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Abstract 

Introduction: Affordable basic semen analysis remains a fundamental procedure to be performed 

routinely during the diagnosis of male infertility. Advanced semen analyses, provide valuable clinical 

insights in treatment related decision-making, but these are highly expensive and lack universal 

standardization. The World Health Organization (WHO) guidelines for semen analysis have been 

adopted by most human andrology and fertility laboratories around the world for more than thirty 

years. According to the most recent prescribed guidelines of the WHO, subjects must remain abstinent 

for a minimum period of two days, but not longer than seven days before collecting a sample for a 

standard semen analysis. Several studies have sought to determine the optimal period for ejaculatory 

abstinence. However, the results are often found to be contradictory. 

The aims of this study are two-fold: 

Aim I: To investigate the effect of short (4 hours) and long (4 days) abstinence periods on sperm 

quality based on functional and biochemical parameters in a population of normozoospermic men, in 

addition to the prediction of various basic and advanced semen parameters of the second (4 hours) 

ejaculate from a set of basic parameters obtained from the first (4 days) ejaculate.  

Aim II: Establishing a correlation between basic semen parameters assisted by Computer-aided 

sperm analysis (CASA) and a set of advanced semen analysis tests. To determine cut-off values for 

advanced semen parameters from various basic parameters based on WHO defined reference values. 

Methods: Semen samples were collected from one hundred potentially fertile, normozoospermic men 

(20 to 30 years) who abstained for a period of exactly 4 days and 4 hours prior to collection of the 

first and second ejaculates respectively. Semen samples were analysed according to the WHO 

guidelines. Sperm concentration, total sperm count (T.S.C.), total and progressive motility and 

kinematic/velocity parameters were analysed by CASA. Sperm viability was performed by dye 

exclusion and morphology via SpermBlueTM staining techniques using Computer Aided Sperm 

Morphology Analysis (CASMA). Sperm acrosome status was evealuated by fluorescence 

microscopy. Sperm DNA fragmentation and intracellular superoxide (O2
−•) levels were assessed by 

flow cytometry. Seminal antioxidant status [superoxide dismutase (SOD), catalase (CAT), 

thiobarbituric acid reactive substances (TBARS)] were measured by means of spectrophotometry.  

Statistical comparisons between short and long abstinence periods were performed using paired 

Student’s t-tests on GraphPad Prism™ software, while the prediction of various basic and advanced 

semen parameters of the second ejaculate from a set of basic semen parameters of the first ejaculate 

was performed using linear regression models. Correlations were performed using Spearman rank 
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correlation coefficients, while receiver operating characteristic (ROC) curves were used to determine 

cut-off values. Statistical significance was set at p<0.05. 

Results I: A significant increase in total and progressive motility as well as in the velocity parameters 

were observed after short (4 hours) abstinence compared to long (4 days) abstinence periods. DNA 

fragmentation and intracellular O2
−• levels were not significantly different between short and long 

abstinence periods. Despite the observed decrease in semen volume, sperm concentration and T.S.C. 

after the short abstinence period, all mean values of the conventional semen parameters still remained 

above the lower reference limits as recommended by the WHO 5th edition. We were also able to make 

predictions of various basic (semen volume, sperm concentration, total motility, progressive motility, 

viability and normal morphology) and advanced (DNA fragmentation, seminal plasma CAT activity 

and TBARS) parameters of the second ejaculate from a set of basic semen parameters obtained from 

the first ejaculate with relative certainty.  

Results II: The proportions of total and progressively motile as well as rapid spermatozoa were 

positively correlated with CAT activity (p<0.05). A significant negative correlation was observed 

between VCL, VSL, VAP and both intracellular O2
−• and TBARS levels. ALH was significantly and 

negatively correlated with intracellular O2
−• levels and DNA fragmentation, while its correlation with 

SOD activity was positive (p < 0.05). A negative correlation was also found between the percentage 

of viable spermatozoa and both O2
−• levels and DNA fragmentation, whereas the percentage of normal 

morphology was negatively correlated with O2
−• levels and positively with CAT activity (p < 0.05). 

The optimal intracellular O2
−• cut-off value to differentiate between asthenozoospermic and 

normozoospermic men was calculated to be 227 median DHE fluorescence intensity [MFI] (p < 0.01). 

At this cut-off value, the test was 80% sensitive and 86% specific.  Sperm viability was associated 

with a seminal plasma TBARS cut-off value of 9.86 Umol/L (p = 0.02) with sensitivity and specificity 

of 81% and 80% respectively. 

Conclusion: Our data challenges the generally accepted guidelines regarding the prescribed 

prolonged abstinence periods since the results show that 4 hours of sexual abstinence yielded 

significantly better samples from a sperm functional point of view. The results obtained from this 

study further support the validity of some CASA parameters as sensitive indicators of changes in 

sperm oxidative status and DNA integrity. This study also enabled defining the cut-off values and 

prediction of certain advanced variables from the basic semen analysis. 
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Opsomming 

Inleiding: Bekostigbare basiese semenanalise bly ‘n fundamentele prosedure wat roetinegewys 

uitgevoer word tydens die diagnose van manlike onvrugbaarheid. Gevorderde semenanalises bied 

waardevolle kliniese insigte in behandelingsverwante besluitneming, maar dit is baie duur en is nie 

universeel gestandaardiseer nie. Die Wêreldgesondheidsorganisasie (WGO) se riglyne vir die 

analisering van semen word wêreldwyd al vir meer as dertig jaar deur die meeste menslike 

andrologie- en vrugbaarheidslaboratoriums aangeneem. Volgens die mees onlangse voorgeskrewe 

riglyne van die WGO, moet mans hulself onthou van ejakulasie vir ‘n minimum tydperk van twee 

dae, maar nie meer as sewe dae lank voor die versameling van ‘n monster vir ‘n standaard 

semenanalise nie. Verskeie studies het probeer om die optimale tydperk vir ejakulatoriese onthouding 

te bepaal, maar die bevindinge was dikwels teenstrydig. 

Die doelstellings van hierdie studie is tweevoudig: 

Doelwit I: Om die effek van kort (4 uur) en lang (4 dae) onthoudingsperiodes op spermkwaliteit te 

ondersoek, gebaseer op funksionele en biochemiese parameters in ‘n populasie van 

normozoospermiese mans; en benewens daartoe om verskillende basiese en gevorderde 

semenparameters van die tweede (4 uur) ejakulaat te voorspel gebaseerop ‘n stel basiese parameters 

verkry vanaf die eerste (4 dae) ejakulasie. 

Doelwit II: Die vasstelling van korrelasies tussen basiese semenparameters, bygestaan deur 

rekenaargesteunde spermanalise (CASA), en ‘n stel gevorderde semenanalise toetse. Om afsnypunte 

vir gevorderde semenparameters te bepaal uit verskeie basiese parameters gebaseer op WGO 

gedefinieerde verwysingswaardes. 

Metodes: Semenmonsters is versamel van een honderd potensieel vrugbare, normozoospermiese 

mans (20 tot 30 jaar) wat vir ‘n tydperk van presies 4 dae en 4 ure voor die eerste en tweede ejakulasie 

onderskeidelik onthou het. Semenmonsters is volgens die WGO-riglyne ontleed. Spermkonsentrasie, 

totale spermtelling (T.S.C.), totale en progressiewe motiliteit en kinematiese / snelheid parameters is 

deur CASA geanaliseer. Spermlewensvatbaarheid is bepaal deur middel van kleurstofuitsluiting en 

morfologie met behulp van SpermBlueTM kleuringstegnieke en die gebruikmaking van 

rekenaargesteunde spermmorfologie-analise (CASMA). Akrosoom status is bepaal deur fluoresensie 

mikroskopie. DNA-fragmentasie en intrasellulêre superoksied (O2
-•) vlakke is gemeet met behulp van 

vloeisitometrie. Seminale antioksidante status [superoksied dismutase (SOD), katalase (CAT), 

tiobarbituriensuur reaktiewe substanse (TBARS)] is geassesseer met behulp van spektrofotometrie. 

Statistiese vergelykings tussen kort en lang onthoudingsperiodes is uitgevoer deur gebruik te maak 

van gepaarde Student t-toetse op GraphPad PrismTM -programmatuur, terwyl die voorspelling van 
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verskeie basiese en gevorderde semenparameters van die tweede ejakulasie vanaf ‘n stel basiese 

semenparameters van die eerste ejakulaat uitgevoer is deur gebruik te maak van lineêre 

regressiemodelle. Korrelasies is uitgevoer met behulp van die Spearman-rangkorrelasie koëffisiënt, 

terwyl operasionele karakteristieke krommes van ontvanger (ROC) gebruik is om afsnypunte te 

bepaal. Statistiese betekenisvolheid is vasgestel op p<0.05. 

Resultate I: ‘n Beduidende toename in totale en progressiewe motiliteit sowel as in die 

snelheidsparameters is waargeneem na kort (4 uur) onthouding in vergelyking met lang (4 dae) 

onthoudingsperiodes. DNA fragmentasie en intrasellulêre O2
-• vlakke was nie beduidend verskillend 

tussen kort en lang onthoudingsperiodes nie. Ten spyte van die waargeneemde afname in semen 

volume, sperm konsentrasie en T.S.C. na die kort onthoudingsperiode, bly alle gemiddelde waardes 

van die konvensionele semenparameters steeds bo die laer verwysingslimiete soos aanbeveel deur die 

WGO 5de uitgawe. Ons was ook in staat om voorspellings met relatiewe sekerheid te maak van 

verskillende basiese (semen volume, spermkonsentrasie, totale motiliteit, progressiewe motiliteit, 

lewensvatbaarheid en normale morfologie) en gevorderde (DNA-fragmentasie, plasma-CAT-

aktiwiteit en TBARS) parameters van die tweede ejakulasie vanaf ‘n stel basiese semen parameters 

verkry vanaf die eerste ejakulasie. 

Resultate II: Die verhoudings van totale en progressief motiele sowel as vinnige spermatozoa was 

positief gekorreleer met CAT aktiwiteit (p <0.05). ‘n Beduidende negatiewe korrelasie is waargeneem 

tussen VCL, VSL, VAP en beide intrasellulêre O2
-• en TBARS-vlakke. ALH was beduidend en 

negatief gekorreleer met intrasellulêre O2
-• vlakke en DNA-fragmentering, terwyl die korrelasie met 

SOD-aktiwiteit positief was (p <0.05). ‘n Negatiewe korrelasie is ook gevind tussen die persentasie 

lewensvatbare spermatozoa en beide O2
-• en DNA-fragmentering, terwyl die persentasie normale 

morfologie negatief gekorreleer is met O2
-• vlakke en positief met CAT-aktiwiteit (p <0.05). Die 

optimale intrasellulêre O2
-• afsnywaarde om te onderskei tussen astenozoospermiese en 

normozoospermiese mans is bereken as 227 mediaan DHE fluoresensie-intensiteit [MFI] (p <0.01). 

By hierdie afsnywaarde was die toets 80% sensitief en 86% spesifiek. Spermlewensvatbaarheid is 

geassosieer met ‘n seminale plasma TBARS-afsnywaarde van 9.86 Umol / L (p = 0.02) met ‘n 

sensitiwiteit en spesifisiteit van onderskeidelik 81% en 80%. 

Gevolgtrekking: Ons data daag die algemeen aanvaarde riglyne uit rakende die voorgeskrewe 

verlengde onthoudingsperiodes aangesien die uitslae aantoon dat 4 uur seksuele onthouding 

aansienlik beter semenmonsters oplewer soos beskou uit ‘n spermfunksionele oogpunt. Die resultate 

soos verkry uit hierdie studie, ondersteun verder die geldigheid van sommige CASA parameters as 

sensitiewe aanwysers van veranderinge in sperm oksidatiewe status en DNA integriteit. Hierdie studie 
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het ook die definiëring van afsnywaardes en voorspelling van sekere gevorderde veranderlikes vanaf 

die basiese semenanalise bepaal. 
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Chapter 1: Introduction 

1.1 Background  

Infertility is delineated by the International Committee for Monitoring Assisted Reproductive 

Technology, World Health Organization (WHO), as “a disease of the reproductive system defined by 

the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual 

intercourse”. Globally, an estimated 60–80 million couples of reproductive age currently suffer from 

infertility (WHO, 2004). The prevalence of infertility diverges widely across regions and is estimated 

to affect an average of 8 to 12 % of couples around the world (Kumar and Singh, 2015). Male factor 

infertility has been shown to be the sole contributor in approximately 20 % of all infertility cases and 

is partially implicated in another 30–40 % (Sharlip et al., 2002). Usually, when the attributable causes 

of female infertility have been eliminated and/or semen analysis results fail to meet the WHO criteria 

(WHO, 2010), male infertility is taken into consideration as the likely etiological factor.  

In recent years, the overall incidence of male infertility has increased dramatically, reflecting a 

progressive decline in semen quality and a concurrent increase in abnormalities of the male 

reproductive tract (Kumar and Singh, 2015). An emerging concern has been raised about the global 

time-related deterioration in semen quality. For instance, in a meta-analysis, which was carried out 

between 1938 and 1991 and included 61 studies from multiple nations, a substantial reduction in the 

mean sperm concentration, from 113 x 106/mL to 66 x 106/mL, was reported among men with no 

prior history of infertility. This indicates that sperm concentration had declined worldwide by an 

average of 50 % during the last 50 years of the twentieth century (Carlsen et al., 1992). These findings 

attracted a considerable attention and have been supported by several recent studies that consistently 

revealed a global downward trend in semen quality (Borges et al., 2015, Huang et al., 2017, Sengupta 

et al., 2017). 

A considerable amount of variability has also been shown to exist in various semen characteristics 

within and among individuals (Alvarez et al., 2003). These variations have been largely attributed to 
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several modifiable intrinsic and extrinsic factors. These factors include the length of sexual 

abstinence, ejaculation frequency and method of collection. Other factors that have the potential to 

influence semen quality are general health and lifestyle, infection, dysfunction of male sex glands, 

urogenital surgery as well as therapeutic and environmental exposures (Bahadur et al., 2016a; Du 

Plessis et al., 2014; Gosálvez et al., 2011; Valsa et al., 2013). 

The World Health Organization (WHO) manuals for examining and processing human semen (WHO, 

2010) provide a practical guide for standardizing semen analysis. These manuals have been 

periodically published and actively revised since its first edition in 1980. The WHO criteria for semen 

analysis have been adopted by most human andrology and fertility laboratories around the world for 

more than thirty years. According to the most recent prescribed guidelines of the WHO, subjects must 

remain abstinent for a minimum period of two days, but not longer than seven days before collecting 

a sample for a standard semen analysis (WHO, 2010). More constricted abstinence intervals of three 

to four days have also been suggested by the Nordic Association for Andrology (NAFA) and the 

European Society of Human Reproduction and Embryology [ESHRE] (Kvist and Björndahl, 2002). 

The basis for these recommendations is nevertheless not supported by sufficient scientific evidence 

and requires further clarification. 

In light of the differing ejaculatory abstinence periods suggested by various regulatory bodies, a 

growing concern has resulted over what the precise period of ejaculatory abstinence ought to be for 

an optimal semen sample. This has prompted several studies to examine the influence of abstinence 

periods on various semen quality parameters; however, the results are not conclusive. Interestingly, 

some studies have even challenged the recommended guidelines in favour of extremely shorter 

periods (i.e. ˃ 1 hour to 4 hours) due to their advantageous effects on semen characteristics (Bahadur 

et al., 2016a; Gosálvez et al., 2011; Mayorga-Torres et al., 2016; Valsa et al., 2013).  

During the last half century, several studies have sought to determine the optimal time frame for 

ejaculatory abstinence, however the results are often found to be contradictory. In general, these 

studies assessed a wide range of abstinence period cut-offs (<1–18 days). Prolonged periods of sexual 
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abstinence have generally been reported to increase semen volume, total sperm count (T.S.C.) and 

sperm concentration (Agarwal et al., 2016; Marshburn et al., 2014; Mayorga-Torres et al., 2015; 

Sunanda et al., 2014). However, the overall quality of spermatozoa has shown to be influenced by the 

efficiency of epididymal storage and the transit rate of spermatozoa, which is apparently dependent 

on the frequency of ejaculation (Johnson and Varner, 1988; Turner, 2008). 

Progressive motility (Bahadur et al., 2016a) as well as the percentage of motile spermatozoa (Agarwal 

et al., 2016; Choavaratana et al., 2014; Valsa et al., 2013) were found to decrease substantially with 

increased abstinence period, while no significant differences were observed in other studies (Jurema 

et al., 2005; Mayorga-Torres et al., 2015; Sánchez-Martín et al., 2013). In addition, only a few studies 

are available on the impact of abstinence time on advanced sperm functional parameters such as 

intracellular Reactive Oxygen Species (ROS) production and DNA integrity, while their findings are 

apparently inconsistent. Shortening the abstinence time resulted in a significant decrease in sperm 

DNA fragmentation (Agarwal et al., 2016; Sánchez-Martín et al., 2013; Sukprasert et al., 2013) and 

ROS levels (Mayorga-Torres et al., 2016), whereas other studies reported no significant differences 

(Mayorga-Torres et al., 2015; De Jonge et al., 2004; Desai et al., 2010). 

Chronobiological studies showed that various changes occur in the body every 4 hours (Valsa et al., 

2013). Despite this, no comprehensive study has been undertaken to investigate the effect of a short 

abstinence period lasting 4 hours on conventional semen parameters, in addition to various existing 

sperm functional parameters such as acrosome reaction, sperm ROS and DNA fragmentation, and 

seminal plasma antioxidant capacity. Accordingly, the typical time after which semen samples should 

be collected for standardized analysis remains unclear and needs to be further investigated. 

In addition to a detailed medical history and a thorough physical examination, conventional semen 

analysis remains a fundamental procedure performed on routine basis during the diagnosis of male 

infertility (Hamada et al., 2012). Being cost-effective and not technically demanding, semen analysis 

is largely used as a preliminary diagnostic tool for the evaluation of male infertility (Sikka and 

Hellstrom, 2016; Vasan, 2011). The analysis provides essential information about the basic 
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characteristics of the semen which include the ejaculate volume, sperm concentration, motility as well 

as viability and morphology. However, conventional semen analysis, if performed manually,  is 

criticized for being subjective, time consuming and prone to inter- and intra- laboratory variations 

related especially to the identification of motile sperm subpopulations (Cooper and Yeung, 2006) and 

morphology assessment (Daoud et al., 2016; Rivera-Montes et al., 2013). The potential counting and 

interpretation errors associated with the subjective visual assessment of the traditional semen analysis 

have highlighted the absolute necessity for computerized systems designed to automate the analysis. 

In contrast to the manual analysis, computer-aided sperm analysis (CASA) system, if used 

proficiently under identical settings, is undeniably a powerful approach for the objective assessment 

of spermatozoa. CASA is an automated system with hardware and software packages designed to 

visualize and digitalize series of sequential images of spermatozoa (Lu et al., 2014; Talarczyk-Desole 

et al., 2017). The obtained data is processed and analysed to provide the users with quantitative 

information about different aspects of sperm quality (Amann and Katz, 2004). On the basis of better 

computer technology and image resolution, the commercially available CASA systems not only 

measure the kinematic parameters more accurately, but also in closer agreement with each other 

(Mortimer et al., 2015).  

The WHO laboratory manuals for the examination and processing of human semen provide a primary 

reference guideline for standardizing semen analysis. These manuals have been periodically 

published and actively developed since its first edition in 1980 (WHO, 1980, 1987, 1992, 1999, 2010). 

Most of the traditional and automated semen analysis methods have aligned their measurements 

according to these criteria (Lu et al., 2014; Mortimer et al., 2015). The inclusion of normal reference 

values of semen parameters in the WHO manuals has been of enormous significance in establishing 

some consistency regarding the basic characteristics of normal ejaculate (Björndahl, 2011).  

However, semen parameter values do not necessarily reflect the functional integrity of spermatozoa, 

and studies have revealed a significant overlap in the semen characteristics between fertile and 

infertile men (Hamada et al., 2012; Lewis, 2007). Consequently, a large proportion of men with 
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normal semen analysis results are often diagnosed as having unexplained infertility as the underlying 

pathophysiology of sperm functional deficiencies remains largely unknown (Khodair and Omran, 

2013; Sikka and Hellstrom, 2016). 

The recent enormous progress towards understanding the biochemical and molecular mechanisms 

regulating human sperm function has driven the development of a variety of assays for proper 

evaluation of the functional quality of spermatozoa (Franken and Oehninger; 2012; Sikka and 

Hellstrom, 2016; Van der Horst and Du Plessis, 2017). These assays provide valuable clinical insights 

into multiple aspects of sperm function, including DNA integrity as well as oxidative stress and 

membrane lipid peroxidation. The obtained information could be of highest value to assist the 

clinician in treatment-related decision-making (Lamb, 2010, Oehninger et al., 2014; Talwar and 

Hayatnagarkar, 2015). In most cases, these assays are primarily used for research purposes and are 

not considered part of the routine assessment of male infertility (Sikka and Hellstrom, 2016). This is 

mainly attributed to the lack of standardization and complexity of these assays in addition to the high 

costs, which adds a further financial burden to a couple undergoing fertility investigations (Talwar 

and Hayatnagarkar, 2015). 

Therefore, several studies have sought to investigate the association between basic and advanced 

semen quality markers, however, results have often been found inconsistent. For instance, some 

studies have revealed that increased ROS production was negatively correlated with impaired sperm 

concentration, motility, morphology and viability (Agarwal et al., 2006; Aziz et al., 2004; Zorn et al., 

2003). Other studies, however, failed to demonstrate any significant association between ROS levels 

and these semen parameters (Desai et al., 2010; Homa et al., 2015). Similarly, increased DNA damage 

was reported to be strongly correlated with sperm poor motility (Sheikh et al., 2008) whereas no such 

relationship was found in other studies (Karydis et al., 2005; Xia et al., 2004). Furthermore, a 

substantial association was observed between SOD activity and sperm concentration and motility 

(Badade et al., 2011; Siciliano et al., 2001), which seemingly contradict the results reported by Hsieh 

et al. (2002). 
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Few studies have further endeavoured to define the cut-off values for some modern semen parameters 

that could be useful in predicting the fertility potential of men. In this regard, Das et al. (2008) showed 

the cut-off value of 0.075-0.1x106 counted photons per minute (cpm)/10 million cells for ROS in the 

ejaculate is associated with higher fertilization outcomes. In another study, the seminal ROS cut-off 

value of 102.2 relative light units/sec (RLU/s)/million spermatozoa has also been suggested as a 

reliable indicator to differentiate between fertile and infertile men (Agarwal et al., 2015). 

Furthermore, López et al. (2013) demonstrated that levels DNA fragmentation above 25.5 % are 

associated with greater risk of failure In vitro fertilization (IVF) treatment, while relatively similar 

cut-off value of 26.1 % has recently been suggested (Wiweko and Utami, 2017). 

In order to promote the diagnostic values of basic semen parameters, only one study has sought to 

investigate the relationship between basic and advanced semen markers with the aim of predicting 

sperm DNA fragmentation levels from the proportions of viability (Samplaski et al., 2015). Using 

Pearson’s correlation coefficient, this study reported the threshold value of 30 % for DNA 

fragmentation to discriminate between semen samples with normal and compromised viability. That 

is, in samples with sperm viability ≥ 75 %, the DNA fragmentation was ≤ 30 %. According to their 

estimates, Samplaski, and colleagues calculated that the viability testing would successfully predict 

DNA fragmentation in nearly 67 % of men. 
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1.2 Motivation of the study 

1.2.1 Aim I: Effect of abstinence period on semen quality. 

The prevalence of male infertility is presently on the rise, therefore necessitating the need to find 

valid diagnostic approaches. According to the prescribed guidelines of the WHO, subjects must 

remain abstinent for a minimum period of 48 hours, but not longer than seven days prior to collecting 

a sample for a standard semen analysis (WHO, 2010). However, the basis for this recommendation 

remains contradictory, although there are indications in the literature that shorter abstinence periods 

might be beneficial. In addition, the overall quality of spermatozoa has been shown to be affected by 

the efficiency of storage in the epididymis and the rate at which spermatozoa pass from the proximal 

to the distal cauda region. Experimental studies have shown that moderate aging of hamster 

spermatozoa in the cauda epididymis was associated with a marked reduction in the ability of 

spermatozoa to undergo the acrosome reaction (Cuasnicu and Bedford, 1989). Similarly, experiments 

performed to compare the fertilizing capacity of rat spermatozoa recovered from different 

compartments of the epididymis, showed that spermatozoa sampled from the proximal cauda were 

significantly superior to those from the distal cauda region or vas deferens (Moore and Akhondi, 

1996). In humans, semen collected from the same individual can display substantial variability, where 

changes have been observed between consecutive samples from the same donor (Keel, 2006). 

Therefore, combining the initial and sequential ejaculates collected within a very short period has 

recently been suggested as an effective approach for a potential shift of oligozoospermia patients 

towards the normozoospermic range (Bahadur et al., 2016a).  

