can estimate the size of the recursive LULU interval for random sequences from this
graph, by calculating the distance between Cn and Fn. This tends to be less for larger n.

It seems that the alternating bias operators have equal and opposite bias. This is true
for any sequence, but what the test does not show is that there are sequences where Z−n
is biased towards below and Z+

n towards above. This is because the sequences used to
generate the statistics are random sequences, which tend to have many unit width pulses.
Therefore the bias towards pulses of this width tends to dominate this measure. We see
that they are less biased than the recursive LULU operators.
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Figure 17. Quantifying the bias of some of the LULU operators.

2.8. Comparison with the median smoothers

The median smoothers, a popular family of non-linear smoothers based on the median
operator, were popularised by Tukey [17]. The median of an odd length sequence is the
middle element when the sequence is sorted in non-decreasing order. We de�ne the median
smoothers {Mn}:

Definition 2.19. The 1-d median smoother, Mn, replaces each element in a sequence
by the median of the 2n + 1 window of sequence elements centered around the particular
element:

(Mnx)i = median {xi−n, . . . , xi, . . . , xn}

The median operators satis�es the translation invariance axioms, and the stricter scale
invariance axiom as speci�ed by Mallows [3] making it a smoother. It is not optimally
e�cient as it is not idempotent nor co-idempotent, and thus not a separator.

The roots of an operator in F (X ) are those sequences that are left unchanged by application
of the operator, i.e. the eigen-sequences w.r.t. to eigenvalue 1. For the median smoothers
the roots that lie in X can be characterized in terms of the monotonicity classes.

Theorem 2.20. Let x ∈ X be a sequence that lies in the n-th monotonicity class, Mn.
Then x is a root sequence of the median smoothers Mj with j ≤ n. I.e.

Mjx = x with j ≤ n
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Proof. Let Wi = {xi−j , . . . , xi, . . . , xi+j} be the support window for the operator Mj

at each index i. The sequence x is n-monotone, thus any sub-sequence {xk, . . . , xk+n+1} is
monotone. The support of Mj is 2j + 1. The elements in the window are either monotone
or m-monotone with n ≤ m < 2j − 1. If the elements in the window are monotone, the
theorem follows trivially.

Now, assume in turn that Wi ∈ Mm ∼ Mm+1 for n ≤ m < 2j − 1. Then there exists a
sub-sequence in Wi such that either xk > xk+1 = . . . = xk+m+1 < xm+k+2 or xk < xk+1 =
. . . = xk+m+1 > xm+k+2. There is thus a constant section of length m + 1. We know that
m ≥ n and n ≥ j, therefore m + 1 ≥ n + 1 > 2n+1

2 ≥ 2j+1
2 = 1

2support (Mj). The constant
section has a length of more than half of the support of the median smoother, hence the
point xi is always part of the constant section. The median function �nds the middle value
in an ordered set. If more than half of the elements have the same value, the median is
equal to that value. This proves the theorem. ¤

The only other roots are in�nite in length and not in `1 [18]. In general it can take an
arbitrary number of applications of the median operators to reach a root. Furthermore,
repeating an operator until convergence extends the support of the operator allowing a
change in one part of the input sequence to a�ect the smoothing arbitrarily far away.

When applying the median smoother, Mn, to sequences inMn−1 the e�ect can be described
in terms of the basic LULU operators, Ln and Un [9]. This is not valid when applying the
median operators to general sequences.

Theorem 2.21. Let x ∈Mn−1, then Mnx = (Un + Ln − I)x

To understand the working of the median smoother with respect to the LULU operators,
we compare the e�ect of M1 with that of the basic LULU separators L1 and U1. To
characterize the e�ects of these opperators on a sequence element it is only necessary to
consider the window of length 3 around the element in question, since these operators
all have a support window 3 elements wide. We divide this set of sub-sequences into four
classes, based on the local ordering of the elements. Using the de�nitions of M1, L1 and U1

we calculate what these operators do to the center element of each class of sub-sequences
(table 1). The total e�ect of these operators on a full sequence can be determined by
calculating the local e�ect at each sequence element using this table.

In table 1 we see that, as expected, none of these operators change the center element
when the elements in the window are monotone. It seems that L1 removes upward pulses
of width 1 (and U1 downward pulses of width 1), by replacing the center element with the
closest neighbour element. It is obvious that they are both biased. It seems that M1 is
unbiased and removes both pulses in exactly the same way that L1and U1 removes upward
and downward pulses respectively. Forgetting for the moment the fact that M1 is not a
separator, one might be lead to think that M1 is preferable. We shall see that this is not
the whole story.
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xi−1 xi xi+1 (M1x)
i

(L1x)
i

(U1x)
i

≤ ≤ xi xi xi

≤ ≥ max {xi−1, xi+1} max {xi−1, xi+1} xi

≥ ≤ min {xi−1, xi+1} xi min {xi−1, xi+1}

≥ ≥ xi xi xi

Table 1. Comparison of e�ect of median smoother M1 and basic LULU
separators L1 and U1.

The median smoothers always lie in the corresponding LULU -interval [9]:

(2.3) Mn ∈ [UnLn, LnUn] ⊂ [Ln,Un]

The median operator Mn and the smoother Gn (section 2.5) are both unbiased non-
idempotent smoothers that lie in the LULU interval. It is illuminating to compare them.

We smooth a short sequence with the smoothers G1 and M1. This speci�c sequence (the
same one used in �gure 16) was chosen because there is ambiguity regarding the pulses,
and neither of the operators can map it directly onto M1. See �gure 18. Both G1x

and M1x are unbiased and in the LULU interval. However, it seems that M1 is biased
at individual sequence elements with respect to the LULU interval [U1L1, L1U1] (but in
varying directions) while G1 is, by de�nition, in the middle of said interval. We investigate
this further. As an aside, notice that M1 lacks the trend preservation properties of the
LULU operators as some of the local orderings was inverted.

G1 is the average of the standard LULU separators, L1U1 and U1L1. We compare the
e�ect of the operators M1, L1U1 and U1L1 on all sub-sequences of length 5, since L1U1

x

G1x

M1x

L1U1x ≥

U1L1x

Figure 18. Comparison of G1 and M1 on an ambiguous sequence.
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xi−2 xi−1 xi xi+1 xi+2 (M1x)
i

(U1L1x)
i

(L1U1x)
i

≤ ≤ ≤ ≤ xi xi xi

≤ ≤ ≤ ≥ xi xi xi

≤ ≤ ≥ ≤ max {xi−1, xi+1} max {xi−1, xi+1} max {xi−1, min {xi, xi+2}}

≤ ≤ ≥ ≥ max {xi−1, xi+1} max {xi−1, xi+1} max {xi−1, xi+1}

≤ ≥ ≤ ≤ min {xi−1, xi+1} min {max {xi−2, xi} , xi+1} min {xi−1, xi+1}

≤ ≥ ≤ ≥ min {xi−1, xi+1} min {max {xi−2, xi} , max {xi, xi+2}} min {xi−1, xi+1}

≤ ≥ ≥ ≤ xi xi xi

≤ ≥ ≥ ≥ xi xi xi

≥ ≤ ≤ ≤ xi xi xi

≥ ≤ ≤ ≥ xi xi xi

≥ ≤ ≥ ≤ max {xi−1, xi+1} max {xi−1, xi+1} max {min {xi−2, xi} , min {xi, xi+2}}

≥ ≤ ≥ ≥ max {xi−1, xi+1} max {xi−1, xi+1} max {min {xi−2, xi} , xi+1}

≥ ≥ ≤ ≤ min {xi−1, xi+1} min {xi−1, xi+1} min {xi−1, xi+1}

≥ ≥ ≤ ≥ min {xi−1, xi+1} min {xi−1, max {xi, xi+2}} min {xi−1, xi+1}

≥ ≥ ≥ ≤ xi xi xi

≥ ≥ ≥ ≥ xi xi xi

Table 2. Comparison of e�ect of median smoother M1 and the standard
LULU separators U1L1 and L1U1.

and U1L1 have support windows of width 5. The sequences are divided into classes based
on the local ordering of the elements. There are now 16 classes. Refer to table 2.

The only cases where M1, U1L1 and U1L1 change the center element of the sub-sequence
{xi−2, xi−1, xi, xi+1, xi+2} are when either xi > xi−1,xi+1 or xi < xi−1, xi+1. Notice that
these inequalities are strict, because if any of these is an equality the entries in table 2
for that class of sequences reduce to xi. In other words, these operators only change xi if
there is an arc of width 1 centered on xi. Recall that there is a fundamental ambiguity
associated with the removal of pulses. The removal of upward pulses can destroy neigh-
bouring downward pulses and vice versa. But, we saw in table 1 that M1 removes both in
an unbiased way. Is this not a contradiction? In table 2 we can see how this is achieved.
When xi > xi−1,xi+1, the median interpretation is the same as that of U1L1 and when
xi < xi−1, xi+1, the median interpretation is the same as that of L1U1. It now becomes
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clear that the lack of bias of the median smoother came at a price: it is achieved by choos-
ing one LULU interpretation for half of the ambiguous sub-sequences and the other LULU

interpretation for the rest. In contrast to this, the smoother G1 is unbiased because at
every sequence element it is always halfway between the two biased LULU interpretation
(at the cost of no longer being a selector).

This argument is valid for the rest of the median smoothers Mk only when they are applied
to a sequence x ∈ Mk−1. When a sequence in smoothness class Mk−1 is smoothed using
Mk, the median interpretation is selected from the two LULU interpretations, LkUk and
UkLk.

Theorem 2.22. For x ∈ Mk−1 ⊂ X and all i, if (Mkx)i 6= (LkUkx)i then (Mkx)i =
(UkLkx)i

Proof. Let x ∈Mk−1. Then,

(2.4) Mkx = (Uk + Lk − I)x

The operators Lk and Uk only remove arcs of width k when applied to x ∈ Mk−1. By
the de�nition of an arc, the plateau of a downwards arc cannot overlap with the valley
of an upwards arc. In other words, if Ln changes sequence element xi then Un cannot.
Therefore, for x ∈Mk−1,

(2.5) Ukxi 6= xi ⇒ Lkx = xi

Assume that (Ukx)i 6= xi, then (Lkx)i = xi by equation 2.5. We get.

(Mkx)i = (Ukx)i + (Lkx)i − xi = (Ukx)i ≥ (LkUkx)i

But from equation 2.3 we know that Mk ≤ LkUk and thus (Mkx)i = (LkUkx)i which
contradicts the theorem conditions. Therefore if (Mkx)i 6= (LkUkx)i, then (Ukx)i = xi.

Using this, equation 2.4 and theorem 2.4, we get:

(Mkx)i = (Ukx)i + (Lkx)i − xi = (Lkx)i ≤ (UkLkx)i

This together with Mk ≥ UkLk (from equation 2.3) proves the theorem. ¤

The characterization of Mn in terms of the LULU operators for a general sequence x ∈ X
is an open problem.

2.9. Comparison with linear smoothing techniques

We now discuss some linear smoothing procedures and see how they are all interpretable
as the convolution of a sequence and a mask.
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Definition 2.23. The convolution of a sequence x ∈ X and a mask m = {m−L, . . . ,mL}
is:

(x ∗m)i =
L∑

l=−L

mlxi−l

The running average linear �lter Rn replaces each sequence element by the average of the
2n + 1 points around that element:

Definition 2.24. The running average �lter Rn of a sequence x ∈ X is

(Rnx)i =
1

2n + 1

i+n∑

j=i−n

xj

= x ∗m

with mi = 1
2n+1 for i = −n, . . . , n and 0 elsewhere.

The Haar projections smooth a sequence by mapping it onto a sequence of resolution half
that of the input sequence.

Definition 2.25. The Haar operators Pk are projections of a sequence, x(i) = α0,i with
i = 0 . . . 2N−1, from the space B0 onto the spaces Bk with k > 0. With φ the Haar scaling
function (see �gure 2 in chapter 1) :

Bj = span
{
φi : φi(t) = φ

(
2−jt− i

)}

Pkx(t) =
2N−k−1∑

i=0

αk,iφ
(
2−kt− j

)
∈ Bk

αk,i =
1
2

(αk,2j + αk,2j+1) where i = 0 . . . 2N−k − 1

The Haar projection operators replaces the coe�cients with their pairwise averages. This
is guaranteed to double the length of sub-sequences that are locally monotone. Thus,
the Haar projections map sequences into a subset of the monotonicity classes Mn. The
operator P1 maps from M0 to M1 and P2 maps from M1 to M3. In general Pkx(t) ∈
M2k−1.

The Haar projections are equivalent to calculating one convolution at odd indices and
another at even indices:

(Pnx)i =





(
x ∗m

′
n

)
i

if i is odd

(x ∗mn)i if i is even

with

(mn)i =
1
2n

when i = −2N + 1, . . . , 0
(
m
′
n

)
i
=

1
2n

when i = 0, . . . , 2N − 1
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For each Haar projection operator, these masks m′
n and mn can be exchanged. These

two possibilities are called the phases of operator Pn. For a n-level Haar smoothing, one
needs to make n phase choices, leading to 2n possible smoothings. Some phase choices
may provide better results for some parts of the sequence. Often no choice gives optimal
results for all parts (recall �gure 5).

The Discrete Fourier Transform decomposes a sequence into its harmonic frequency com-
ponents. A low-pass �lter is created by reconstructing the sequence using only the low
frequency sinusoids. By the de�nition of smoothness in the Fourier perspective, removing
the higher frequencies will result in a smoother sequence. The convolution theorem states
that convolving two sequences has the same e�ect as multiplying their Discrete Fourier
Transforms element-by-element. This implies that a Fourier low-pass �lter is equivalent to
convolution with a particular mask sequence.

A relatively smooth test sequence is constructed with two impulses and one sharp edge.
This is `smoothed' using the linear operators discussed above, and with the LULU sepa-
rators U1L1 and L1U1. Recall that the Haar projections are not translation invariant (the
phase problem; discussed above and in section 1.4), and is thus not a smoother according
to de�nition 1.13. The running average does satisfy the smoother axioms; we can talk of
Rn smoothing a sequence. The smoothed sequences are displayed in �gure 19 and 20.

It is clear that the Haar wavelet and running average smear high pulses into the surrounding
data values and that they erode the large edge discontinuity. In contrast to this, both C1

Smoothed using C
1
 and F

1
 (C

1
x ≥ F

1
x)

"Smoothed" using P
1

Smoothed using R
1

Figure 19. Smoothing using the Haar wavelet, 3-point running average
and the LULU �lters.
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50% of higher frequency sinusoids cut−off

75% of higher frequency sinusoids cut−off

Figure 20. Smoothing using a Fourier low-pass �lter

and F1 remove the impulses without distorting the surrounding sequence, and preserves
the edge. This is due to their strong shape preserving properties (refer to section 1.7 on
trend preservation).

The sequence was smoothed with a Fourier low-pass �lter using two cut-o� frequencies:
25% and 50% of the lower frequencies were retained in each case. The more high frequencies
that are ignored in the reconstruction, the smoother the reconstructed sequence. Once
again there is a spreading of `energy' into surrounding elements, causing an erosion of edges.
Around the impulses we see that the �lter over compensates in the opposite direction. This
is the Gibbs phenomenon. We do not see this e�ect with the non-linear LULU operators.

All three linear smoothing techniques discussed here can be expressed in terms of con-
volutions of the input sequence with a mask sequence. This implies that a sequence is
smoothed by replacing every element with a linear combination of elements in a window
around it. This has the e�ect of averaging out discontinuities in a sequence, causing im-
pulses to spread into the surrounding sequence and once sharp edges to erode. In other
words, noise is `removed' from a sequence by spreading it around.

Let us analyze why this tends to work well for some sequences. Assume that a sequence
x is formed by the addition, at each element, of a signal component, s, and an i.i.d. noise
component, n: xi = si +ni. This is then processed using a linear �lter (i.e. a convolution):

(x ∗m)i =
L∑

l=−L

mlxi−l

=
L∑

l=−L

ml (si−l + ni−l)

=
L∑

l=−L

mlsi−l +
L∑

l=−L

mlni−l

= (s ∗m)i + (n ∗m)i
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When the underlying signal s is su�ciently smooth (i.e. continuous derivatives) and the
mask is su�ciently local one can approximate (s ∗m)i ≈ si. For a discontinuous signal this
is very inaccurate, and thus we see erosion of edges. If the noise is unbiased, identically in-
dependently distributed and the mask is wide enough then (n ∗m)i ≈ 0. Large magnitude
impulsive noise will cause deterioration of the accuracy of this approximation. Also, the
accuracy requirements of the two approximations con�ict: the �rst approximation tends
to be more accurate for narrow masks, while the second approximation is more accurate
for wider masks.

We see that there are certain conditions that need to apply for the linear �lter to accurately
remove noise from a sequence. Now we want to analyze the e�ect of a single impulse on the
output of a linear �lter. In the bottom graph of �gure 20, we see how the impulse on the
left `pulled' the smoothed curve up towards it. If the size of that impulse were to increase,
this e�ect would also increase. We perturb a sequence with an impulse of amplitude α at
position a. We analyze what e�ect this has on a sequence smoothed using a convolution
operation. Assuming that ml = 0 when l /∈ [−L,L], we get:

((x + αδi,a) ∗m)i =
L∑

l=−L

ml (xi−l + αδi−l,a)

=
L∑

l=−L

mlxi−l + α
L∑

l=−L

mlδi−l,a

= (x ∗m)i + αma+i

All values that are closer than L elements away from an impulse are contaminated. If the
impulse is of large magnitude this can render these values useless. The operators P1 and
R1 are a�ected by this, but due to their limited support the damage is contained. With
Pn and Rn there are 2n and 2n + 1 a�ected sequence elements respectively. The Fourier
low-pass �lter has a corresponding mask of length equal to the length of the sequence.
A perturbation at a single sequence element can therefore a�ect the whole sequence. See
�gure 21. The left impulse was replaced by one an order of magnitude larger. The re-
sulting smoothed sequence is seriously damaged by oscillations around this impulse (the
Gibbs e�ect). Since the LULU smoothers are non-linear (and thus not equivalent to a
convolution) they can remove these impulses without spreading the noise `energy' into the
sequence.