Chronobiological studies have furthermore shown that various changes occur in the body every 4 

hours (Valsa et al., 2013). Despite this, no comprehensive study has been undertaken to investigate 

the effect of a short abstinence period, lasting only 4 hours, on conventional semen parameters, in 

addition to various existing sperm functional parameters such as acrosome reaction, sperm ROS and 

DNA fragmentation as well as seminal plasma antioxidant capacity. Additionally, it appears that no 
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study, as of yet, has comprehensively predicted basic and advanced variables of the second ejaculate 

(collected after a short abstinence period) from the core basic parameters obtained from the first 

ejaculate, which is collected after a long abstinence period. This could possibly assist in the decision 

making as to whether obtaining a second ejaculate after such a short period of abstinence would lead 

to better sperm quality and assisted reproduction outcomes in the case of  a particular patient.   

1.2.2 Aim II: Relationship between advanced and basic semen parameters 

Aside from basic semen analysis, several biochemical and molecular investigations such as 

antioxidant assays, DNA fragmentation and ROS status have been employed to evaluate the 

functionality of spermatozoa in addition to providing valuable clinical insight into vital aspects of 

sperm functions. However, these advanced assays are highly complex, very expensive and lack 

universal standardization. Therefore, there is the need to develop a model that would assist in showing 

a relationship to indicate the extent to which changes in each individual measurement of semen 

analysis are related to changes in the advanced parameters.  On the other hand, predicting advanced 

variables from a number of basic semen parameters will assist in eliminating the necessity for 

advanced sperm functional testing, representing cost-saving measures for some couples undergoing 

fertility assessment.  
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1.3 Outline of the study 

Chapter 1 introduces the study with emphasis on a brief background, justification for the study, 

outlines of the entire thesis as well as the aims and the objectives of the study. Chapters 2 provides a 

short introduction to an extensive literature search, while the body of the literature review entails the 

processes involved in spermatozoa formation and development, specific attributes of spermatozoa 

and a number of factors that affect sperm quality. Chapter 3 is composed of protocols utilized in the 

study design and this proudly entails basic semen analyses in addition to various advanced techniques, 

such as DNA fragmentation, TBARS and antioxidant assays as well as various statistical tools used 

in the study. Chapter 4 entails a description of the statistically analysed results along with 

corresponding tables and figures. All the results are discussed comprehensively in Chapter 5. This 

includes interpretation, explanation and drawing of inferences in order to describe the findings of the 

study. This section is segmented based on the different aims and objectives of the study, while the 

conclusion and recommendations are captured in Chapter 6. The appendix contains addenda and 

supplementary data that may not be accommodated in any of the six Chapters, but is considered very 

important for the sake of detail and completeness. 

As part of the study an in depth systematic review was conducted, which has been accepted for 

publication in the International Journal of Fertility and Sterility (Ayad et al., 2018). Furthermore, the 

original findings of this project specifically relating to the changes in parameters between short and 

long abstinence periods were also accepted for publication in the Middle East Journal of Fertility and 

Sterility (Ayad et al., 2017). These manuscripts form part of the Appendix. 
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1.4 Aims and objectives 

Aim I: 

The first aim of this study was to determine the effect of short (four hours) and long (four days) 

ejaculatory abstinence periods on semen and sperm quality. 

Objective 1: Determination of the influence of short and long ejaculatory abstinence periods on 

basic semen parameters. 

Objective 2: Determination of the influence of short and long ejaculatory abstinence periods on 

advanced semen parameters. 

Objective 3: Prediction of both basic and advanced parameters of the second ejaculate from a set 

of basic semen parameters obtained from the first ejaculate. 

Aim II: 

The second aim of this study was to determine the relationship between basic and advanced semen 

parameters. 

Objective 1: Correlations between basic semen parameters and advanced semen parameters. 

Objective 2: Establishing cut-off values for the advanced semen parameters using a set of basic 

semen parameters with WHO defined reference values. 
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2 Chapter 2: Literature Review 

The purpose of this chapter is to outline and discuss the current information available in the literature 

relating to this research. This section reviews information regarding the processes involved in 

spermatogenesis as well as basic and advanced sperm characteristics in addition to a number of factors 

that have been shown to influence sperm quality. This extensive review will allow for sound 

interpretation of the results and enable informed decisions with regards to methodology employed 

during the study and discussion of findings. The subsequent section will start with a broad revision 

of the steps involved in sperm production and development. 

2.1 Sperm development/spermatogenesis 

Spermatogenesis is a highly orchestrated series of events through which the immature diploid 

spermatogonia develop into mature haploid spermatozoa over an extended period of time (Hess and 

de Franca, 2009). The process of spermatogenesis is not activated until puberty and is then sustained 

for the remainder of life in normal men (Sharpe, 2010). Spermatogenesis occurs within the germinal 

epithelium of the seminiferous tubules (Figure 2.1), where the germ cells are sequentially organized 

into several layers from the base membrane towards the lumen. Each stage is morphologically distinct 

and is identified according to the cellular associations (Figure 2.2) observed in the tubular cross 

section. In humans, the entire process of spermatogenesis from the earliest stage of production to the 

ejaculation of spermatozoa is estimated to take an average of 64 days (Amann, 2008; Hess and de 

Franca, 2009; Misell et al., 2006). 

During the embryonic development, the primordial germ cells transfer into the testis to be developed 

into immature germ cells named spermatogonia. At puberty, the spermatogonia undergo a series of 

mitotic divisions for renewing the stem cell and meiotic divisions for the production of spermatozoa 

(Amann, 2008). In men, two main types of spermatogonia have been identified; Type A comprises 

the stem cell population, and Type B which divides mitotically to yield primary spermatocytes. Type 
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A is the most rudimentary and is subcategorized into pale Type A and dark Type A spermatogonia 

(Durairajanayagam et al., 2015). 

2.1.1 Mitosis: 

Mitosis is a precisely regulated process, which involves the proliferation and maintenance of 

spermatogonia (Type A and Type B) and primary spermatocytes.  Pale Type A spermatogonia divide 

mitotically to replenish themselves, as well as to differentiate into Type B spermatogonia for further 

development (Ehmcke and Schlatt 2006). Type B spermatogonia are the last germ cells to divide 

mitotically, producing preleptotene primary spermatocytes, which are the initial cells of the second 

phase. In men, about four generations of spermatogonia are prerequisite for the formation of 

preleptotene spermatocytes from a single spermatogonial stem cell. Preleptotene spermatocytes pass 

the tight junctions, moving away from the base of the seminiferous tubule (Hess 1999). 
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Figure 2. 1: Illustration of the major events in human spermatogenesis (Sharma and Agarwal, 

2011). 
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Figure 2. 2: Schematic representation of the main cell types that occur in the human 

seminiferous epithelium (Weinbauer et al., 2010). 

 

2.1.2 Meiosis: 

The meiotic process is a critical event in spermatogenesis as it involves a chromosomal exchange of 

genetic materials and a development of haploid cells with one set of chromosomes called spermatids 

(Weinbauer et al., 2010). Meiosis occurs in two successive divisions. The first meiotic division 

involves the transformation of primary spermatocyte into secondary spermatocyte that undergoes the 

second meiotic division to form four haploid spermatids. Each round of meiotic division consists of 

prophase, metaphase, anaphase, and telophase. Prophase of the initial meiotic division continues for 

three weeks, while the rest of the first meiosis and the entire second meiosis are accomplished within 

one to two days (Hess, 1999; Weinbauer et al., 2010). The end products of the telophase of the second 

meiotic division are round mitotically inactive spermatids. These cells have haploid chromosomes 
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(23X or 23Y) and remain lightly attached by fine links and enter the next phase of synchronous of 

differentiation and morphogenesis known as spermiogenesis (Sharma and Agarwal, 2011). 

2.1.3 Spermiogenesis: 

The round haploid spermatids derived from the second meiotic division undergo crucial 

developmental transformations leading to the formation of differentiated elongated spermatids and 

spermatozoa (Weinbauer et al., 2010). These changes include the appearance of the acrosomic 

granule in a close contact with the nuclear membrane, which subsequently flattens and caps about 1/3 

of anterior surface of the nucleus. The nucleus also becomes flattened and further elongated with an 

increased state of chromatin condensation. During the maturation phase, a large portion of the 

cytoplasm is extruded as residual bodies. Another important event is the formation of the 

mitochondrial sheath and the dense outer fibres, which comprise the flagellum (Muciaccia et al., 

2013, Sharma and Agarwal, 2011). Elongating spermatozoa remain connected to Sertoli cells until 

the spermiation; “the process by which mature spermatids are released from Sertoli cells into the 

seminiferous tubule lumen prior to their passage to the epididymis” (O'Donnell et al., 2011). Residual 

bodies retained in the immature spermatozoon are finally phagocytosed by Sertoli cells during the 

process of spermiation (Amann, 2008). 
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2.1.4 Epididymal maturation  

On leaving the testis, the spermatozoon is morphologically normal, but immotile and unable to reach 

and fertilize an oocyte. Post-testicular maturation of spermatozoa is essential for the acquisition of 

progressive motility and fertilizing ability (Dacheux and Dacheux 2014). The epididymis is generally 

divided into three distinct anatomical regions; caput, corpus, and cauda. Testicular fluid, in which 

spermatozoa are transported, is reabsorbed almost entirely in the caput, leading to a remarkable 

increase in the concentration of spermatozoa by up to 100 fold. Fluidity of the sperm membrane is 

known to be a function of its fatty acid and cholesterol profiles. As the sperm transits from the caput 

to the cauda epididymis, its membrane fluidity increases gradually due to a progressive decline in the 

cholesterol/phospholipids ratio, which corresponds to the acquisition of progressive motility of the 

spermatozoa (Lindenthal et al., 2001). The ability of spermatozoa to acquire progressive motility 

develops gradually from the corpus to the caudal epididymis. Most spermatozoa retrieved from the 

caput are immotile or show only irregular curvature of flagella, but not progressive motility. This is 

possibly due to low intracellular cyclic adenosine 3’, 5’ monophosphate (cAMP) concentrations 

and/or high membrane rigidity (Dacheux and Dacheux 2014; Gatti et al., 2004). 

In addition to the changes in the membrane compositions, spermatozoa passing through the 

epididymis undergo a series of extra biochemical and functional changes. These include changes in 

the expression of cell surface antigens, an increase in total surface negative charges as well as 

immunoreactivity and adenylate cyclase activity. These modifications are thought to be collectively 

involved in the acquisition of fertilizing ability of spermatozoa (Stoffel et al., 2002; Sullivan et al., 

2005). 

2.1.5 Storage of spermatozoa in the epididymis 

Almost half of all spermatozoa die and disintegrate after leaving the testis and are reabsorbed by the 

epididymal epithelium. Nearly 70 % of the residual mature spermatozoa are reserved in the cauda 

epididymis, allowing for repetitive fertile ejaculations. The vas deferens is not a physiological site 
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for storage of spermatozoa, consisting only 2 % of the total spermatozoa present in the male tract 

(Mortimer, 1994; Sharma and Agarwal 2011).  The storage capacity of the male tract is broadly 

determined by the volume of the cauda epididymis which provides a unique environment with slightly 

lower temperature than the testis that keeps the metabolic rate of the sperm minimised (Bedford 

1978). In bulls and stallions, the number of stored spermatozoa in cauda epididymis is adequate for 

more than ten successive ejaculates (Sullivan et al., 2005), whereas in humans, less than three 

ejaculates of sperm are stored in the relatively poorly developed cauda epididymidis (Frenette, 2006; 

Sullivan et al., 2005).  

Although specialized for sperm storage, the caudal environment is vulnerable to various physiological 

changes, and the functional status of the caudal spermatozoa cannot be maintained permanently. 

Prolonged sexual inactivity is associated with substantial changes in the senescent caudal 

spermatozoa, which eventually disintegrate. The relative participation of these spermatozoa to the 

subsequent ejaculation impairs semen quality, unless they are ejaculated and removed from the male 

tract at regular intervals (Mortimer, 1994). 

2.2 Structure of human spermatozoa 

Creation of the zygote (diploid cell) necessitates the combination of the haploid pronuclei from both 

male and female. The principal function of the spermatozoon is to deliver the male pronucleus to the 

receptive oocyte. To fulfil this, the spermatozoon must be able to preserve its DNA, transport it to the 

site of fertilization, and recognize and bind to the oocyte (Curry and Watson, 1995). The unique 

structural characteristics of the spermatozoon are crucial for its role in the fertilizing process. The 

normal mature spermatozoon is a particularly elongated cell, about 60 µm in length. It can be divided 

into four distinct regions namely, the head, the neck, the midpiece and the tail, which all are 

surrounded by a plasma membrane. The plasma membrane surrounding the spermatozoon is 

characterized by heterogeneous regional domains, each with different composition and surface 

antigen distribution that reflects specialized functions. The surface of the sperm head is divided into 
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the acrosomal region and the post acrosomal region. The acrosomal region is subdivided into the 

anterior acrosomal domain, involved in the acrosome reaction, and the posterior acrosomal domain 

that enables the sperm-egg membranes attachment and fusion (Toshimori, 2009). The structural 

characteristics of the spermatozoon, as viewed by transmission electron microscopy, will be described 

in the following section. 

2.2.1 The head 

The sperm head is bilaterally flattened and oval in appearance, measuring about 4.5 µm long, 3 µm 

wide and 1.5 µm thick (Figure 2.3). Most of the head is occupied by the nucleus and the acrosome, 

with a small amount of cytoplasm enclosed within the expanse of the plasma membrane (Maree et 

al., 2010).  The acrosome, a vesicular like structure, caps about two thirds of the anterior region of 

the nucleus. The acrosome is composed of two membranes, the inner acrosomal membrane overlying 

the nucleus and the outer acrosomal membrane underling the plasma membrane. Between these two 

layers lies the acrosomal enzyme matrix. A network of cytoskeletal structures is distributed 

throughout the sperm head, particularly in the sub-acrosomal layer, between the inner acrosomal 

membrane and the nuclear envelope, as well as in the post-acrosomal space between the nucleus and 

the plasma membrane. Both of these two layers form the perinuclear theca, which covers most of the 

sperm nucleus excluding the implantation fossa, the narrow zone around attachment of the tail (Eddy 

and O'Brien, 2006). Dislocation of the implantation fossa of the nucleus has been shown to be an 

important contributor to the pathogenesis of flagellar coiling (Ricci et al., 2015). At the junction of 

the postacrosomal region of the head and the connecting piece is the posterior ring (Eddy and O'Brien, 

2006).   

The nucleus of a mature human spermatozoon is highly condensed and much smaller in size compared 

to that of a somatic cell. It is oval and flattened in shape, slightly concave anteriorly and convex 

posteriorly, and have an implantation cavity from which the flagellum originates. The sperm nucleus 

is bounded by a nuclear envelope consisting of two lipid bilayers, 7-10 nm apart, with a complete 

absence of nuclear pores (Eddy and O'Brien, 2006). As a result of the meiotic divisions during 
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spermatogenesis, the sperm nucleus is haploid and contains only a single set of 23 chromosomes. 

Nuclear DNA within spermatozoa is entirely inactive and remains in this state until its protamines 

are displaced upon entry into an oocyte. Mature spermatozoa do not have the capacity to synthesize 

RNA due to the lack of structures like ribosomes and nucleoli. The subsets of untranslated RNA 

found in ejaculated spermatozoa is assumed to be synthesized during spermatogenesis (Grunewald et 

al., 2005). 

2.2.2 The neck  

The sperm neck or connecting piece is a short linking segment and defines the boundary between the 

sperm head and the middle piece. The connecting piece is composed primarily of two main structures, 

the capitulum and the segmented columns. The capitulum is a dense fibrous plate-like structure 

attaches the basal plate, lining the implantation fossa, thus supporting the head-flagellum attachment. 

Extending to the posterior extreme of the capitulum are segmented columns, which branch into two 

major and five minor segmented columns. At their distal ends, these columns fuse to the nine 

longitudinal outer dense fibres extending throughout the length of the flagellum, thereby providing 

the flagellum with rigidity and structural support (Eddy and O'Brien, 2006; Ricci et al., 2015). 
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Figure 2. 3: Structure of the human sperm. Adapted from Brito 2007. 

 

The connecting piece also comprises a pair of centrioles (proximal and distal). The proximal centriole 

lies beneath the basal plate, perpendicular to the long axis of the nucleus. The distal centriole stands 

parallel to the long axis of the sperm underneath the proximal centriole (Sathananthan et al., 1996). 

In mature spermatozoa, the distal centriole is virtually degenerated after the development of the 

axoneme, whereas the proximal centriole is involved in the production of a short microtubular 

structure known as the microtubule adjunct (Manandhar et al., 2000). 

2.2.3 The midpiece 

The midpiece of the spermatozoon is slender and ˂ 1 µm in width; its length is about 1.5 times the 

length of the head (WHO, 1999). It extends from the caudal end of the connecting piece to the 

annulus; a ring-like structure separates the midpiece from the principle piece of the flagellum. The 

annulus acts as a gated diffusion barrier that restricts the movement of particles between the two 
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domains (Curry and Watson, 1995). It also seems to stabilize the midpiece and prevents its 

mitochondria from slipping backwards. The midpiece consists primarily of the mitochondrial sheath, 

about 80 nm thick, lying directly underneath the plasma membrane. This sheath is a highly packed 

spiral arrangement of elongated mitochondria joined end to end around the underlying axoneme. The 

mitochondrial sheath is reputed to be an important source of energy essential for sperm movement 

(Briz and Fabrega, 2013). The central axis of the midpiece is occupied by the axoneme, which is 

surrounded by nine keratin-like protein fibres known as the outer dense fibres. The axoneme and the 

dense fibres of the midpiece extend to the distal tip of the flagellum (Toshimori and Eddy, 2014).  

2.2.4 The tail 

The flagellum of the human spermatozoon, about 45 µm in length, is slightly thinner than the 

midpiece, uniform, straight and uncoiled (WHO, 1999). The longest part of the flagellum is the 

principal piece, measuring about 40 µm. This segment plays an essential role in the generation of 

motive force for sperm motility. In addition to the axoneme and the outer dense fibres, the principal 

piece also comprises the fibrous sheath, which replaces the mitochondrial sheath of the midpiece. The 

fibrous sheath is a cytoskeletal structure underlying the plasma membrane and is composed of two 

longitudinal columns joined by circumferentially oriented ribs. The fibrous sheath is thought to 

provide the flagellum with elasticity and support. It also seems to modulate the beating characteristics 

of the flagellum, probably by restraining the degree of its bending. The short terminal piece of the 

flagellum lacks the fibrous sheath and other cytoskeletal structure and contains only the axoneme 

delimited by the plasma membrane (Brito, 2007, Briz and Fabrega, 2013, Curry and Watson, 1995). 

The function of the flagellum is to provide cell motility, which enables the spermatozoon for the 

active passage through the boundaries of the female reproductive tract to reach and penetrate the 

oocyte. The structural properties of the sperm typically reflect these fundamental functional 

requirements. Flagellar motility is generated by sliding of the axonemal microtubule doublets past 

each other, leading to the development of symmetrical propulsive waves that propagate along the tail 

for the linear progression (Mortimer, 1997). 
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2.2.5 The axoneme  

As shown in Figure 2.4, the axoneme is a highly ordered structure that forms the core of the flagellum. 

It is composed of two central singlet microtubules connected to each other by linkages and surrounded 

by the central fibrous sheath. The central microtubules are also surrounded by an array of nine pairs 

of peripheral microtubules that extend through almost the entire length of the sperm tail (Toshimori 

and Eddy, 2014). Each microtubule doublet is made of two structures known as subunit A and subunit 

B.  The subunit A is a complete microtubule which is circular in cross section and measures 26 µm 

in diameter; whereas the subunit B is incomplete and C-shaped in cross section (Nojima et al., 1995). 

The adjacent outer microtubule doublets are connected to each other by two large motor protein 

projections, dynein arms, extending from each subunit A of one doublet to the subunit B of the 

adjacent doublet, in a clockwise fashion. Dynein arms are described as inner or outer according to 

their position relative to the central pair of microtubules (Neesen et al., 2001). 

Figure 2. 4: Structure of the human sperm axoneme (Brito, 2007). 
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Both inner and outer dynein arms are assumed to contribute independently to the regulation of the 

flagellar waveform and the frequency of beating. Human spermatozoa lacking the outer dynein arms 

have been observed to swim in normal waveforms, but the beat frequency and the rate of progressive 

motility were significantly decreased compared with normal spermatozoa (Jouannet et al., 1983). By 

contrast, the absence of the inner arms has been associated with normal frequency of beating along 

with abnormal flagellar waveforms (Myster et al., 1999). The inner dynein arms are thought to play 

an essential role in the development and propagation of the flagellar bending motion throughout the 

generation of sliding forces between the adjacent peripheral microtubule. The outer dynein arms 

appear to maximize the microtubule sliding velocity, and consequently accelerating the flagellar beat 

frequency (Toshimori and Eddy, 2014).  

Dynein possess ATPase activity responsible for the alteration of the chemical energy from ATP to 

the kinetic energy (Mortimer, 1997). The binding of the ATP to the dynein arm and its sequential 

hydrolysis results in a cyclical change in the angle of the dynein arms. This allows for repeated 

attaching and detaching of the cross-bridges of the dynein arm to the consecutive binding site along 

the length of the outer microtubule doublet in a regular pattern. This results in an active sliding motion 

of adjacent outer doublet microtubules relevant to each other leading to flagellar movement (Roberts, 

2013). 

An additional link between the neighbouring doublets is provided by nexin links. These links act as 

elastic elements, located infrequently at intervals of approximately 96 µm along the length of the 

microtubule doublets. Nexin links are thought to play a critical role in regulating the shear forces 

during doublet sliding, thereby retaining some degree of axonemal symmetry during sliding (Curry 

and Watson 1995). The digestion of the nexin links by elastase resulted in an increase in the bend 

angle, along with a decline in the beat frequency of the flagellum (Brokaw, 1980). 

Microtubule A of the outer microtubules is further connected to the central fibrous sheath surrounding 

the two central singlet microtubules via cross linking projections known as radial spokes (Curry and 
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Watson 1995). During the microtubules doublet sliding, the radial spoke undergo cyclic attachment 

and detachment with the central pair complex (Huang et al., 1982). Mutant flagella with defective 

radial spokes have been shown to be capable of beating, but only in a symmetrical pattern. Thus, both 

central pair complex and radial spokes are possibly involved in transformation of simple symmetrical 

flagellar beating into the asymmetric motion, essential for the sperm to swim in a hyperactive manner 

(Smith and Yang 2004). 

The dynein regulatory complex (DRC) is a crescent-shaped polypeptide lies adjacent to the site where 

nexin link is attached to the microtubule A, close to the base of the second radial spike. The RDC is 

positioned in the midway between the central pair, radial spokes, nexin linkages and the dynein arms 

(Roberts, 2013). This position enables it to transmit the local regulatory signals, which can be 

chemical or mechanical or both, between these structures (Ralston et al., 2006). Deterioration of the 

regulatory signals between these structures, as shown in DRC mutants, has been associated with a 

deficient control of flagellar beating, thereby abnormal bending wave patterns (Bower et al., 2013). 

The nine outer dense fibres surrounding the flagellar axoneme are anchored to the caudal end of the 

segmented columns in the connecting piece, and extend along the middle piece and continuous for 

up to about 60 % of the principal piece of the human sperm flagellum. Each dense fibre is tightly 

attached to the adjacent peripheral microtubule doublet and numbered corresponding to the doublet 

to which it is attached (Toshimori and Eddy, 2014). Although their contribution to the active motility 

process remains uncertain, the outer dense fibres may play an important role in providing the 

flagellum with passive elastic properties to stiffen the axosomal dynein, thus lowering the maximum 

curvature of the tail (Petersen et al., 1999). They also provide the elastic recoil required subsequent 

to the sliding of the outer doublet microtubules past each other (Mortimer, 1997; Toshimori and Eddy, 

2014). 
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2.3 Semen parameters 

The accurate assessment of male fertility potential has long been an area of great interest for 

researchers and clinicians. Semen analysis remains the initial and the most important laboratory 

investigation for assessing male factor infertility. Results of semen analysis assist in determining the 

treatment approach and the subsequent strategies of sperm preparation in male infertility factor 

(Sharlip et al., 2002).  

The subsequent section will briefly review the basic (conventional) parameters of semen analysis, 

which include semen viscosity, pH, volume, sperm concentration, sperm motility, morphology and 

viability. 

2.3.1 Semen viscosity 

According to the WHO Laboratory Manual for the Examination and Processing of Human Semen, 

semen viscosity is recommended among the parameters to be measured in the preliminary 

macroscopic examination of a semen sample (WHO, 2010). Under normal conditions, semen 

coagulates after ejaculation and gradually liquefies within 15-20 minutes. However, semen samples 

that do not fully liquefy and retain some viscosity for 60 minutes after ejaculation are considered 

hyperviscous (WHO, 2010).  Semen hyperviscosity is considered a useful marker for the evaluation 

of   secretory function of the seminal vesicles and prostate (Gonzales et al., 1993).  

Although the exact reason of aberrant semen viscosity is unknown, hyperviscosity is largely attributed 

to male accessory gland dysfunction, infection and inflammation (Du Plessis et al., 2013). 

Hyperviscous seminal fluid is a condition associated with changes in the physical and chemical 

properties of the ejaculate, which detrimentally influence sperm function and its fertilizing efficiency 

(Elia et al., 2009).   This condition is estimated to occur in nearly 12 to 29 % of semen samples and 

is rumoured to contribute significantly to the impairment of semen quality (Tadeu Andrade-Rocha, 

2005; Wilson and Bunge, 1975). Hyperviscous semen has been found to have elevated levels of sperm 

antibodies, with higher proportions of morphologically abnormal spermatozoa (Moulik et al., 1989). 
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Hyperviscosity has also been associated with other abnormalities such as decreased sperm count 

(Esfandiari et al., 2008) and impaired motility (Elzanaty et al., 2004). 

2.3.2 Semen pH 

At the time of ejaculation, spermatozoa suspended in the epididymal fluid pass from their reserves in 

the cauda epididymis through the ductus deferens to be emitted through the penile urethra, which has 

already been lubricated by the secretions of Cowper’s gland (Mortimer, 1994; Owen and Katz, 2005). 

Just prior to emission, the ejaculate is initially mixed with 0.5–1.0 mL of the prostatic secretion, 

consisting about 15 to 30 % of the entire volume of ejaculate. Prostatic secretion is a serious fluid 

with a slightly acidic pH ranging between 5.5−6.8 and. Finally, the ejaculate is mixed with 

approximately 4 mL of seminal vesicle secretion, a yellowish viscose alkaline fluid (pH 7.6−8.6). 

This contributes up to 70 % of the total ejaculate (Behre 2011; Mortimer, 1994). Accordingly, semen 

pH is a result of the balance between the pH values of various genital accessory gland secretions, in 

particular the acidic prostate fluid and the alkaline seminal vesicle fluid. The lower threshold value 

of semen pH in fertile men has been estimated to be 7.2 (WHO, 2010).  

Semen pH is considered an important indicator of sperm fertilizing potential. The slight alkalinity of 

seminal fluid is essentially required to neutralise the acidic secretions of the vagina, which is 

detrimental to the sperm (Peek and Matthews, 1986). Acidic ejaculate could be a marker of the 

blockage of the seminal vesicles, whereas alkaline ejaculate is commonly associated with infections 

of the accessory glands. The assessment of pH in semen is especially important when evaluating the 

patients with azoospermia. In cases of congenital bilateral absence of the vas deferens and ejaculatory 

duct obstruction, the reduced semen volume is usually accompanied by acidic pH (Banjoko and 

Adeseolu, 2013; WHO, 2010). 

Changes in pH may affect the metabolic rate, and thus alter several aspects of sperm quality. In vitro 

culture of human spermatozoa in acidic nutrient solutions (pH 5.2) resulted in a significant decline in 

sperm progressive motility, velocity and viability compared with that in solutions with pH 7.2. In 
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clinical trials, a substantial reduction in sperm concentration and motility was observed in patients 

with semen pH lower than the minimum WHO threshold value (Zhou et al., 2015). The detrimental 

effect of acidic pH on sperm quality might be attributed the decline in Na+/K+−ATPase activity and 

calcium levels at acidic milieu, which consequently impairs sperm functions, including motility, 

capacitation and acrosome reaction (Zhou et al., 2015). 

2.3.3 Semen volume 

The lower reference value for semen volume as recommended by the WHO is 1.5 mL (WHO, 2010). 

Precise measurement of the semen volume is important as accurate concentrations of spermatozoa 

and non-sperm cells in the ejaculate are built on the initial determination of the volume (WHO, 2010). 

Semen volume has consequently been suggested to be an early indicator of impaired semen quality 

even before the identification of any abnormality in concentration, motility and morphology of 

spermatozoa (Pasqualotto et al., 2006).  In addition to the value of pH, semen volume has been 

suggested to be a reliable indicator of the secretory functions of the accessory glands, particularly the 

seminal vesicles (Daudin et al., 2000).   

The cellular component is made up mainly of spermatozoa, contributing only about 1-5 % of the total 

volume of the ejaculate. The bulk of ejaculated semen is a mixture of components provided mainly 

by secretions from the major male accessory reproductive glands, i.e. seminal vesicles, prostate gland, 

and Cowper‘s bulbourethral glands (Mortimer, 1994). An additional small volume is also provided 

by other accessory glands such as, ampullary, Littre and Tyson‘s glands. The first fraction of the 

ejaculate, approximately 5 %, originates from the bulbourethral or Cowper’s gland and Littre glands, 

whereas the second fraction consists of prostatic secretions and comprises about 15 to 30 % of the 

total volume.  Up to 70 % of the total ejaculate is supplied by seminal vesicles, and represents the last 

fraction of the ejaculate (Mortimer, 1994; Owen and Katz, 2005). 
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2.3.4 Sperm Concentration 

The concentration of spermatozoa in semen, expressed as millions per millilitre, is a critical indicator 

of semen quality and a prognostic factor for fertility potential (Guzick et al., 2001; Nallella et al., 

2006). Sperm concentration is not recommended as an accurate measure of the testicular sperm 

production since it is influenced by the genital accessory gland secretions in which the concentrated 

epididymal spermatozoa are diluted at ejaculation (WHO, 2010). The T.S.C. expressed as millions 

per total ejaculate, is obtained from the sperm concentration and suggested to be a better marker for 

the evaluation of the effectiveness of spermatogenesis (Amann, 2009; Ng et al., 2004).  

2.3.5 Sperm viability 

Evaluation of spermatozoal membrane integrity, assessed by viability testing, is an important 

determinant to evaluate and predict the fertilizing potential of spermatozoa.  Declined levels of viable 

cells have been directly correlated with male factor infertility (Correa-Pérez et al., 2004). The lower 

reference limit for sperm viability is estimated to be 58 % (WHO, 2010). Sperm vitality is one of the 

routine assessments of basic semen analysis, and is especially recommended in samples where the 

percentage of motile spermatozoa is less than about 40 %. Viability testing can be useful in validating 

motility assessment, as the percentage of live spermatozoa should exceed that of the total motile cells 

(WHO, 2010). The viability status of the selected spermatozoon for intracytoplasmic sperm injection 

(ICSI) has to be precisely evaluated, as the only necessity for the success of the ICSI is the injection 

of a live spermatozoon (Nagy et al., 1995). Furthermore, a direct correlation has recently been 

proposed between sperm viability and the level of the DNA fragmentation, suggesting that the 

viability status may provide an indication of the DNA fragmentation outcomes of the ejaculated 

spermatozoa (Samplaski et al., 2015). 

2.3.6 Sperm morphology 

The morphological characteristics of spermatozoa have been considered to be of great value in the 

assessment of semen quality (Maree et al., 2010; Menkveld et al., 2011). To be considered 
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morphologically normal, the whole spermatozoon and its three distinct areas; the head, midpiece and 

tail must fit the Strict Criteria in terms of their size and shape (WHO, 2010). Defining a 

morphologically normal sperm, with potential fertilizing capability was achieved by observing 

spermatozoa recovered from the female genital tract, particularly in the post coital endocervical 

mucus and from the surface of the zona pellucida (WHO, 2010). Morphologically normal 

spermatozoa are expected to be a result of an uninterrupted spermatogenic process. The 

morphogenetic changes in human spermatozoa during spermatogenesis and/or epididymal maturation 

can be associated with imperfections and anomalies resulting in the production of spermatozoa with 

various abnormal forms, which can be identified in a routine semen analysis (Auger, 2010).  

Therefore, abnormal sperm morphology could provide an indication of testicular or epididymal 

impairment, which might be mediated by various biological and environmental exposures (Auger, 

2010; Auger et al. 2001;  Menkveld et al., 2011). 

The most commonly used classification systems for sperm morphology are the WHO criterion and 

the Tygerberg Strict Sriterion. The Strict Criteria, as originally described by Kruger et al. (1987) uses 

more sensitive morphological analysis, in which the spermatozoon is categorized normal only if it 

falls within a strictly defined range, and the borderline forms are considered abnormal. A threshold 

of 14 % has been recommended as a normal value for morphology evaluated according to the strict 

criteria (Ghirelli-Filho et al., 2012). In its earlier editions, the WHO criteria suggested a total of 80 % 

or more normal forms for a semen sample to be considered normal (WHO, 1980). However, 

considering the morphometric information which were identified and introduced to the evaluation 

system over years, the latest and revised WHO guidelines minimised the lower cut-off value for 

normal forms to 4 % (WHO, 2010). 

Sperm morphology has been suggested as the most important discriminatory parameter that 

differentiates between fertile and infertile men (Guzick et al., 2001). Furthermore, the proportion of 

spermatozoa with normal forms has been shown to be associated with higher success rates of 

fertilization (El‐ Ghobashy and West, 2003; Kihaile et al., 2003). Likewise, impaired ICSI results 
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have been reported in presence of small-headed (Kihaile et al., 2003), Large- headed (Chelli et al., 

2010) or elongated spermatozoa (Osawa et al., 1999).  

Morphologically abnormal spermatozoa are possibly incapable of progressive movement towards the 

oocyte, as it may lack the machinery required to propagate within the female reproductive tract. In 

consonance, spermatozoa with normal forms have been found to have higher progressive motility 

accompanied with improved straightness and linearity compared with those with abnormal 

morphology (Love, 2011; Ma et al., 2006). In addition, the process of sperm-oocyte binding appears 

to be highly selective in terms of the morphological characterizations of the sperm. A number of 

studies have shown that morphologically abnormal spermatozoa, with a special focus on the 

acrosomal region, have a lower chance to bind to the zona pellucida (Garrett et al., 1997; Liu and 

Baker, 1992; Liu  et al., 2003).  

2.3.7 Sperm motility 

Testicular spermatozoa of humans are often immotile or only exhibit slight motility. However, during 

the epididymal transit, spermatozoa undergo a series of significant maturational changes leading to 

the acquisition and development of motility. Full motility is then induced and displayed at the time 

of ejaculation when spermatozoa are mixed with the various accessory gland secretions (Mortimer, 

1994). 

Determination of the motility characteristics of ejaculated spermatozoa has been shown to be of the 

utmost importance for the prognosis of male fertility potential as it provides vital information about 

the functional competence of the sperm (Gunalp et al., 2001). While the T.S.C. is recommended as 

an accurate measure of the efficiency of spermatogenesis (Ng et al., 2004), the percentage of motile 

spermatozoa in the ejaculate provides an indication of the epididymal sperm maturation (Fàbrega et 

al., 2012). Motility is essentially acquired for the spermatozoa to migrate through the harsh 

environment of the female genital tract to the site of fertilization. Therefore, semen containing 

spermatozoa with lower proportions of normal motility is usually associated with failed fertilization 
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(Suarez and Pacey, 2006). Not only is motility necessary for transport, but changes in the flagellar 

motion also play an essential role at the site of fertilization where the mechanical driving force, 

generated by motility, help the sperm to reach the ovum and propel through its outer layers (Burkman, 

1984). 

The latest and revised WHO guidelines recommend a simplified grading system for the classification 

of motility that categorizes spermatozoa into three main motility groups. These groups include; 

progressive motility “spermatozoa moving actively, either linearly or in a large circle, regardless of 

speed”, non-progressive “all other patterns of motility with an absence of progression; e.g. swimming 

in small circles, the flagellar force hardly displacing the head, or when only a flagellar beat can be 

observed”, and immotile “no movement” (WHO, 2010). This categorization system represents a 

major change from the previous edition, in which each spermatozoon is categorized as being type a, 

b, c or d according to its individual motility characteristics. Type a spermatozoa are characterized by 

rapid progressive motility with a minimum speed of 25 µm/s at 37°C, which is nearly equivalent to 

the movement of half a tail length or five head lengths distance in each second. Type b spermatozoa 

are also progressively motile, moving in a forward manner with a speed of 5 µm/s or more, but still 

slower and more sluggish than type a ones. Spermatozoa with non-progressive motility are 

categorized as type c, which are weakly motile, unable to swim forward, and move in an irregular 

pattern at a speed less than 5 µm/s. Finally, spermatozoa that display no active tail movement are 

considered immotile and classed as type d (WHO, 1999). 

Progressive motility is well recognised as being of particular clinical interest as the forward 

movement is essential for the passage through the female reproductive tract and for the success of the 

consequential interaction between the sperm and the oocyte. Progressive motility is prerequisite for 

the spermatozoon to penetrate the zona pellucida both in vivo and in vitro, and is thought to be a 

useful marker that reflects the ability of the spermatozoon to fertilize an egg (Simon and Lewis, 2011; 

Turner, 2005). Therefore, when reporting spermatozoal motility, it is recommended to clearly specify 

progressive motility or total motility (Franken and Oehninger, 2012). According to the latest WHO 

Stellenbosch University  https://scholar.sun.ac.za



32 

guidelines, motility is considered normal when at least 40 % (38−42) of the total spermatozoa are 

motile, whereas the percentage of progressively motile cells is 32 % (31−34) or more (WHO, 2010). 

2.3.8 Sperm kinematic movement 

The automatic analysis of sperm motility by CASA instruments allows for the objective estimation 

of various parameters which depict certain kinematic measures of sperm movement (Kraemer et al., 

1998; Mortimer and Mortimer, 1990). Kinematics is “time-varying geometric aspects of motion that 

are distinct from calculations of mass and force” (Drobnis et al., 1988). The CASA system identifies 

each individual sperm in the microscope field and capture a series of digital images of the 

spermatozoal head movement, so that their individual trajectories can be reconstructed and tracked 

(Mortimer et al., 2015). Three sperm kinematics are considered to be velocity measures, which are 

generally used to describe different aspects of sperm progressive motility (Figure 2.5); these include 

the curvilinear velocity (VCL), the straight-line velocity (VSL) and the average-path velocity (VAP) 

(Mortimer, 1997; WHO, 2010). VCL is a measure of the time-average velocity (µm/s) of the centroid 

of the sperm head along its actual curvilinear path. It is calculated by finding the total distance 

between first and last head points divided by the time elapsed. VCL formerly known as total 

swimming speed (Katz and Overstreet, 1979) and sperm head velocity (Suarez et al., 1983). VSL is 

a measure of the time-average velocity (µm/s) of the centroid of the sperm head along the straight-

line trajectory between its first and last points. It is computed by finding the total distance travelled 

along the linear path divided by the acquisition time. VSL was originally termed net velocity 

(Stephens et al., 1988), velocity of progression (Mortimer et al., 1986), net displacement (Tessler and 

Olds-Clarke, 1985) and swimming speed (Ishijima et al., 1986). VAP is a measure of the time-average 

velocity (µm/s) of the centroid of the sperm head along the smoothed trajectory, which is constructed 

by averaging several points on the actual curvilinear path. It is computed by dividing the length of 

the smoothed track by the acquisition time. VAP was formerly called the position-averaged velocity 

(Stephens et al., 1988). 
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Figure 2. 5: The main kinematic measurements involved in sperm tracking. Modified from 

WHO, 2010. 

 

From the above-mentioned velocity values, three velocity ratios have been derived, these are linearity 

LIN (%) which refers to the linearity of the curvilinear path and is calculated as (VSL/VCL) X 100, 

it was previously described as a progressiveness ration. Straightness STR (%) measures the linearity 

of the average path and is calculated as (VSL/VAP) X 100, the STR was formerly known as linear 

index (Stephens et al., 1988). The Wobble WOB (%) measures the magnitude of the oscillation of 

the actual path around the average path, formerly called curvilinear progressiveness ratio and is 

calculated as (VAP/VCL) X 100 (Mortimer and Mortimer, 1990; Samuels and Van der Horst, 1986; 

Stephens et al., 1988). 

The amplitude of lateral head displacement (ALH) measures the degree of lateral displacement of the 

sperm head's centroid around its average path (µm). The ALH can be determined mathematically by 

measuring the length of the risers, which are straight lines extending between each point on the 

average path and its corresponding point on the actual curvilinear path. The ALH value can be 

calculated from the maximum riser value, which is then doubled to give the track-maximum 

measurement (ALHmax), or from the averaged riser values to be doubled and expressed as the track-

average measurement (ALHmean) (Mortimer, 1994). 
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Beat/cross frequency (BCF) indicates the frequency (hertz [Hz]) with which the curvilinear path 

crosses the average path; such crossovers occur two times within each flagellar beat cycle. Therefore, 

BCF is considered a measure of the flagellar beating frequency, as a new flagellar beat is initiated 

once the actual sperm trajectory crosses the average path. BCF provides further indication of the 

frequency of the rotational movement of the sperm head around its longitudinal axis of progression, 

providing the sperm head rotates by 180 degrees at the peak of each lateral displacement with each 

beat initiation (Mortimer, 1997). 

As a frequency measurement derived from the curvilinear and the average tracks, the BCF value is 

largely dependent on the frame rate and has been shown to decline with reducing frame rates 

(Mortimer et al., 1988). When the frequency of the event being measured is above the “Nyquist” 

number, which is equivalent to one-half the image sampling frequencies, those events will probably 

not be represented sufficiently and the profile of the signal processed will eventually be aliased. The 

mathematical calculation of BCF can apparently be further confounded by the incidence of 

asymmetrical trajectories (Owen and Katz, 1993; Mortimer and Swan, 1999). 

Changes in the direction of the sperm head motion along its actual track can be calculated as angles 

and be used to characterize the overall trajectory of the sperm cell. Mean angular displacement 

(MAD) is a measure of the curvature trajectory of spermatozoa, and defined as “the time average of 

absolute values of the instantaneous turning angle of the head along its curvilinear trajectory” (Boyers 

et al., 1989). Two angle parameters have also been used to measure the angular displacement of sperm 

head from linearity.  The absolute angle refers to the mean value of each triplicate of points along the 

average trajectory without consideration of the direction of the movement, the algebraic angle is also 

reckoned in a similar way, but the right or left deviations are indicated as positive or negative values. 

The produced mean angular values for the sperm moving in a linear pattern are essentially lower than 

those values produced for those deviating from the straight line (Stephens et al., 1988). 

The choice of sperm preparation method appears to have a direct effect on the predictive value of the 

sperm kinematic variables assessed by CASA in relation to fertility potential. For instance, in fresh 
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ejaculates, significant correlations were demonstrated between ALH, VCL and VSL and fertilization 

rates. However after swim-up separation, STR was shown to be the only predictor of achieving 

pregnancy after IVF treatment compared with other semen variables (Hirano et al., 2001). By 

contrast, no significant association was found between CASA kinematic parameters and the 

pregnancy rates after ntrauterine insemination (IUI) when the semen samples were analysed after 

thawing and density gradient preparation (Freour et al., 2009). 

2.3.9 Sperm hyperactivity 

The pattern of sperm motility has been shown to change from progressive to hyperactivated during 

the final stage of the capacitation process (Goodson et al., 2011). Hyperactivated motility in 

spermatozoa has initially been reported in the golden hamster as an extremely vigorous pattern of 

flagellar beating observed after incubation with follicular fluid (Gwatkin and Andersen, 1969; 

Yanagimachi, 1970). It was subsequently demonstrated in human spermatozoa during in vitro 

capacitation (Burkman, 1984; Mortimer et al., 1997). Variations in the swimming patterns between 

hyperactivated and non-hyperactivated spermatozoa are basically determined by differences in the 

degree of the axonemal bending as well as the propagation rate of the beats along the length of the 

flagellum (Mortimer, 1997). The highly vigorous motion of hyperactivated spermatozoon is 

considered to be a result of two main types of extremely high curvature of flagellar bends. The first 

bending is not propagating and localised at the proximal region of the flagellar midpiece allowing the 

head to twist in a hatchet-like curve. By contrast, the second bending occurs in the distal region of 

the midpiece and propagates as a wave down the length of the flagellum producing an eight-like 

trajectory (Kay and Robertson, 1998). Hyperactivated spermatozoa have been shown to swim with 

greater flagellar flexibility which allows them to turn around and escape from the pockets of the 

mucosal folds through the lumen of the oviduct (Suarez, 2004). The asymmetric flagellar bending 

during hyperactivation might also assist in the detachment of the spermatozoal head from the end 

salpinx of the caudal isthmus, a portion of the Fallopian tube where the spermatozoa are supposed to 

be reserved and subsequently released to continue their journey towards the site of fertilization 
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(Hunter, 2011; Pacey et al., 1995). Moreover, hyperactivity associated changes in the swimming 

pattern enable the spermatozoon to migrate more effectively through thick viscoelastic mucus of the 

oviduct lumen and to penetrate the cumulus oophorous and then the zona pellucida surrounding the 

oocyte (Suarez, 2004). Recently, hyperactivation has been suggested to play a critical role in the 

chemotactic response of spermatozoa to substances released from the matured oocyte and the 

surrounding cumulus cells, so that they are sharply reoriented toward the direction of the 

chemoattractant gradient (Armon and Eisenbach, 2011). Therefore, due to its various physiological 

advantages in human spermatozoa, hyperactivated motility has been proposed as a biomarker that can 

be used, in combination with other sperm functional tests, to estimate the fertilization potential of 

human spermatozoa. In this regard, available evidence indicates that stimulation of sperm 

hyperactivity may be of great value in promoting in vitro fertilization success rates (Breznik et al., 

2013).  

The physiological bases of hyperactivation remain poorly understood (Mortimer et al., 2015). 

However, the regulation of sperm hyperactivation in vivo appears to be influenced by various 

components of the internal environment of the female genital tract, including the oocyte and its 

surrounding follicular cells and secretions (Kay and Robertson, 1998; Suarez, 2004). In vitro, 

hyperactivation has been shown to be induced by incubating the spermatozoa in supplemented 

laboratory media. In humans, the proportion of spermatozoa with hyperactive motility induced with 

this approach is estimated to reach about 20 %, while this rate has been shown to rise as the incubation 

period increases (Ooi et al., 2014). Several different physiological and chemical factors have been 

used to stimulate hyperactivation in vitro, such as bovine serum albumin (Yanagimachi, 1970), 

potassium (Fraser, 1983), bicarbonate (Neill and Olds-Clarke, 1987), progesterone (Mbizvo et al., 

1990), calcium (Suarez et al., 1993), as well as glucose (Williams and Ford, 2001). 
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The advanced semen parameters performed in this study, which includes acrosome reaction, DNA 

fragmentation, ROS, lipid peroxidation and antioxidant analyses, will be described in the following 

section. 

2.3.10 Acrosome reaction  

In vivo, ejaculated spermatozoa do not have the capacity for fertilization until they undergo series 

changes in the cellular metabolism and the physicochemical properties of the plasma membrane 

(Patrat et al., 2000). These modifications are collectively known as capacitation.  Capacitation is a 

maturation process essential for the acrosome reaction to occur at the zona pellucida subsequent to 

the sperm attachment. This process involves alterations in the plasma membrane fluidity due to the 

removal of cholesterol and changes in the amount and distribution of membrane glycoprotein and 

phospholipid contents. Sperm capacitation is also associated with an increase in intracellular Ca2+ ion 

concentration and hyperpolarization of the membrane.  Various agents such as; oviductal and 

follicular fluids, progesterone, serum albumin and zona pellucida glycoproteins have been shown to 

induce acrosomal exocytosis in human spermatozoa (Gupta and Bhandari, 2011; Mansour et al., 

2008; Patrat et al., 2000). 

The acrosome reaction is a stimulus-secretion coupled exocytotic process characterized by the fusion 

between the external acrosomal membrane and the plasma membrane (Breitbart et al., 1997). This 

eventually leads to the release of various hydrolytic and proteolytic enzymes such as; hyaluronidase 

and acrosin, leaving the frontal region of the sperm head covered by only the inner acrosomal 

membrane. The released chromosomal enzymes digest a path through the zona, which enables the 

sperm to penetrate the oocyte. However, the true acrosome reaction occurs in live and intact 

spermatozoa and leads to fertilization must be discriminated from the vesiculation of the acrosomal 

membrane and the overlying plasma membranes, which commonly reflects the cell death (Avdatck 

et al., 2010).  
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The physiological acrosome reaction is an irreversible event that must occur at an appropriate time, 

thereby the spermatozoon must continue to have an intact acrosome until it binds to the zona pellucida 

(Green et al., 1999). Premature acrosome reaction results in the loss of the sites on the sperm head 

required for the recognition and binding of the spermatozoon to the zona pellucid (Liu and Baker, 

1992). In samples with normal seminal parameters, the majority of spermatozoa exhibit intact 

acrosome whereas only a small fraction of the spermatozoa may display spontaneous acrosome 

reaction despite the absence of any stimulants, which is deemed to be of no clinical relevance (Esteves 

et al., 2015). After capacitation, the percentage of induced acrosome-reacted spermatozoa increases 

significantly up to 40 % (Esteves and Verza, 2011). The total percentage of acrosome-reacted 

spermatozoa represents a combination of induced acrosome-reacted and spontaneously reacted 

spermatozoa (Zeginiadou et al., 2000). In general, infertility has been associated with higher levels 

of spontaneous acrosome reactions and lower levels of induced reactions (Henkel et al., 1993; Liu et 

al., 2001; Pampiglione et al., 1993). 