75% of higher frequency sinusoids cut−off

Figure 21. Changing the magnitude of one impulse completely changed
the Fourier low-pass interpretation.
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2.10. A hybrid approach

The running average and Fourier low-pass �lter have a smoothing e�ect on both a sequence
and its derivatives. In the LULU framework, the smoothness class of a sequence is its
degree of local monotonicity. The LULU separators are selectors and thus smooth a
sequence by replacing values in the sequence by other values that lie in their support
window, thereby increasing the degree of local monotonicity of the sequence.

There are times when one might prefer that the sequence and its derivatives become
smoother as in the linear approach, while still avoiding the pitfalls associated with large
impulses and edge discontinuities. It is possible to achieve this by combining the LULU

separators with standard linear �lters. Pre-smoothing a sequence with a LULU smoother
to remove impulsive noise is e�ective but ignores the problem of edge discontinuities. A
better way of combining linear �lters and non-linear smoothers is to only apply the linear
�lter when it is not too destructive and to pre-smooth with a LULU smoother only when
it can reduce the destructiveness below a threshold.

As an example, we de�ne a non-linear hybrid smoother using the linear running average
�lter R1 and the unbiased LULU smoother G∞

1 . Filter a sequence element with R1 if the
change is smaller than a threshold. If not, we consider pre-smoothing with G∞

1 . If �ltering
the pre-smoothed result still results in too large a change, we do not use the linear �lter
at that element at all. We get for a constant threshold T :

(Sx)i =





(R1x)i if |(R1x)i − xi| ≤ T

(R1G
∞
1 x)i else if

∣∣(R1G
∞
1 x)i − (G∞

1 x)i

∣∣ ≤ T

(G∞
1 x)i otherwise

Applying this kind of approach to the same test sequence as in �gure 21, we get the results
in �gure 22. We see that this was e�ective in removing the impulsive noise and preserving
the sharp edge discontinuity. In addition, the other parts of the sequence were smoothed
satisfactorily.

Figure 22. Smoothing the sequence with a hybrid linear �lter / non-linear
smoother approach.
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CHAPTER 3

A multi-resolution decomposition

There exists well-known perspectives for decomposing sequences and functions into com-
ponents. The Fourier Transform �nds the underlying frequencies in a periodic function by
decomposing the sequences into its `inherent' sinusoid components. This implies a speci�c
de�nition of frequency. The Fourier Transform assumes that the frequency content is con-
stant for the whole length of the sequence, so for discontinuous or non-stationary functions
the extracted frequencies may not be accurate. Techniques to deal with this limitations
(like the Windowed Fourier Transform) have been designed over the years, but that is not
our focus.

The perspective of the Haar wavelet decomposition was discussed in chapter 1. The focus
then was on using the Haar projection operators to smooth sequences by the removal
of small scale structures. The Haar projection operators also de�ne a multi-resolution
interpretation of a sequence. The di�erence between the `smoothed' sequence at one level
and the even `smoother' sequence at the next level contains the higher resolution detail
that had to be removed. These di�erence sequences (the noise at each level) are expressed
in terms of translated scalings of the Haar wavelet function, ψ(t). The noise coe�cients
βk,i at a speci�c level are expressed in terms of the coe�cients of the projection of the
input sequence onto the previous subspace.

(Pk−1 − Pk) x(t) =
Nk−1∑

i=0

βk,iψ
(
2−kt− j

)
and

βk,i =
1
2

(αk−1,2i − αk−1,2i+1)

where

i = 0 . . . Nk − 1 with Nk =
Nk−1

2

The sequences (Pk−1 − Pk) x(t) are the detail levels of a multi-resolution decomposition.
Each level consists of the detail at a speci�c scale and lie in the monotonicity classesM2k−1 .
The original sequence can be reconstructed by adding all the detail levels to the residual
sequence, PNx(t).

The detail levels for the Haar multi-resolution decomposition will always sum to zero as
the basis function (the Haar wavelet) is an upward pulse followed by an equal magnitude
downward pulse. This implies that any impulse (which by de�nition is either positive
or negative) in a sequence will be characterized in the detail levels by an Haar wavelet
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centered around zero. As a result, there is a negative value in the detail level next to a
positive value at all positions where an impulse was smoothed (`ringing').

Some other problems with the Haar wavelet decomposition, like the spreading of impulse
energy and the phase problem, were already discussed. There may exist techniques that
attempt to deal with these problems, but that is not important for our discussion.

We want to de�ne a decomposition using the LULU operators that is analogous to the
Fourier and Wavelet decompositions (this was hinted to in �gure 12 of chapter 1). The
LULU operators removes pulses up to a speci�c width from a sequence. LnUn and UnLn

removes all upward and downward pulses of width ≤ n. This leads one naturally to
consider decomposing a sequence of length N into N sequences of length N , where each
output sequence contains only the pulses at a speci�c resolution. We are working with
absolutely summable bi-in�nite sequences, so with a sequence of length N it is meant that
the non-zero part is of length N . The zeros on either side extend to in�nity.

In essence, we want to decompose a sequence fully into its component pulses, which are
then grouped according to pulse width. We do so using the discrete pulse transform (or
dpt) [11, 9]. The dpt is now de�ned followed by a discussion on what exactly it does and
its implications.

Definition 3.1. The discrete pulse transform of a sequence x with respect to a set of
operators [S1, . . . , SN ], DPTSN x, is a mapping of x to the vector of sequences

{
r(n)

}
,

where:

(1) The set of operators {Rn} are de�ned recursively by Rn = SnRn−1 with R0 = I.
(2) r(n) = Dnx = (I − Sn) Rn−1 = (Rn−1 − Rn)x for 0 < n ≤ N are the individual

resolution levels.
(3) r(0) = D0x = SNSN−1 . . . S1 = RNx is the residual sequence remaining after the

last operator is applied.
(4) [S1, . . . , SN ] is a set of fully trend preserving LULU operators that are smoothers

and separators (i.e. Si∈ L). Also, they must separate a sequence x ∈Mn−1 into
a smoother part Snx ∈Mn and a rougher part (I − Sn)x ∈Mn−1.

In property 2 we see that the resolution level r(i) is just the di�erence between the con-
secutive smoother interpretations Ri−1 and Ri. It consists of the pulses of width i, which
had to be removed to map the sequence to the smoothness class Mn.

In the discrete pulse transform the set of separators {Sn} are applied one after the other.
For convenience we de�ne the recursive operators {Rn} in terms of these separators. The
discrete pulse transform is basically a cascade of smoothing operators. The component of
the sequence removed at each level is the corresponding detail level. This is pictured in
�gure 23.

The �rst separator smooths the sequence to M1. The resolution level r(1) then consists
of what was removed in that step: the pulses of width 1. Now it is the second separator's
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S1

x

S1x = R1x

(I − S1) x = (I − R1) x = r
(1)

S2

S2R1x = R2x

(I − S2) R1x = (R1 − R2) x = r
(2)

Rn−1x

Snx

SnRn−1x = Rnx

(I − Sn) Rn−1x = (Rn−1 − Rn) x = r
(n)

Figure 23. Discrete pulse transform cascade diagram
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turn. S2 separates the signal remaining into a smooth part R2x ∈ M2 and the width 2
pulses , r(2) ∈ M1 ∼ M2. And so on. We see that after each stage the smoothed part
cascades on to the next separator, forming a multi-stage process that terminates at the
last separator SN . At each stage another separator gets a chance to extract more noise
from the sequence. Each separator has a di�erent interpretation of noise. This results in
a multi-resolution decomposition of a sequence which is unique for each set of operators
{Sn}.

The decomposition procedure, as de�ned by the dpt, stops at a level N . There is possibly
still signal remaining, which is called the residual sequence, r(0) = RNx. When N is chosen
large enough the residual is always zero.

Theorem 3.2. For an absolute summable sequence, x, of length N and the discrete pulse
transform DPTSN x, the residual r(0) = RNx is zero.

Proof. Sequence x is of length N . Let i be such that the non-zero part of our input
sequence form the sub-sequence [xi, . . . , xi+N−1]. The operator SN is fully trend preserving,
therefore the zero parts before and after this sub-sequence must remain unchanged: xj = 0
for j /∈ [i, i + N − 1].

Because SNx ∈ MN the set [xi−1, . . . , xi+N ] is monotone. The �rst and last element
of this set is zero, therefore every element of this set is zero. Thus sequence x is zero
everywhere. ¤

Until now the assumption was that sequences are in `1. In chapter 1 it was mentioned
that sometimes we will be interested in analyzing sequences where only the total variation∑

i |xi − xj−1| is bounded. An in�nite sequence where the total variation is bounded can
be seen as a section of �nite length N , preceded and followed by constant sections. The
length of the sequence is de�ned as the length of the non-constant section. We can apply
the discrete pulse transform to such sequences. The residual r(0) is not necessarily zero,
even when many levels are decomposed. The following theorem can be proven in the same
way as theorem 3.2.

Theorem 3.3. For a sequence, x, of length N with bounded total variation and the discrete
pulse transform DPTSN x, the residual r(0) = RNx is monotone.

This implies that for a sequence of length N :

. . . , a, x0, . . . , xN−1, b, . . .

The residual after a N level decomposition is a monotone sequence with a value of a

extending to the left and a value of b extending to the right of the sequence. For all Rm

with m ≥ N , one gets Rmx = RNx (theorem 2.5).

From property 4 we see that a set of operators {Si}map sequences into progressively higher
smoothness classes by separating the sequence into a smoother and a rougher part (�gure
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24). This is analogous to how the wavelet decomposition decomposes a sequence into a
set of sequences of di�erent resolutions. An important di�erence is that in the wavelet
decomposition the resolution of every level is half that of the previous one (the decrease is
geometrical), whereas in the discrete pulse transform the resolution decreases linearly.

Now a discrete pulse transform based on a speci�c set of operators is created. The sets of
operators {LnUn} and {UnLn} are a natural choice as both of these sets satisfy property
4 of de�nition 3.1. We will use LnUn, i.e. create the discrete pulse transform: DPTLNUN

.
The dpt based on UnLn is conceptually identical, the only di�erence is that the bias is
opposite to that of the dpt based on LnUn. Recall that the idea is to separate a sequence
into pulses with di�erent resolutions. Following the de�nition of the dpt, this is done by
iteratively applying the LnUn operator to remove pulses of each width starting with those
of single width.

For the set of operators {LnUn} the recursive operators will be the operators Cn de�ned
in chapter 2. After application of Cn all arcs of width n and smaller have been removed
from the input sequence and the sequence is in Mn. When this is followed by Ln+1Un+1

all arcs of width n + 1 are also removed. The pulses of width n + 1 can then be found on
the (n + 1)-th resolution level:

r(n+1) = (I − Ln+1Un+1) Cnx = (Cn − Cn+1) x

In �gure 25 a sequence x is decomposed using DPTL3U3 into the detail levels r(1), r(2),
r(3) with residual sequence r(0) = C3x . At each level in the decomposition, the remaining
smooth part was split into a smoother and noisier part such that Cix = Ci+1x + r(i+1).
The detail levels are the pulses that had to be removed to map the sequence to the next
smoothness class.

M0

M1

M2

x

S1x

S2x

r
(1)

r
(2)

r
(3)

Figure 24. The resolution levels are in di�erent smoothness classes.
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One can slightly relax the conditions of de�nition 3.1 by using either M+
n or M−

n as our
smoothness classes; the sequence is then decomposed into resolution levels consisting of
upward pulses or of downward pulses respectively.

In �gure 12 of chapter 1, a sequence was smoothed with L4 by removing all upward pulses
of width up to 4. The four sequences (Li−1 − Li)x with i = 1, 2, 3, 4 contain the pulses
removed of each width and are the resolution levels of a discrete pulse transform based on
L4. The sequence L4x is the residual sequence of DPTL4 .

The input sequence to the discrete pulse transform can be reconstructed by summing
all the detail levels and the residual. In chapter 5 we discuss practical uses of sequence
reconstruction.

x = (I − (R1 −R1) . . .− (RN −RN ))x = RNx +
N∑

i=1

(Ri−1 −Ri) x = r(0) +
N∑

i=1

r(i)

x

C
1
 x

C
2
 x

C
3
 x

r (1)

r (2)

r (3)

Figure 25. Discrete pulse transform DPTL3U3 of a sequence x. The resid-
ual r(0) = C3x.
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If N is larger or equal to the length of the sequence or if RNx = 0 the sequence is
decomposed by simply adding all the resolution levels together.

x =
N∑

i=1

r(i)

When processing a sequence one may wish to only use some of the resolution levels in
the reconstruction or use di�erent weights for some levels. We will see that under certain
conditions one can do reconstructions like this and even have them decompose consistently
again. This is remarkable for a procedure built on non-linear operators.

3.1. Consistency

A set of pulses obtained from a discrete pulse transform is modi�ed and then the sequence
is reconstructed by adding together the pulses. With consistency it is meant that if this
reconstructed sequence is decomposed using the same discrete pulse transform as before
the extracted list of pulses will be the exact same pulses used in the reconstruction.

Definition 3.4. A dpt has basic consistency if and only if for DPTSN
x → {

r(i)
}

the
reconstruction

x∗ =
N−1∑

i=0

αiri where αi ≥ 0

decomposes consistently. I.e. DPTSN
x∗ → {

αir
(i)

}

When a dpt has basic consistency one can scale each resolution level by its own non-negative
constant and still have the reconstruction decompose consistently. In other words, scaling
the resolution levels like that will not change the interpretation of what is signal and what
is noise. First the basic consistency of the discrete pulse transform based on Un must be
proven, the case for Ln follows by duality. . The following theorem is proved by Rohwer
[9].

Theorem 3.5. Let x ∈ Mn−1, and A, B ntp. For all α, β ≥ 0, if A commutes with Un

then:
Un (αA + βBUn) x = αUnAx + βBUnx

The following lemma is a direct result of theorem 1.31 and corollary 1.32.

Lemma 3.6. Um = UmUn for n ≤ m.

We now prove the basic consistency of Un.

Theorem 3.7. (Un dpt basic consistency theorem). Let x ∈M0, and DPT(x) = [D1x, D2x, . . . , DNx, D0x],

with D0x = UNx and Dix = (Ui−1 − Ui) x. If αi ≥ 0, then z =
n∑

i=1

αiDix is decomposed

consistently, for n ≤ N

59



Proof. Let z =
n∑

i=1

αiDix with

(3.1) Di = (I − Ui) Ui−1 = Ui−1 − Ui

all ftp.

Since Ui−1 = Ui−1Um for all i ≥ m + 1

we have
n∑

i=m

aiDix =

(
n∑

i=m

αi (I − Ui) Ui−1

)
x = AmUm−1x

where

(3.2) Am =

(
n∑

i=m

αi (I − Ui) Ui−1

)

is ntp since it is a convex combination of ftp operators.

Assume that Uj−1z =




n∑

i=j

αiDi


Uj−1x for j < n. This is clearly true for j = 1.

Ujz = Uj


αjDj +




n∑

i=j+1

αiDi





Uj−1x

= Uj (αjDj + Aj+1Uj) x using eq. 3.2
= (αjUjDj + Aj+1Uj) x using theorem 3.5
= (αjUj (I − Uj) Uj−1 + Aj+1UjUj−1) x using eq. 3.1 and lemma 3.6
= (αjUj (I − Uj) + Aj+1Uj)Uj−1x using lemma 3.6
= 0 + Aj+1Ujx using lemma 3.6 and Uj (I − Uj) = 0

=




n∑

i=j+1

αiDi


Ujx using eq.3.2

Then Djz =(Uj−1 − Uj) z = αjDjx

The theorem now follows by mathematical induction. ¤

The proof for the discrete pulse transform based on Ln is very similar due to the duality
of Ln and Un.

It is also possible for a dpt to have an even stronger consistency property:

Definition 3.8. A dpt has full consistency if and only if for DPTSN
x → {

r(i)
}

the
reconstruction

x∗ = r(0) +
N∑

i=1

Ar(i)r(i)
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where Ar(i) is an operator that multiplies each pulse by its own non-negative constant,
decomposes consistently. I.e. DPTSN

x∗ → {
Ar(i)r(i)

}

This di�ers from basic consistency as one is now allowed to multiply every single pulse
by its own non-negative constant. This allows one to selectively enhance pulses without
changing the signal/noise interpretation. See chapter 5 for a discussion on how this is
useful for the processing of sequences.

The full consistency of the discrete pulse transform based on LnUn and UnLn was conjec-
tured in Rohwer [9] as 'The Highlight Conjecture'. The term highlight refers to how full
consistency enables the selective highlighting of single pulses or groups of pulses without
distorting the sequence or its decomposition. Rohwer and Harper [10] provide a proof for
this conjecture. Laurie has given an alternative proof.

3.2. E�cient implementation

When calculating the discrete pulse transform of a sequence it is necessary to calculate
Snx for x ∈ Mn−1 at each level n. The operators Si are in L and as such consists of
compositions of the basic operators, Ln and Un. A straightforward implementation of
the discrete pulse transform using the de�nition of the operators (def 1.29) results in a
computational complexity of O(N3) for a full decomposition where N is the length of the
non-zero part of a sequence. By making use of some higher order properties of the LULU-
operators and clever uses of data structures it is possible to construct O(N2) and O(N)
algorithms.