Although it is not commonly practiced in laboratories and remains a research interest, assessment of 

the acrosomal status represents one of the most important approaches to evaluate the sperm’s 

fertilizing ability (Esteves et al., 2007). Available assays for evaluating the acrosomal status in the 

ejaculate have been developed in two ways; either by estimating the percentage of spontaneously 

acrosome-reacted spermatozoa or by assessing the ability of spermatozoa to initiate acrosomal 

exocytosis when exposed to an appropriate stimulus i.e. zona pellucida and progesterone (De Jonge, 

1994). Various staining techniques are available for the assessment of the acrosome integrity of 

human spermatozoa. These techniques are commonly based on the use of dyes or fluorescent markers 

to discriminate between acrosome-reacted and acrosome-intact sperm cells. The most frequently used 

method for assessing the acrosomal status involves the labelling of specific regions of the live sperm 

with a lectin (e.g. the pea derived Pisum sativum agglutinin [PSA] or the Peanut Agglutinin [PNA]) 

conjugated with a fluorescent probe (e.g. fluorescein isothiocyanate [FITC]). The PSA binds to α-

mannose and α-galactose moieties associated with the acrosomal matrix, whilst the PNA displays 
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more specific affinity to bind β-galactose moieties which is associated typically with the outer 

acrosomal membrane. The acrosomal status can then be assessed by fluorescent microscopy or flow 

cytometry, with the disappearance of the label indicating acrosomal exocytosis (Graham, 2001; 

Hamed et al., 2014; De Jonge, 1994; Patrat et al., 2000). 

Acrosome defects, malformations and dysfunctions have been associated with inhibited fertilizing 

capacity of the spermatozoa (Schill, 1991). An increased spontaneous acrosome reaction has also 

been linked with unexplained male infertility, apparently due to the inability of prematurely-reacted 

spermatozoa to release their acrosomal contents when exposed to proper stimuli (Esteves et al., 2015). 

Decreased responses to acrosome inducers have generally been suggested to contribute to impaired 

fertilization rates after IVF (Fenichel et al., 1989; Pampiglione et al., 1993). 

The ability of spermatozoa to undergo acrosome reaction is thought to develope during the 

epididymal transit. The failure to undergo this reaction may indicate impaired epididymal function 

(Boué et al., 1996; Haidl et al., 1994). Acrosomal status has also been strongly associated with several 

abnormalities in sperm parameters. For instance, various morphological defects (e.g. 

globozoospermia; round–headed spermatozoa lacking acrosome) have been related to lower 

proportions of inducible acrosome-reacted spermatozoa (Carrell et al., 1994; Dam et al., 2006; 

Parinaud et al., 1995). Sperm motility has been reported to decline considerably after the acrosome 

reaction has been undergone.  This is supported by the significantly lower proportions of induced 

acrosome reaction observed in asthenozoospermic samples compared with normozoospermic 

samples (Pilikian et al., 1992). Similarly, the percentage of progressive motility has been shown to 

decrease in sperm populations with high spontaneous rates of acrosome-reaction (Moutaffian and 

Parinaud, 1995). 

2.3.11 Sperm DNA fragmentation 

Conventional semen analysis, when performed under strict methodological criteria, remains the 

cornerstone for the assessment of the male fertility potential (Evgeni et al., 2014; WHO, 2010). These 
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tests are crucial to obtain the important information on which clinicians base their preliminary 

diagnosis (Giwercman et al., 2010). However, the parameters of the conventional semen analysis 

have a relatively limited power to determine the probability of conception (Oleszczuk et al., 2013).  

Approximately 25-40 % of infertile males are estimated to have normal semen analysis profiles 

(Bungum et al., 2011; Gudeloglu et al., 2015; Van der Steeg et al., 2011). To avoid these limitations, 

a range of new sperm quality parameters have been developed (Erenpreiss et al., 2006). 

Spermatozoal DNA integrity has been recognised as a prerequisite for normal fertilization and proper 

transmission of genetic information (Evgeni et al., 2014). The assessment of sperm DNA integrity 

along with routine semen analysis provides further valuable information about the quality of the 

sperm as well as the pregnancy outcomes (Borini et al., 2006; Fernández-Gonzalez et al., 2008; 

Tesarik et al., 2004). In the presence of high proportions of spermatozoa with DNA fragmentation 

(˃20 %) the risk of infertility increases even if the basic semen parameters were normal. However, if 

one of the semen parameters was abnormal, the risk of infertility increases already when DNA 

fragmentation levels are also above 10 % (Giwercman et al., 2010). 

During the late stages of spermatogenesis, the majority of histones are replaced by transition proteins, 

which are subsequently replaced by more basic and much smaller protein named protamines. The 

chromatin is twisted around its axis to form unique super coiled structures known as toroids 

(González-Marín et al., 2012). These structures represent the fundamental packaging units of sperm 

chromatin in mammals (Agarwal et al., 2012). During sperm transit throughout the epididymis, the 

toroids become cross-linked and further compacted by disulphide bonds. All the 23 chromosomes are 

clustered together to form the chromocenter, which is a small and highly compacted mass positioned 

in the nuclear interior (Zalensky et al., 1995). Nuclear compaction is essential for the protection of 

the sperm DNA against different exogenous assaults (González-Marín et al., 2012). 

Compared with other species, human spermatozoa are characterized by relatively higher basal levels 

of DNA fragmentation, not only in infertile but also in potentially fertile men (Sakkas et al., 2010). 

The extent of chromatin compaction in human spermatozoa has been found to be different from other 
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mammals, apparently due to the variability in the basic protein structures. 15 % of human sperm 

nuclear proteins are packed by histone, whereas 85 % is protamines bound. This ratio is exceptionally 

different in many other species where protamines form up to 95 % of the sperm chromatin packaging 

(Bellve et al., 1988). Histone is known to be much less basic than protamine, thus histone-bound 

DNA sequences are less tightly compacted and more prone to damage (Agarwal et al., 2012).  

Although the exact mechanism is not completely understood, DNA damage in human sperm seems 

to be a consequence of a defective chromatin condensation and/or an impaired DNA repair 

mechanism during late spermatogenesis (Agarwal et al., 2012). The chromatin remodelling process 

is characterized by the elimination of unconstrained DNA supercoils, a process deemed to be essential 

for the histone replacement by protamine and the transient relief of torsional stress (Marcon and 

Boissonneault, 2004). This process necessitates the formation of DNA single or double strand breaks 

by endogenous nuclease activity (Boissonneault, 2002). These DNA breaks, if not properly repaired 

at an early stage, will develop into DNA fragmentation or genetic mutations on ejaculated sperm 

(González-Marín et al., 2012; Marcon and Boissonneault, 2004).  

A number of methods are currently available for the assessment of sperm DNA fragmentation.   Some 

of these assays can quantify DNA damage directly by the enzymatic labelling of DNA breaks with 

fluorescent probes (Shamsi et al., 2011). Among these assays are the terminal deoxynucleotidyl 

transferase mediated dUTP nick end labelling assay [TUNEL] (Huang et al., 2005), the single cell 

gel electrophoresis or Comet assay (Sheikh et al., 2008) and in situ nick translation [ISNT] (Gorczyca 

et al., 1993). Other assays, e.g.  the sperm chromatin structure assay [SCSA] (Evenson et al., 2005) 

and the sperm chromatin dispersion test [SCD], are based on the susceptibility of sperm DNA to acid 

induced denaturation at the site of damage (Shamsi et al., 2011).  

Sperm DNA integrity is essential for normal fertilization and transmission of paternal genetic 

information to the offspring (Evgeni et al., 2014). DNA fragmentation is a valuable parameter not 

only for evaluating the functional competence of spermatozoa, but also for the prediction of the rate 

of fertilization, implantation and embryo development (Fernández-Gonzalez et al., 2008). Increased 
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proportions of sperm DNA fragmentation have been suggested as a possible risk factor for poor 

embryo quality and spontaneous miscarriage (Borini et al., 2006; Tesarik et al., 2004). In men with 

DNA fragmentation rates of < 40 %, the probability of natural conception was 10 times greater than 

those with DNA fragmentation levels exceeding 40 % (Spanò et al., 2000). Furthermore, the chance 

of fertilization in IUI was found to be close to zero in men with sperm DNA fragmentation rates 

higher than 30 % (Evenson etr al., 1999; Spanò et al., 2000). Likewise, the probability of achieving 

pregnancy and delivery following IVF and ICSI was dramatically decreased when the rates of DNA 

damage exceeded 27 % (Bungum et al., 2004). 

2.3.12 Reactive oxygen species (ROS) 

The most stable form of an atom is described as a ground state wherein every electron in the outermost 

shell is paired with a complimentary electron spinning in the opposite direction.  In this condition the 

atom reaches the lowest possible energy levels, it is thus unable to react with surroundings (Agarwal 

et al., 2008; Du Plessis et al., 2015). A free radical, by contrast, is generally referred to any species 

or molecule that has one or more unpaired electrons in its outermost shell. This electron imbalance 

makes the radical unstable and readily reacts with proximate biomolecules (Halliwell and Cross, 

1994). 

Free radicals comprise a large number of molecules categorized broadly into two distinct types. The 

first category includes oxygen-derived free radicals, known as ROS e.g. superoxide (O2
−•), hydroxyl 

(OH•), hydrogen peroxide (H2O2) and hypochlorite radical (OCl•). The second category includes 

nitrogen-derived free radicals known as reactive nitrogen species (RNS) e.g.  nitric oxide (NO•), 

nitrogen dioxide (NO2
•). These RNS are sometimes described as a subclass of ROS (Du Plessis et al., 

2015).  

2.3.12.1 Formation of ROS 

Diatomic oxygen (O2) contains two unpaired electrons in its outermost shell, but is relatively inert as 

these electrons have parallel spins (Ford, 2004). The O2
−• is a highly reactive oxygen metabolite 
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produced due to the univalent reduction of oxygen molecules during cell respiration (Koppers et al., 

2008). When present at high concentrations, O2
−• is capable of interfering with cellular functions and 

producing secondary ROS (Agarwal et al., 2008). Further reduction of the O2
−• results in the 

production of peroxide (O2
2−), which is not a free radical (Ford, 2004). The majority of H2O2 is 

generated as a result of the dismutation of O2
−•, which occurs either spontaneously or the 

enzymatically by SOD (Halliwell and Cross, 1994).  H2O2 may also be produced directly by numerous 

enzymes involved in a peroxisomal pathway including, glycolate and monoamine oxidases. The 

membrane permeable H2O2 is poorly reactive, although it can readily be transformed into an 

enormously reactive OH• via Fenton and Haber Weiss reaction (Halliwell et al., 2000). This reaction 

necessitates the presence of trace amount of transition metal ions, particularly iron, which is reduced 

by O2
−• from ferric to ferrous state. The resultant ferrous ions act as catalyst that subsequently 

increases the rate of conversion H2O2 to OH• (Das et al., 2015, Koppenol, 2001).  

NO• is primarily generated from L-arginine by the enzyme NO Synthase, with molecular oxygen and 

nicotinamide adenine dinucleotide phosphate (NADPH) acting as co-substrates. NO• may also be 

produced by a series of metabolic reactions in human body including pentose phosphate pathway via 

glucose-6-phosphate dehydrogenase as well as the NADPH (Bolaños et al., 2008). The reaction 

between NO• and O2
−• results in the generation of peroxynitrite (ONOO−), which is more potent 

oxidant (Pacher et al., 2007). Various other free radicals have been identified including; ozone, 

organic peroxyl and alkoxy radicals, but have no biological relevance (Du Plessis et al., 2015). 

2.3.12.2 Origins of ROS in semen  

ROS in seminal plasma can be generated from a wide variety of sources that be either endogenous or 

exogenous. The following section will focus on the endogenous sources of ROS. 

Leukocytes are commonly present throughout the male reproductive tract and can be found in normal 

semen samples from fertile men. However, If the concentration of the leukocyte exceeds a level of 

1×106 per mL of semen, leukocytospermia is present (Cooper et al., 2010). A clear correlation has 
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been demonstrated between the leukocyte concentration and ROS levels in semen (Aitken et al., 

1992). Polymorphonuclear neutrophils, about 50–60 % of all seminal leukocytes, represent a major 

source of ROS in semen. The activation of theses leukocytes results in several-fold increases in ROS 

production (Plante et al., 1994). Peroxidise positive leukocytes; triggered by various factors including 

infections and inflammations, produce higher levels of reactive free radicals through activation of the 

membrane bound enzyme NADPH oxidase. This enzyme catalyses the formation of O2
−• via the 

hexose monophosphate shunt, which represents an alternative pathway of glycolysis results in the 

generation of a considerable amount of the cytoplasmic NADPH (Babior, 1999; Kessopoulou et al., 

1992). 

The exact mechanism by which leukocytospermia is implicated in excess of ROS production by 

spermatozoa is poorly understood. However, such phenomenon might be attributable to direct sperm–

leukocyte contact or the potential effect of soluble factors released by the activated leukocytes (Saleh 

et al., 2002a). 

Sperm cells with excess residual cytoplasm are identified as immature and functionally defective 

(Rengan et al., 2012). Incomplete cytoplasmic extrusion during spermiogenesis occurs concomitantly 

with trapping an excess amount of enzymes within the cell e.g. glucose-6-phosphate dehydrogenase 

(G6PD) and NADPH oxidase (Kothari et al., 2010). The presence of an excess in G6PD results in the 

formation of increased amounts of NADPH via the hexose monophosphate shunt. The intermediate 

NADPH represents a principal source of electrons for the reduction of oxygen molecules to O2
−•, 

mediated by NADPH oxidase (Du Plessis et al., 2015; Ford 2004). In support of this, higher levels of 

ROS were observed in the immature spermatozoa isolated by density gradient centrifugation (Gil-

Guzman et al., 2001). 

Normal spermatozoa themselves may also have the capacity to generate endogenous ROS possibly 

as a metabolic by-product of aerobic metabolism (Du Plessis et al., 2015). ROS generation by normal 

spermatozoa is thought to occur through the Kreb’s cycle, a cascade of events that eventually lead to 

the generation of ATP. This process is mediated by a range of cytoplasmic and mitochondrial 
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enzymes, primarily NADH dependent oxidoreductase [diaphorase] (Gavella and Lipovac, 1992). 

This enzyme is characterized by its ability to catalyze substrate reduction via transferring electrons 

from NADH resulting in a reduced substrate and NAD+, which is in turn reduced to NADH. The latter 

acts as a reducing agent to donate electrons to the subsequent pathway in the electron transport chain 

(Du Plessis et al., 2015; Koppers et al., 2008). 

In addition to the endogenous sources, numerous external factors have been shown to contribute to 

the generation of pathological amounts of ROS in semen. These factors include a growing list of 

lifestyles and environmental exposures e.g. cigarette smoking (Saleh et al., 2002b), alcohol 

consumption (Das and Vasudevan, 2007), environmental pollutants like phthalate (Kasahara et al., 

2002), as well as various food preservatives (Acharya et al., 2003). Elevated levels of seminal ROS 

have also been reported in a number of pathological conditions such as spinal cord injury (Padron et 

al., 1997) and varicocele (Allamaneni et al., 2004).  

2.3.12.3 Physiological roles of ROS 

Sperm maturation: Normal physiological levels of ROS are crucial for maintaining various vital 

sperm functions at different transformational stages in the male genital tract. ROS also act as 

important mediators for proper signal transduction involved in sperm capacitation, hyperactivation 

and acrosome reaction (Aitken et al., 2004; Edith et al., 2016; Sabeur and Ball, 2007). 

Sperm maturation, during spermatogenesis and epididymal transit, occurs through a sequence of 

events including membrane and nuclear remodelling (González-Marín et al., 2012).  Appropriate 

amounts of ROS appear to be essentially required for the oxidation of cystein-thiol groups of 

protamines to disulphate bonds, which are necessary for chromatin compaction and stabilization 

(Aitken et al., 2004). In fact, substantial reductions in ROS generation in sperm and seminal plasma 

after long-term antioxidant supplementation resulted in a significant increase in chromatin 

decondensation. The incidence of a high degree of sperm chromatin decondensation may induce 

cytoplasmic fragmentation in the embryo (Ménézo et al., 2007).  
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During spermatid differentiation, ROS have shown to be involved in the formation of the 

mitochondria capsule throughout the oxidation of phospholipid hydroperoxide glutathione peroxidise 

by H2O2. This enzyme is ultimately converted to a structural protein comprising more than half of the 

mitochondrial sheath of the mid-piece of the mature sperm (Baker and Aitken, 2004; Puglisi et al., 

2005; Roveri et al., 2001). 

Capacitation is a multi-step maturational process that takes place in the female genital tract in order 

to facilitate sperm-oocyte recognition and binding (Chang, 1984). ROS have been described to act as 

intracellular signalling molecules mediating membrane destabilization, hyperpolarisation and lipid 

redistribution during the capacitation process (O'Flaherty et al., 2006).  

Sperm capacitation remains poorly understood process, which is thought to be initiated by the influx 

of Ca2+ and bicarbonate (HCO3
−) probably due to the inhibition of plasma membrane Ca2+ ATPase 

as well as the alkalization of the cytosol (Baldi et al., 1996; Du Plessis et al., 2015). In presence of 

high intracellular levels of Ca2+, ROS particularly O2
−• triggers the activation of adenylate cyclase, 

resulting in the formation of cAMP. At elevated concentrations, cAMP induces the activation of 

protein kinase A (PKA), an enzyme that can modify a neighbouring protein with a phosphate group 

(Du Plessis et al., 2015). PKA subsequently induces tyrosine phosphorylation of various substrates 

present primarily in the apical piece of the cell membrane as well as the midpiece and the principal 

piece of the flagellum (Aitken, 1997; Aitken et al., 2007). Tyrosine phosphorylation during sperm 

capacitation and related events is tightly regulated most likely via cross-talk and interconnectivity 

between several biochemical pathways (Naz and Rajesh, 2004). These include the cAMP/PKA 

pathway and the extracellular signal-regulated kinase pathway an intracellular cascade of signalling 

proteins from a receptor on the cell surface to the nuclear DNA (Hindley and Kolch, 2002; Naz and 

Rajesh, 2004; O'Flaherty et al., 2006).  

This array of molecular changes results ultimately in significant alterations in the membrane 

characteristics including; sperm surface protein distribution, membrane fluidity and ionic 
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permeability in addition to alterations in enzymatic activities and modulation of intracellular 

constituents (Baldi et al., 1996). 

Hyperactivation, as previously mentioned, is a high-energy pattern of sperm motility observed at the 

site and time of fertilization as a late event of sperm capacitation. In the hyperactivated state, the 

vigorous whiplash-like beating pattern of the flagellum provides the sperm with propulsion necessary 

for the penetration of the cumulus cell layer surrounding the egg (Katz et al., 1978; Demott and 

Suarez, 1992).  

Although the molecular mechanism of hyperactivation is poorly understood, a sustained generation 

of mild O2
−• seems to be essential not only to initiate, but also to maintain hyperactivation. In support 

of this view, the addition of SOD to already hyperactivated spermatozoa reversed the hyperactivation 

(De Lamirande and Cagnon, 1993). The beneficial effect of ROS on sperm hyperactivation may not 

be limited to O2
−•. Supplementation of the medium with specific concentrations of H2O2 has also been 

shown to induce sperm hyperactivation (by 37 %) compared to the control (Griveau et al., 1994). This 

suggests that both O2
−• and H2O2 play a role in promoting sperm hyperactivation (De Lamirande et 

al., 1997). 

Acrosome reaction, as mentioned above, is an irreversible exocytotic process that occurs in the final 

stage of sperm maturation immediately prior to the process of fertilization (Breitbart et al., 1997). In 

vivo, the binding of the sperm to the zona pellucida triggers the initiation of a cascade of molecular 

signal transduction events, which ultimately results in an increase in intracellular Ca2+ levels required 

for acrosomal exocytosis (Anifandis et al., 2014). As previously described, O2
−• generated via the 

membrane-bound NADPH oxidase may dismutate into H2O2. Both of these oxygen species, at normal 

levels, may trigger the acrosome reaction via stimulation of tyrosine phosphorylation of specific 

proteins on the plasma membrane of sperm head (Du Plessis et al., 2017). The biochemical cascade 

of the acrosome reaction seems to have common characteristics with those of capacitation including 

the phosphorylation of the same set of proteins, entry of extracellular Ca2+ into the cytosol and the 
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activation of adenylate cyclase and cAMP (Kothari et al., 2010; Liguori  et al., 2004; Naz and Rajesh, 

2004). 

The presence of ROS within physiological levels also brings about beneficial effects on sperm 

chemotactic response toward the follicular fluid (Sánchez et al., 2010) as well as the fusion with the 

female gamete (Aitken et al., 1995). However, an unbalance of the generation and degradation of 

ROS causes impairment in sperm quality attributable to oxidative damage of the cell (Griveau et al., 

1997; Sánchez et al., 2010). 

2.3.12.4 Pathological effects of ROS on spermatozoa 

It has been estimated that 40 to 88 % of semen samples of non-selected infertile men have increased 

levels of ROS (Lewis et al., 1995). Supra-physiological levels of ROS have also been reported in 

nearly 11 % of infertile men with normal semen analysis (Pasqualotto et al., 2001). Furthermore, a 

strong correlation has been suggested between the seminal ROS levels and pregnancy rates in 

subfertile couples undergoing IVF (Hammadeh et al., 2006). The pathological levels of ROS in semen 

may vary significantly among infertile patients (Iwasaki and Gagnon, 1992), and are more likely to 

be attributed to an excessive ROS formation rather than impaired antioxidant capacity (Zini et al., 

1993). 

At pathological levels, ROS become highly reactive, causing substantial damage to various types of 

cellular biomolecules such as nucleic acids, proteins and lipids (Sharma et al., 2012). Several factors 

have been shown to determine the extent of the oxidative damage ROS may cause. These factors 

include the concentrations and the type of oxidant, period of exposure, antioxidant capacity, 

surrounding temperature and oxygen tension (Kothari et al., 2010).  

Spermatozoa are very sensitive to ROS damage by lipid peroxidation because their membranes are 

highly rich in polyunsaturated fatty acids (PUFA), primarily docosahexaenoic acids. These 

unsaturated fatty acids are primary substrates for peroxidation as they contain methylene group with 

extremely reactive hydrogen atoms (Oborna et al., 2009). Lipid peroxidation is a chain reaction 
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initiated when ROS, especially OH• and Hydroperoxyl (HO2) generated from O2
−•, combines with a 

hydrogen atom from a fatty acid to yield a lipid radical. These are unstable radicals reacting quickly 

with oxygen molecules to form peroxy fatty acid radicals, which are then converted into lipid 

peroxides. In presence of a transitional metal ion, lipid peroxide is catalysed into OH• (Ayala et al., 

2014). These radicals are capable of abstracting electrons from other PUFA to generate new radicals 

and thereby propagating the lipid peroxidation chain reaction (Kothari et al., 2010). This chain is 

ceased when the radicals react with each other to create a non-reactive product called 

malondialdehyde (MDA). This by-product is widely used as a biomedical marker to estimate the 

extent of peroxidation damage to spermatozoa (Collodel et al., 2015). Termination of lipid 

peroxidation chain may also arise in presence of suitable antioxidants (Kefer et al., 2009). 

As lipid peroxidation reaction chain sustained membrane fatty acids are progressively lost, resulting 

accordingly in a decrease in the membrane fluidity, an increase in its non-specific permeability to 

ions, and inhibition of its bound receptors and enzymes (Lenzi et al., 2004). 

In addition to its mediating role in lipid peroxidation, ROS especially NO•, O2
−• and OH• (Epe et al., 

1996) may also react with DNA nucleotides producing base modifications and DNA strand breaks 

(Zribi et al., 2011). Sperm DNA is especially susceptible to oxidative damage, possibly due to the 

genetic structure of its Y chromosome that cannot repair double stand breaks (Cocuzza et al., 2007). 

Such susceptibility is further exacerbated by poor chromatin compaction and incomplete 

protamination (Iommiello et al., 2015). A strong positive correlation has been reported between ROS 

levels and the proportions of sperm DNA fragmentation (Khodair et al., 2013; Mayorga et al., 2013). 

Interestingly, single strand breaks seem to be a result of a direct oxidative attack by ROS, whereas 

double strand breaks are more likely attributable to exposure to lipid peroxidation breakdown 

products (Badouard et al., 2008). ROS induced DNA damage is characterized by various structural 

changes in DNA including; cross-linking, base modifications and deletions, strand breaks, 

chromosomal breakage and/or rearrangement mutations as well as other genotoxic effects (Abdel 

Haliem et al., 2013; Gill et al., 2010). 
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ROS has also been implicated to act as an apoptotic stimulus that triggers the mitochondria to release 

some signalling molecules essential for the activation of programmed cell death (Agarwal et al., 

2014b; Mahfouz et al., 2010). Mature spermatozoa from ROS-positive infertile patients showed 

substantially elevated levels of apoptosis compared with the control group (Agarwal and Said, 2003). 

However, antioxidant therapy has recently shown to reduce the apoptotic response to oxidative stress 

(Yüce et al., 2013). 

2.3.13 Antioxidants 

Under normal conditions, the maintaining of a mild oxidative stress is crucial for the physiological 

function of intracellular signalling pathways. Redox homeostasis is tightly regulated by an array of 

antioxidants acting as effective free radical scavengers, which protect spermatozoa against oxidative 

damage (Trachootham et al., 2008). Antioxidants are “compounds or enzymes that scavenge and 

inhibit the formation of ROS, or oppose their actions” (Sikka et al., 1995). They are basically 

classified based on their nature into enzymatic antioxidants and nonenzymatic antioxidants.  

Enzymatic antioxidants include a group of cellular detoxifying enzymes with powerful antioxidant 

properties such as, Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GPx). 

Non-enzymatic antioxidants include a variety of low-molecular compounds such as; vitamin A, C, 

and E, ascorbate, carotenoids, glutathione, pyruvate, albumin, uric acid, taurine and hypotaurine. 

These compounds may act directly as ROS scavengers or indirectly by activating some enzymatic 

oxidants (Agarwal and Prabakaran, 2005). Spermatozoa have limited intracellular enzymatic defence 

against oxidative stress, partly due to the cytoplasmic extrusion during spermatogenesis. This 

deficient capacity is compensated for quite effectively by the antioxidant system provided by the 

seminal plasma (Grunewald and Paasch, 2012). 

2.3.13.1 Enzymatic antioxidants 

Superoxide dismutase (SOD) consists a family of “metal-containing enzymes that catalyze the 

conversion of two O2
−• anions into O2 and H2O2”, providing the sperm with significant protection 
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against peroxidative damage (Alvarez et al., 1987). According to the metal ion at their active site, 

three SOD isoenzymes have been identified in various components of a mammalian cell. These 

isoenzymes include the mitochondrial manganese SOD (Mn-SOD), the secretory tetrameric 

extracellular SOD (EC-SOD) and the dimeric copper-zinc SOD (CuZn-SOD) localized in the cytosol 

and the intramembranous space (Alvarez and Storey, 1989; Peeker et al., 1997).  

The CuZn-SOD is the major SOD isoenzyme in seminal plasma, contributing to about 75 % of its 

enzymatic activity (Peeker et al., 1997) that compensates for the deficient SOD activity in 

spermatozoa (O’Flaherty, 2014). The addition of exogenous SOD to sperm suspensions could protect 

against the oxidative damage and improve sperm motility as well as membrane integrity (Berlinguer 

et al., 2003; Cocchia et al., 2011; Kobayashi et al., 1991). SOD is also suggested to play a critical role 

in preventing the early development of ROS induced premature capacitation and inopportune 

hyperactivation (De Lamirande and Gagnon, 1995). In addition, a positive correlation was reported 

between semen SOD activity and various sperm parameters including sperm concentration, total 

motility, morphology and viability (Hsieh et al., 2002; Murawski et al., 2007; Shamsi et al., 2010). 

Catalase (CAT) is a common antioxidant enzyme found mainly in peroxisomes. It catalyses the 

decomposition of H2O2 to O2 and H2O. CAT activity in human spermatozoa is limited, but it is 

detectable in seminal plasma, contributed mainly by prostatic secretions (Jeulin et al., 1989; Sikka et 

al., 1995). Protein expression of CAT in seminal plasma was positively correlated with sperm 

progressive motility and morphology (Macanovic et al., 2015). In asthenozoospermic patients, a 

significantly lower semen CAT activity was reported when compared with normozoospermic men 

(Jeulin et al., 1989). 

Glutathione peroxidase (GPx) is another key enzymatic antioxidant protecting spermatozoa against 

ROS-mediated oxidative attack. GPx comprises a family of enzymes with different characteristics 

found in various reproductive tissues.  They catalyse the reduction of H2O2 and a range of lipid 

hydroperoxides to H2O and alcohol respectively, using reduced glutathione (Sies et al., 1997). The 

most abundant GPx isoenzymes are GPx1, which is expressed in spermatozoa and the genital tract 
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and GPx4, expressed primarily in the testicular tissues (Tvrdá et al., 2011). Activities of these 

enzymes in seminal plasma have been linked to sperm quality in fertile and infertile men (Foresta et 

al., 2002; Idriss et al., 2008). 

2.3.13.2 Non-enzymatic antioxidants 

Vitamin E is a major chain-breaking antioxidant that protects the sperm membranes against 

peroxidation by trapping and scavenging O2
−•, H2O2 and OH• in a dose-dependent manner (Hull et 

al., 2000; Suleiman et al., 1996). Vitamin E supplementation led to enhanced enzymatic antioxidant 

defence and decreased levels of MDA, a biomarker of lipid peroxidation of the sperm membranes 

(Suleiman et al., 1996). Furthermore, the addition of vitamin E to the cryoprotective media resulted 

in a significant improvement in post-thaw motility and DNA integrity (Kalthur et al., 2001). 

Vitamin C is another chain-breaking antioxidant found primarily in seminal plasma, representing up 

to 65 % of its antioxidant capacity (Agarwal and Prabakaran, 2005). In addition to its essential role 

in protecting the sperm from oxidative damage, vitamin C also prevents sperm agglutination and 

assists in recycling the oxidised vitamin E (Angulo et al., 2011). Several studies have established the 

dose-dependent beneficial effects of vitamin C on different sperm quality parameters such as motility 

(Abel et al., 1982) and morphology (Colagar and Marzony, 2009). Dietary supplementation with 

vitamin C has also shown to ameliorate oxidative stress caused by cigarette smoke (Fraga et al., 1991). 

Glutathione is one of the most abundant endogenous non-thiol proteins in mammalian cells (Irvine, 

1996). Its sulfhydryl group acts as a proton donor and is responsible for its antioxidant properties. 

Oxidation of the sulfhydryl group results in the formation of glutathione disulphide, which is reduced 

instantly by glutathione reductase to regenerate glutathione (Zhao et al., 2011). A significantly lower 

glutathione content of spermatozoa were reported in infertile men compared with that of fertile 

controls (Ochseedorf et al., 1998). Furthermore, the utilization of glutathione therapy in certain 

andrological pathologies resulted in a substantial improvement in both sperm parameters and cell 

membrane integrity (Lenzi et al., 1994).  

Stellenbosch University  https://scholar.sun.ac.za



53 

Coenzyme Q-10 is a lipid soluble antioxidant related to low-density lipoproteins and found primarily 

in the sperm midpiece. It traps free radicals and protects the sperm against peroxidative damage (Frei 

et al., 1990). It may also be implicated in recycling vitamin E and inhibiting its pro-oxidant capacity 

(Karbownik et al., 2001). As a component of the mitochondrial respiratory chain, the Coenzyme Q-

10 can assist in promoting energy production to enhance sperm motility (Choudhary et al., 2010; 

Lewin and Lavon., 1997).  

Several other molecules with potential antioxidant activities have been reported in the reproductive 

system e.g. uric acid (Guz et al., 2013), bilirubin (Sedlak et al., 2009) and albumin (Roche et al., 

2008). These endogenous substances might not react with oxidants directly, but may indirectly 

contribute to the protection of sperm oxidative homeostasis. 

2.4 Computer-aided sperm analysis (CASA) 

CASA is an automated system with hardware and software packages designed to visualize and 

digitalize a series of sequential images of the sperm, therefore providing accurate, precise and 

objective information about different aspects of sperm quality parameters, namely sperm 

concentration, motility, morphology and morphometry (Lu et al., 2014; Talarczyk-Desole et al., 

2017). The basic principle for CASA is that the various sperm images from the microscope field are 

captured by the camera and converted into digital images. The captured microscopic field is 

visualized using a dark field or a negative-high–phase contrast image, in order to show the sperm 

heads as clear white images against a black background. The core of the sperm head remains 

consistently bright even when the sperm moves, as the sperm head displacement does not influence 

the intensity of its white image. The captured images of the sperm head are translated to digital data. 

Subsequently, the computer analyses the trajectory of each individual sperm according to the 

predefined frame rate and the range of pixels of the sperm head (Holt et al., 2007; Mortimer, 2000). 

In the mid-1980s, the earliest commercial CASA instrument was introduced to the market as a method 

for tracking sperm motion. Unfortunately, these early generation machines did not show sufficient 
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accuracy for practical applications due to fundamental limitations, including the lack of standardizing 

criteria (Mortimer et al., 2015). In an attempt to standardize the protocols and applications of CASA 

for the assessment of human semen, the ESHRE Andrology Special Interest Group convened three 

international consensus meetings (Mortimer, 1995; 1996; Mortimer et al., 1998), during which 

several limitations of CASA were addressed and recommendations were formulated. However, 

during the 20 years that have passed since the publication of the most recent ESHRE guidelines, many 

of the problems that constrained earlier systems have been addressed as major innovations in 

bioengineering and computer technology have been made. The massive improvement in CASA 

technology in the last three decades was accompanied by a substantial increase in the number of 

scientific articles, which employed CASA in both human and animal sperm studies (Figure 2.6). The 

successful application of CASA in research has encouraged its incorporation into routine clinical 

practice, as more than half of the andrology laboratories in China, for instance, have been reported to 

use CASA systems (Lu et al., 2010). 

 

 

 

 

 

 

 

 

Figure 2. 6: Increased CASA-related publications for each five-years between 1988-2017. 

Adapted from (Van der Horst, et al., in press).  
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2.4.1 Advantages of CASA 

2.4.1.1 Sperm motility 

The assessment of sperm motility is a fundamental part of semen analysis as it provides essential 

information about the functional competence and the fertilizing potential of spermatozoa (Gunalp et 

al., 2001; Simon and Lewis, 2011). The manual microscopic estimation of sperm motility is 

subjective and highly associated with inter- and intra-laboratory variations. Within the same semen 

sample, variations of 30–60% have been reported in manually assessed human and animal ejaculates  

(Verstegen et al., 2002). In contrast to this subjective method, CASA is a powerful tool that has the 

capacity for the objective analysis of motility in larger populations of sperm with increased accuracy 

(Fréour et al., 2010). CASA-derived motility parameters include total motility, progressive motility, 

non-progressive motility, static, fast progressive [type a], slow progressive [type b], non-progressive 

[type c] and immotile [type d]). Furthermore, CASA systems allows for obtaining verifiable data, 

since previously analysed video images can be re-evaluated for periodic internal and external quality 

control assessments.  

2.4.1.2 Sperm kinematics 

In addition to being powerful analytical tools for assessing sperm motility, CASA systems provides 

additional details on sperm motion via determining their kinematic characteristics. Each individual 

sperm in the field of view is identified and a series of digital images of the spermatozoal head 

movement is captured. This allows for the reconstruction of their individual trajectories (Mortimer et 

al., 2015). CASA-based kinematics include the following measurements, VCL, VSL, VAP, LIN, 

STR, WOB, ALH and BCF. These kinematic parameters provide valuable information on sperm 

quality, which cannot be obtained by the subjective evaluation using manual microscopic 

examination, and could become important components of male fertility evaluation, thereby enhancing 

the routine semen analysis (Estofan et al., 2017; Ranganathan et al., 2001; Soler et al., 2017). 
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2.4.1.3 Sperm hyperactivation 

Hyperactivation is a form of non-progressive motility observed at the site and time of fertilization 

and is characterized by extremely asymmetrical flagellar undulations with higher amplitudes and 

lower frequencies leading to highly curved or whiplash swimming trajectories (Demott and Suarez, 

1992; Katz et al., 1978). Hyperactivated motility of spermatozoa was initially evaluated manually by 

describing the flagellar movement patterns subjectively based on visual observations. However, due 

to the fact that sperm hyperactivation is flagellar phenomenon associated with changes in the 

amplitudes and the frequencies of the flagellar waves, the manual analysis of sperm hyperactivation 

remains extensively laborious, time consuming and uncontrolled (Suarez, 2008). Recently, 

quantification of the hyperactivated population of spermatozoa has been enabled and simplified since 

visual analysis has been superseded by automated measuring procedures. CASA systems have been 

strongly recommended to be a more practical option for the identification of hyperactivated 

spermatozoa (Mortimer, 2000; Mortimer et al., 2015). The identification of hyperactivated sperm 

populations by CASA is performed by employing a combination of sperm kinematic parameters 

including VSL, LIN and ALH. Accordingly, hyperactivated motility for human spermatozoa is 

represented as a Boolean argument, which is defined by the following kinematic values VCL ˃ 150 

µm/s, LIN ˂ 50 % and ALH ˃ 7.0 µm when analysing at 60 images per second. In contrast, non-

hyperactivated or progressively motile spermatozoa are characterized by straight trajectories with 

relatively lower VCL, relatively higher VSL and particularly lower ALH values (Mortimer et al., 

2015). 

2.4.1.4 Sperm morphology 

Despite the seeming simplicity of spermatozoa, these specialized cells are highly differentiated and 

evolved in shape and size. The possible link between sperm morphology and fertility has already been 

recognized since the middle of the previous century (Macleod and Gold 1951). However, the 

predictive value of sperm morphology in male fertility has always been a controversial issue; mainly 

due to the wide variability of manual morphology evaluation within and between laboratories, which 
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subsequently limited its practical application (Eustache and Auger, 2003; Maree et al., 2010; Van der 

Horst and Du Plessis, 2017). As reviewed by Yániz et al. (2015), quality control programs for the 

manual microscopic analysis of the human ejaculate have reported within-technician coefficients of 

variation of between 10-80%. The analysis errors associated with the subjective visual assessment of 

sperm morphology makes it even more difficult to interpret the obtained results, which can 

subsequently lead to inappropriate treatment plans.  

For the objective assessment of sperm morphology, the automated sperm morphology analysis 

(ASMA), generally referred to as computer-aided sperm morphology analysis (CASMA), software 

was developed and first appeared on the market in the early 1990s (Kruger et al., 1993). This 

technology assists considerably in eliminating the human evaluation biases through providing faster, 

more accurate and quantifiable morphometric measurements (Garrett et al., 2007). 

2.4.1.5 Sperm morphometry 

Apart from being a reliable tool for the objective assessment of the overall proportion of sperm 

morphology in the ejaculate, CASA instruments also allows for the direct measurement of individual 

sperm dimensions. Subsequently, the following novel sperm head and midpiece morphometric 

parameters have been identified, Head Length (μm), Head Width (μm), Head Area (μm2), Head 

Perimeter (μm), Chord (μm), Head Angle (degrees), Head Linearity (%), Head Roughness, Head 

Regularity, Head Ellipticity, Acrosome cover (%), Midpiece Width (μm) and Midpiece Angle 

(degrees). The latest generations of CASA systems incorporate the minimum and maximum cut-off 

points for each of these morphometric variables in order to determine normal sperm morphology in 

various mammalian species, including humans. Thus, the automatic quantification of species-specific 

sperm morphometry subpopulations can be established based on clear criteria. Furthermore, the 

combination of sperm kinematic and morphometric subpopulations not only delineate the distinctive 

characteristics of the ejaculate, but also assist in elucidating the relationship between sperm structure 

and function (Soler et al., 2017), which would consequently improve the clinical relevance for semen 

analysis. 
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2.4.2 Clinical relevance of CASA measurements 

Due to the substantial efforts towards improving the technical performance and efficiency of current 

CASA systems, it necessitates and has become crucial  to evaluate the biological relevance of CASA-

derived parameters in predicting male fertility potential. CASA-derived measurements have been 

shown to be of great value in monitoring the subtle changes in the distribution of spermatozoa 

amongst different motility and velocity subpopulations in response to various physiological 

conditions (Elzanaty et al., 2005; Fréour et al., 2012) and environmental exposures (Louis et al., 2014; 

Mukhopadhyay et al., 2010), which cannot be observed manually by optical microscopic analysis. 

Studies have shown considerable differences in the CASA kinematics, VCL and LIN, between fertile 

and infertile men with unexplained fertility (Aitken et al., 1982; Vantman et al., 1989). Similarly, 

non-hyperactivated spermatozoa from fertile men were characterised by significantly lower values of 

VAP, VCL and ALH, along with increased LIN and STR as compared to non-hyperactivated 

spermatozoa from men with unexplained infertility. By contrast, after two hours of incubation in a 

capacitating medium, hyperactivated spermatozoa from fertile men showed a considerable decrease 

in VSL and LIN as well as an increase in ALH and BCF when compared to hyperactivated 

spermatozoa from infertile men. This suggests that spermatozoa from fertile men are likely to be more 

capable of undergoing hyperactivation as they displayed higher values of ALH and BCF than those 

of infertile men (Peedicayil et al., 1997). 

Several studies have addressed the role of CASA-derived parameters in predicting male infertility.  

In a study, which included a large number of semen samples collected from men from the general 

population, the proportion of sperm motility, defined as VCL ˃25 µm, was found to be a dominant 

factor in predicting the chance of conceiving naturally (Larsen et al., 2000). Similarly, in a large group 

of subfertile couples, VSL along with the proportion of spermatozoa exhibiting head morphology 

characteristics similar to those spermatozoa that have been found to typically bind to the zona 

pellucida were significantly and independently associated with increased conception rates (Garrett et 

al., 2003). In various other studies, fertility rates have also been strongly associated with higher 
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proportions of spermatozoa having smaller and more elongated heads (Maroto-Morales et al., 2015; 

Ramón et al., 2013) and displaying fast and linear movements (Ramón et al., 2013) as measured by 

CASA/CASMA. Furthermore, CASA parameters including, sperm concentration, motility, and rapid 

velocity have also been reported to be reliable predictors for pregnancy outcome after IUI when 

combined with superovulation strategies in couples with unexplained infertility. It is therefore clear 

that many CASA instruments correlate with fertilization and pregnancy. Thus employing CASA 

would be beneficial in the diagnosis and counselling of patients prior to deciding on proceeding with 

specific treatment strategies such as IUI, IVF or ICSI. 

2.4.3 Limitations of CASA  

Despite being a reliable tool that has the capacity to provide detailed measurements of sperm head 

and midpiece dimensions, most commercially available CASA systems are not capable of analysing 

the sperm tail characteristics, and consequently limits the application of this technology in the clinical 

settings (Mortimer et al., 2015). Furthermore, CASA systems are not ready-to-use robots and can be 

influenced, as any other automated technique, by several artefacts related to inappropriate settings 

and technical errors (Kraemer et al., 1998; Ibănescu et al., 2016). With recent advances made in 

CASA software, many of the limitations affecting the CASA performance of measurement have been 

partially or totally negated. For instance, when assessed manually, sperm motility is defined and 

categorised based on its flagellar movement and beating pattern, while CASA depends primarily on 

tracking the displacement of the sperm head. It has been claimed that the assessment of sperm motility 

percentage using CASA might be unreliable due to the potential misidentification of particulate debris 

as immotile spermatozoa (WHO, 2010). However, the recently developed SCA (5.4 and 6) CASA 

models, as used in the current study, are incorporated with intelligent filters eliminating some 

particles of similar size than sperm, but more importantly utilizing positive phase contrast where most 

background images are now visualized in black and accordingly not imaged as part of the white 

reflecting sperm.  Furthermore, a feature called “drifting” can be set to eliminate not only Brownian 

motion, but also minor flow and even help to counteract detecting an immotile sperm that is slightly 
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displaced as motile because of a collision with a motile sperm . These features allow for more accurate 

and objective assessment of sperm count and motility (Mortimer et al., 2015). 

Before any assessment can be made, standardization and optimization of the operational settings 

remains essential for all computerized measuring instruments. The various CASA systems and 

models operate according to similar basic principles. However, the sample handling techniques as 

well as the characteristics of the algorithms and software for sperm identification and trajectory 

reconstruction might lead to a source of subjectivity among laboratories (Ibănescu et al., 2016; 

Mortimer et al., 2015; Rijsselaere et al., 2003). Consequently, inconsistent outcomes may arise when 

comparing data from studies using the same CASA system, but with different operational settings 

such as light settings, frame rate, image acquisition frequency, chamber type and depth, velocity and 

kinematic cut-off points as well as the recognition criteria for sperm head and immotile particles 

(Gączarzewicz, 2015; Schleh et al., 2013). Nevertheless, potential errors can largely be minimized to 

permit comparison of data obtained by different systems and technicians through the use of 

harmonized instrument settings and standardization techniques. In support of this, no major inter-

laboratory variations were observed in the automatic analyses of various sperm characteristics when 

the same semen samples were assessed using different CASA systems, which were operated by 

independent technicians, but installed with equivalent operational settings (Akashi et al., 2010; Holt 

et al., 1994; Lu et al., 2014; Maree et al. 2010). 

2.4.4 Future of CASA 

The successful collaboration and fruitful cooperation between science and industry has resulted in 

establishing CASA as a reliable tool that has the capacity to quantitatively assess sperm motility, 

kinematics as well as morphological and morphometric features, in a rapid and precise manner. The 

combination of these basic characteristics with advanced functional parameters will enhance the 

diagnostic value of semen analysis and provide a more accurate as well as quantitative approach for 

the assessment of idiopathic male infertility. Therefore, for the future development of CASA 

technology, advanced markers of sperm functionality (i.e. mitochondrial function, DNA status, 
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hyperactivation, cervical mucous penetration) need to be integrated. This will enable a precise 

objective description of numerous aspects of sperm/semen quality based on automated assessment. 

2.5 Factors affecting sperm quality 

In general, semen quality is influenced by a variety of intrinsic and extrinsic factors. Individual 

variations in semen parameters have been shown to be the result of various factors which can be 

predictable and controlled for. These factors include abstinence period, ejaculation frequency and 

collection method. Other factors which have been potentially associated with changes in the chemical 

and physical  semen properties include; the subject’s age, general health and lifestyle,  infection, 

inflammation and dysfunction of male sex glands, urogenital surgery as well as several therapeutic 

and the environmental exposures (Barazani et al., 2014; Du Plessis et al., 2013). The subsequent 

section will briefly review the main factors that influence semen properties. 

2.5.1 Age 

Although there is no identified critical threshold for sperm production in men, the weight of evidence 

indicates that advancing male age is related to substantial reductions in several aspects of semen 

quality (Kidd et al., 2001). A progressive decrease in both seminal volume and the percentage of 

sperm motility was reported between the ages of 22 and 80. The average annual decline in the overall 

sperm motility from 22 years onwards has been estimated to be 4.7 % (Eskenazi et al., 2003). 

Likewise, a strong trend of decline was reported in semen volume from   1 % for men aged 30 years 

to 40 % for men aged 50 years (Plas et al., 2000). Aging is also accompanied by an increase in the 

incidence of abnormal forms of spermatozoa, with coiled tails and microcephalic heads being the 

most common defects (Schwartz et al., 1983). Age might not only affect conventional semen quality, 

it may also affect the chromatin integrity of the spermatozoa. In support of this, a strong association 

was shown between age and DNA fragmentation in men 18–55 years of age (Spano et al., 1998). 

The aging process is associated with several cellular and physiological changes, which may induce 

the deterioration observed in semen quality. These changes include; insufficient accessory glands 
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secretions, narrowing and sclerosis of the tubular lumen, impaired spermatogenic activity, 

degeneration of germ cells, and reduced number and function of Leydig cells (Eskenazi et al., 2003, 

Kidd et al., 2001). 

2.5.2 Smoking 

The deleterious effects of cigarette smoking on sperm quality have been widely reported (Belcheva 

et al., 2004; Saleh et al., 2002b; Sepaniak et al., 2006). Nicotine is a major toxic constituent of 

cigarette smoke and is found at high levels in smokers (Görnig and Schirren, 1996). In male rats, 

nicotine treatment resulted in a significant decrease in sperm count, motility and normal morphology. 

The adverse effect of nicotine on sperm parameters was shown to occur in a dose-dependent manner 

and improved by nicotine cessation (Oyeyipo et al., 2011). In most studies, have smokers have been 

reported to have lower semen volume, sperm count, sperm motility viability and normal morphology 

compared with non-smokers (Meri et al., 2013; Sharma et al., 2016). Cigarette smoking has also been 

associated with increased seminal oxidative stress levels (Saleh et al., 2002b), alterations of cell 

membrane lipids (Belcheva et al., 2004) and increased sperm DNA fragmentation (Sepaniak et al., 

2006). It appears that there are no safe levels of cigarette consumption, although the decline in semen 

quality has been directly proportional to the duration (Zhang et al., 2000) and the number of cigarettes 

smoked (Gaur et al., 2007). 

2.5.3 Alcohol consumption 

Alcohol abuse has been associated with progressive deterioration in semen quality (Jensen et al., 

2014). A link has been suggested between prenatal alcohol exposure and a number of semen quality 

parameters including semen volume, sperm concentration and T.S.C. (Ramlau-Hansen et al., 2010). 

In a case-control study conducted in Japan, alcohol intake was found to be more common in infertile 

men than in fertile men (Tsujimura et al., 2010). Furthermore, a reduced number of normozoospermic 

cases was reported amongst alcoholics compared with controls, with the majority of heavy drinkers 

showing higher percentages of morphologically abnormal spermatozoa (Gaur et al., 2010). A 
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significant improvement in sperm parameters was observed after three months of alcohol 

consumption discontinuation (Sermondade et al., 2010). Despite the exclusive evidence on the 

involvement of alcohol consumption in the increase of systemic levels of oxidative stress (Cederbaum 

et al., 2009), the specific relationship between sperm oxidative stress and alcohol has yet to be 

elucidated (Kefer et al., 2009). 

2.5.4 Obesity 

Several studies have linked the increased body mass index with impaired semen quality (Martini et 

al., 2010; Wen-hao et al., 2015). Compared with normal weight males, obese males are thought to be 

three times more likely to have lower WHO semen parameters (Hajshafiha et al., 2013). The 

prevalence of oligozoospermia was shown to be higher among overweight or obese men (Sermondade 

et al., 2012). In a recent large population-based cohort study (Belloc et al., 2014), an inverse 

association was reported between obesity and seminal volume, T.S.C. and sperm concentration, but 

not with sperm morphology. A significantly higher incidence of DNA fragmentation was also 

reported in obese men, possibly attributable to induced oxidative stress (Dupont et al., 2013; Kort et 

al., 2006). 