Recall that, Un is the dual of Ln and UnLn is the dual of LnUn therefore:

Unx = −Ln(−x)(3.3)
UnLnx = −LnUn(−x)(3.4)

Only the operator Ln and the pulse transform using UnLn are mentioned with regard to
improving the running times because equations (3.3) and (3.4) provide an easy way to
convert to the dual versions.

3.2.1. Faster versions of the basic smoothers.

The basic operator, Ln, is de�ned by:

(Lnx)i =

(
n∨ n∧

x

)

i

= max {min {xi−n, . . . xi} , min {xi−n+1, . . . xi+1} , . . . , min {xi, . . . , xi+n}}(3.5)
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Implementing this as two loops results in a running time of O(nN) for a length N sequence.
For the N -level discrete pulse transform one has to calculate L1, L2 . . . LN . The worst case
running time is: O(1N + 2N + . . . + N2) = O

(
1
2N2 (N + 1)

)
= O

(
N3

)
.

In chapter 1 we proved that the operators Ln and Un remove upward and downward pulses
of width n respectively if narrower pulses have already been removed.

The pulse transform removes the pulses from the signal starting with pulses of width 1
up to pulses of the width of the whole signal. When Ln must be calculated all upward
pulses with width less than n have been removed already. We thus have a guarantee on
the minimum monotonicity class of the sequence to be smoothed. It is now only necessary
to test if each upward pulse remaining in the signal is of length n and then remove it if it
is. Testing if an upward pulse is of length n is much simpler than implementing equation
3.5. This next corollary follows directly from theorem 1.33

Corollary 3.9. When x ∈M+
n smoothing with Ln implies that for each i, if the condition

(3.6) xi < xi+1 > xi+1+n

holds then a pulse of width n and height (xi+1 −max {xi, xi+1+n}) can be removed at
position i + 1:

(3.7) (Lnx)i = max {xi, xi+1+n} for j ∈ [i + 1, i + n]

Ln leaves the sequence unchanged at other places.

Using this we can calculate Ln in O(N) time if the sequence x ∈M+
n . The operator Un can

be calculated in a similar way: only the inequalities change direction and the maximum
operator is replaced by a minimum.

3.2.2. O(N2) time pulse transform.

Implementing the discrete pulse transform using the more e�cient versions of the basic
operators will result in a worst and average case running time of O

(
N2

)
. We can however

still improve on this.

We know that if an upward pulse exists, its left edge will be at a position where xi > xi−1.
It is clear from corollary 3.9 that every pulse removal destroys at least one di�erence in the
sequence and never creates a new di�erence: after a pulse removal there is either one or
two more values of i where (∆z)i = zi+1 − zi = 0 for the smoothed sequence. A sequence
of length N has at most N + 1 di�erences. We also note that the last pulse removed will
always destroy two di�erences. Thus, a sequence of length N has at most N pulses total
in all the resolution levels.

By keeping a list of positions where xi < xi+1 and removing items from these lists as the
sequence is smoothed there are less positions where pulses can possibly be removed. The
condition 3.6 can only be true for positions i in this list. As the pulse transform progresses
into higher levels there are fewer di�erences left and therefore less work to do.
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It is thus possible to improve upon the naive implementation by using the above ideas
together with the fast versions of the basic smoothers, Un and Ln. We will create a more
e�cient version of DPTUNLN

.

Create a list i to hold the positions in the vector where the sequence di�ers from its
successor. For every element xi of the input data series x: if xi di�ers from its successor
then i is added in order to the list of positions, {pi}, such that:

pj+1 > pj

Now for each resolution level in the decomposition, n, we traverse through the sequence
removing n-pulses as we �nd them. If two n-pulses of di�erent sign are next to each other
in the sequence we remove the upward pulse �rst because of the bias of UnLn (downward
pulse �rst for LnUn). Algorithm 1 gives the necessary steps to do this in detail.

The running time for this algorithm is faster in the worst and average case scenarios as
one only needs to test for pulses where di�erences still exist in the sequence. The worst
case running time of O (1 + 2 + . . . + N) = O

(
1
2

(
N2 + N

))
takes place when there is one

pulse on each level, forcing every pulse of width n to be tested for removal on the n − 1
preceding resolution levels.

In real-world signals most of the pulses are extracted in the �rst few levels, reducing the
amount of unnecessary calculations dramatically. For sequence with random noise, about
half of the pulses lie in the �rst resolution level. Hence, the real expected running time is
much more promising. Experimentation yields an average running time of O

(
N1.2

)
.

It is also important to note that the worst case running time of O
(

1
2

(
N2 + N

))
is for

a full N level decomposition of a length N sequence. In practice one often only need to

Algorithm 1 UnLn discrete pulse transform
(1) Create list, {pi}, that holds positions of di�erences in input sequence, x.
(2) De�ne: (with reference to equation 3.6)

(a) capn(j) is true if and only if (xpi < xpi+1 > xpi+1+n)
(b) cupn(j) is true if and only if

(
xpi > xpj+1 < xpi+1+n

)
(c) Removal of a pulse happens as speci�ed by equation 3.7 and its dual. Infor-

mation on removed pulses are added to some type of register.
(3) For each level, n, in decomposition:

(a) Create new empty position list {p∗i }.
(b) For each, j, in position list {pi}:

(i) If capn(j) then remove n-pulse starting at pj + 1 from x.
(ii) If cupn(j) and not capn(j + 1) then remove n-pulse starting at pj + 1

from x.
(iii) If cupn(j) and capn(j + 1) then remove n-pulse starting at pj+1 + 1

from x. If cupn(j) is still true then remove n-pulse starting at pj + 1
from x.

(iv) If no pulse was removed add pj to the end of the position list {p∗i }.
(c) Replace {pj} with new position list {p∗i }.
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decompose up to a resolution level M which can possibly be much smaller than N . The
worst case running time for the truncated version is:

O (N + (N − 1) + . . . + (N −M + 1)) = O

(
1
2

(
N2 + N − (N −M)2 − (N −M)

))

= O

(
M

2
(2N + 1−M)

)

The only temporary computer memory required is for the list of positions. This lists
changes, but it is possible to update it in place. The maximum number of di�erences is
equal to the length of the sequence, thus the temporary storage required is of order N .

3.2.3. Linear time pulse transform.

The linear time algorithm is based on many of the same ideas as above but uses more
advanced data structures to prevent unnecessary work from being done. In algorithm 1 in
section 3.2.2 the main problem is that all remaining di�erences are checked at every level
to see if a pulse must be removed, which directly leads to the worst case running time of
O

(
N2

)
.

Dirk Laurie designed an algorithm where a clever use of data structures prevents the need
to test a pulse for removal more than once (he dubbed this the Roadmaker's algorithm)[11].
We now discuss this algorithm in detail. A data structure acts as a schedule of features to
be removed. The features are pulses as de�ned in chapter 1. The pulses in the schedule
are ordered by priority; those with highest priority need to be removed from the sequence
�rst. As the high priority pulses are removed new ones may be created, which are then
added to the schedule. Other pulses may be destroyed by the removal of pulses (a direct
consequence of the fundamental ambiguity) and must then be removed from the schedule.
Recall that in the discrete pulse transform, a set of operators are used to smooth a sequence
into progressively smoother smoothness classes. These operators fully decide the priority
of the di�erent width pulses. For DPTLNUn the highest priority pulses are the downward
pulses of width 1 followed by the upward pulses of width 1, and so on.

A feature cannot exist at any place in the sequence. From corollary 3.9 we see that an arc,
where a feature can be removed, is characterized by two local di�erences of opposite sign
with a section of zero di�erence in-between. A catalogue of non-zero di�erences is created
to keep track of all possible arc edges. A catalogue entry, with position p, is initially
created where the local di�erence d is non-zero:

d = ∆xp = xp+1 − xp 6= 0

Figure 26a depicts a catalogue entry as consisting of:

• The position of the di�erence, p.
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• The di�erence value, d 6= 0.
• Pointers to the next and previous catalogue entries, de�ning a linked list of cata-
logue entries. This allows the removal and insertion of entries in O(1) time. The
order in the list is determined by the position value: non-zero di�erences later in
the sequence have entries later in the catalogue.

• A pointer to a feature in the schedule is present if the catalogue entry forms part
of the left edge of an arc.

A feature consists of (�gure 26b):

• Pointers to the next and previous features scheduled for removal. The previous
feature has higher removal priority and the next feature has a lower priority.
Features can be inserted or deleted from this linked list in O(1) time.

• A pointer to the catalogue entry corresponding the left edge of the arc. Recall
from corollary 3.9 that the presence of an arc shows where a feature (pulse) can
be removed.

The schedule holds the prioritized list of features. There are two levels of priorities. Smaller
width features have higher priorities than larger width features. Furthermore, for equal
width features those closer to the front of the priority list have higher priority than those
near the back. The schedule can be implemented as a list of double-ended queues: one for
each resolution level. When a feature of a certain width is detected, it can be added to
either the front or back of the corresponding dequeue in constant time. Whether a feature
is added to the front or back of this queue depends on the priorities as implied by the
operator RN (refer to example 1.38 for a discussion on pulse removal priorities).

We will now see how the properties of a pulse can be determined for a speci�c feature using
the associated catalogue entry. A feature only exists where there is an arc in the sequence.

p

d

next

prev

f

position

difference

next catalogue entry

previous catalogue entry

corresponding feature

∈ Z

∈ R

(a) Data structure for a catalogue entry

next

prev

c

next feature

previous feature

corresponding catalogue entry

(b) Data structure for a feature in the schedule

Figure 26. Data structures for features and catalogue entries. A dot in-
dicates a pointer to another structure.
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Therefore, for feature f with corresponding catalogue entry, a = f.c, we have

(a.d)× (a.next.d) < 0

because an arc is characterized by two consecutive di�erences of opposite sign. The cor-
responding pulse has position of its left edge, p, equal to the position of the catalogue
entry.

p = a.p

The pulse is upward if the left edge of the arc slopes upward, and negative if the left edge
slopes downward. The magnitude is determined using corollary 3.9 and its dual version.
The associated pulse then has height, h, where:

sign (h) = sign (a.d)

|h| = min {|a.d| , |a.next.d|}
The pulse width, w, is determined by the distance between the two non-zero di�erences
which form the arc:

w = a.next.p− a.p

Before any features can be removed, the catalogue of non-zero di�erences and schedule of
features must be initialized. This involves traversing the original data sequence, calculating
the �nite di�erence ∆xi = xi+1−xi and adding a catalogue entry whenever this di�erence
is non-zero. Every time a catalogue entry is added its sign is compared with the sign of the
previous catalogue entry. When they di�er it points to the existence of an arc. A feature
is then added to the schedule. This initialization can be done in O(N) time as it is only
necessary to consider each element of the input sequence once.

The main decomposition algorithm �nds the feature with highest priority and removes the
associated pulse from the sequence. The catalogue and schedule are updated to re�ect the
changes this makes to the sequence. This is repeated until there are no more features left
in the schedule. Every arc in the sequence has an associated feature, and thus when there
are no more features there are no arcs left in the sequence. The sequence remaining is then
the residual sequence, r0 = RNx, as per de�nition 3.1 and is globally monotone, or zero if
the input sequence was in `1.

Now we discuss how the removal of a feature from the sequence can change the catalogue
and schedule. Refer to �gure 27. A feature, f , with highest priority is removed. This
removal extracts a pulse by widening an arc. This destroys either the left edge of the arc
(when |a.d| < |b.d|), or right edge (when |a.d| > |b.d|) or both (when |a.d| = |b.d|). The
corresponding catalogue entries must then be removed. The linked list of catalogue entries
allows removals to take place in O(1) time.

The features connected with removed catalogue entries must also be removed from the
schedule. These catalogue entries are marked with a cross in �gure 27. At some of these
places (marked with a square) a new feature might be created. These newly created features
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a b = a.nexta.prev b.next

Remove most urgent feature, f , where a = f.c

|a.d| < |b.d|

|a.d| > |b.d|

|a.d| = |b.d|

- corresponding feature in schedule should be removed.

- new feature with left edge here might be created

Figure 27. Demonstrates how the removal of a feature will update the
catalogue (corresponds with step 5 of algorithm 2)

will have a larger width and thus lower priority than the features removed prior to this.
Each of the schedule updates takes O(1) time.

At most two catalogue entries can be a�ected by the removal of a feature. Therefore, the
amount of changes that must be made to the schedule and catalogue is bounded. Every
time a feature is removed, at least one di�erence in the catalogue is destroyed. A signal of
length N can have at most N − 1 items in the catalogue. Thus, the amount of features in
a signal is bounded by the length of the signal. All the features can be removed in O(N)
time and thus the amortized running time for each removal is O(1).

The features removed from the signal are added to a table of extracted features, which
merely collects the positions, widths, and amplitudes of the pulses. Algorithm 2 describes
in detail the steps necessary to remove the most urgent feature in the schedule.

Example 3.10. To illustrate the working of the algorithm we will demonstrate the �rst
couple of feature removals for DPTUnLN

on a simple data sequence, xi with i = 0 . . . 13.
Figure 28 on page 69 shows the input sequence and the sequences modi�ed by removing
the �rst two features. The corresponding catalogue and schedule entries for each sequence
are also given.

Catalogue 1 and Schedule 1 are determined by traversing the input sequence as described
above. The schedule shows the positions of the entries in the catalogue which forms the
left edges of the features. Priority is ordered from highest to lowest if you read from left-to-
right top-to-bottom. There are only four positions in the catalogue where the sign di�ers
for two consecutive di�erences and thus only four features in the �rst schedule. The feature
at the front of the level 1 double-ended queue is at position 8. Although it was added to
the schedule last, it was added to the front because upward pulses have higher priority in
DPTUnLN

. This is removed as per algorithm 2.

Two of the di�erences in the catalogue was destroyed as a result and are removed as the
catalogue is updated (cat. 2). Furthermore, one new feature was created by this process.
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Algorithm 2 Roadmaker's algorithm: removal of most urgent feature
(1) Retrieve the most urgent feature, f , from the schedule.
(2) Get the corresponding catalogue entry, a = f.c,

and its successor, b = a.next
(3) Get the properties of the pulse:

w = a.next.p− a.p
h = sign (a.d) min {|a.d| , |b.d|}
p = a.p
and record the pulse in the table of extracted features.

(4) Update the di�erences a.d and b.d
a.d ← a.d− h and b.d ← b.d + h

(5) Either a.d or b.d is now zero, now:
(a) If b.d is zero: Delete b.f from schedule and b from catalogue and let b ←

b.next
(b) If a.d is zero: Delete a.f from schedule and a from catalogue and let a ←

a.prev.
(c) Delete a.f from the schedule if it exists.

(6) If (a.d) × (b.d) < 0: Insert feature starting at a into the schedule with priority
determined by pulse width and direction. This pulse has width: b.j − a.j, and is
an upward pulse if a.d is positive, and a downward pulse otherwise.

It is an upward arc of width 3 at position 7, so is added to the front of the level 3 dequeue
in schedule 2. This �nishes the update process.

The next feature to remove with the highest priority is at position 3 according to schedule
2. This removal causes the destruction of one di�erence (position 3) and the modi�cation
of another (position 4). The feature at position 2 does not exist anymore and is removed
from the schedule. This leaves us with four di�erences and two features as is shown in
catalogue and schedule 3. The feature with highest priority is now the width 3 arc starting
at position 7.

The appendix lists Matlab code that implements the above algorithm. Since Matlab is
specialized for the use of matrices, this implementation uses a matrix to play the part of
the catalogue and schedule. Each catalogue entry and its associated feature is represented
in the matrix by a column vector of 6 elements: position, di�erence, next catalogue entry,
previous catalogue entry, next feature and previous feature. The pointers are indices to
columns in the matrix. To implement a separate double ended priority queue for each reso-
lution level, two additional vectors keep indices to the matrix columns corresponding with
the �rst and last feature in every resolution level. The temporary memory requirements
for this implementation of the linear time pulse transform is then of the order 8N where
N is the length of the input sequence.
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Remove highest priority arc {x8, x9, x10}, then update catalogue and schedule.

Remove highest priority arc {x3, x4, x5} , then update catalogue and schedule.

Remove highest priority arc {x7, . . . , x11}, then update catalogue and schedule.

position 2 3 4 7 8 9 10
difference -1 2 -3 3 1 -1 -1

Level 1: positions 8 3 2

Level 3: positions 4

Catalogue 1

Schedule 1

position 2 3 4 7 10
difference -1 2 -3 3 -1

Level 1: positions 3 2

Level 3: positions 7 4

Catalogue 2

Schedule 2

position 2 4 7 10
difference -1 -1 3 -1

Level 3: positions 7 4

Catalogue 3

Schedule 3

Figure 28. Extraction of two highest priority pulses from a sequence. The
corresponding catalogue and schedule entries are also shown.
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3.2.4. Comparison of fast decomposition algorithms.

We shall see that the O
(
N2

)
algorithm has an average running time of order N1.2 for a full

decomposition. Furthermore, its temporary memory requirements, of order N , is modest.
It might be preferred over the linear time transform when a truncated decomposition of
only a few levels are required or when the length of a sequence makes the linear time
algorithm's memory requirements excessive.

The linear time pulse transform is much more e�cient than the other transforms and
should be used in most cases. Its memory requirements of order 8N is acceptable for
smaller signals. For a truncated decomposition it falls to 6N + 2M where M ≤ N is the
number of resolution levels to decompose.

We know the worst case running times of the various algorithms, but would like to compare
performance di�erences for more typical sequences. We count the number of comparisons
needed by the two algorithms to decompose random sequences of di�erent length. To
calculate the average number of comparisons we repeat the test for 5000 sequences of each
length.