2.5.5 Recreational drugs 

The use of illicit drugs appears to be associated with progressive deterioration in semen quality and 

reproductive system. More than 30 % of the exclusive marijuana smoking men included in the study 

by Kolodny et al. (1974) were oligozoospermic, possibly due to inhibited testosterone secretions, 

which ultimately impairs spermatogenesis. Bracken et al. (1990) assessed the effect of cocaine use 

on sperm concentration, motility and morphology and found that the incidence of sperm concntration 

lower than 20X106/mL was more common in men who have used cocaine more frequently during the 

last two years. Furthermore, chronic exposure of male rats to ecstasy, a psychoactive drug consumed 

largely by young population, resulted in higher proportions of spermatozoa with fragmented DNA 

(Barenys et al., 2009). Similarly, the in vitro exposure of human spermatozoa to delta-9-
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tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, impaired progressive 

motility, velocity, and acrosome integrity (Whan et al., 2006). Interestingly, delta-9-

tetrahydrocannabinol has also been associated with impaired mitochondrial oxygen consumption in 

human spermatozoa (Badawy et al., 2009).  

2.5.6 Ejaculatory abstinence  

The WHO criteria for semen analysis provide a standard approach for the prognosis of fertility and 

diagnosis of infertility in men. These criteria have been universally adopted by most human andrology 

laboratories during the last three decades (WHO, 1980, 2010). Therefore standardized semen 

analysis, according to the WHO, remains the initial screening and cornerstone for the evaluation of 

male fertility. 

According to the prescribed guidelines of the WHO, subjects must remain abstinent for a minimum 

period of 48 hours, but not longer than seven days prior to collecting a sample for a standard semen 

analysis (WHO, 2010). Whilst, more firmly abstinence intervals of three to four days have also been 

suggested by the NAFA and ESHRE (Kvist and Björndahl, 2002). However, the basis for this 

recommendation remains uncertain and contradictory. 

Experiments performed to compare the fertilizing capacity of rat spermatozoa recovered from 

different compartments of the epididymis showed that spermatozoa sampled from the proximal cauda 

were significantly superior to those from the distal cauda region or vas deferens (Moore and Akhondi, 

1996). Similarly, moderate aging of hamster spermatozoa in the cauda epididymis was associated 

with a decreased fertilizing capacity and an impaired ability of spermatozoa to undergo the acrosome 

reaction (Cuasnicu and Bedford, 1989). These findings indicate that the typical functional status of 

caudal spermatozoa cannot be maintained for longer than the average length of time that they usually 

remain in their epididymal storage before being replaced by younger spermatozoa (Cuasnicu and 

Bedford, 1989). 
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During the last half century, various studies have sought to determine the optimal time frame for 

ejaculatory abstinence and the results are often found to be contradictory. In general, these studies 

assessed a wide range of abstinence period cut-offs (≤1 to 18 days). Shortening the abstinence time 

to ≤ 2 days has shown to increase pregnancy rates after ovulation induction with IUI (Marshburn et 

al., 2010). Prolonged sexual abstinence has generally been reported to increase semen volume; sperm 

concentration and the T.S.C. (Agarwal et al., 2016; Marshburn et al., 2014; Mayorga-Torres et al., 

2015; Sunanda et al., 2014). However, the overall quality of spermatozoa is known to be affected by 

the efficiency of epididymal storage and the rate at which spermatozoa pass from the proximal to the 

distal cauda region, that in turn vary depending on the frequency of ejaculation (Johnson and Varner, 

1988; Turner, 2008). The proportions of progressive motility (Bahadur et al., 2016a; Mayorga-Torres 

et al., 2015) and total motility (Choavaratana et al., 2014; Valsa et al., 2013) were found to decrease 

substantially with increasing the abstinence period, whereas no significant associations were noticed 

in other studies (Jurema et al., 2005; Mayorga-Torres et al., 2015; Sánchez-Martín, et al., 2013). The 

only study that has investigated the effect of abstinence on the kinematic properties of spermatozoa, 

as assessed by CASA, was conducted by Elzanaty et al. (2005). This study found an inverse 

association between the abstinence period and VSL and LIN, whereas VAP and VCL were not 

significantly different among groups.  

There are only few studies available on the impact of abstinence time on the advanced sperm 

functional parameters such as ROS production and DNA integrity, while their findings are apparently 

inconsistent. Some studies have revealed that shortening the abstinence time could result in a 

significant decrease in sperm DNA fragmentation (Agarwal et al., 2016; Sánchez-Martín et al., 2013; 

Sukprasert et al., 2013) and ROS levels (Mayorga-Torres et al., 2016). Other studies, however, 

reported insignificant differences (Desai et al., 2010; De Jonge et al., 2004; Mayorga-Torres et al., 

2015). In a unique report, Marshburn et al. (2010) showed a significant increase in the total 

antioxidant capacity with short abstinence period. 
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Accordingly, the typical time after which semen samples should be collected for standardized analysis 

remains unclear and needs to be further investigated. In addition, no comprehensive study as of yet 

investigated the effect of a short abstinence period lasting four hours on sperm motility, viability and 

morphology, in addition to various existing advanced sperm functional parameters such as acrosome 

reaction, sperm ROS and DNA fragmentation as well as seminal plasma antioxidant capacity. 
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3 Chapter 3: Materials and Methods 

The research protocol including the materials used and the subsequent methods that were followed to 

perform the different measurements throughout the study will be described thoroughly in this chapter. 

A brief outline of the experimental protocol in Figure 3.1 illustrates the sequence of analyses. 

3.1 Study volunteers 

Before the commencement of the study, ethical approval was obtained from the Health Research 

Ethics Committee (HREC) of the Faculty of Medicine and Health Sciences, Stellenbosch University 

(Ethics Reference: 15/02/045). Informed written consent was obtained from all donors and the study 

was performed in accordance with the Declaration of Helsinki (2013). Freshly ejaculated semen 

samples, with scheduled periods of sexual abstinence, were collected for this study from 100 

potentially fertile, healthy males (20 to 30 years of age), taking part in the sperm donor program at 

the Stellenbosch University Reproductive Research Group (SURRG). Information about the donor's 

identification and age, date and time of semen collection, abstinence period, the sample's appearance, 

colour, odour, liquefaction, agglutination as well as any remarkable conditions were recorded. 
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Study Protocol 1st ejaculate 

(≈ 8 am) 

4 days of abstinence 

Macroscopic examination 

 Colour, odour, viscosity, 

pH, volume 

CASA analyses 

 Concentration per mL  

 T.S.C. 

Motility (WHO, 2010) 

 Static 

 Non-progressive motile 

 Progressive motile 

Motility (WHO, 1999) 

 Fast progressive (type a) 

 Slow progressive (type b) 

 Non-progressive (type c) 

 Immotile (type d) 

Velocity 

 Rapid 

 Medium  

 Slow 

Kinematics  

 VCL, VSL, VAP, LIN, 

STR, WOB, ALH, BCF. 

Microscopic examination 

 Sperm morphology 

 Sperm viability 

Advanced semen analyses 

 Acrosome reaction 

 DNA fragmentation 

 Intracellular O2
−• levels 

 Seminal TBARS levels 

 Seminal CAT activity 

  Seminal SOD activity  

  

2nd ejaculate 

(≈ 12 am) 

4 hours of abstinence 

Macroscopic examination 

 Colour, odour, viscosity, 

pH, volume 

CASA analyses 

 Concentration per mL  

 T.S.C. 

Motility (2010) 

 Static 

 Non-progressive motile 

 Progressive motile 

Motility (WHO, 1999) 

 Fast progressive (type a) 

 Slow progressive (type b) 

 Non-progressive (type c) 

 Immotile (type d) 

Velocity 

 Rapid 

 Medium  

 Slow 

Kinematics  

 VCL, VSL, VAP, LIN, 

STR, WOB, ALH, BCF. 

Microscopic examination 

 Sperm morphology 

 Sperm viability 

Advanced semen analyses 

 Acrosome reaction 

 DNA fragmentation 

 Intracellular O2
−• levels 

 Seminal TBARS levels 

 Seminal CAT activity  

 Seminal SOD activity  

Spearman   correlation    analysis 

 &     ROC          curve         analysis 

 Paired T test analysis 

& Star Glyphs Plots 

 Paired T test analysis 

& Star Glyphs Plots 

Spearman    correlation    analysis 

 &     ROC         curve           analysis 

 Paired T test analysis 

& Star Glyphs Plots 

Linear Regression analysis 

 

Figure 3. 1: Flow chart showing a simplified experimental protocol 
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3.2 Basic Semen analysis 

3.2.1 Semen sample collection  

All samples were collected according to the WHO guidelines (WHO, 2010), in a separate room near 

to the laboratory, by means of masturbation without lubricant, into a labelled sterile wide mouth 

plastic container anonymized through alphanumerical coding. The first sample was collected at 8:00 

am after a sexual abstinence period of 4 days. The second sample was collected from the same donor 

after 4 hours subsequent to the first collection. Samples were delivered to the laboratory within an 

average of 10 minutes and placed immediately in an incubator (Heal Force® Smart Cell CO2, 

Nison™, Shanghai, China) and allowed to fully liquefy (37°C, 5 % carbon dioxide [CO2] 95 % 

humidity, 30 minutes) and then analysed within 1 hour of collection. One hundred sets of samples 

were included in this study on the basis of the following inclusion criteria for the first sample: sample 

volume ≥1.5 mL, sperm concentration ≥15 x 106/mL and total sperm motility ≥40 % (WHO, 2010). 

3.2.2 Initial macroscopic examination 

Subsequent to semen liquefaction at 30 minutes, but no longer than 1 hour after ejaculation, the 

sample was inspected for colour, appearance, and odour. 

3.2.3 Volume  

Semen samples were decanted directly from the plastic collection container following the post-

ejaculate liquefaction period into a disposable graduated 15 mL plastic Falcon tube and weighed on 

a micro scale (MonoBloc AB204-S) standardized by a similar empty plastic Falcon tube. The semen 

volume was recorded in grams and converted to millilitres, considering the density of semen to be 1 

g/mL. 
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3.2.4 The pH  

The semen pH was assessed after liquefaction at a uniform time, within 1 hour of ejaculation, by 

means of pH indicator paper (Merck Millipore, Darmstadt, Germany) with graduated colours 

indicating pH from 6.4 to 8.0. 

3.2.5 Viscosity  

Semen viscosity was assessed, according to filling time of a single chamber in a disposable 8 chamber 

20-μm depth slide (SC 20-01-08-B; Leja® Products B. V., Nieuw-Vennep, the Netherlands). The 

results were quantified according to Rijnders et al. (2007) and expressed in the unit Centipoise (Pc). 

 

 

 

3.2.6 Sperm concentration and motility  

The sperm concentration and motility/kinematic parameters were determined with Computer Aided 

Sperm Analysis [CASA] (Sperm Class Analyzer version 5.4 - SCA®, Microptic, S.L., Barcelona, 

Spain) with a disposable eight-cell chamber Leja slide (LJ; 20-μm depth; Leja® Products B. V., 

Nieuw-Vennep, the Netherlands) at 37°C. The SCA® is equipped with a Basler A312fc digital colour 

camera (Microptic, S.L., Barcelona, Spain), mounted on a Nikon E200 Microscope (IMP, Cape 

Town, South Africa) and a stage warmer (Omron™, Kyoto, Japan) which was heated to 37°C. The 

camera settings for the SCA® system are listed in Table 3.1.  
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Table 3. 1: Camera settings for the SCA® system 

 Parameter  Setting 

Acquisition control  

Acquisition mode Timed  

Exposure time  19900 

Time base  20 µs 

Exposure time 995 

Acquisition frame rate 50 FBS 

Counter and timer controls Time duration Raw 4095 

 Gain  435 

Analog controls Black level 168 

 Balance ration 77 

 Balance ration  1.20313 

FBS = frame per second. 

 

In accordance with the manufacturer’s guidelines, 2 μl of the pre-incubated semen (37°C, 5 % CO2) 

was loaded into a single chamber of the Leja slide using an Eppendorf micropipette. If bubbles were 

found, another chamber was loaded. The slide was then allowed to rest on the warm stage (37°C, 

30sec) to avoid liquid flow in the chamber. All the preparations were made with pre-warmed (37°C) 

slides and pipette tips. A minimum of 1000 spermatozoa per semen sample were analysed in several 

systematically selected areas within the central part of each chamber. The CASA parameters assessed 

are listed in Table 3.2. As displayed by the SCA® system, various motility colour tracks are presented 

in Figure 3.2. 
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Figure 3. 2: SCA® analysis displaying the different colour paths for motility rating. Red 

(Type A); green (type B); blue (Type C) and yellow (type D) 

 

The following SCA® settings were used; green filter; Ph1 condenser; positive phase contrast 

observation setting; brightness ± 400; contrast ± 100; objective, 10x; eyepiece, 10x; capture, 50 

images per second; chamber, Leja 20; scale, 10x; 2µ2˂ particle area ˂50µ2; VCL, 

25μm/s<slow<40μm/s, 40μm/s<medium<50μm/s, 50μm/s<rapid; progressivity, >80 % of STR; 

circular, <50 % LIN; connectivity, 12; VAP points, 5μm/s; filter, on; temperature, 37°C. WHO 

reference values adopted in this study are as follows: sperm concentration, ≥15 106/mL; total motility 

>40 %; progressive motility >32 %.  
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Table 3. 2: SCA® concentration, motility and kinematic parameters 

Setting Parameter Unit 

Concentration  
Concentration  

T.S.C. 

106/mL 

106/ejaculate 

Motility 

(WHO, 2010) 

Static 

Non-progressive motile 

Progressive motile 

% 

% 

% 

Progression 

(WHO, 1999)  

Fast progressive (type a)  

Slow progressive (type b) 

Non-progressive (type c) 

Immotile (type d) 

% 

% 

% 

% 

Velocity 

Rapid 

Medium 

Slow 

% 

% 

% 

Kinematics 

VCL 

VSL 

VAP 

LIN 

STR 

WOB 

ALH 

BCF 

µm/s 

µm/s 

µm/s 

% 

% 

% 

µm 

Hz 

WHO = World Health Organization, T.S.C. = total sperm count, VCL = Curvilinear velocity, VSL = 

Straight-line velocity, VAP = Average path velocity, LIN = Linearity, WOB = Wobble, ALH = 

Amplitude of lateral head displacement, BCF = Beat-cross frequency, µm = micrometre, s = second, 

Hz = hertz. 
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3.2.7 Sperm morphology  

For sperm morphology assessment, approximately 10 μl of semen (≥20x106 spermatozoa/mL), was 

placed near one end of a labelled microscope slide (76 x 26mm). A second slide was placed onto the 

drop at a 45° angle and allowed to spread along its back edge, then moved forward spreading the 

semen drop over the surface of the first slide to make an even smear. The slide was left on the lab 

bench overnight to air dry at room temperature. Following the air drying period, the slide was fixed 

and stained according to the manufacture’s guidelines (Van der Horst and Maree, 2009). The slide 

was immersed into a Coplin jar containing SpermBlue® fixative (SpermBlue® fixative, Microptic, 

S.L., Barcelona. Spain), and left undisturbed for 10 minutes. The slide was removed carefully from 

the Coplin jar and left upright at an angle of about 70◦, allowing contact with a paper towel to drain 

the excess fixative. The slide was then dipped into a Coplin jar containing SpermBlue® staining 

solution (SpermBlue® stain, Microptic, S.L., Barcelona. Spain) and left for a 15 minutes period, after 

which it was gently immersed in distilled water for few seconds to remove the excess stain. The slide 

was then left to drain and air-dried at room temperature as described above. Following completion of 

the staining procedures, the slide was permanently mounted by applying a drop of non-aqueous DPX 

mounting medium (Dako, CA, USA) and a cover slip to the slide. Two morphology slides were 

prepared from each sample. 

Morphological characteristics of the stained spermatozoa were evaluated by Computer Aided Sperm 

Morphology Analysis (CASMA) using the SCA® module.  (blue filter, 100x oil immersion objective, 

10x eyepiece, brightness±435, contrast=100). The SCA® system equipped with a Basler A312fc 

digital colour camera (Microptic, S.L., Barcelona, Spain), mounted on a Nikon Eclipse 200 

Microscope (IMP, Cape Town, South Africa). As shown in Figure 3.3, a total of 100 spermatozoa per 

semen sample from various systematically selected microscopic fields were analysed according to 

WHO criteria (WHO, 2010). Overlapping or clumping spermatozoa and those with heads obscured 

by tail or debris were excluded, as they were not possible to be analysed adequately. 
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Figure 3. 3: SCA morphology analysis of spermatozoa stained with SpermBlue. Acrosome 

region stains yellow, postacrosomal region of the head dark blue, and the midpiece green. 

 

3.2.8 Sperm viability 

The integrity of the sperm plasma membrane was estimated by means of a dye exclusion technique 

(WHO, 2010), using the membrane-impermeant Eosin-Nigrosin stain (Sigma-Aldrich, St Louis, MO, 

USA), which penetrates only the compromised plasma membrane of dead and dying cells. A 10 μl of 

diluted semen adjusted to a concentration of 5x106 spermatozoa/mL was added and mixed with 20 μl 

Eosin and 30 μl Nigrosin. A drop of the mixture was spread across the length of a labelled microscope 

slide using another slide to create a uniformly spread smear. After air drying, the slide was mounted 

using a DPX mounting medium (Dako, CA, USA) and covered with a cover slip. Two viability slides 

were made from each sample. Viability status of spermatozoa was assessed using CASA (Sperm 

Class Analyzer version 5.4 - SCA®, Microptic, S.L., Barcelona, Spain) equipped with a Basler 

A312fc digital colour camera (Microptic, S.L., Barcelona, Spain), mounted on a Nikon Eclipse 200 

Microscope (IMP, Cape Town, South Africa), with bright field optics. From each sample, the viability 
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of 100 spermatozoa was evaluated using the counter module of the SCA® system (positive phase 

contrast observation setting; 20x objective lens; 10x eyepiece and a blue filter). The number of pink-

stained (non-viable) spermatozoa and those unstained (viable) were counted in randomly selected 

fields. Results were reported as percentage of viable spermatozoa (Figure 3.4).  

 

Figure 3. 4: Viability assessment of spermatozoa stained with dye exclusion, using the counter 

module of the SCA® system. Unstained cells (1) are viable; Stained cells (2) are non-viable. 
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3.3 Advanced semen analysis assays 

3.3.1 Acrosome reaction 

The acrosomal status of the spermatozoa of each sample was determined visually under florescent 

microscopy using fluorescent labelled lectins (WHO, 2010). A 5 µL drop of the semen sample 

adjusted to a concentration of 2 × 106/mL was placed on a labelled frosted microscope slide and left 

to air dry overnight. The slide was fixed by placing it in 70 % ethanol (30 minutes, 4◦C) and allowed 

to dry subsequently. 450 µL of Phosphate Buffered Saline (PBS) (Gibco, Scotland, UK) was added 

to 50 µL of Fluorescein isothiocyanate-labelled pisum sativum agglutinin (FITC-PSA) (Sigma 

Chemicals Co., St Louis, MO, USA) in an Eppendorf tube to provide a concentration of 125 µg/mL. 

10 µL of this solution was layered on top of the fixed drop and left in a dark environment for 45 

minutes. The slide was then dipped gently in distilled water to rinse the unbound FITC-PSA followed 

by air drying and mounting with the anti-fade fluorescent mounting medium (Dako North America, 

Inc.) with a cover slip was added. The slide was visualized (within less than 12 hours) with fluorescent 

microscopy (Nikon Corporation, Tokyo, Japan), using a green fluorescein filter at ×1000 

magnification and oil immersion, 510-560 nm. 200 spermatozoa were counted from various randomly 

selected fields with the aid of a laboratory counter. As shown in Figure 3.5, acrosome-intact [bright 

and uniformly green fluorescing acrosome region] and acrosome-reacted spermatozoa [no 

fluorescence or dull green fluorescing acrosomes] (Oyeyipo et al., 2014). Results were expressed as 

percentage.  
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Figure 3. 5: Acrosomal status of spermatozoa as seen under florescent microscope using 

fluorescently labelled lectins 

 

3.3.2 DNA fragmentation 

Sperm DNA fragmentation was determined by using a terminal deoxynucleotidyl transferase–

mediated fluorescein-TUNEL assay with an APO-DIRECT™ kit (BD Biosciences Pharmingen, San 

Diego, CA, USA) as described by Sharma et al. (2013). The positive and negative control cell 

suspensions provided by the manufacturer were included in each run. For cell preparation and 

fixation, an aliquot of completely liquefied semen sample adjusted to a concentration of 2–3×106 

spermatozoa/mL was centrifuged at 300×g for 7 minutes. The supernatant seminal plasma was gently 

aspirated with a Pasteur pipette and the pellet was resuspended in 1.0 mL of 3.7 % paraformaldehyde 

fixation buffer (10 mL of 37 % formaldehyde and 90 mL of PBS, pH 7.4) and left on ice for 30–60 

minutes. The cells were then centrifuged (300×g, 5 minutes) and the pellet was resuspended in 1.0 

mL of ice-cold 70 % ethanol (1 × 106 spermatozoa/mL) and stored at −20°C until the time for the 

TUNEL assay. 

Each tube was gently vortexed for re-suspending the sperm cells settled after the storage period in 

ethanol. After the tubes were centrifuged (300×g, 5 minutes) to remove the ethanol, the pellet was 

double-washed in 1.0 mL of Washing Buffer and centrifuged (300×g, 5 minutes) to discard the 

supernatant. Resuspended in 1.0 mL of 0.2 % Triton X-100 5 minutes to permeabilize the cells. For 
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each sample, the sperm pellet was resuspended in 50 mL of the Staining Solution (10 mL Reaction 

Buffer, 0.75 mL Terminal Deoxynucleotidyl Transferase (TdT) Enzyme, 32.25 mL distilled water, 

and 8 mL FITC−Deoxyuridine triphosphate (dUTP)) and mixed thoroughly with a vortex to permeate 

the staining solution homogeneously into the cells. TdT enzyme, a template-dependent DNA 

polymerase, catalyses the incorporation of the labelled dUTP into the exposed terminal 3′–OH ends 

of each DNA strand, providing a direct marker of DNA breaks (Figure 3.6). 

 

 

Figure 3. 6: Schematic of Sperm DNA Fragmentation Analysis Using the TUNEL Assay, 

(Sharma et al. 2013). 
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Following an incubation period of 60 minutes (37°C, 5 % CO2), the cells were rinsed twice with 1.0 

mL rinsing buffer. In each rinsing step, the mixture was centrifuged (300×g, 5 minutes) and the 

supernatant of each tube was removed by gentle aspiration. The sperm pellet was then resuspended 

in Propidium Iodide (PI)/RNase Staining Buffer (5 mg/mL PI, 200 mg/mL RNase). PI is a fluorescent 

counterstain, which binds to and labels all DNA, so that every spermatozoon can be counted, and the 

consequent proportion of the spermatozoa with DNA fragmentation can be determined. The tubes 

were left to incubate at room temperature for 30 minutes in a darkened environment. Upon completion 

of the staining procedure, spermatozoa within the PI/RNase solution were analysed by flow 

cytometry. 

3.3.3 Intracellular Superoxide (O2
−•)  

For the evaluation of ROS levels in spermatozoa, intracellular O2
−• was quantified using 

dihydroethidium (DHE) as an oxidative fluorescent probe.  An allocated volume of each liquefied 

ejaculate was placed in a pre-warmed (37°C) 15 mL plastic Falcon tube. The samples underwent a 

wash in an equal volume of pre-prepared HAMS-BSA (Human Albumin Serum [Sigma Chemicals 

Co., St Louis, MO, USA]−Bovine Serum Albumin [Roche Diagnostics GmbH, Mannheim, 

Germany]). Following the centrifugation period (300×g, 10 minutes), the sperm pellet was washed 

twice in 3 mL of HAMS-BSA (300×g, 5 minutes). After the second wash, the supernatant was 

aspirated carefully and discarded. The isolated pellet was resuspended in 2 mL of pre-warmed (37°C) 

HAMS-F10 medium and its final concentration was adjusted to 5 × 106 cells/mL. The obtained sperm 

suspension was divided equally into two aliquots labelled as unstained and DHE stained. 1µL of 

distilled water was added to the unstained tube, while the stained tube was exposed to 1µL of DHE. 

The samples were incubated for 15 minutes (37 °C, 5 % CO2, 95 % humidity) and subsequently 

resuspended in 2 mL of PBS. The tubes were mixed gently and then centrifuged at 300×g, 20°C for 

5 minutes. 100 µL were pipetted carefully from the pellet of each tube and were transferred to a 

disposable 5 mL polystyrene round-bottom tube (BD FalconTM 352052, BD Biosciences, USA). The 
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cells in each tube were then re-suspended in 900 mL of pre-warmed (37°C) PBS and subsequently 

analysed using flow cytometry. 

3.3.3.1 Flow cytometry analysis 

The fluorescence signals of labelled spermatozoa were assessed by means of flow cytometry (Becton 

Dickinson FACSCalibur analyser, Life Technologies), using an argon laser with excitation at 488nm 

and emission wavelength 530 nm. For each assay, a total of 20,000 gated events were examined at a 

flow rate of < 100 cells/second. The sperm population was appropriately gated using forward and 

side (90 degrees) light scatter signals so as to eliminate debris and non-sperm particles, and thus 

excluding their effects on overall fluorescence (Figure 3.7 A and B). The output data was then 

imported and analysed using Flowjo© V10 software (FlowJo, Ashland, Ore. USA). Fluorescence 

signals were represented on a histogram after logarithmic amplification.  