The results are displayed in �gure 29. A curve was �tted for each algorithm. On average
the O

(
N2

)
algorithm needs about 12.3N1.2 comparisons and the linear time algorithm

needs about 22.5N comparisons. The average case for the O(N2) algorithm is much better
than the worst case. For short sequences (N < 100) the two algorithms are about equally
e�cient.
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Figure 29. Average number of comparisons needed to calculate discrete
pulse transform for random sequences.
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CHAPTER 4

A multi-scale description of a sequence

We have seen in the previous chapter how the discrete pulse transform decomposes a
sequence into resolution levels, with each resolution level consisting of the sum of pulses of
a speci�c width. In this chapter we will further �esh out ideas on how this decomposition
gives one a new perspective on a sequence. We do this by focusing on the resolution levels
as extracted by the dpt and seeing how they relate to the input sequence.

The discrete pulse transform decomposes a sequence into a set of resolution level sequences.
Each resolution level consists of the sum of all the pulses of a speci�c width. Each pulse
in turn is characterized by its position, width and height. We get:

DPTSN
x

↓
resolution levels

{
r(j)

}
with j = 1 . . . N and residual r(0)

↓
pulses pj,k, wj,k = j hj,k with k = 1 . . . Nj

where the set {Nj} speci�es how many pulses exist on each resolution level.

Definition 4.1. Every pulse is a sequence, r(j,k), such that

r(j) =
Nj∑

i=1

r(j,k)

where we de�ne the pulse sequence (using de�nition 1.15) as:

r
(j,k)
i = hj,k

k∑

m=1

δi,(pj,k+m−1)

4.1. Constraints on pulses

This section looks at what constraints there are on the pulses of a discrete pulse transform
given the existence of another pulse. In other words: if a pulse, i, exists what limits does
this place on the properties, wk, hk, and pk, of all pulses k 6= i .

The decomposition procedure can only extract pulses at positions where there is a local
di�erence between successive elements in the sequence.
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Theorem 4.2. If a sequence x is such that xi = xi−1 then no pulse has position i.

Proof. The discrete pulse transform is based on operators in L. These operators
remove pulses from a sequence by the removal of arcs. An arc as de�ned in 1.20, is
characterized by a segment where either xj > xj+1 = · · · = xj+k < xj+k+1 or xj < xj+1 =
· · · = xj+k > xj+k+1. The arc removal operators, Ln and Un, removes an arc by setting
the value of the arc plateau to the value of one of the endpoints (theorems 1.33 and 1.34).
The removed pulse then has position, j. This process can only remove di�erences from the
sequence. So if xi = xi−1 then no segment

{
xi−1, xi, . . . , xi+m

}
is an arc and no

arc removals can change that. Therefore no pulse be extracted at position i. ¤

The general proof technique we will use is to prove that in certain cases a speci�c resolution
level will be non-zero, whereas the consistency of the discrete pulse transform implies the
opposite case, i.e. that the same resolution level is zero. This will yield a contradiction
and thereby rule out certain combinations of pulses in the dpt of a sequence.

Lemma 4.3. If a sequence x is such that x ∈ Mn−1 ∼ Mn then resolution level Dnx =
r(n)of the discrete pulse transform is non-zero.

Proof. Dnx = (Rn−1 −Rn) x by the de�nition of the discrete pulse transform.

But, Rn−1x = x because x ∈Mn−1 and Rn−1 ntp.

From theorem assumptions we have x /∈ Mn but we know that Rnx ∈ Mn by de�nition
of dpt. Therefore Rnx 6= Ix. Thus, Dnx = (I −Rn) x 6= 0. ¤

The �rst theorem disproves the existence of pulses of the same sign immediately following
each other.

Theorem 4.4. Let x be a sequence with a consistent dpt,
{
ri

}
. Choose any two pulses in

the dpt. Let the left pulse and the right pulse be described by the tuples, (wa, ha, pa) and
(wb, hb, pb) respectively. Then if signha = signhb, then pb 6= pa + wa.

Proof. Assume that pb = pa + wa.

We have already argued why pulses of the same width are not allowed immediately following
each other when discussing the e�ects of Ln and Un on arcs in section 1.6. Now assume
that wa 6= wb.

Let y be the scaled sum of resolution levels wa and wb:

y =
1
ha

rwa +
1
hb

rwb

with dpt(y) → {
si

}
. According to the consistency of the discrete pulse transform, the two

pulses (wa, 1, pa) and (wb, 1, pb) must exist in
{
si

}
.
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Looking at {y}k with k = pa − wa, . . . , pa + 2wa + wb,

{y}k = [∗, . . . , ∗︸ ︷︷ ︸
>wa

, 1, . . . , 1︸ ︷︷ ︸
wa+wb

, ∗, . . . , ∗︸ ︷︷ ︸
>wa

], with all ∗ < 1.

This is an (wa + wb)-downward arc (cap). There will be no pulse in the dpt of y starting
at position pb, because there is no di�erence at that position in the sequence y by theorem
4.2. This is a contradiction. Therefore pb 6= pa + wa.. The case where the pulses are
negative are handled in exactly the same way. ¤

Theorem 4.5. Let x be a signal with a consistent dpt. No two pulses on any two levels
can overlap such that i + m− n < j < i + m, where the pulses have positions i and j and
lengths m and n respectively.

Proof. Assume that the �rst pulse has position i, length m and height a, and the
second pulse has position j, length n and height b. Let m ≥ n such that the �rst pulse is
longer or equal to the second one.

Calculate the consistent dpt of x: dpt(x) →




r1

...
rN




According to the consistency, the sequence

y =
1
a
rm +

1
b
rn

must have the dpt: y → 1
arm, 1

b r
n, rt = 0 with t 6= m,n.

First look at the case where sign(a) = sign(b).

Assume that the pulses overlap on the right side of the �rst pulse, then:

(4.1) i + m− n < j < i + m

{y}k = [. . . , ∗, . . . , ∗︸ ︷︷ ︸
>m

, 1, . . . , 1, 2, . . . , 2︸ ︷︷ ︸
α

, 1, . . . , 1 ∗, . . . , ∗︸ ︷︷ ︸
>m

, . . .], with all ∗ < 1.

The length of the overlap is given by

(4.2) α = i + m− j

Using this and the assumption 4.1, we get: 0 < α < n.

Therefore, y contains an α-downwards arc and thus y ∈Mα ∼Mα+1. By lemma 4.3 and
0 < α < n there exists a whole number k < n such that rk 6= 0 in dpt of y. This is a
contradiction of the consistency and thus the assumption 4.1 is false.

Now look at the case where sign(a) 6= sign(b). Assume again equation 4.1.

{y}k = [. . . , ∗, . . . , ∗︸ ︷︷ ︸
>m

, 1, . . . , 1, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
β

∗, . . . , ∗︸ ︷︷ ︸
>m

, . . .], with all ∗ < 1.
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Due to the speci�cs of the pulses we get,

β = n + j −m− i

Using this and the assumption, equation 4.1, we get 0 < β < n.

This implies that y is β-monotone and thus y ∈ Mβ. There then exists a whole number
k < n such that rk 6= 0 in dpt of y. This is a contradiction and thus the assumption 4.1 is
false. ¤

Theorem 4.6. Let x be a signal with consistent dpt. Assume there exists two pulses: the
�rst with position i, length m and height a and the second with position j, length n and
height b. Assume further that sign(a) 6= sign(b), m > n, and that the smaller pulse is
located somewhere in the larger pulse, i.e. i ≤ j ≤ i + m + n. Then:
(a) i + n ≤ j ≤ i + m− 2n

(b) m ≥ 3n

These constraints are illustrated in �gure 30.

Proof. Calculate the consistent dpt of x: x →




r1

...
rN




According to the consistency, the sequence

y =
1
a
rm +

1
b
rn

must have the dpt: y → 1
arm, 1

b r
n, rt = 0 with t 6= m,n.

{y}k = [. . . , ∗, . . . , ∗︸ ︷︷ ︸
≥m

, 1, . . . , 1︸ ︷︷ ︸, 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
β

, ∗, . . . , ∗︸ ︷︷ ︸
≥m

, . . .], with all ∗ < 1.

From the speci�cs of the pulses, we get

α =j − i(4.3)
β =i + m− j − n(4.4)

m ≥ 3n

n

α ≥ n β ≥ n

Figure 30. Constraints on a pulse within a larger pulse
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Because the dpt operators are neighbour trend preserving, if either α or β is zero then
there can exist no positive pulse at position i in rm. This contradicts the consistency of
the dpt. Therefore α, β > 0

Now, assume that either α < n or β < n. Let c = min {α, β}. Then y has an c-arc and
thus y ∈ Mc−1 ∼ Mc. By lemma 4.3 we have that rc 6= 0 in the dpt of y. This is a
contradiction because all r(i) = 0 for i < n by consistency of the dpt. Therefore α, β ≥ n.

(a) now follows directly from this and equations 4.3 and 4.4:

α = j − i ≥ n ⇒ j ≥ i + n

β = i + m− j − n ≥ n ⇒ j ≤ i + m− 2n

(b) follows from equations 4.3, 4.4 and α, β ≥ n:

m− n = α + β ≥ n + n ⇒ m ≥ 3n

The case where the larger pulse is negative and the smaller pulse is positive is proven in
the same way. ¤

4.2. Properties of the resolution level operators

The resolution levels consist of pulses centered around the zero sequence, and as such the
resolution level operators are not axis invariant (i.e Dk (x + c) = Dk (x) 6= Dk (x) + c) and
thus not smoothers. They are separators.

Theorem 4.7. The resolution level operators Dk of a consistent discrete pulse transform
are separators.

Proof. We �rst prove idempotency using the fact that all Si are co-idempotent with
root sequences lying in Mi:

DkDk = (I − Sk) Rk−1 (I − Sk) Rk−1

= (Rk−1 −Rk) (I − Sk) Rk−1

= Rk−1 (I − Sk)Rk−1 −Rk (I − Sk) Rk−1

= Sk−1 . . . S1 (I − Sk) Rk−1 − SkSk−1 . . . S1 (I − Sk) Rk−1

= (I − Sk) Rk−1 + Sk (I − Sk) Rk−1

= Dk + 0 = Dk

Co-idempotency follows directly from the basic consistency of the discrete pulse transform
[10]:

Dk (I −Dk)x = Dn


∑

i6=k

Dix + 0Dkx




= 0
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This proves the theorem. ¤

All the resolution levels r(i) have pulses of length i if r(i) 6= 0:

Theorem 4.8. For a discrete pulse transform, each non-zero resolution level r(i) is guar-
anteed to be in the smoothness class Mi−1 and not in any higher smoothness classes Mj

with j > i− 1. I.e.
r(i) = Dix ∈Mi−1 ∼Mi

Proof. By the de�nition of the discrete pulse transform we have that Dix = (I − Sn) Rn−1 ∈
Mn−1. Now assume that Dix ∈ Mn. Because all sequences in Mn are root sequences of
Sn and we are only considering non-zero resolution levels, we get SnDix = Dix 6= 0. By
the de�nition of the dpt Sn is a separator, thus SnDix = Sn (I − Sn) Rn−1x = 0. This is
a contradiction. Therefore Dix /∈Mn, which proves the theorem. ¤

The discrete pulse transform resolution level operators Di = (I−Si)Ri−1 are all fully trend
preserving because the operators Si are ftp (de�nition 3.1 and theorem 1.45).

This is a very powerful trend preservation property. Every resolution level on its own
mimics the trend of the input sequence. If for any i we have xi+1 > xi in the input
sequence, then xi+1 ≥ xi in all the resolution levels. So, one cannot have a negative pulse
on any resolution level start at a position i if xi > xi−1.

As neighbour trend preservation is inherited by any sum of ntp operators, the resolution
levels modi�ed by any ntp operators still have the same local di�erence structure as the
input sequence. In essence we have, for a set of ntp operators, {Ti}:(∑

i

Tir
(i)

)

i

≥
(∑

i

Tir
(i)

)

i+1

if xi ≥ xi+1 and

(∑

i

Tir
(i)

)

i

≤
(∑

i

Tir
(i)

)

i+1

if xi ≤ xi+1

Due to the consistency of the dpt, this modi�ed reconstruction will have the same sig-
nal/noise interpretation as the original sequence. See chapter 5 for practical uses of creating
modi�ed reconstructions.

4.3. Norms and roughness

The amount of content in a speci�c resolution level can be quanti�ed using a norm. We
can express some of these in terms of the individual pulses on the resolution levels.

Theorem 4.9. Let
{
r(j)

}
be the resolution levels from a discrete pulse transform with the

Nk pulses on the j-th resolution level characterized by position, width and height: {pj,k},
{wj,k} = k and {hj,k} where i = 1 . . . Nj. Then:
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(1)
∥∥r(j)

∥∥
p

= (j
∑ |hj,k|p)

1
p

(2) T (r(j)) = 2
∑Nk

i=1 |hj,k|

Proof. The p-norm of a sequence is given by ‖xi‖p =
(∑∞

i=−∞ |xi|p
) 1

p . The sequence
r(k)consists of the superposition of non-overlapping pulses and is zero at locations where
there are no pulses. Therefore one can split up the calculation of the norm to add each
pulse separately:

∥∥∥r(j)
∥∥∥

p
=




Nj∑

k=1




pj,k+wj,k+1∑

i=pj,k

∣∣∣r(j)
i

∣∣∣
p







1
p

=




Nj∑

i=1

j |hj,k|p



1
p

This proves (1).

We can prove 2 in a similar way. We want to determine the value of the local di�erence
for any place in the sequence. As pulses cannot overlap, di�erences only exists in the
sequence at the endpoints of pulses. Also, the only time two pulses on a resolution level
can immediately follow each other (i.e. pk,i+1 = pk,i + wk,i) is if their sign di�ers. We use
this information to get an equation for the local di�erence at any position i in resolution
level r(j):

∣∣∣r(j)
i − r

(j)
i−1

∣∣∣ =





|hj,k| if ∃j s.t. i = pj,k 6= pj,k−1 + wj,k−1

or i = pj,k + wj,k 6= pj,k+1

|hj,k−1|+ |hj,k| if ∃j s.t. i = pj,k = pj,k−1 + wj,k−1

0 otherwise when no such j exists

(2) follows from this for any j:

T
(
r(j)

)
=

∞∑

i=−∞
|xi − xi−1|

=
∑

i

|xi − xi−1| with i ∈ {pk,i} ∪ {pk,i + wk,i}

= 2
Nj∑

k=1

|hj,k|

¤

A direct result of this, is a relation between the total variation of a resolution level and its
1-norm.

Corollary 4.10. T
(
r(j)

)
= 2

j

∥∥r(j)
∥∥

1
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Recall that the resolution level r(j) ∈ Mj−1 ∼ Mj . Corollary 4.10 does not hold for any
general sequence in Mj−1, instead the factor 2

j acts as an upper bound on the ratio of
total variation to 1-norm of a sequence [9]:

Theorem 4.11. For any non-constant sequence x ∈Mj, we have

(4.5) T (x)
‖x‖1

≤ 2
j + 1

The above ratio (equation 4.5) reaches the upper bound of 2
j+1 for the resolution levels

r(i−1). Call this ratio the `roughness ratio' of a sequence [5]. The LULU operators smooth
a sequence by removing the roughest parts at a speci�c resolution, causing the roughness
ratio to decrease. As measured by this ratio, the part of the sequence removed as noise is as
rough as possible for that resolution. There is thus a natural link between the monotonicity
class and total variation of a sequence and the concept of roughness. In functional analysis,
the total variation is also related to monotonicity and a concept of smoothness: functions
of Bounded Variation are almost everywhere di�erentiable and can be expressed as sums
of monotone functions [5].

4.4. A roughness pro�le

The smoothness of a sequence is a widely used concept but not one that has found one
satisfactory de�nition. Di�erent analysis perspectives have di�erent ideas about what
smoothness means. In the LULU and some other related perspective, smoothing a sequence
means separating the noise from the signal. Clearly one could argue that a sequence
that is left unchanged by what one chooses as your smoother is smooth. Similarly, a
sequence where noise can be removed could be argued to possess a degree of roughness.
The roughness is quanti�able by the amount of noise removed. It is important to remember
the subjectivity of the concepts of signal and noise: every smoothing operator has its own
interpretation of the roughness of a sequence.

The Parseval Identity relates the sum of the squares of the Fourier coe�cients of a function
to the integral of the squared function. For a function with period 1 we have the Fourier
series expansion:

f(x) = a0 +
∞∑

n=1

ancos(2nπx) +
∞∑

n=1

bnsin(2nπx).

The Parseval Identity is then:

(4.6) 2
∫ 1

0
|f(x)|2 dx =

1
2
a2

0 +
∞∑

n=1

(
a2

n + b2
n

)

In essence, the integral of the squared function can be understood as a measure of the
signal power. The Fourier transform splits a signal into its component harmonics, each of
these then contains part of the total signal power. By equation 4.6, this signal power is
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conserved as the sum of the powers of the individual frequencies must sum to the total. A
plot of this quantity versus the frequency is the well-known power spectrum of a sequence.

In a wavelet decomposition we have, by the Pythagoras Theorem for Projections, that the
squares of the 2-norms of the resolution levels are preserved:

(4.7) ‖r1‖2
2 + ‖r2‖2

2 + . . . = ‖x‖2
2 with ri = (I − Pi) Pi−1 . . . P1x

One can understand the 2-norm of a sequence as a measure of the `energy' content of
the sequence, which the wavelet decomposition then separates into the `energy' content at
di�erent scale levels. Equation 4.7 is then a law of conservation of `energy'.

Both the Fourier and Wavelet decompositions techniques supply some kind of information
about the multi-scale structure of the input signal, the exact nature of said information be-
ing determined by the choice of perspective. The 'energy' vs scale spectrum then indicates
what part of the total signal energy exists at each scale.