For the assessment of DNA fragmentation, green (FITC-dUTP) fluorescence intensity was measured 

in the FL-1 channel (530/30 nm bandpass filter, which can detect a range of wavelength between 

515–545 nm), and red (PI) fluorescence was set to be measured in the PE channel (585/42nm 

bandpass filter, which detects a range of wavelength between 564–606 nm). The intensity of PI and 

FITC fluorescence was quantified as median fluorescence intensity represented by a frequency 

histogram (Figure 3.7 C and D). Data were expressed as percentage of DNA fragmented spermatozoa. 

For the quantification of sperm intracellular O2
−•, red fluorescence emissions of DHE were detected 

in FL-2 channel. Logarithmic amplification, fluorescence signals were represented on a histogram 

(Figure 3.8). Data were expressed as median DHE fluorescence intensity (MFI). 

A three-colour Calibrite kit (BD Bioscience–340486) with separate APC beads (BD Bioscience – 

340487) was used for daily monitoring of instrument performance by adjusting the instrument settings 

to set fluorescence compensation and to check instrument sensitivity. 
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Figure 3. 7: Flow cytometry plots (dot plots and histograms). A. depicts a forward vs. scatter plot 

[FSC vs. SSC] containing all interrogated events. The sperm population was gated based on the 

resulting aggregation of events of similar cell size (FSC) and granularity (SSC). B. Shows a dot plot 

of the gated sperm population separated according to Propidium Iodide (PI) and Fluorescein 

isothiocyanate (FITC) binding. A quadrant was inserted to separate sperm sub-populations, where PI 

stains necrotic and early necrotic cells while Terminal deoxynucleotidyl transferase (dUTP) (coupled 

to FITC probe) binds to cells with fragmented DNA. The lower left quadrant represents unstained 

viable cells. C and D. represent histogram plots, showing positive and negative populations for dUTP-

FITC and PI probes respectively. 

D 

B 

C 

A 
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Figure 3. 8: Flow cytometry histogram generated by measuring the sperm intracellular O2
−• 

levels. The count represents the different numbers of spermatozoa. O2
−• negative spermatozoa 

are without fluoresce detected in channel FL2-Height-, and are located on the left side. O2
−• 

positive cells emit fluorescence in channel FL2-Hieght+, and located on the right side. 
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3.3.4 Seminal plasma TBARS and antioxidant assays 

3.3.4.1 Sample preparation 

In preparation for the assessment of seminal plasma TBARS levels and antioxidant activity, semen 

samples were centrifuged (300xg, 10 minutes at room temperature) and the seminal plasma of each 

sample was pipetted carefully and transferred into a labelled cryopreservation tube (2 mL) and then 

stored in liquid N+ (-196°C) until time of analysis. 

3.3.4.2 TBARS assay 

The TBARS assay provides an overall measure of malonicdialdehyde, which is a reactive compound 

produced during lipid peroxidation caused by ROS (Moselhy et al., 2013). TBARS was assessed by 

means of spectrophotometric analysis using a SPECTRA-max PLUS-384 spectrophotometer with 

SoftMax® Pro 4.8 software (Molecular Devices Corporation, Labotec Industrial Technologies, Cape 

Town, South Africa) for data acquisition and analysis.  Molar extinction coefficient (1.54 x 

105/M/cm) was used to calculate concentrations.  

TBARS levels in seminal plasma were measured according to the method described by Jentzsch et 

al. (1996). In preparation for the assay, seminal plasma samples were removed from the liquid N+ and 

allowed to thaw at room temperature. 200 μl of the seminal plasma were aspirated and added to a 

mixture of 25 μl butylated hydroxytoluene (4 mM) (Fluka Chemie, Buchs, Switzerland) in ethanol 

(Merck Chemicals, Cape Town, South Africa) and 200 μl (0.2 M) orthophosphoric acid (Sigma-

Aldrich, Cape Town, South Africa) in 2 mL Eppendorf tube and mixed thoroughly on a vortex mixer 

for 10 seconds. 25 μl of Thiobarbituric acid (TBA) (Sigma-Aldrich, Cape Town, South Africa) 

reagent (0.11M of TAB dissolved in 0.1M sodium hydroxide) was added to the mixture, and the tube 

was vortexed again. Following the incubation period (90◦C, 45 minutes) in a heating block, the 

reaction was terminated by immersing the tubes in ice for 2 minutes, and left afterward at room 

temperature for 5 minutes. TBARS was extracted by the addition of 500 μl n-butanol (Merck 

Chemical, Cape Town, South Africa), and 50 μL saturated sodium chloride to each sample. After 
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that, the tubes were vortexed and then centrifuged (13000xg, 1 minute). 250 μl from the supernatant 

upper butanol phase was carefully pipetted into an empty well, and the absorbance was read at 532 

nm wavelength. Values were expressed in μmol/L of seminal plasma. 

3.3.4.3 Catalase (CAT) activity assay 

The principle of this assay is based on the ability of CAT, a ubiquitous antioxidant enzyme, to reduce 

H2O2 into H2O and molecular oxygen (Iwase et al., 2013). CAT activity was measured according to 

the method described by Aebi (1984). For this assay, seminal plasma samples were removed from 

the liquid N+ and thawed at room temperature. Seminal plasma was then diluted 1:10 in 50 mM 

phosphate buffer (pH 7.0), after which 0.01 mL was added to each well of a Costar (Corning) 96-

well, UV-transparent plate (Sigma-Aldrich, Cape Town, South Africa). 220 µL of freshly prepared 

40 mM H2O2 (Sigma Aldrich, Cape Town, South Africa) was subsequently added to each well. The 

rate of decomposition of H2O2 was measured by spectrophotometer (SPECTRAmaxPLUS-384, 

Molecular Devices, San Francisco, CA, USA) based on changes in absorbance at 240 nm. CAT 

activity was expressed as units/mg protein. 

3.3.4.4 Superoxide dismutase (SOD) activity assay 

SOD, a vital enzymatic antioxidant, plays a critical protective role by catalyzing the dismutation of 

O2
−• to H2O2. SOD activity was measured using the SOD Assay Kit-WST (Sigma-Aldrich, St. Louis, 

MO, USA) according to the manufacturer’s instructions. This assay is based on the principle that 

water-soluble tetrazolium salt (WST-1) reduces O2
−• causing a colour changes due to the formation 

of a water-soluble formazan dye. SOD activity was therefore measured by quantifying the decrease 

in colour development as a result of the reduction in O2
• by WST-1. Sample analysis was performed 

in triplicate. 

After thawing, 20 µl of sample solution was added to each sample well, as well as the second blank 

well (blank 2).  20 µl of dH2O was added to the first (blank 1) and the third blank well (blank 3). 200 

µl of the WST working solution was added to each well, and agitated to allow for adequate mixing. 
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20 µl of dilution buffer was added to the second and the third blank well, with 20 µl of Enzyme 

Working Solution added to each sample well and the first blank well. The contents of the well were 

mixed adequately before being incubated at 37 °C for 20 minutes.  The absorbance was immediately 

read at 450 nm using the microplate reader (SPECTRAmaxPLUS-384, Molecular Devices, San 

Francisco, CA, USA). SOD activity was then calculated using the equation below. Values were 

expressed as units per mg protein (U/mg protein).  
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3.4 Statistical analysis 

3.4.1 Aim I: Effect of abstinence period on semen quality. 

 Data were checked for normal distribution and statistical comparisons between short and long 

abstinence periods were performed using Paired Student’s t-tests on GraphPad Prism™ 

software (GraphPad™ Software, Version 6.0, San Diego, CA, USA). Box and Whiskers Plots 

were used to graphically display differences in semen values between short and long 

abstinence periods. Data were presented as Mean ± SD. Statistical significance was set at p < 

0.05. 

Qualitative multivariate analyses were carried out by means of Statgraphics software (version 

XVII, Centurion), after which grouped quantitative parameters were visually depicted using 

Star Glyphs (Fienberg, 1979) to represent variances and similarities between short and long 

abstinent periods.  

Star Glyphs and Sunray Plots have been utilised to visualize consistent variances between the 

short and long abstinence periods by combining groups of relevant input parameters per 

symbol. Each arm of the star plot symbolizes a particular semen variable, with comparative 

rather than absolute differences represented. The variable of interest with the lowest mean 

between short and long abstinence periods is represented as 10 % of the length of the arm, 

whereas the variable with the higher mean is represented as 100 %. The length of the coloured 

area along each axis reveals the pattern of change in each value, relative to the maximum 

value, for the variable of interest. The selected multivariate groupings of semen parameters 

displayed considerable differences in the patterns between the two abstinence periods and 

thereby were considered suitable for star symbol analysis. Basic semen, motility, kinematic 

and advanced parameter groupings are displayed in Figures 4.2, 5, 7 and 9. 

 Prediction of various basic and advanced semen parameters of the second ejaculate from a set 

of basic semen parameters of the first ejaculate was performed using a multiple linear 
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regression model.  Best subsets regression was used to search for subsets of predictors 

(independent variable) that best predict the dependent variable with a reasonable proportion 

of variance (R2). DellTM StatisticaTM data analysis software system, version 13 (StatSoft 

Inc.), as a statistical package, was used to conduct the analysis. The independent (predictor) 

variables include a set of basic semen parameters obtained from the first ejaculate, i.e. semen 

volume (mL), pH, T.S.C. (106/ejaculate), concentration (106/mL), total motility (%), 

progressive motility (%), normal morphology (%), viability (%), VCL (µm/s), VSL (µm/s), 

VAP (µm/s), LIN (%), WOB (%), ALH (µm), BCF (Hz).  The dependent variables include: 

sperm concentration (106/mL), total motility (%), progressive motility (%), normal 

morphology (%), viability (%), DNA fragmentation (%), sperm O2
∙ (MFI), TBARS (µmol/L), 

CAT (U/mL) and SOD (U/mg protein) of the second ejaculate.  

Once the subset was determined, a multiple linear regression model was fitted and a standard 

regression coefficient was also calculated to facilitate comparison between the variables 

within the subset. R2 and cross validated (CV) R2 were reported. Statistical significance was 

set at p < 0.05. The modle equation employed has the following form: 

 

Y = Dependent variable, X = Independent variable, β0 = Estimated intercept, β1, β2, βk = Estimated 

slope coefficients.  
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3.4.2 Aim II: Relationship between advanced and basic semen parameters 

 For the determination of the correlations between the basic semen characteristics and 

advanced functional parameters, a Spearman rank correlation coefficient (r) was used. To 

conduct the analysis, Statistica 13 was used as a statistical package. Statistical significance 

was set at p < 0.05. The sample size (n) was determined to be the number of both first and 

second ejaculates and analyzed per advanced parameter. 

Multiple Factor Analysis was used to visually depict correlations between each advanced 

variable (arrows with blue lettering) and a set of basic semen variables (arrows with red 

lettering). Basic semen variables, which have arrows pointing roughly in the same direction 

relevant to the advanced variables have positive correlations, while arrows pointing in the 

opposite directions are negatively correlated.  Similarly, arrows perpendicular to the direction 

of the advanced variable arrow indicates no correlation. Ideally, the arrows should stretch into 

the outer circle to be considered significant. 

 Receiver Operating Characteristic (ROC) curves were employed for establishing cut-off 

values for advanced semen parameters from a number of basic semen parameters                      

[e.g. Motility (%), progressive motility (%), viability (%)] with WHO defined reference 

values. ROC calculations were done using the “pROC” package in R while the sensitivity, 

specificity and the area under the curve (AUC) of the test were reported. Statistical 

significance was set at p < 0.05.  
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4 Chapter 4: Results 

The data collected during this study is reported in this chapter. Results were statistically analysed 

according to the aims and objectives of the study and consequently presented by means of relevant 

tables and figures for better comparisons. 

4.1 Aim I: Effect of abstinence period on semen and sperm quality. 

The statistically analyzed data obtained from Aim I of the study, in which basic and advanced semen 

parameters were compared between the short and long abstinence periods, will be presented in the 

following section. 

4.1.1 Influence of abstinence period on basic semen parameters 

As shown below (Table 4.1), semen volume was significantly lower in samples collected after short 

abstinence period compared to those collected after long abstinence (2.01±0.09 vs. 3.30±0.14; p = < 

0.0001). Semen pH was significantly higher after short abstinence (7.69±0.02 vs.7.58±0.02; p = 

0.0001), while no significant difference was observed in semen viscosity (4.34±0.08 vs. 4.44±0.08; 

p = 0.0650). Both T.S.C. (85.75±63.43 vs. 197.0±158.8; p = 0.0001) and sperm concentration 

(43.95±26.03 vs. 60.34±41.42; p = 0.0001) were significantly decreased after short abstinence 

compared with long abstinence periods. No significant differences were observed with regards to the 

percentages of viability (67.34±7.643 vs. 68.98±7.833; p = 0.0705) and normal morphology 

(17.45±6.288 vs. 17.41±6.551 vs.; p = 0.4707) (Figure 4.1 A−G). Star symbol Plots representing the 

trend of differences for basic semen characteristics between short and long abstinence periods are 

visualized in Figure 4.2. 
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Table 4. 1: Semen characteristics in short vs. long abstinence (n=100). Data are presented as 

Mean±SD. 

Parameter Long abstinence Short abstinence P value 

Volume (mL) 3.30± 0.14 2.01±0.09 < 0.0001 

pH 7.58±0.02 7.69±0.02 < 0.0001 

Viscosity (cP) 4.44±0.08 4.34±0.08 0.0650 

T.S.C. (106/ejac) 197.0±158.8 85.75±63.43 < 0.0001 

Concentration (106/mL) 60.34±41.42 43.95±26.03 < 0.0001 

Viability (%) 68.98±7.833 67.34±7.643 0.0705 

Morphology (%) 17.41±6.551 17.45±6.288 0.4707 

cP = Centipoise, T.S.C. = Total Sperm Count.  
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Figure 4. 1: Differences in basic 

semen parameters between short and 

long abstinence periods. A: semen 

volume, B: pH, C: Viscosity, D: 

T.S.C.: Total Sperm Count, E: 

Sperm Concentration, F: Sperm 

Viability and G: Sperm Morphology. 

* p < 0.05. 
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Figure 4. 2: Star symbol plots comparing six basic semen parameters between short 

and long periods of abstinence. 
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Results in Table 4.2 illustrate a significant increase in the percentages of total motility (62.29±15.33 

vs. 58.86±15.10; p = 0.0013), progressive motility (49.58±14.74 vs. 44.98±13.67; p = 0.0001) and 

type a spermatozoa (14.03±7.055 vs. 11.17±6.560; p = 0.0001) in the samples collected after short 

abstinence compared with those collected after long abstinence periods. The percentages of type c 

(12.72±3.898 vs. 13.85±3.580; p = 0.0020) and type d (37.71±15.34 vs. 41.16±15.06; p = 0.0012) 

spermatozoa were significantly lower after short abstinence period, whereas no significant difference 

between short and long abstinence periods was observed in the percentage of type b spermatozoa 

(35.55±14.56 vs. 33.81±12.23; p = 0.0560) (Figure 4.3). 

 

Table 4. 2: Sperm motility characteristics in short vs. long abstinence (n=100). Data are 

presented as Mean±SD. 

Semen parameter Short abstinence Long abstinence P value 

Total motility (%) 62.29±15.33 58.86±15.10 0.0013 

Progressive motility (%) 49.58±14.74 44.98±13.67 < 0.0001 

Fast progressive [type a] (%) 14.03±7.055 11.17±6.560 < 0.0001 

Slow progressive [type b] (%) 35.55±14.56 33.81±12.23 0.0560 

Non-progressive [type c] (%) 12.72±3.898 13.85±3.580 0.0020 

Immotile [ype d] (%) 37.71±15.34 41.16±15.06 0.0012 
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Figure 4. 3: Differences in sperm motility parameters between short and long abstinence 

periods. A: Sperm Total Motility, B: Progressive Motility, C: Type a, D: Type b, E: Type c, F: 

Type d. * p < 0.05. 
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Table 4.3 shows that the percentage of spermatozoa with rapid velocity was significantly higher after 

short abstinence compared with long abstinence (48.58±14.97 vs. 43.95±13.72 p = 0.0001). No 

significant difference was observed in the percentage of spermatozoa with medium velocity between 

short and long abstinence periods (6.067±2.395 vs. 6.412±2.210; p = 0.0851). The percentage of 

slowly motile spermatozoa (7.647±2.644 vs. 8.462±2.636; p = 0.0016) was significantly lower after 

short abstinence (Figure 4.4).  The trend of changes in sperm motility characteristics between short 

and long abstinence periods are illustrated in Figure 4.5. 

 

Table 4. 3: Sperm velocity parameters in short vs. long abstinence (n=100). Data are presented 

as Mean±SD. 

Parameter Short abstinence Long abstinence P value 

Rapid (%) 48.58±14.97 43.95±13.72 < 0.0001 

Medium (%) 6.067±2.395 6.412±2.210 0.0851 

Slow (%) 7.647±2.644 8.462±2.636 0.0016 
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Figure 4. 4: Differences in sperm velocity parameters between short and long abstinence 

periods. A: Rapid, B: Medium, C: Slow. * p < 0.05. 

 

 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



98 

Progressive 

 Motility (%) 

Motility (%) 

Rapid (%) 

Static (%) 

Type a (%) 

Long 

Short 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5: Star symbol plots comparing five sperm motility parameters between short and 

long periods of abstinence. 
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Results pertaining to the effect of abstinence period on sperm kinematics are displayed in Table 4.4. 

Significant increases in VCL (81.99±16.83 vs. 76.24±10.82; p = 0.0001), VSL (32.90±6.140 vs. 

29.81±5.041; p = 0.0001), VAP (53.40±8.252 vs. 49.50±5.891; p = 0.0001), LIN (40.89±7.953 vs. 

39.42±5.955; p = 0.0055), STR (61.80±8.185 vs. 60.24±6.956; p = 0.0132) and BCF (14.87±1.866 

vs. 13.55±2.443; p = 0.0001) were observed after short abstinence compared with long abstinence 

periods. No significant differences were observed between the two abstinence periods with regards 

to ALH (1.975±0.3901 vs. 1.951±0.3549; p = 0.2202) and WOB (65.83±5.546 vs. 65.24±4.205; p = 

0.0601) (Figure 4.6 A−H). The trend of changes in sperm kinematic characteristics after short and 

long abstinence periods are shown in Figure 4.7. 

Table 4. 4:  Sperm kinematic parameters in short vs. long abstinence (n=100). Data are 

presented as Mean±SD. 

Parameter Short abstinence Long abstinence P value 

VCL (µm/s) 81.99±16.83 76.24±10.82 < 0.0001 

VSL (µm/s) 32.90±6.140 29.81±5.041 < 0.0001 

VAP (µm/s) 53.40±8.252 49.50±5.891 < 0.0001 

LIN (%) 40.89±7.953 39.42±5.955 0.0055 

STR (%) 61.80±8.185 60.24±6.956 0.0132 

WOB (%) 65.83±5.546 65.24±4.205 0.0601 

ALH (µm) 1.975±0.3901 1.951±0.3549 0.2202 

BCF (Hz) 14.87±1.866 13.55±2.443 < 0.0001 

VCL = straight-line velocity, VSL = average path velocity, VAP = average path velocity, LIN = 

linearity, STR = straightness, WOB = Wobble, ALH = lateral head displacement, BCF = beat cross 

frequency, µm = micrometre, s = second, Hz = hertz.  
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Figure 4. 6: Differences in sperm kinematic parameters between short and long abstinence 

periods. A: VCL (Curvilinear velocity), B: VSL (Straight-line velocity), C: VAP (Average path 

velocity), D: LIN (Linearity), E: STR (Straightness), F: WOB (Wobble), G: ALH (Amplitude 

of lateral head displacement), H: BCF (Beat-cross frequency). µm = micrometre, s = second, Hz 

= hertz. * p < 0.05. 
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Figure 4. 7: Star symbol Plots comparing eight kinematic parameters between short and long 

periods of abstinence.  VCL = Curvilinear velocity, VSL = Straight-line velocity, VAP = 

Average path velocity, LIN = Linearity, STR = Straightness, WOB = Wobble, ALH = 

Amplitude of lateral head displacement, BCF = Beat-cross frequency, µm = micrometre, s = 

second, Hz = hertz. 
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4.1.2 Influence of abstinence period on advanced semen parameters 

Results in Table 4.5 show that the percentage of acrosome-intact spermatozoa (84.95±2.523 vs. 

85.60±2.854; p = 0.0994), the percentage of DNA fragmentation (12.68±4.979 vs. 12.85±5.226; p = 

0.3881), sperm intracellular O2
−• levels (152.6.4±118.3 vs. 160.3± 95.76; p = 0.3416) as well as 

seminal plasma TBARS levels (23.80±18.37 vs. 29.09±18.47; p = 0.0607) were not significantly 

different between the short and long abstinence periods. Seminal plasma CAT activity (36.97±10.68 

vs. 34.25±9.853; p = 0.1030) was also not significantly different between the two abstinence periods, 

while the SOD activity (4.312±1.526 vs. 3.639±1.277; p = 0.0227) was significantly higher after short 

abstinence compared with long abstinence (Figure 4.8 A−F). Star symbol plots indicating the trend 

of changes in advanced semen parameters between short and long abstinence periods are showed in 

Figure 4.9. 

Table 4. 5: Advanced semen parameters in short vs. long abstinence. Data are presented as 

Mean±SD. 

Parameter Short abstinence Long abstinence P value 

Acrosome-intact (%) 

(n=20) 

84.95.05±2.523 

 

85.60±2.854 

 

0.0994 

 

DNA fragmentation (%) 

(n=20) 

12.68±4.979 

 

12.85±5.226 

 

0.3881 

 

Sperm O2
- (MFI) 

(n=20) 

152.6.4± 118.3 

 

160.3± 95.76 

 

0.3416 

 

TBARS (µmol/L) 

(n=22) 

23.80±18.37 

 

29.09±18.47 

 

0.0607 

 

SOD (U/mg protein) 

(n=22) 

4.312±1.526 

 

3.639±1.277 

 

0.0227 

 

CAT (U/mL) 

(n=22) 

36.97±10.68 

 

34.25±9.853 

 

0.1030 

 

O2
−• = superoxide anion, MFI = median DHE fluorescence intensity, TBARS = thiobarbituric acid 

reactive substances, SOD = superoxide dismutase. CAT = catalase, MFI = median florescent 

intensity, µmol = micromole, L = litre, U = unite, mg = milligram, mL = millilitre. 
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Figure 4. 8: Differences in Advanced Semen Parameters between short and long abstinence 

periods. A: Acrosome-intact, B: DNA fragmentation, C: Intracellular Superoxide (O2−•), D: 

Thiobarbituric Acid Reactive Substance (TBARS), E: Superoxide Dismutase (SOD) and F: 

Catalase. * p < 0.05 
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Figure 4. 9: Star symbol Plots comparing five advanced semen parameters between short 

and long periods of abstinence. O2
−• = superoxide anion, MFI = median DHE fluorescence 

intensity, TBARS = thiobarbituric acid reactive substances, SOD = superoxide dismutase. 

MFI = median florescent intensity, µmol = micromole, L = litre, U = unite, mg = milligram, 

mL = millilitre. 
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4.2 Aim II: Relationship between basic and advanced semen parameters. 

The statistically analyzed data obtained from Aim II of the study, in which correlations between basic 

and advanced semen parameters were conducted, will be presented below. Results from ROC curve 

analysis for establishing cut-off values for advanced semen parameters from a number of basic semen 

parameters will be depicted in Figures 4.20-28. 

4.2.1 Correlation between basic and advanced semen parameters 

As depicted in Table 4.6, semen volume did not correlate significantly with any of the advanced 

parameters. Semen pH only correlated significantly with seminal TBARS and showed a negative 

correlation (r = -0.47; p < 0.01). Sperm concentration and T.S.C. did not correlate significantly with 

any of the advanced parameters. The percentage of viable spermatozoa correlated significantly and 

negatively with both intracellular O2
−• levels (r = -0.33; p = 0.04) and sperm DNA fragmentation (-

0.43; p = 0.01). The proportion of morphologically normal spermatozoa correlated significantly and 

negatively with the intracellular O2
−• levels (r = -0.39; p = 0.02), and significantly and positively with 

seminal plasma CAT activity (r = 0.33; p = 0.04), while its correlations with other advanced 

parameters did not reach a statistical significance. 
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Table 4. 6: Correlation analysis between basic and advanced semen parameters. 