The general pattern that emerges is:

(4.8) N(x) =
∑

i

N(ri)

For some decompositions there exists an associated `norm' which allows one to see the
decomposition as removing information from the sequence layer by layer and that one can
quantify the amount of information (`energy') in every layer. The total `energy' in the
sequence is then the sum of the 'energies' of the individual layers, i.e. the total energy is
conserved. The word energy is only used to give a �avour of what is happening, the true
de�nition depends on the decomposition in question. After a full decomposition one can see
what layers (sinusoid frequency or scale level) contain the largest parts of the information
in the input sequence.

Does something similar exist in the LULU perspective? In chapter 1 it was mentioned
that the total variation is a natural norm in the LULU framework. We see now that this
is because, analogous to the decompositions described above, total variation can be used
to visualize the discrete pulse transform as the peeling o� of discrete resolution levels with
an associated conserved energy content.

For any fully trend preserving operator (which includes all the LULU operators) the total
variations of the signal and the noise adds up to the total variation of the input sequence
[9].

Theorem 4.12. Let S be a fully trend preserving operator. Then, for any sequence x ∈ X ,

T (x) = T (Px) + T ((I − P )x)

This conservation of total variation is illustrated in �gure 31. A sequence is decomposed
into three resolution levels using the discrete pulse transforms based on LnUn and UnLn.
At each decomposition level the total variation is split into one part corresponding with
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Figure 31. 4 level discrete pulse transform, DPTL4U4 and DPTU4L4 show-
ing how T (x) = T (Px) + T ((I − P )x)

signal and one part corresponding with noise. For this example we get

T (Rnx) = T (Sn+1Rnx) + T ((I − Sn+1) Rnx) = T (Rn+1x) + T (Rnx−Rn+1x)

where Sn = LnUn (or Sn = UnLn) and Rn = Cn (or Rn = Fn) for the dpt based on LnUn

(or UnLn).

The following theorem gives the wanted result that the variation `energy' in the input
sequence is conserved with respect to variation `energy' in the resolution levels. This allows
one to compare the contribution of each resolution level to the total variation content of
the input sequence.

Theorem 4.13. For any sequence x ∈ X and a discrete pulse transform DPTSN
, the total

variation of the input sequence is equal to the sum of the total variation of the resolution
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levels.

T (x) =
N∑

i=0

T (Dix) = T (D0x) +
N∑

i=1

T (Dix)

Proof.

T (x) = T (S1x) + T ((I − S1) x)

= T (R1x) + T (D1x)

= T (S2R1x) + T ((I − S2) R1x) + T (D1x)

= T (R2x) + T (D2x) + T (D1x)

...
= T (RNx) + T (DNx) + . . . + T (D1x)

= T (D0x) + T (DNx) + . . . + T (D1x)

=
N∑

i=0

T (Dix)

¤

By the consistency of the dpt, this is also true for reconstructions of only a subset of the
levels.

Corollary 4.14. The total variation of the sum of a subset of resolution levels equals the
sum of the total variations of the levels.

T


∑

j∈S

Djx


 =

∑

j∈S

T (Dix)

We see that the LULU operators peel o� variation in a sequence to map it to a smoother
monotonicity class. We have argued a link between the total variation of a sequence
and its roughness. The resolution level versus total variation plot is thus our multi-scale
roughness pro�le. This allows us to compare the roughness content at di�erent scales.
Other roughness pro�les are also possible, although they will probably lack the above
results.

The maximum number of pulses on lower (wider) resolution levels are lower because the
pulses are wider and pulses cannot overlap. Thus the total variation of the �rst levels are
often much larger than the later levels. An useful alternative for the roughness pro�le that
corrects for this is the resolution level versus 1-norm plot. Corollary 4.10 gives an equation
relating the total variation of the resolution levels to the 1-norm. We see that the 1-norm
of the resolution level is the same as the total variation but with a bias proportional to the
width of pulses on that level (

∥∥r(i)
∥∥

1
= i

2T
(
r(i)

)
). Unfortunately, as expected the above

results do not apply in general and therefore the contribution of the resolution levels to
the 1-norm of the input sequence can not be de�ned.
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An useful special case where we get a result of the form of equation 4.8 for the p-norms is
when all pulses in a discrete pulse transform are of the same sign (when using Un and Ln

for example). We will state the following theorem, whereby an alternative pro�le can be
de�ned, without proof. For the 1-norm, this measures the contribution of each resolution
level to the total area of the input sequence.

Theorem 4.15. Let r(i) = Dix be the resolution levels of a discrete pulse transform DPTSN

of a sequence x ∈ `p . If all the pulses have the same sign (i.e. r(i) ≥ 0 for all i, or r(i) ≤ 0
for all i) and the residual r(0)is zero, then:

(1) ‖x‖p =
∑N

i=0 ‖Dix‖p = ‖D0x‖p +
∑N

i=1 ‖Dix‖p

(2)
∥∥∥∑

j∈S Djx
∥∥∥

p
=

∑
j∈S ‖Dix‖p

These roughness pro�les will now be illustrated with a couple of examples. Figure 32
shows the total variation pro�le (and its logarithm) for a sequence of uniformly distributed
random noise. The total variation is largest in the �rst resolution level. Thereafter it
quickly falls to zero. The logarithm plot allows us to compare the relative magnitudes of
the total variation values when they are close to zero.

We analyze what is happening here. Let x be a sequence with a slowly changing or zero
underlying trend and added identically independently distributed noise. Now we look at a
part of this data series where there is a section of values that are larger than the elements
neighbouring the section:
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Figure 32. Total variation pro�le
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[ . . . ∗, α, γ1, . . . , γn , β, ∗ . . . ]

with, γi > max {α, β} , i = 1 . . . n

If the probability of there being one such point (i.e n = 1) is p. Then the probability of
having n such points in a row is pn, if the noise is identically independently distributed.
The discrete pulse transform will remove a pulse of width n of height min {γi −max {α, β}}
at any position with probability

P (pulse of width n at position i) = spn < pn,

where 0 ≤ s ≤ 1 is determined by the 2n data points surrounding the area in question
on each side. Thus one can expect most of the pulses for a random signal to be in the
�rst detail levels of the discrete pulse transform. The large width pulses that are found in
higher levels will most likely have a small height, since the probability p is inversely related
to the height of the pulse, min {γi −max {α, β}}.

As another example we decompose a sequence consisting of a fort-like structure. Since all
the pulses in the decomposition were positive we show both the total variation and 1-norm
pro�les (�gure 33).

There are four peaks in the pro�les, corresponding with pulses of size 1, 16, 95 and 127.
There are many width 1 peaks and thus the variation pro�le shows the largest peak there.
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The 1-norm pro�le measures contributions to total sequence area and has highest peak for
the pulse of width 127.

These pro�les are useful for determining what resolutions levels contribute most to the
roughness or area of a sequence. When processing sequences, one can use this information
to select what levels are important and what can be discarded.
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CHAPTER 5

Practical reconstruction

The discrete pulse transform, DPTSN
, decomposes a sequence into a set of di�erent res-

olution pulses,
{
r(j,k) : j ∈ [1, N ] , k ∈ [1, Nj ]

}
and a residual sequence r(0). The input

sequence, x, can be obtained by adding all the pulses to the residual sequence r(0). We
call this reconstructing the sequence:

(5.1) x = r(0) +
N∑

j=1

Nj∑

k=1

r(j,k)

A straight reconstruction (i.e. after transmission) of the extracted pulses may be useful.
Generally we rather want to modify the pulses and then add them together. Under cer-
tain operations on the pulses the discrete pulse transform is consistent, i.e. modifying the
pulses does not change the multi-resolution interpretation of the pulse transform. The
resolution level operators are neighbour trend preserving, which implies that all the resolu-
tion levels mimic the local ordering of the input sequence. These properties are extremely
useful because one can highlight certain structures or scales in the sequence and know that
the sequence will not be distorted beyond what is intended. In this chapter, some pulse
modi�cation techniques and their uses will be discussed.

5.1. Level based highlighting

The LULU discrete pulse transforms all have basic consistency. This means that is possible
to multiply each resolution level by its own non-negative constant and still have the recon-
structed sequence decompose into the same set of pulses (with modi�ed pulses heights of
course). I.e. the pulses,

{
r(j,k)

}
, of a discrete pulse transform are modi�ed by multiplying

all the pulses in each resolution level, j, y a weight, αj with j = 0 . . . N :

(5.2) s(j,k) = αjr
(j,k) with all αj ≥ 0

The sequence is then reconstructed using the modi�ed pulses. Decomposing this recon-
structed sequence using the same discrete pulse transform, will always yield the pulses{
s(j,k)

}
. The implication being that one can highlight certain resolution levels to enhance

their contribution to the reconstruction and suppress the in�uence of other levels without
distorting the pulse interpretation.

At the end of chapter 4 we analyzed the variation pro�le of a random sequence and discussed
why most of the pulses are often found on the �rst resolution levels. For general noise
removal one can then set the level weights of the �rst few levels low or zero. Setting the
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�rst n level weights to zero and then reconstructing is equivalent to smoothing with the
recursive operators Rn as de�ned in the de�nition of the dpt. One can also combine this
level weighting strategy with others in order to further narrow down the set of structures
one is interested in.

Now we demonstrate how this kind of level weighting allows one to quickly design a re-
construction procedure that retains the information one is interested in (the signal) and
gets rid of other parts (the noise). This example is meant to give an idea of the ease and
e�ectiveness of creating a reconstruction like this, so it does not matter if the example is
a bit contrived. The ideas contained here are generally relevant.

We construct a class of test sequences of length 1000. These sequences consist of width
10 pulses (of height 1), some wider pulses of width anywhere between 20 and 500 (also of
height 1), and superimposed noise from a Gaussian distribution. Figure 34 shows a sample
sequence in this class with various degrees of superimposed noise.

We are interested in locating all the width 10 pulses, so everything else is regarded as noise.
Regard the sample sequence with added Gaussian noise of standard deviation 0.25, notice
that at most places it is possible for one to exactly identify the pulses visually. For the
next sequence, where the noise has standard deviation of 0.5, this becomes harder. While
the true pulses are mostly visible, there are places where one may falsely guess a pulse
existed (false positives) if one did not have the noiseless sequence available for comparison.

We calculate the variation pro�le of the middle sequence in �gure 34 from the discrete
pulse transform DPTUNLN

. The total variation of the di�erent scale levels have a large
range of magnitudes. It is therefore helpful to plot the logarithm of the total variation
pro�le. Figure 35 shows this. We are not interested in the resolution levels that contribute
very little to the total variation of the input sequence, therefore the bottom part of the
pro�le is cut-o�.

Figure 34. Sample sequence with Gaussian noise of standard deviation 0,
0.25 and 0.5 respectively.
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Figure 35. Log-Variation pro�le of middle sequence in �gure 34.

We see that the variation in the sequence due to noise is highest at the �rst level, but then
decreases quite quickly. The e�ect of larger magnitude noise on the total variation pro�le
will be higher, and therefore more of the detail levels will be in�uenced. Ideally most noise
should be left out in the reconstruction. There is a high peak corresponding with pulses
of width ±10; this is our area of interest. There are a few other peaks in the pro�le at the
scale levels where the larger pulses are found; these scale levels should be ignored.

Our reconstruction coe�cients (with respect to equation 5.2) are thus

(5.3) αj =





1 for 10− c ≤ j ≤ 10 + c

0 otherwise

The constant c speci�es how many levels around 10 should be included. This is necessary
since the presence of noise can a�ect the width of pulses. The level weights for the resolution
levels of interest were all chosen as 1 in equation 5.3. It is only necessary that these weight
be non-negative for consistency and trend preservation. One might thus obtain better
results by choosing the level weights inversely proportional to the di�erence between the
width of pulses on each level and 10. Our aim is to show what is achievable with a level-
weighted reconstruction using a simple example, so we will do no more than mention such
possibilities.

We can now reconstruct our sequence. This reconstruction has a pulse decomposition
consistent with the original decomposition. Also, the local di�erences between succes-
sive sequence elements in the reconstructed sequence will not have sign opposite to the
corresponding di�erences in the input sequence (trend preservation).

This reconstructed sequence is used to detect the pulses. The presence of noise a�ects
the height of other pulses in a sequence. We thus make use of a threshold to determine
which parts of the retained sequence point to the existence of signal (pulses of width 10)
and which do not. This threshold is determined using the average value of the upward
pulses in the �rst scale level (in chapter 7 we discuss why this is e�ective). The number of
sequence elements where there are true and false matches are then counted. A true match
at a sequence element is when our detection procedure correctly speci�es that part of our
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signal exists at that location. A false match occurs when the procedure detects signal when
there is none. Figure 36 shows obtained results for c = 0, 1 and 3 (in equation 5.3). The
detection results for 500 sequences, from the class described above, were used to calculate
average detection rates. The standard deviations of these rates are shown as error-bars.

The true and false matches are normalized by the total number of pulses. A true match
ratio rt of 1 implies that all the signal pulses were correctly detected, while a value of 0
implies none of the signal was detected (1 is optimal). A false match ratio rf of 0 means
that no signal was detected where none exists, and a ratio of 1 means that for every real
pulse a false one was detected (0 is optimal).

The pulses were correctly identi�ed for all three di�erent ranges of kept levels in the no- and
low-noise cases. With higher amplitude noise, we get less than perfect detection. Keeping
only the 10th resolution yielded the least amount of false matches but at the expense of
not detecting all the real pulses in the high noise cases. Using more of the surrounding
levels results in the detection of more of the true pulses, but the number of false matches
increases as well. The best overall results were obtained by using only levels 9 to 11 to
detect pulses.
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Figure 36. Ratio of true matches to number of real pulses, rt, and ratio
of false matches to number of real pulses, rf , for various amounts of added
Gaussian noise and di�erent sets of levels kept in the reconstruction.

88



The detection algorithm was not designed for optimal results as the idea was only to
show how, with a minimal amount of e�ort, the retention of selected resolution levels
can separate the important information from a sequence and thereby aid the automated
analysis of data. Further improvements should be possible by revising the reconstruction
procedure (as mentioned above), or tweaking the threshold used to determine whether a
pulse is detected (i.e. by �nding an optimal threshold experimentally for a training data
set, or from considerations related to the source of the data). More advanced detection
techniques than mere thresholding can also be advantageous.

We see that a simple weighted reconstruction and a thresholding operation was e�ective
in the detection of pulses up to a moderate noise level (Gaussian noise with standard
deviation of 0.375). When the features of interest can be characterized with respect to
resolution levels, a level weighting scheme provides a straightforward method to separate
signal from noise.

5.2. Pulse based highlighting

In the above section, information on the width of important features were used to create a
trend preserving reconstruction that eliminated most of the unwanted information. When
unwanted structures appear in the highlighted resolution levels, one needs to make use of
additional criteria to discriminate between these and the wanted features. The pulses in
a decomposition are individually highlighted based on their agreement with this criteria.
This is pulse based highlighting.

The pulses,
{
r(j,k)

}
, of a discrete pulse transform are modi�ed by multiplying each pulse

in every resolution level, j, by a weight, αj,k with j = 0 . . . N :

(5.4) s(j,k) = αj,kr
(j,k) with all αj,k ≥ 0

Due to full consistency the modi�ed reconstruction x′ = r(0) +
∑N

j=1

∑Nj

k=1 s(j,k) will de-
compose into the set of pulses

{
s(j,k)

}
when using the same discrete pulse transform used

to �nd the pulses
{
r(j,k)

}
. From theorem 1.42 and the fact that all the pulse weights are

non-negative, the trend of the input sequence is preserved by the reconstruction.

A few examples of pulse weighting rules are now discussed. These are to serve as an
introduction to the creation of this type of weighting system.

The �rst example is the concept of multi-resolution support. Intuitively, elements of the
input sequence that have a larger supporting base will have a larger support value. We
count, at each sequence element, the number of consecutive resolution levels (starting from
the �rst) with the same sign pulse (i.e. all upward or all downward). If the pulses are
positive the support is positive, and if the pulses are negative the support is negative.
Speci�cally, an element of the input sequence that has a corresponding positive pulse at
that location in the �rst N resolution levels, has support equal to N . With negative
pulses in the �rst N resolution levels at a speci�c sequence element, the support is −N .
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The support is only non-zero at sequence elements where there exists a pulse in the �rst
resolution level (i.e. at places where the input sequence has local extremas), and thus the
only non-zero pulse weights are for pulses in the �rst resolution level. We get the following
pulse weights (in equation 5.4):

αj,k =





nk

|hj,k| if j = 1

0 otherwise

where nk is the largest integer such that (hj,k)
(
r
(m)
pj,k

)
> 0 for all 1 ≤ m ≤ nk.

The reconstructed sequence
∑N1

k=1
nkr(1,k)

|h1,k| quanti�es the support of the input sequence at
each element. Supposing that one has multiple peaked structures in a sequence, the support
at each local extremum is the width of the multi-resolution structure supporting it. This
useful for discriminating between values caused by noise which will have low support and
wide peaked structures (for example, a sampled Gaussian function) with higher support.
Before we illuminate this with an example, we discuss another pulse weighting rule: pulse
normalization.

Basically, we want each element in the reconstructed sequence to specify whether the
resolution levels consist mostly of positive or negative pulses at that position. This is
useful in similar situations as the measure of support above as it will be larger for wider
peaked structures, than smaller ones or noise.

For each sequence element we count the number of positive pulses and negative pulses at
every resolution level. This is equivalent to normalizing all the pulse heights to an absolute
magnitude of 1. It is sometimes useful to only consider a speci�c subset of resolution levels.
Considering then only the pulses of width ∈ [a, b], the weights in equation 5.4 are:

αj,k =





1

|hj,k| for a ≤ j ≤ b

0 otherwise

This pulse weighting scheme normalizes all pulse heights. This has the e�ect of maintaining
the multi-resolution structure. The speci�c di�erence values found in the input sequence
are replaced by whole numbers re�ecting only the relative ordering of the elements of the
sequence and not their original value.

We now test the e�ect of these pulse weighting rules on a sequence consisting of sampled
Gaussian functions of varying widths. The support of a sequence element is a measure of
the number of consecutive levels (starting at the �rst resolution level) with the same sign
pulse. A well supported structure consists of pulses in many resolution levels. In �gure
37 we see that the wider Gaussian functions has higher support as expected. The pulse
normalized reconstruction is also displayed. This is similar to the support of a sequence
with the di�erence that all the resolution levels contribute to the value, not just the �rst
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Figure 37. A noise-less sequence and some pulse-based reconstruction.

N levels with a same sign pulse at a speci�c location. The net result is a normalization of
the slope of the sequence: the curved sides of the Gaussian functions are straightened.

In �gure 38 we recalculate these measures with added normally distributed noise. The
magnitude of support depends on the number of consecutive resolution levels (starting at
the �rst level) with the same sign pulse at a speci�c sequence element. This is not robust.
When noise is present, the invertion of local ordering at any place on the peaks will cause
a smaller pulse to be created at the expense of a wider pulse (recall that the total number
of pulses in a sequence is bounded by the number of non-zero local di�erences). The
probability of this is inversely proportional to the magnitude of the slope of the peaked
structure, as it takes a larger value to change the local ordering when the sides of the
structure are steep. The two narrowest Gaussian shaped structures have larger support.
The wider structures had a some of their low level pulses destroyed and have a low support
as a result.

The pulse normalized reconstruction was calculated using all pulses (�gure 38 middle), and
using only pulses of width between 4 and 60 (�gure 38 bottom). This reconstruction is
much more robust as a change in one resolution level cannot completely change its value.
The relative di�erence in width of the di�erent peaks can be inferred from the height of
the peaks. These values are smaller than the noise-less example because the noise around
the edges of the Gaussian functions caused fewer wide pulses to be identi�ed. Using only
some of the resolution levels in the reconstruction results in a smoother reconstruction,
which may be easier to process procedurally.
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Figure 38. A noisy sequence and some pulse-based reconstructions.

A pulse weighting scheme allows pulses to be highlighted or suppressed individually. This
is useful when additional constraints provides a way of determining the importance of
speci�c pulses. The above techniques employed this to create sequences that characterizes
the multi-resolution support (or structure) of a sequence. Other uses also exist. In chapter
6 we discuss using the LULU operators (and the discrete pulse transform) for the analysis
of two-dimensional images. Knowing the vertical and horizontal size of important features
in an image then allows one to suppress all pulses which do not satisfy both of these
constraints.

5.3. Edge detection

In the above techniques the sequence was reconstructed using weighted pulses. It also
possible to replace each pulse sequence by another sequence before reconstructing, at the
cost of losing consistency and trend preservation. We now see how this can be useful for
robust edge detection.

Decomposing a sequence using the discrete pulse transform results in a set of pulses. As the
resolution level operators are trend preserving, there will only be pulses at positions where
there are di�erences in the input sequence. In essence, the edges of pulses correspond with
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edges in the input sequence. The idea now is to reconstruct the sequence such that only
the edges remain. Before the sequence is reconstructed, each pulse is replaced by 2 pulses
of width 1. These pulses are placed at the edges of the original pulse and has height equal
to the absolute height of the original pulse. This is illustrated in �gure 39. I.e. replace
each pulse sequence

r
(j,k)
i = hj,k

k∑

m=1

δi,(pj,k+m−1)

with the edge sequence

r
(j,k)
i = |hj,k|

(
δi,pj,k

+ (1− δj,1) δi,pj,k+k−1

)

This technique is demonstrated on a fort-like sequence (�gure 40). This sequence consists
of pulses of width 1, 16, 95 and 127. All the edges were detected.

For noisy sequences, the edges caused by noise can easily overwhelm. Ignoring smaller
width pulses when calculating this reconstruction is e�ective in reducing edges caused by
noise, at the price of no longer being able to detect edges caused by very small features.
See �gure 41. Gaussian noise was added to the sequence in �gure 40. The edge detection
reconstruction was �rst calculated using pulses of all widths. This was e�ective in detecting
the edges of the widest structures, but edges of the medium size structures (those to the left
and right of the series of single width pulses in �gure 40) are not visible amongst the noise.
When only pulses of width 16 and wider are used in the edge detection reconstruction,

→
Figure 39. Standard width n block-pulse and its replacement in the reconstruction.
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Figure 40. A fort-like sequence (top) and its detected edges (bottom)
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Figure 41. Fort sequence with noise (top). Detected edges using all the
pulses (middle), and detected edges using only pulses of width 16 and wider
(bottom)

most of the edges caused by noise disappears. One can now clearly see some extra edges
not previously detected.
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CHAPTER 6

Two dimensional analysis

Only 1-dimensional sequences have been considered so far. The question is now whether
the ideas and concepts in the LULU framework can be extended to two dimensions. We
will investigate ways in which one can do this and see what the bene�ts and drawbacks of
the di�erent approaches are.

Definition 6.1. A two-dimensional image Z is a set of double indexed real data

Z = {zi,j : i, j ∈ [1, N ]× [1,M ] ⊂ Z ×Z, zi,j ∈ R}

An image Z can be considered as a set of bi-in�nite sequences (rows or columns) by
appending zeros. Figure 42 shows an image Z extended on all sides with zeros. The row
and column sequences which form the image are labeled.

z1,1
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z1,M

z2,M

zN,MzN,2zN,1

. . .

. . .
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. . . . . .
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. . .
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Figure 42. An image Z = {zi,j}, with constituent row and column se-
quences yi and xi.
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6.1. 2-d extension of basic operators

First we recall how Ln and Un are calculated:

(Lnx)i =

(
n∨ n∧

x

)

i

= max {min {xi−n, . . . xi} , min {xi−n+1, . . . xi+1} , . . . , min {xi, . . . , xi+n}}

(Unx)i =

(
n∧ n∨

x

)

i

= min {max {xi−n, . . . xi} , max {xi−n+1, . . . xi+1} , . . . , max {xi, . . . , xi+n}}

We call the sub-sequences {xi−n, . . . xi} , {xi−n+1, . . . xi+1} , . . . , {xi, . . . , xi+n} the `leaves'
(as in leaves of the operation tree; called structuring elements in Mathematical Morphology
[15]) of (Lnx)i and (Unx)i. The leaves of these operators for n = 1, 2 are displayed in �gure
43. The dot denotes the sequence element xi, while elements n units to the left and right
of the dot correspond with the sequence elements xi−n and xi+n respectively. To show
what sequence elements in�uence the value of (Lnx)i and (Unx)i the combined leaves are
also displayed. This is simply the leaves drawn on top of each other such that the element
xi lies at the center.

In one dimension the only variable aspects for a leaf consisting of consecutive sequence
elements are its width and its position relative to the element xi. The only di�erence
between the operators Li and Lj are the number and width of the leaves. We see that the
leaves and thus the operators are symmetric with respect to the current sequence position.

To de�ne two dimensional LULU operators one must create 2-d leaf con�gurations anal-
ogous to those in �gure 43. At the moment we are looking for 2-d versions of the basic

n = 1

n = 2

Leaves Combined leaves

Figure 43. Leaves of basic operators Ln and Un for n = 1, 2
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LULU smoothers L1 and U1. Figure 44 shows four possible leaf con�gurations and their
combined leaf diagram. Con�gurations (a), (b) and (c) are all 90 degree rotationally sym-
metric, while (d) is 45 degree rotationally symmetric. Using con�gurations (a) or (b) (as
well as con�gurations (c) or (d)) will result in smoothing decisions based on the same
set of elements, as can be seen from the combined leaf diagrams, but because the leaves
themselves are not the same in the di�erent con�gurations the decisions will also di�er.

Each of these leaf con�gurations (sets of structuring elements) imply a speci�c combination
of the erosion and dilation operators that are common in Mathematical Morphology [15,
16].

The problem is now to choose among the many leaf con�guration possibilities. The di�-
culty lies in the fact that in two dimensions a pulse is harder to de�ne. For the operators

Leaves Combined leaves

(a)

(b)

(c)

(d)

Figure 44. Possible leaf sets for 2-dimensional LULU operators
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L1 and U1 there is less of a problem, but for 2-d versions of a general Ln and Un one must
deal with such questions. Though the full problem is out of the scope of this thesis, we
mention some approaches taken by others.

Kao [2] uses con�guration (c) to de�ne two dimensional analogies of the operators L1 and
U1 (and thereby the compositions L1U1 and U1L1). These are used to remove impulsive
noise from images. Kao �nds these operators too destructive of �ne image details (like
width 1 lines) and remedies the problem by choosing the least destructive of either the 2-d
L1U1 or U1L1 at each image element.

Rohwer [7] approaches the problem by analyzing the properties of the LULU -like operators
based on some of the leaf con�gurations in �gure 44. It is found that using (a) results in
separators with a LULU structure [9, 7]. Basically this means that of all compositions of
U and L, only U , L, UL and LU are unique and there exists a full order relation between
these: L ≤ UL ≤ LU ≤ U . For con�guration (b) the resultant operators are not even
idempotent and as such cannot form a LULU structure. For leaf con�guration (c) there
are two further compositions besides U , L, UL and LU that are unique: LUL and ULU .
When using this con�guration, the 2-d analogies of the basic separators form an extended
LULU structure [7].

When extending the general operators Ln and Un to two dimensions for large values of
n the number of possible leaf con�gurations is very large. While it is possible to de�ne
extensions for larger n of the leaf con�gurations in �gure 44, these are not guaranteed to
perform as well as the simple n = 1 case. Instead of further focusing on this problem,
we discuss an alternative method that allows us to use all the existing tools in the LULU

framework on images.

6.2. Row and column based decompositions

Recall �gure 42. An image consists of a set of row (or column) sequences. It is possible to
apply LULU operators to these sequences and thereby extract multi-resolution information
from the image. One can also apply these operators along other lines in an image (like
diagonals). Suppose one decides to smooth with an operator Sn. Then, at each image
element zi,j one has a smoothed value for each of the smoothing directions (i.e. horizontal
(Snyi)j and vertical (Snxj)i), resulting in an output image for each smoothing direction
(see �gure 45).

The output images can be the input to another smoothing step. For example, after smooth-
ing the columns with Sn and obtaining the image Snx one can smooth the rows of this
output image with Sn as well (or vice versa). Analogous to how choosing to remove upward
pulses (UnLN ) or downward pulses (LnUn) �rst a�ects the smoothing process, the choice
of smoothing rows or columns �rst will a�ect how the images are smoothed.
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Figure 45. Directional smoothing of an image results in a output image
for each direction

All the LULU operators discussed in previous chapters can be applied to an image on a
line by line basis. Performing the dpt on an image is particularly useful. As mentioned in
chapter 5, one can use the extra information obtained from taking decompositions in more
than one direction to choose pulse weights in a pulse-based reconstruction.

To illustrate the power of directional decompositions of images we demonstrate it on the
problem of removing positive impulsive noise. We test our technique on a standard image
processing test image (�gure 46a). Let z = {zi,j} be an image with positive impulsive
noise added (�gure 46b), with

{
a

(n)
i

}
the resolution levels of the row-by-row discrete pulse

transform and
{

b
(n)
i

}
the resolution levels of the column-by-column dpt :

DPTU3L3 yi →
{

a
(n)
i

}
, n = 0, 1, 2

DPTU3L3 xj →
{

b
(n)
j

}
, n = 0, 1, 2

Create a `resolution level image' for each smoothing direction (horizontal and vertical) and
each resolution level n, consisting of all the pulses on that level.

α
(n)
i,j =

(
a

(n)
i

)
j

β
(n)
i,j =

(
b
(n)
j

)
i

The residual images consisting of the residual sequences U3L3xi (vertical) and U3L3yj

(horizontal) are then α(0) and β(0) respectively (�gure 46c and d). Note that while they
remove most of the impulsive noise, they are very destructive of �ne details (the hair for
example), and therefore one would rather not use them directly.

The image is contaminated with impulsive noise, thus remove at each image element zi,j

the largest of the width 1 pulses along each direction found at that position.

(6.1) zi,j −max
(
α

(1)
i,j , β

(1)
i,j

)
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While this should get rid of most the impulsive noise, it will also destroy small image
details (similar to but less extreme than �gure 46c and d). One would rather keep an
image element unchanged if smoothing there is too destructive.

We know the impulsive noise is positive, therefore we only remove a pulse at an image
element if a positive pulse of width 1 was found in both smoothing directions. Call this
condition C. The horizontal and vertical residual images consist of what remains after
horizontal and vertical pulses of width up to 3 respectively have been removed. If, at an
image element, there is more agreement between these two images than between these two
images and the input image, there is probably noise which can safely be removed. Call
this condition D.

Ci,j is true ⇐⇒ α
(1)
i,j , β

(1)
i,j > 0

Di,j is true ⇐⇒
∣∣∣α(0)

i,j − β
(0)
i,j

∣∣∣ <
∣∣∣α(0)

i,j − zi,j

∣∣∣ ,
∣∣∣β(0)

i,j − zi,j

∣∣∣

If both Ci,j and Di,j are true then we assume it is safe to remove the largest width 1 pulse
using equation 6.1:

(Sz)i,j =





zi,j −max
(
α

(1)
i,j , β

(1)
i,j

)
if Ci,j and Di,j

zi,j otherwise

The result of de-noising the test image at every pixel using this equation is displayed in
�gure 46e. By comparison with �gure 46a we see that most of the impulsive noise was
removed and the �ne image details were not distorted unreasonably. By applying this
smoothing procedure again, even more of the impulsive noise is removed with hardly any
(if at all) further distortion (�gure 46f). Incorporating decompositions along diagonal lines
in deciding which pixels to smooth should lead to a de-noising procedure that is even less
destructive.
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Figure 46. (a) True image (b) Image with added impulse noise at 4000
pixels (c) Horizontally smoothed image (d) Vertically smoothed image (e)
De-noised image (f) De-noising again using the same procedure
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CHAPTER 7

Estimation of moments

In most cases where one obtains a data sequence from a physical apparatus, the incoming
data is contaminated with noise. When coding images it can be economical to code a noisy
region (a high-frequency texture for instance) as a distribution with particular parameters
instead of an inherently incompressible random stream. Also, the introduction of rounding
processes to data introduces quantizing errors. The distribution of these errors are well
approximated by the B-splines or a Gaussian [6].

The speci�c noise values are less important than the distribution from which the noise
comes. It is useful to be able to estimate these parameters (the moments of the distri-
bution). Rohwer [6] gives a method for calculating the second moment (variance) of an
unknown random distribution contaminating measurements. This is estimated from the
�rst level LULU decomposition of the data sequence. Critical to this estimation is the
assumption that the noise is identically independently distributed (i.e. noise at each se-
quence element comes from the same distribution but is independent from noise at other
elements). In this chapter, we will follow the derivation of this technique and test the
accuracy. We will also see how we can extend this to two dimensions.

7.1. Standard deviation from average pulse height

First of all, we assume that our underlying sequence is of a lower resolution than the
sampling interval. Otherwise there is little hope of separating the noise from the equally
scaled signal. Using the B-splines as an example, we will show how one can estimate the
standard deviation (

√
variance) of a symmetric distribution contaminating measurements

using the average value of the negative pulses in the �rst resolution level for a signal
decomposed with L1U1. This same technique can be applied to many other distributions.
The �rst moment (the mean) of a random distribution contaminating measurements is not
obtainable as it is indistinguishable from trend (if there is trend).

Let P (xi = z) = fn be a B-spline of order n. We will illustrate the following steps with
the B-splines of order n = 1, 2 and 16.
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Figure 47. Probability density functions of b-splines of order 1, 2 and 16.

The distribution function is given by: Fn (z) =
∫ z
0 f (z) dz

We want to calculate the probability density function for a pulse in the �rst level to have
a certain value, z. Let Cn(z) = P (xi − Uxi = z). Then,

Cn (z)

= P (xi = z) ∗ P (Uxi = z)

= 2fn (z) ∗ Fn (z) fn (z)

= 2
∫ ∞

−∞
fn (z − t) fn (t) Fn (t) dt

because:

P (min {xi−1, xi+1} < z)

= P (xi−1 < z) . P (xi+1 < z)

= F 2
n (z)

and

P (Uxi = z)

= P (min {xi−1, xi+1} = z)

=
d

dz
P (min {xi−1, xi+1} < z)
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Figure 48. Probability distribution functions of b-splines of order 1, 2 and 16.

=
d

dz
F 2

n (z) = 2Fn (z)
dFn (z)

dz

= 2Fn (z) fn (z)

This results in a probability density function, Cn(z) (see �gure 49), for the B-spline of each
order, n. Cn(z) is then integrated to calculate the probability of �nding a negative pulse
in the �rst resolution level:

(7.1) P (xi < 0) =
∫ 0

−∞
Cn(z) dz

U1 removes local minimas, therefore equation 7.1 is equal to 1
3 irrespective of the particular

distribution [6]. Now use this to calculate the average value of the negative pulses:

(7.2) an =

∫ 0
−∞ zCn(z) dz
∫ 0
−∞Cn(z)

= 3
∫ 0

−∞
zCn(z) dz

The standard deviation of a B-spline of order n is given by

(7.3) σn =
√

n

12

The B-spline distribution can be normalized to a general standard deviation. First we
calculate what e�ect changing the standard deviation of f will have on Cn. The constant
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Figure 49. Probability density function for xi − Uxi = z

k = σn
σ′ in f (kz) will change the standard deviation of f to σ′.

C ′
n(z) = 2

∫ ∞

−∞
f (kz − kt) f (kt) F (kt) dt

=
2
k

∫ ∞

−∞
f

(
kz − t′

)
f

(
t′
)
F

(
t′
)

dt′

=
1
k
C (z) with k =

σn

σ′

This, together with equations 7.2 and 7.3 gives the average value of the negative pulses in
the �rst resolution for a general standard deviation, σ′:

a
′
n = 3

∫ 0

−∞
zC ′

n(z) dz = σ′3

√
12
n

∫ 0

−∞
zCn(z) dz(7.4)

= αn σ′(7.5)

The factors, αn, which relate the average values of the negative pulses in the �rst resolution
level to the standard deviation of the underlying distribution was calculated numerically
for n = 1 . . . 30. The resulting curve is shown in �gure 50. These constants all fall in the
small interval of 0.025 (a maximum di�erence of about 3%) and approach the constant
α∞ = −3

2
√

π
asymptotically as n increases (Rohwer [6]). This limit is reached exactly for a

Gaussian distribution.

The standard deviation of a B-spline or Gaussian like distribution can now be estimated
by dividing the average value of the negative pulses in the �rst resolution level by the
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Figure 50. Constant factors which relate the average value of the negative
pulses on the �rst level and the standard deviation of the underlying dis-
tribution

constant α∞. Since the operators Ln and Un are duals of each other, one can also use the
average of the positive values in the �rst resolution level divided by the constant −α∞ if
one decomposed the signal with U1L1 instead of L1U1.

7.2. Accuracy

The LULU operators are non-linear, therefore the underlying signal will in�uence the
�rst level decomposition. A low resolution signal will have little e�ect on the �rst level
decomposition, whereas a signal with a high slope will have the most dramatic e�ect.
For this experiment we choose the signal: yi = βi + εi. Where εi is our noise from the
random distribution we wish to describe. We vary the steepness of the slope by varying
the parameter β. For each value of β, 1000 sequences of length 10000 are generated to
gather statistics on the accuracy of the standard deviation estimation (see �gure 51).

The shorter a sequence, the less pulses there are in the �rst resolution level. Therefore
the length of the sequence will in�uence the accuracy of our estimation, we would like
to see how much this is so. The standard deviation of a normally distributed random
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Figure 51. Error in estimated standard deviation of random noise as a
function of the steepness of underlying signal. Middle line is average error.
Top and bottom line is maximum and minimum error respectively.
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sequence is estimated using the above-mentioned technique. The signal length is varied
from a length of 20 elements to about 3000. For each signal length, we create 1000 signals
so that statistics about the accuracy of the estimation can be gathered.

The results are graphed in �gure 52. The standard deviation used to generate the data is
1.0. Although the estimation was accurate most of the time for a short signal length, there
is no guarantee that the estimated standard deviation is within a certain distance of the
true value. The maximum absolute error in the estimation goes down quickly as the signal
length increases. With long signals, the estimation is very accurate most of the time but
about 1 percent out in the worst cases.
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Figure 52. Error in estimated standard deviation of random noise as a
function of the length of the signal. The middle line is the average error.
The top and bottom line is the experimental worst case errors.
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7.3. Extension to 2 dimensions

The standard deviation of i.i.d. distributed noise contaminating a 1-d measurement can
be estimated using the average value of the positive pulses on the �rst level resolution level
when decomposing with UnLn. Instead of �nding the unit-width pulses of a 1-d sequence
one can �nd these pulses for a 2-dimensional image as described in section 6.2. One now
has a set of pulses for di�erently oriented lines on the image. For example: pulses for each
row, column and diagonal. The average of these pulses around a speci�c area can be used
to calculate a local standard deviation, using one of the conversion constants αn. The
larger the area the more accurate but less local the estimation is.

A set of horizontal lines in an image will register pulses in every column for the column-
based decomposition and in every diagonal for the diagonal decomposition. To prevent
structures like these from in�uencing the calculated standard deviation one can leave out
pulses that do not occur in all directions when calculating the average.

We now test this technique. A 2d image of normal distributed noise is created with
a standard deviation that varies with the x-axis of the image. Figure 53(a) shows the
standard deviation of the noise, (b) shows the generated noise. The test image (d) is created
by adding this noise to a background image consisting of some superimposed rectangles
(c).

(a) (b)

(c) (d)

Figure 53. (a) Standard deviation of added noise. (b) Added Noise. (c)
Background Image. (d) Test image formed by adding noise and background
images.

108



Row- and column-based decompositions are done using Ln and Un. This gives four decom-
positions. Each of these yields an image of pulses for the �rst resolution level. On each
of these images use a disk-shaped structuring element to average the non-zero elements
around each point. This is divided by the constant α∞ for decompositions based on Un

and by −α∞ for decompositions based on Ln. We now have a estimate for the standard
deviation at every pixel in each of these four images. To get the �nal estimate the average
of these four images are calculated. We repeat this for averaging disks of four di�erent
radii so that we can compare the e�ect of the size of the averaging disk. The results are
displayed in �gure 54. With small disks the estimation is very local. As the disk size
increases more points are used to make the estimate which results in a standard deviation
estimate closer to the real one used to create the noise.

In �gure 55 we plot the error images for the noise estimations. These were calculated by
subtracting the estimated noise for each disk radius from image of standard deviations
used to generate the noise. With larger averaging disks the global accuracy is better, but
local variations in the standard deviation are no longer detected.
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Figure 54. Estimated standard deviation for averaging disks of radii 4, 8,
12 and 16.
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Part 2

Applications



CHAPTER 8

Noise analysis

We want to use the LULU framework to analyze the data in �gure 56, which shows the
time-dependent second harmonic signal from a pure undoped Si sample under femtosecond
(80 fs pulse length, 80 MHz repetition rate) irradiation at 782 nm1. The second harmonic
signal is a measure of the electric �eld that exists across the interface. The time-dependence
is a result of the induced charge transfer that occurs between the Si and the thin (< 5
nm) native oxide layer covering the Si. A photomultiplier tube is used to detect the (very
small) signal.

The data exhibits an initial sharp rise, attributed to electron trap sites being created in the
Si, and the subsequent movement of electrons to these trap sites. Thereafter, the signal
declines slowly due to the creation, and the �lling with holes, of hole trap sites.

Superimposed on the signal is noisy-looking high frequencies with large impulses in the
positive direction. We want to see what we can determine regarding the nature of the
noise. Is it completely random or is it possible to infer some order?

First we separate the high frequency noisy parts of �gure 56 from the rest of the signal.
The discrete pulse transform will remove all small width pulses in the �rst resolution levels.
Thus it should be possible to separate the noise from the original signal by removing the
�rst N resolution levels. To do this, we have to choose our N .

Figure 57 shows the 1-norm and total variation of Cn as a function of n. The function
values in these graphs at a speci�c n are the values of the 1-norm and the total variation
in the remaining sequence after the �rst n detail levels are removed. The total variation
1Laser group - Department of Physics - University of Stellenbosch
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Figure 56. Signal to analyze
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decreases monotonically as more of the detail levels are removed (section 4.4). After the
high frequency noisy parts are removed the total variation and 1-norm fall o� very slowly.
This is because only a few small pulses are found in these levels. The separation level, N ,
must be chosen such that the high frequency sequence components fall in the detail levels
1 . . . N − 1 and the rest of the signal in the detail levels N and above. Choose:

N = 20

Choosing N somewhat larger or smaller will have very little e�ect on our removal of the
high frequency parts due to the lack of large pulses in the detail levels around n = 20.
This can be inferred from the �atness of the graphs around this value of n.

Using our chosen N we split the original signal, x, into two: (see �gure 58)

smooth part: CNx

noisy part: (I − CN ) x

After the sudden cuto� in the smooth part the nature of the noise changes. Therefore from
now on we regard these two parts as two regions with di�erent properties. There are more
large positive impulses in the second region but the low amplitude noisy part is smaller.

The standard deviation of a Gaussian shaped distribution can be found using the average
height of either the positive pulses (found using L1) or negative pulses (found using U1) of
width 1 (refer to chapter 7). The noisy part extracted from the original signal looks like
it contains noise from a distribution with added positive impulsive noise. It is possible to
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Figure 57. (a) 1-norm of Cn vs n (b) Total variation of Cn vs n
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threshold our collection of pulses and only use those smaller than the threshold when cal-
culating our standard deviation. This makes it possible to estimate the standard deviation
of the �rst distribution without the interfering presence of the impulsive noise.

A normally distributed random sequence (with standard deviation of 0.02) is generated
and decomposed using L1 and U1. All pulses higher than a threshold value are ignored
when calculating the standard deviation using equation 7.5. Figure 59 shows the standard
deviation estimated for di�erent threshold values. The estimated standard deviation is
very close to the real value when the threshold is higher than all the extracted pulses (i.e.
no pulses were ignored). As the threshold decreases, more of the larger pulses are left out
when estimating the standard deviation and therefore the estimation begins to fall.

The same technique is now used on the two regions in extracted noisy part. The results
are displayed in �gure 60. In both regions we initially see that the standard deviation vs.
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Figure 58. Separation of input signal into smooth and noisy part.
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Figure 59. Estimated standard deviation for a normally distributed ran-
dom sequence and di�erent threshold values.
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threshold curve has the same shape as in �gure 59. This hints that there is a symmetric
noise distribution present. Before the curves can �atten out as with the constructed exam-
ple, the two estimations start to diverge. The estimation using the upward pulses is much
higher in both cases. There is therefore some type of biased in�uence. The exact nature
of the upward impulsive noise can be inferred from the di�erence in the estimations using
the upward and downward pulses.

It is reasonable to assume that the noise in the data is from an unbiased distribution with
added positive impulsive noise from another source. The unbiased noise is proportional to
the signal strength, while the amount of impulsive noise seems to increase after the signal
drops to zero. The source of the impulsive noise was later found to be the photomultiplier
tube which, being quite old, sometimes generates an incorrect signal.
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Figure 60. Estimated standard deviation for the two noisy regions in our sequence.
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CHAPTER 9

Share price smoothing

Conradie et al. [1] introduce the application of LULU smoothers on �nancial data to the
econometrical and statistical literature, and compare the properties of these smoothers with
other operators commonly used on �nancial data. We take a di�erent approach: focusing
instead on interpreting the interval of ambiguity as a measure of time-scale dependent stock
price volatility, and using the smoother G∞

n as an unbiased estimator of trend. In previous
chapters we have discussed what smoothing means in the LULU perspective. To recap,
a sequence is smoothed by mapping it into a higher smoothness class (local monotonicity
class) by removing the narrower arcs. We wish to demonstrate this on some real data: the
daily closing prices for a stock in the New York Stock Exchange. Figure 61 shows a 10
year segment of the daily closing prices of some stock.

Stock prices are not a �xed quantity; a buyer and a seller need to be matched to create
a trade. Sellers set prices for the shares they want to get rid of, while buyers specify how
much shares they want to purchase and the amount they are willing to pay. Not all o�ers
generate a successful trade, as shares on o�er go to the highest bidder. When the demand
rises for a stock, sellers can increase their asking price and still get buyers. Many agents,
with their own individual agendas, interact with this system at the same time. These many
individual supply and demand forces `push' the share price around; the total e�ect being
observable as trend (or lack thereof). The time evolution of share prices has been observed
to posses a fractal nature, i.e. �uctuations (and trends) exist at all scale levels.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

30

50

70

Figure 61. Daily share price of a stock for ten years from 1970 to 1980
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It makes sense to speak not of a single share price, but of an interval of prices. For exam-
ple, the daily low and high prices form an interval which contains all the price �uctuations
during that day. When this interval is larger, one could interpret the share price as be-
ing more volatile. On the other hand, if said interval is smaller one can come closer to
pinpointing a single share price. This is similar to the LULU concept of an interval of
ambiguity (mentioned �rst in section 2.2). Ambiguity can be understood as a measure of
the magnitude of �uctuations. A narrower interval of ambiguity implies more certainty
about a value, whereas a wider interval of ambiguity points to uncertainty regarding the
multi-resolution structure of data.

Stock markets are only open on weekdays; each week then has �ve closing prices (ignoring
public holidays). A month is de�ned as four weeks (i.e. 20 market days), and a year as
52 weeks (i.e. 260 market days). We want to investigate the larger scale trend in stock
price. Speci�cally, we are interested in extracting all �uctuations from the data that have a
duration shorter than speci�c time-spans: a week, a month, and a year. Having automated
procedures to do this is useful.

The LULU operators LnUn and UnLn are a natural choice. Calculating both of them will
provide us with an interval of ambiguity. We do so now for n = 5 (a week), n = 20 (a
month), and n = 260 (a year). The output sequences with all �uctuations of duration
shorter than a week, a month, and a year removed are shown in �gure 62. Data outside of
the range displayed were also used to smooth the data: for a smoothing time-span of length
t, data for times 2t before and after the displayed section was needed. For each smoothing
width (time-span) there are two output data sequences: LnUnx ≥ UnLnx. It seems that
the LULU operators were successful in removing the shorter scale trends. Sometimes
the removal of shorter scaled �uctuations highlights ambiguities regarding the larger scale
trend, which is represented by the size of the interval of ambiguity. The larger (time-)
scale �uctuations have a larger absolute magnitude, and we thus see that the interval of
ambiguity is larger when more of the �uctuations are removed.

The operator G∞
n (section 2.5) is used to create an unbiased estimator of trend. This,

together with the (biased) interval of ambiguity boundaries calculated using LnUn and
UnLn is plotted in �gure 63. To present results that are more visually appealing, we apply
linear running average �lters to the interval boundaries and the unbiased trend estimation.
The unbiased operator G∞

n follows the slow-scale trends of the underlying share price. The
size of the interval of ambiguity |LnUn − UnLn| (the distance between the two lines above
and below the unbiased trend estimation) measures the uncertainty of the share-price for a
time-scale of either one month, or one year. In essence, this uncertainty is larger at a data
element when there is �uctuations of width (a time-span in this case) smaller than the
operator width n (in LnUn etc.) at that element. Notice that the yearly trend estimations
extracted the large dip around year 1978 as it was not of su�cient duration. We see
that the combination of the standard LULU operators and the unbiased smoother G∞

n

allows one to extract longer time-scale trends and obtain an interval which quanti�es the
associated uncertainty.
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Figure 62. Fluctuations shorter than a week (top), a month (middle), and
a year (bottom) removed using the operators LnUn and UnLn.

118



1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

30

50

70
Monthly Trend

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

30

50

70
Yearly Trend

Figure 63. Trend and intervals of ambiguity smoothed using repeated
linear running average �lter
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CHAPTER 10

Image processing

Scheidt et al. [14] employ optical second harmonic imaging in the analysis of PbxCd1−xTe
ternary alloys. The sample wafers are prepared by the vertical Bridgman method from
a homogenized melt of pure Pb, Cd and Te and show two distinct segregated phases
consisting mainly either of Pb-rich or Cd-rich crystalline material. Areas in the Pb-rich
phase enclose �ne Cd-rich microcrystals due to PbTe acting as a solvent for CdTe during
the solidi�cation process of the melt. The Cd-rich phase occurs in two di�erent crystalline
growth directions. Large area grains (several mm2) of (111) and (411) crystalline growth
direction are identi�ed by second harmonic (SH) imaging at di�erent azimuthal angles and
characterized by a ∼ 30◦ phase shift in the rotational SH anisotropy curves. The Cd-rich
micro-crystal present in the Pb-rich phase are strongly aligned in the (111) direction. The
SH response of pure PbTe (rock-salt crystal structure) is found to be at least two orders of
magnitude weaker than that of pure CdTe (zinc-blende crystal structure), indicating that
the Cd-rich phases dominate the SH response of the PbxCd1−xTe ternary alloy.

We investigate employing the LULU perspective in automated image analysis. First ex-
amine at the images as measured using optical second harmonic imaging. The two images
in �gure 64 show the same area but with a rotation of the azimuthal angle by approxi-
mately 30◦ in the right image. There are two large scale Cd-rich phases present which are
characterized by a large SH response in one of the two images, due to a phase shift (∼ 30◦)
in the rotational SH anisotropy curves of the two crystal growth directions. The Pb-rich
areas show a weak signal superimposed with a large variance random distribution which
is attributed to the presence of Cd-rich micro-crystals [14].
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Figure 64. SH images of Pb0.2Cd0.8Te (recorded in p-p polarization)
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The discrete pulse transform and the LULU �lters on which it is based usually operate
on 1 dimensional sequences. It is necessary to de�ne how this is extended to two dimen-
sions. To analyze these images we make use of row- and column-based decompositions as
discussed in section 6.2. Each row of the image will be regarded (and decomposed) sepa-
rately. After processing is done on the rows it is possible to reconstruct the image using
the processed rows. The same is done for the columns. Keeping the two decomposition
directions separate, results in two images (refer to �gure 45). For some purposes a single
image is calculated by �nding the average of these two images.

Using the tools in the LULU framework along with other methods we try to create auto-
mated procedures for identifying the features present in the images. We would also like to
integrate the detected information from each image into a composite.

10.1. Highlighting of Cd-rich crystals

The human visual processing system has no trouble in recognizing the high response Cd-
rich areas in both images in �gure 64. We want to automate this process. We do this by
suppressing the contribution of small structures and leaving large scale structures intact.

Each of the di�erently oriented images are decomposed row-by-row and column-by-column
using DPTL10(which extracts only positive pulses). The input image is then reconstructed
using a selection of pulses. Pulses of width up to 10 form part of to the reconstruction only
if it has a supporting base higher than the pulse itself. Speci�cally, a pulse only contributes
to a corresponding image element in the output image if either the vertical or horizontal
residual images have a higher value at that location than the pulse height (which implies
the existence of a structure of wider than 10 units in one of the decomposition directions).

Figure 65 shows the result of applying the procedure on each of the two images in �gure 64.
Compared to the original images, the Cd-rich crystals were highlighted by the removal of
most of the high variance noise found in the Pb-rich areas. A simple thresholding operation
can be used to �nd the set of pixels comprising the Cd-rich crystal in each image.

(a) (b)

Figure 65. The images with the Cd-rich phases enhanced by the removal
of small pulses.
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Determining the crystal regions automatically should be more accurate if information from
both images are used. From [14] we know that the Cd-rich phase is characterized by a high
response at one azimuthal angle (the one image) and a zero response when the azimuthal
angle is rotated by ∼ 30◦ (the other image). With equations relating a position in one
image to a position in the other image, one can use this characterization to determine
which crystal each image element belongs to. This is exactly what we aim to do next.

The crystal boundaries form straight lines. Knowing the equation of these lines will allow
us to determine the transformations needed to �nd corresponding points in the two images.
The goal is an automated algorithm that works for these type of crystal structures, which
rules out simply calculating it by hand. For this, we need to know what parts of the image
form part of the crystal boundaries.

10.2. Edge detection using the discrete pulse transform

Doing conventional edge detection can be problematic due to the noisy nature of the SH
images. The high variance noise caused by the large amount of micro-crystals will yield
many edges that we actually want to ignore when trying to �nd the crystal boundaries.
Using the highlighted images from the previous section with conventional edge detection
techniques will provide much better results.

An alternative is to use the edge detection technique discussed in section 5.3. The high-
lighted image is decomposed (this time using DPTUNLN

) along each horizontal and vertical
line. For the purpose of recognizing edges, replace each block-pulse with the border ele-
ments of that pulse and reconstruct. Wherever a pulse exists in the decomposition, only
the edges of that pulse shall remain in the reconstruction. We are only interested in �nding
the edges of large scale structures, therefore ignore all pulses smaller than width 10 in the
reconstruction. This gets rid of edges caused by the graininess of the images. Figure 66
shows this procedure to be e�ective in �nding the edges of the crystal boundaries when
applied to the highlighted images in �gure 65.

(a) (b)

Figure 66. Edge pixels extracted by skipping the �rst 5 resolution levels.
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It is now possible to �nd the equations that describe the boundary lines between the crys-
tals. A standard technique to identify straight lines in an image is the Hough Transform.
The Hough Transform maps every image element in the x− y plane into a curve in ρ− θ

space, de�ned by equation 10.1. The curves are weighted by the magnitude of the cor-
responding image element. A straight line consisting of many pixels will correspond to a
large peak in the Hough Transform of the edge image.

(10.1) x sin θ + y cos θ = ρ

The Hough Transform is calculated using the edge pixels of �gure 66. By taking a weighted
average of the area around the highest peak it is possible to �nd the parameters ρ and
θ. This yields the line which is most strongly suggested by the collection of edge pixels.
All edge pixels close to the this line are then removed before the Hough Transform is
recalculated. Again, a weighted average around the highest peak is used to obtain the line
parameters. As there are only two prominent crystal boundaries in the data, we stop here.
In �gure 67 we see that this method is successful in obtaining reasonable estimates of the
crystal boundaries.

(a) (b)

Figure 67. SH images with identi�ed crystal boundaries
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10.3. Image registration

Image registration refers to �nding equations that map each image element of one image to
a corresponding image element in another image. We wish to combine the two SH images
of �gure 64 into one image using these equations. The detected lines as displayed in �gure
67 provide enough information to do this.

First determine the point where the lines cross in both the images, as these points must
clearly be at the same absolute location. From equation 10.1 get the y coordinate of the
intersection point in each image:

(10.2) Iy =
ρ1 − ρ2

sin θ1
sin θ2

cos θ1 − cos θ2
sin θ1
sin θ2

,

where θi and ρi are the parameters of the lines found in section 5.3. The x-value of the
intersection point is then easy to determine as well. If θ1 is very close to zero, then the
second version of equation 10.3 should be used.

(10.3) Ix = ρ1−y cos θ1

sin θ1
or Ix = ρ2−y cos θ2

sin θ2

Equation 10.2 and 10.3 allows us to determine the position of the intersection point in
both images. Next, we calculate how much each line in �gure 67b must be rotated to �t
onto the corresponding lines in �gure 67a. Due to approximation errors and noise the two
calculated angles will di�er slightly. With the data analyzed here the di�erence is about
3 degrees. The mean of these two values is used as the angle, α, by which the azimuthal
angle was rotated before the second SH image was measured. We get:

α = 30.65o

This agrees with the approximate value of 30◦ known from the experimental setup [14].
Now transform the second image to place it in the correct position and orientation with
respect to the �rst image using the composition of three a�ne transformations.

TI ◦Rα ◦ T0

First the image is translated to put its intersection point at (0, 0). Then the image is
rotated by α. Finally the image is moved such that the two intersection points lie at the
same position. See �gure 68. For any image element in the second image, the corresponding
element in the �rst image can be found using this transformation.
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Figure 68. Result of image registration

10.4. Results

In the overlapping parts of the registered images there is information from both of the
second harmonic images available. This can be used to simplify some data analysis tasks.
For example, the Cd-rich crystals are identi�ed by looking for areas with high SH response
in one of the highlighted images and close to zero response in the other image. Using
the transformation function each image element is tested using this criteria. In the test
data, this yields two separate Cd-rich crystals of di�erent phases. The remaining area is
classi�ed as Pb-rich. To summarize the information obtained so far a composite image is
created (algorithmically), displaying the crystal regions and detected crystal boundaries
(�gure 69). Only the parts that are visible in both of the SH images are displayed.

The SH imaging of the Pb-rich areas show a weak response with a superimposed random
distribution. This is caused by the presence of Cd-rich micro-crystals [14]. Quantifying the
standard deviation of the distribution allows one to compare the concentration and growth
direction of Cd-rich micro-crystals in the Pb-rich area. In section 7.3 we discussed a way
of estimating the standard deviation of a 2d image. Applying this here results in �gure 70
(a darker gray-scale implies a higher concentration). As expected from the di�erences in

Pb−rich

Cd−rich II

Cd−rich I

Figure 69. Crystal regions and boundaries.
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(a)(a)

Figure 70. Visualizing the variance in the Pb-rich areas.

rotational anisotropy curves of the two Cd-rich phases, when the concentration of micro-
crystals is high in one image it is low in the other. Most of the micro-crystals are of the
same phase as the bottom Cd-rich crystal.

The constants (i.e. the degree of smoothing applied, and number of levels left out of
reconstructions) used in this image processing procedure depends on the scales present in
the images and not any speci�c images features, and should be the same for other images
of this type.

The LULU framework provided tools that simpli�ed the creation of automated procedures
for the e�cient and robust processing of real-world data. In practice, systems like this can
decrease the amount of human intervention needed. This is especially useful when large
sets of similar data need to be processed and analyzed (i.e. quality checks on an assembly
line).
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Closing remarks

The concepts behind, related tools and practical uses of the LULU perspective and the
discrete pulse transform have been discussed, with some focus on di�erences in viewpoint
with respect to the Fourier Transform and the Wavelet Decomposition. Application of the
LULU tools on a variety of practical data processing problems was demonstrated. The
idea is that, through these discussions and (often simple) demonstrations, an intuition and
practical know-how regarding the LULU perspective has developed, allowing the reader
to envisage and implement analysis procedures based on these ideas.

Future research avenues include:

(1) Which concepts in the LULU framework generalize to Mathematical Morphology?
(2) Further comparison of median smoothers with the LULU operators.
(3) Determination of necessary and su�cient conditions for the consistency of a dis-

crete pulse transform based on an arbitrary set of operators. Is a dpt based on
the unbiased smoothers Gn and Hn consistent?

(4) Design of other highlighting procedures.
(5) True extension of the pulse perspective to two dimensions (as discussed in 6.1),

i.e. a combination of leaf-based 2-d decomposition (with a LULU structure), and
a 2-d characterization of pulses.

(6) Estimation of other moments using a pulse decomposition, and the feasibility of
using both upward and downward pulses of L1U1 and U1L1 to estimate standard
deviation.

(7) Compression, transmission and storage of images.
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APPENDIX A

The discrete pulse transform

The discrete pulse transform is one of the most useful tools in the LULU framework. We
list a Matlab function that performs the decomposition in O (n) time for any sequence.

0001 function [residual, lev, width, pos, hgt]=dptstd(f, N, bias)
0002 % [residual, lev, pos, hgt, r] = dptstd(f, N, alternate)
0003 %
0004 % Perform fast discrete pulse transform of sequence f
0005 % up to level N using seperators S_n.
0006 % bias = 0 : S_n = L_n U_n (bias downwards pulses)
0007 % bias = 1 : S_n = U_n L_n (bias upwards pulses)
0008 %
0009 % Returns:
0010 % residual - residual sequence r�(0)
0011 % lev - Nxlength(f) matrix of resolution levels, r�(i) = lev(i, :);
0012 % M pulses:
0013 % width - 1xM vector of pulse widths
0014 % pos - 1xM vector of positions of left edge
0015 % hgt - 1xM vector of pulse heights
0016
0017 % Default values
0018 if (nargin<3), bias = 0; end;
0019 if (nargin<2), N = length(f)-2; end;
0020 % Require a row vector
0021 if (size(f,1)>size(f,2)), f = f'; end;
0022
0023 % Differences smaller than TOL are assumed to be zero
0024 TOL = eps*10;
0025
0026 %% Initialize catalogue/schedule/table of extracted features
0027 diffval = diff(f);
0028 diffpos = find(diffval�=0);
0029 numD = length(diffpos); % number of differences in f
0030 % We require at least two differences to find a pulse
0031 if (numD <= 1)
0032 residual = f;
0033 lev = zeros(0, length(f));
0034 width = zeros(1, 0);
0035 pos = zeros(1, 0);
0036 hgt = zeros(1, 0);
0037 return;
0038 end;
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0039
0040 % Number of pulses removed from signal
0041 numPulse = 0;
0042
0043 % Arrays holding extracted pulse information
0044 pos = zeros(1, numD);
0045 hgt = zeros(1, numD);
0046 width = zeros(1, numD);
0047
0048 % Data matrix holding catalogue and schedule
0049 d = [diffpos; diffval(diffpos); 0:length(diffpos)-1; ...textcolorcomment
0050 [2:length(diffpos) 0]; zeros(2,length(diffpos))];
0051 % Indices into data matrix
0052 cPos = 1; cVal = 2; cPrev = 3; cNext = 4;
0053 fPrev = 5; fNext = 6; fLev = 7;
0054
0055 % First and last entries in feature priority queues
0056 fPosF = zeros(1,N);
0057 fPosL = zeros(1,N);
0058
0059 %% Helper functions
0060 function addFeature(highPriority, leftIndex, featSize)
0061 if (featSize>N) return; end;
0062 % Add feature of size [featSize] at
0063 % index [leftIndex] to the the feature scheduler
0064 if (highPriority)
0065 % Bumps are placed in beginning (for UL)
0066 if (fPosF(featSize)>0)
0067 d(fPrev, fPosF(featSize)) = leftIndex;
0068 d(fNext, leftIndex) = fPosF(featSize);
0069 else
0070 fPosL(featSize) = leftIndex;
0071 end
0072 d(fLev, leftIndex) = featSize;
0073 fPosF(featSize) = leftIndex;
0074 else
0075 % Pits in the end (for UL)
0076 if (fPosL(featSize)>0)
0077 d(fNext, fPosL(featSize)) = leftIndex;
0078 d(fPrev, leftIndex) = fPosL(featSize);
0079 else
0080 fPosF(featSize) = leftIndex;
0081 end
0082 d(fLev, leftIndex) = featSize;
0083 fPosL(featSize) = leftIndex;
0084 end
0085 end
0086
0087 function deleteFeature(where)
0088 % Delete feature at index [where] from schedule
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0089 if (d(fLev, where)>0)
0090 if (d(fPrev, where)>0)
0091 d(fNext, d(fPrev, where)) = d(fNext, where);
0092 else
0093 % if that was first feature in row, update fPosF
0094 fPosF(d(fLev, where)) = d(fNext, where);
0095 end
0096 if (d(fNext, where)>0)
0097 d(fPrev, d(fNext, where)) = d(fPrev, where);
0098 else
0099 % if that was last feature in row, update fPosL
0100 fPosL(d(fLev, where)) = d(fPrev, where);
0101 end
0102 d(fLev, where) = 0;
0103 d(fNext, where) = 0;
0104 d(fPrev, where) = 0;
0105 end
0106 end
0107
0108 function deleteDifference(where)
0109 % Delete difference at index [where] from catalogue
0110 if (d(cPrev, where)>0)
0111 d(cNext, d(cPrev, where)) = d(cNext, where);
0112 end
0113 if (d(cNext, where)>0)
0114 d(cPrev, d(cNext, where)) = d(cPrev, where);
0115 end
0116 d(cPrev, where) = 0;
0117 d(cNext, where) = 0;
0118 end
0119
0120 function extractPulse(feat, level)
0121 % Extract feature at position [feat] and update differences
0122 numPulse = numPulse + 1;
0123
0124 width(numPulse) = level;
0125 pos(numPulse) = d(cPos, feat) + 1;
0126
0127 height = sign(d(cVal, feat)) * ...
0128 min(abs(d(cVal, feat)), abs(d(cVal, d(cNext, feat))));
0129 hgt(numPulse) = height;
0130
0131 f(d(cPos, feat)+1:d(cPos, feat)+level) = ...
0132 f(d(cPos, feat)+1:d(cPos, feat)+level)-height;
0133 d(cVal, feat) = d(cVal, feat) - height;
0134 d(cVal, d(cNext, feat)) = d(cVal, d(cNext, feat)) + height;
0135
0136 end
0137
0138 function [Shalf] = removeFeatures(curLev, order)
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0139 % If order is true, remove upward pulses first
0140 % Depending on wheter S_n = L_nU_n or U_nL_n, start at
0141 % different ends of priority queue
0142 if (order)
0143 tfNext = fNext;
0144 tcNext = cNext;
0145 tfPrev = fPrev;
0146 tcPrev = cPrev;
0147 curFeat = fPosF(curLev);
0148 lastPulseSign = 1;
0149 else
0150 tfNext = fPrev;
0151 tcNext = cNext;
0152 tfPrev = fNext;
0153 tcPrev = cPrev;
0154 curFeat = fPosL(curLev);
0155 lastPulseSign = -1;
0156 end;
0157 nextPulseSign = lastPulseSign;
0158 Shalf=f;
0159 stored = 0;
0160 while (curFeat �= 0)
0161 nextDiff = d(tcNext, curFeat);
0162 nextPulseSign = sign(d(cVal, curFeat));
0163 if (�stored && lastPulseSign �= nextPulseSign)
0164 % Store copy of signal after one type of pulse removed
0165 % (Available for future enhancements)
0166 Shalf = f;
0167 stored = 1;
0168 end
0169 extractPulse(curFeat, curLev);
0170 % Position of current difference after pulse is removed
0171 curDiffAfter = curFeat;
0172 % Position of next difference after pulse is removed
0173 nextDiffAfter = nextDiff;
0174
0175 % Was right difference removed
0176 if (abs(d(cVal, nextDiff)) < TOL)
0177 numD = numD-1;
0178 nextDiffAfter = d(tcNext, nextDiff);
0179 deleteFeature(nextDiff);
0180 deleteDifference(nextDiff);
0181 end
0182
0183 % Was left difference removed
0184 if (abs(d(cVal, curFeat)) < TOL)
0185 numD = numD-1;
0186 curDiffAfter = d(tcPrev, curFeat);
0187 deleteDifference(curFeat);
0188 end
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0189 nextFeat = d(tfNext, curFeat); % next feature to process
0190
0191 % Possibly create new features
0192 if (curDiffAfter>0)
0193 if (nextFeat == curDiffAfter),
0194 nextFeat = d(tfNext, curDiffAfter);
0195 end
0196 % Remove from schedule if feature already exists at this location
0197 deleteFeature(curDiffAfter);
0198
0199 % Add to feature list if pulse found
0200 if (nextDiffAfter>0 && ...
0201 d(cVal, curDiffAfter) * d(cVal, nextDiffAfter) < 0)
0202 addFeature(d(cVal, curDiffAfter)>0, curDiffAfter, ...
0203 d(cPos, nextDiffAfter) - d(cPos, curDiffAfter));
0204 end
0205 end
0206 curFeat = nextFeat;
0207 end
0208 if (lastPulseSign == nextPulseSign)
0209 Shalf = f;
0210 end
0211
0212 end
0213
0214 %% Scan for initial features
0215 curDiff = 1;
0216 nextDiff = d(cNext, curDiff);
0217 smallestFeat = 999999999;
0218 while (curDiff �= 0 && nextDiff �= 0)
0219 % Feature characterized by two differences of opposite sign
0220 if (d(cVal, curDiff) * d(cVal, nextDiff) < 0)
0221 featSize = d(cPos, nextDiff) - d(cPos, curDiff);
0222 addFeature(d(cVal, curDiff) > 0, curDiff, featSize)
0223 smallestFeat = min(smallestFeat, featSize);
0224 end
0225 curDiff = nextDiff;
0226 nextDiff = d(cNext, curDiff);
0227 end
0228
0229 %% Skip levels where no pulses exist
0230 df = zeros(N+1,length(f));
0231 df(1,:)=f;
0232 for i=2:min(smallestFeat,N);
0233 df(i,:) = f;
0234 end
0235
0236 %% Remove features starting from those with highest priority
0237 for curLev=smallestFeat:N
0238 removeFeatures(curLev, bias);
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0239 df(curLev+1,:) = f;
0240 % Stop if no pulses left
0241 if (numD<=1), break; end;
0242 end
0243 df = df(1:curLev+1, :);
0244
0245
0246 %% Set output variables
0247 residual = f;
0248 lev = -diff(df);
0249 width = width(1:numPulse);
0250 pos = pos(1:numPulse);
0251 hgt = hgt(1:numPulse);
0252 end
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