 

 

 
 

Mean ± SEM 

Mean ± SD 

Median (25-75%) 

O2
−•   (MFI) 

N = 40 

155.3±16.82 
155.3±106.4 

124.5 (78.05-215.0) 

TBARS (µmol/L) 

N = 44 

24.25±2.63 
24.25±17.48 

18.65(9.5-41.15) 

CAT (U/mL) 

N = 44 

36.16±1.5 
36.16±10.0 

36.9(29.0-42.5) 

SOD (U/mg) 

N = 44 

4.09±0.22 
4.09±1.44 

3.9(3.0-5.03) 

Acrosome- intact (%) 

N = 40 

85.28±0.42 
85.28±2.68 

85.0(83.0-87.0) 

DNA Fragmented (%) 

N = 40 

12.76±0.8 
12.76±5.04 

12(11.2-15.7) 

Volume (mL) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median (25-75%) 

-0.05 

0.75 

2.89±0.21 
2.89±1.31 

2.75(1.8-3.47) 

0.03 

0.83 

2.68±0.21 
2.68±1.42 

2.2(1.73-3.2) 

-0.05 

0.76 

2.68±0.21 
2.68±1.42 

2.2(1.73-3.2) 

-0.15 

0.32 

68±0.21 
2.68±1.42 

2.2(1.73-3.2) 

-0.30 

0.06 

2.485±0.20 
2.485±1.38 

2.2(1.45-3.37) 

0.14 

0.39 

2.61±0.21 
2.61±1.32 

2.35(1.62-2.8) 

pH 

R 

p 
Mean ± SEM 

Mean ± SD 

Median (25-75%) 

-0.13 

0.43 
7.62±0.03 

7.62±0.17 

7.5(7.5-7.7) 

-0.47 

<0.01 
7.67±0.03 

7.67±0.2 

7.7(7.5-7.7) 

-0.11 

0.48 
7.67±0.03 

7.67±0.2 

7.7(7.5-7.7) 

0.29 

0.06 
7.67±0.03 

7.67±0.2 

7.7(7.5-7.7) 

-0.04 

0.79 
7.67±0.03 

7.67±0.2 

7.7(7.5-7.7) 

-0.03 

0.84 
7.7±0.03 

7.7±0.19 

7.7(7.5-7.7) 

Concentration   

(106/mL) 

R 

p 
Mean ± SEM 

Mean ± SD 

Median (25-75%) 

0.10 

0.55 
66.3±6.51 

66.3±41.23 

51.95(36.35-96.45) 

-0.16 

0.31 
45.7±3.64 

45.7±22.96 

40.4(33.3-56.55) 

0.03 

0.84 
45.7±3.64 

45.7±22.96 

40.4(33.3-56.5) 

0.17 

0.27 
45.7±3.64 

45.7±22.96 

40.4(33.3-56.5) 

0.13 

0.43 
44.03±3.93 

44.03±24.84 

41.45(27.7-56.73) 

-0.24 

0.13 
46.81±3.08 

46.81±19.48 

40.90(34.33-57.6) 

T.S.C.        

(106/ejaculate) 

R 
p 

Mean ± SEM 

Mean ± SD 
Median (25-75%) 

-0.01 
0.97 

197.2±28.54 

197.2±180.5 
144.8(80.28-251.1) 

-0.02 
0.92 

123.0±14.7 

123.0±97.24 
87.3(60.1-169.9) 

-0.02 
0.87 

123.0±14.7 

123.0±97.24 
87.3(60.1-169.9) 

-0.16 
0.30 

123.0±14.7 

123.0±97.24 
87.3(60.1-169.9) 

-0.14 
0.40 

107.4±12.45 

107.4±78.73 
91.3(51.73-132.9) 

0.03 
0.87 

123.6±14.10 

123.6±89.21 
88.45(62.2-167.7) 

Viability (%) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median (25-75%) 

-0.33 

0.04 

68.79±1.34 
68.79±8.29 

70(62.75-76.25) 

0.02 

0.91 

67.5±1.43 
67.5±9.3 

68.0(62-75) 

0.01 

0.95 

67.5±1.43 
67.5±9.3 

68.0(62-75) 

0.03 

0.86 

67.5±1.43 
67.5±9.3 

68.0(62-75) 

0.15 

0.36 

70.33±1.14 
70.33±7.23 

73.0(65.0-75.0) 

-0.43 

0.01 

67.53±1.3 
67.53±7.6 

67.50(62-73.5) 

Normal 

morphology 

(%) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median (25-75%) 

-0.39 

0.02 

16.39±1.16 
16.39±6.95 

16(10.5-25.7) 

-0.10 

0.57 

18.45±1.06 
18.45±6.57 

15.5(12.75-24.0) 

0.33 

0.04 

18.45±1.06 
18.45±6.57 

15.5(12.7-24.0) 

0.23 

0.17 

18.45±1.06 
18.45±6.57 

15.5(12.7-24.0) 

-0.30 

0.06 

17.97±1.35 
17.97±7.64 

17.5(12.5-23.5) 

0.08 

0.65 

17.5±1.03 
17.5±6.0 

17.5(12.7-22.5) 

O2
−• = superoxide anion, MFI = median DHE fluorescence intensity, TBARS = thiobarbituric acid reactive substances, CAT = catalase, SOD = superoxide 

dismutase. MFI = median florescent intensity, µmol = micromole, L = litre, U = unite, mg = milligram, mL = millilitre.
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As shown in Table 4.7, the proportion of total motility only correlated significantly with seminal 

plasma CAT activity and showed a positive correlation (r = 0.33; p = 0.03). None of the motility and 

velocity variables listed in Table 4.7 correlated significantly with sperm intracellular O2
−• levels, 

DNA fragmentation or seminal plasma SOD activity. The proportion of progressive motility 

correlated significantly and positively with seminal plasma CAT activity (r = 0.31; p = 0.04), and 

showed a marginally significant and negative correlation with seminal plasma TBARS levels (r = -

0.30; p = 0.05). The proportion of rapidly motile spermatozoa correlated significantly and negatively 

with seminal TBARS levels (r = -0.31; p = 0.04), and significantly and positively with CAT activity 

(r = 0.31; p = 0.04), though its correlations with other advanced parameters did not reach a statistical 

significance. The proportion of spermatozoa with medium motility correlated significantly and 

positively with seminal TBARS levels (r = 0.51; p <0.01), while slow spermatozoa correlated 

significantly with both seminal plasma TBARS levels (r = 0.38; p = 0.01) and the proportion of 

spermatozoa with acrosome-intact (r = 0.41; p<0.01) and showed positive correlations. The 

proportion of static spermatozoa showed a significant and negative correlation with seminal plasma 

CAT activity (r = -0.33; p = 0.03), but its correlations with other advanced parameters were not 

significant. Principal Component Analysis representing the correlation between advanced semen 

parameters and basic sperm motility variables are illustrated in Figures 4.10, 11, 12, 13 and 14. 
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Table 4. 7: Correlation analysis between sperm motility/velocity and advanced semen parameters. 

  

 
 

 
Mean±SEM 

Mean±SD4 

Median(25-75) 

O2
−• (MFI) 

N=40 

155.3±16.82 
155.3±106.4 

124.5(78.05-215.0) 

TBARS (µmol/L) 

N=44 

24.25±2.63 
24.25±17.48 

18.65(9.53-41.15) 

CAT (U/mL) 

N=44 

36.16±1.5 
36.16±10.0 

36.9(29.0-42.5) 

SOD (U/mg) 

N=44 

4.09±0.22 
4.09±1.44 

3.9(3.0-5.03) 

Acrosome-intact (%) 

N=40 

4.09±0.22 
4.09±1.44 

3.9(3.0-5.03) 

DNA Fragmented (%) 

N=44 

12.76±0.8 
12.76±5.04 

12(11.2-15.7) 

Motility 

 (%) 

R 

p 
Mean ± SEM 

Mean ± SD 

Median(25-75%) 

-0.27 

0.09 
65.4±2.71 

65.4±17.15 

69.15(57.25-75.9) 

-0.09 

0.56 
61.6±1.94 

61.6±12.9 

63.7(58.53-69.65) 

0.33 

0.03 
61.6±1.94 

61.6±12.9 

63.7(58.53-69.65) 

0.05 

0.75 
61.6±1.94 

61.6±12.9 

63.7(58.53-69.65) 

0.14 

0.37 
66.85±2.43 

66.85±15.36 

68.3(53.1-79.85) 

-0.21 

0.19 
59.09±2.24 

59.09±14.2 

62.55(52.9-69.3) 

Progressive 

Motility  

(%) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median(25-75%) 

-0.25 

0.12 

52.0±2.6 
52.0±16.5 

57.8(42.75-63.55) 

-0.30 

0.05 

47.82±1.85 
47.82±12.3 

48.95(41.7-56.5) 

0.31 

0.04 

47.82±1.85 
47.82±12.3 

48.95(41.7-56.5) 

0.13 

0.41 

47.82±1.85 
47.82±12.3 

48.95(41.7-56.5) 

0.09 

0.58 

51.58±2.43 
51.58±15.36 

49.45(40.55-65.5) 

-0.22 

0.17 

45.67±2.02 
45.67±12.8 

47.4(39.73-54.95) 

Rapid 

 (%) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median(25-75%) 

-0.26 

0.10 

51.15±2.63 
51.15±16.7 

57.05(42-63.4) 

-0.31 

0.04 

46.72±1.86 
46.72±12.33 

47.3(41.0-55.83) 

0.31 

0.04 

46.72±1.86 
46.72±12.33 

47.3(41.0-55.83) 

0.13 

0.39 

46.72±1.86 
46.72±12.33 

47.3(41.0-55.83) 

0.29 

0.07 

50.87±2.45 
50.87±15.47 

48.55(39.33-78.2) 

-0.22 

0.17 

44.52±2.03 
44.52±12.9 

46.25(38.5-53.35) 

Medium 

 (%) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median(25-75%) 

0.11 

0.51 

6.24±0.35 
6.24±2.2 

6.3(4.55-7.8) 

0.51 

<0.01 

6.6±0.33 
6.6±2.2 

6.25(5.02-8.5) 

-0.15 

0.32 

6.6±0.33 
6.6±2.2 

6.25(5.02-8.5) 

-0.24 

0.12 

6.6±0.33 
6.6±2.2 

6.25(5.02-8.5) 

0.02 

0.88 

5.49±0.33 
5.49±2.08 

5.40(4.15-6.93) 

-0.03 

0.84 

6.3±0.39 
6.3±2.46 

6.05(3.9-5.6) 

Slow 

 (%) 

R 

p 
Mean ± SEM 

Mean ± SD 

Median(25-75%) 

0.06 

0.72 
8.0±0.35 

8.0±2.23 

7.7(6.65-9.25) 

0.38 

0.01 
8.25±0.4 

8.25±2.5 

8.35(6.7-9.52) 

-0.05 

0.73 
8.25±0.4 

8.25±2.5 

8.35(6.7-9.52) 

-0.07 

0.67 
8.25±0.4 

8.25±2.5 

8.35(6.7-9.52) 

0.41 

<0.01 
10.43±0.47 

10.43±10.5 

10.5(8.27-12.08) 

0.10 

0.54 
8.22± 

8.22±0.44 

7.7(6.52-9.52) 

Static 

 (%)  

R 
p 

Mean ± SEM 

Mean ± SD 
Median(25-75%) 

0.27 
0.09 

34.61±2.71 

34.61±17.13 
30.9(24.13-42.68 

0.09 
0.57 

38.45±1.94 

38.45±12.9 
36.3(30.35-41.5) 

-0.33 
0.03 

38.45±1.94 

38.45±12.9 
36.3(30.35-41.5) 

-0.05 
0.77 

38.45±1.94 

38.45±12.9 
36.3(30.35-41.5) 

-0.13 
0.41 

33±2.47 

33±15.6 
31.75(20.15-46.85) 

0.20 
0.21 

41.0±2.23 

41.0±14.11 
37.45(30.8-47.13) 

O2
−• = superoxide anion, TBARS = thiobarbituric acid reactive substances, CAT = catalase, SOD = superoxide dismutase, MFI = median DHE 

fluorescence intensity, µmol = micromole, L = litre, U = unite, mg = milligram, mL = millilitre. 
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The correlation between each advanced variable (arrows with blue lettering) and basic semen 

variables (arrows with red lettering) are depicted in the following correlation circles of the Principal 

Component Analysis (Figures 4.10-19). In each analysis, an advanced variable (i.e. SOD) is 

compared to several basic semen parameters. As previously mentioned (3.4.1), arrows pointing 

roughly in the same direction to the relevant advanced variable have a positive correlation with the 

variable, while arrows pointing in the opposite direction are negatively correlated.  Similarly, arrows 

perpendicular to the direction of the advanced variable indicates no correlation. Ideally, the arrows 

should stretch into the outer circle to be considered significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10: Correlation circle of the Principal Component Analysis. Correlations of seminal 

plasma catalase (U/mL) and SOD (U/mg) activity with basic motility parameters. SOD = 

superoxide dismutase, U = unite, mg = milligram, mL = millilitre. 

Stellenbosch University  https://scholar.sun.ac.za



110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 11: Correlation circle of the Principal Component Analysis. Correlations of 

intracellular O2
−• with basic motility parameters. O2

−• = superoxide anion, MFI = median 

fluorescence intensity 
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Figure 4. 12: Correlation circle of the Principal Component Analysis. Correlations of seminal 

plasma TBARS levels with basic motility parameters. TBARS = thiobarbituric acid reactive 

substances, µmol = micromole, L = litre. 
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Figure 4. 13: Correlation circle of the Principal Component Analysis. Correlations of sperm 

acrosome-intact with basic motility parameters. 
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Figure 4. 14: Correlation circle of the Principal Component Analysis. Correlations of sperm 

DNA fragmentation with basic motility parameters. 
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As shown in Table 4.8, VCL was correlated significantly and negatively with both intracellular O2
−• 

(r = -0.46; p <0.01), and seminal plasma TBARS levels (r = -0.62; p <0.01), while its correlation with 

seminal SOD levels was significant and positive (r = 0.35; p = 0.02). VSL was correlated significantly 

and negatively with the seminal TBAR levels (r = -0.33; p = 0.03) and significantly and positively 

with the percentage of DNA fragmentation (r = 0.36; p = 0.02). The correlation between VAP and 

both intracellular O2
−• (r = -0.43; p <0.01), and seminal plasma TBARS levels (r = -0.60; p <0.01), 

was significant and negative, while its correlation with other advanced parameters was not 

statistically significant. Both LIN (r = 0.48; p <0.01) and STR (r = 0.43; p <0.01) were significantly 

and positively correlated with the proportion of DNA fragmented spermatozoa. ALH was correlated 

significantly and negatively with intracellular O2
−• (r = -0.49; p <0.01), and DNA fragmentation (r = 

-0.42; p <0.01), while its correation with the seminal plasma SOD activity was  significant and 

positive (r = 0.33; p = 0.03). A significant negative correlation was shown between BCF and seminal 

plasma TBARS levels (r = -0.56; p <0.01). The correlation between advanced semen parameters and 

sperm kinematics are depected in Figures 4.15, 16, 17, 18 and 19. 
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Table 4. 8: Correlation analysis between sperm kinematics and advanced semen parameters. 

 O2
−•   (MFI) 

N= 

Mean±SEM 

Mean±DS 

Median (25-75) 

O2
−•   (MFI) 

N=40 

155.3±16.82 

155.3±106.4 

124.5 (78.05-215.0) 

TBARS (µmol/L) 

N=44 

24.25±2.63 

24.25±17.48 

18.65(9.53-41.15) 

CAT (U/mL) 

N=44 

36.16±1.5 

36.16±10.0 

36.9(29.0-42.5) 

SOD (U/mg) 

N=44 

4.09±0.22 

4.09±1.44 

3.9(3.0-5.03) 

Acrosome-intact (%) 

N=40 

4.09±0.22 

4.09±1.44 

3.9(3.0-5.03) 

DNA Fragmented (%) 

N=44 

12.76±0.8 

12.76±5.04 

12(11.2-15.7) 

VCL 

(µm/s) 

R 

p 

Mean ± SEM 
Mean ± SD 

Median (25-75%) 

-0.46 

<0.01 

83.33±2.35 
83.33±14.85 

81.65(74.43-88.85) 

-0.62 

<0.01 

77.9±1.82 
77.9±12.1 

75.1(69.6-83.9) 

0.14 

0.36 

77.9±1.82 
77.9±12.1 

75.1(69.6-83.9) 

0.35 

0.02 

77.9±1.82 
77.9±12.1 

75.1(69.6-83.9) 

-0.12 

0.46 

83.52±3.15 
83.52±19.93 

83.52(71.20-89.43) 

-0.09 

0.60 

77.05±2.0 
77.05±12.4 

74.65(68.75-82.25) 

VSL 

(µm/s) 

R 
p 

Mean ± SEM 

Mean ± SD 
Median (25-75%) 

-0.18 
0.26 

32.53±1.04 

32.53±6.55 
31.05(27.7-35.7) 

-0.33 
0.03 

30.73±0.7 

30.73±4.45 
29.95(27.83-33.7) 

0.00 
0.99 

30.73±0.7 

30.73±4.45 
29.95(27.83-33.7) 

-0.10 
0.51 

30.73±0.7 

30.73±4.45 
29.95(27.83-33.7) 

0.12 
0.47 

31.9±0.91 

31.9±5.77 
31.8(28.48-35.50) 

0.36 
0.02 

30.75±0.81 

30.75±5.1 
29.65(27.7-33.8) 

VAP 

(µm/s) 

R 

p 
Mean ± SEM 

Mean ± SD 

Median (25-75%) 

-0.43 

<0.01 
53.15±1.3 

53.15±8.22 

52.15(48.53-56.4) 

-0.60 

<0.01 
51.74±0.9 

51.74±5.95 

50.7(48.28-55.45) 

0.06 

0.71 
51.74±0.9 

51.74±5.95 

50.7(48.28-55.45) 

0.25 

0.11 
51.74±0.9 

51.74±5.95 

50.7(48.28-55.45) 

-0.08 

0.61 
52.83±1.51 

52.83±9.59 

51.25(46.98-56.33) 

0.15 

0.36 
51.4±1.0 

51.4±6.31 

50.7(47.93-55.2) 

LIN 

(%) 

R 
p 

Mean ± SEM 

Mean ± SD 
Median (25-75%) 

0.24 
0.14 

39.52±1.12 

39.52±7.02 
38.3(35.83-44.73) 

0.01 
0.97 

40.03±1.0 

40.03±6.61 
40.8(34.03-44.4) 

-0.11 
0.46 

40.03±1.0 

40.03±6.61 
40.8(34.03-44.4) 

-0.30 
0.05 

40.03±1.0 

40.03±6.61 
40.8(34.03-44.4) 

0.28 
0.09 

39.13±1.06 

39.13±6.74 
40.55(35.9-44.39) 

0.48 
<0.01 

40.5±1.13 

40.5±1.14 
40.8(35.0-44.53) 

STR 

(%) 

R 

p 
Mean ± SEM 

Mean ± SD 

Median (25-75%) 

0.14 

0.38 
61.29±1.3 

61.29±8.2 

61.2(56.03-68.0) 

0.03 

0.83 
59.6±1.04 

59.6±6.9 

59.4(54.03-65.0) 

0.01 

0.97 
59.6±1.04 

59.6±6.9 

59.4(54.03-65.0) 

-0.25 

0.10 
59.6±1.04 

59.6±6.9 

59.4(54.03-65.0) 

0.24 

0.14 
60.84±1.19 

60.84±7.5 

61.45(56.55-67.2) 

0.43 

<0.01 
60.1±1.21 

60.1±7.7 

59.4(54.5-65.85) 

ALH 

(µm) 

R 
p 

Mean ± SEM 

Mean ± SD 
Median (25-75%) 

-0.49 
<0.01 

2.1±0.07 

2.1±0.42 
2.0(1.8-2.2) 

-0.18 
0.25 

1.9±0.04 

1.9±0.25 
1.8(1.7-2.0) 

0.09 
0.56 

1.9±0.04 

1.9±0.25 
1.8(1.7-2.0) 

0.33 
0.03 

1.9±0.04 

1.9±0.25 
1.8(1.7-2.0) 

-0.26 
0.11 

2.23±0.08 

2.23±0.54 
2.05(1.82-2.47) 

-0.42 
<0.01 

1.85±0.04 

1.85±0.23 
1.8(1.7-1.9) 

BCF 

(Hz) 

R 

p 
Mean ± SEM 

Mean ± SD 

Median (25-75%) 

-0.03 

0.84 
14.7±0.4 

14.7±2.52 

14.95(12.7-16.45) 

-0.56 

<0.01 
13.7±0.34 

13.7±2.29 

13.7(12.3-15.3) 

0.26 

0.09 
13.7±0.34 

13.7±2.29 

13.7(12.3-15.3) 

0.16 

0.30 
13.7±0.34 

13.7±2.29 

13.7(12.3-15.3) 

-0.08 

0.64 
14.19±0.39 

14.19±2.51 

15.2(12.98-15.7) 

0.20 

0.22 
13.71±0.38 

13.71±2.43 

14.0(12.23-15.3) 

O2
−• = superoxide anion, MFI = median DHE fluorescence intensity, TBARS = thiobarbituric acid reactive substances, CAT = catalase, SOD = superoxide dismutase, MFI = median 

fluorescence intensity µmol = micromole, L = litre, U = unite, mg = milligram, mL = millilitre, VCL = straight-line velocity, VSL = average path velocity, VAP = average path velocity, 

LIN = linearity, STR = straightness, ALH = lateral head displacement, BCF = beat cross frequency, µm = micrometre, s = second, Hz = hertz
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Figure 4. 15: Correlation circle of the Principal Component Analysis. Correlations of sperm 

intracellular O2
−• with kinematic parameters. O2

−• = superoxide anion, VCL = straight-line 

velocity, VSL = average path velocity, VAP = average path velocity, LIN = linearity, STR = 

straightness, ALH = lateral head displacement, BCF = beat cross frequency, MFI = median 

fluorescence intensity, µm = micrometre, s = second, Hz = hertz 
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Figure 4. 16: Correlation circle of the Principal Component Analysis. Correlations of seminal 

plasma TBARS with sperm kinematic parameters. VCL = straight-line velocity, VSL = average 

path velocity, VAP = average path velocity, LIN = linearity, STR = straightness, ALH = lateral 

head displacement, BCF = beat cross frequency, µmol = micromole, L = litre, µm = micrometre, 

s = second, Hz = hertz. 
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Figure 4. 17: Correlation circle of the Principal Component Analysis. Correlations of seminal 

plasma catalase and SOD activity with sperm kinematic parameters. SOD = superoxide 

dismutase, VCL = straight-line velocity, VSL = average path velocity, VAP = average path 

velocity, LIN = linearity, STR = straightness, ALH = lateral head displacement, BCF = beat 

cross frequency, U = unite, mL = millilitre, mg = milligram, µm = micrometre, s = second, Hz = 

hertz. 
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Figure 4. 18: Correlation circle of the Principal Component Analysis. Correlations of sperm 

acrosome-intact with kinematic parameters. VCL = straight-line velocity, VSL = average path 

velocity, VAP = average path velocity, LIN = linearity, STR = straightness, ALH = lateral head 

displacement, BCF = beat cross frequency, µm = micrometre, s = second, Hz = hertz. 
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Figure 4. 19: Correlation circle of the Principal Component Analysis. Correlations of sperm 

DNA fragmentation with kinematic parameters. VCL = straight-line velocity, VSL = average 

path velocity, VAP = average path velocity, LIN = linearity, STR = straightness, ALH = lateral 

head displacement, BCF = beat cross frequency, U = unite, mL = millilitre, mg = milligram, µm 

= micrometre, s = second, Hz = hertz. 
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4.2.2 Establishing cut-off values for the advanced semen parameters from basic semen 

parameters 

The advanced semen parameters were stratified into two populations according to the lower reference 

limit of various basic semen parameters as supplied by the WHO (2010). Positive and negative 

predicted values as well as sensitivity and specificity were calculated using ROC curve analyses. 

After conducting ROC analysis, it came to light that the WHO lower reference value  of 40 % for 

sperm total motility was associated with 227 MFI as a cut-off value for intracellular O2
−• (p<0.01), 

with a sensitivity and specificity of 80 % and 86 % respectively and an AUC of 0.83 as shown in 

Figure 4.20 A. The distribution of the advanced semen parameter values in samples with normal and 

below basic semen WHO reference values is shown in Figures 4.20 B−28 B.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 20: A. Receiver operator characteristic (ROC) curve showing O2
−• (MFI) cut-off value 

and the area under the curve (AUC). B. Distribution of O2
−• values in samples with normal and 

below WHO total motility reference values. O2
−• = superoxide, MFI = median fluorescence 

intensity, WHO = World Health Organization, PPV = positive predictive value, NPV = negative 

predictive value. ≥40, 35 samples, <40; 5 samples. 

  

Stellenbosch University  https://scholar.sun.ac.za



122 

A B 

At the WHO minimum reference value of 32 % for progressive motility, the cut-off value for 

intracellular O2
−• was 128 MFI (p=0.01), with a 100 % sensitivity and 65 % specificity and 0.79 as 

AUC (Figure 4.21 A), while the cut-off value for seminal plasma CAT activity was 37.3 U/mL (p = 

0.07), with sensitivity and specificity of 100 % and 59 % respectively and 0.70 as AUC (Figure 4.22 

A). 

 

 

 

 

 

 

 

 

 

 

Figure 4. 21: A. Receiver operator characteristic (ROC) curve showing O2
−• (MFI) cut-off value 

and the area under the curve. B. Distribution of O2
−• values in samples with normal and below 

WHO progressive motility reference values. O2
−• = superoxide, MFI = median fluorescence 

intensity, WHO = World Health Organization, PPV = positive predictive value, NPV = negative 

predictive value. ≥32, n=33; <32, n=7. 
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Figure 4. 22: A. Receiver operator characteristic (ROC) curve showing seminal catalase activity 

(U/mL) cut-off value and the area under the curve. B. Distribution of catalase activity values in 

samples with normal and below WHO progressive motility reference values. WHO = World 

Health Organization, PPV = positive predictive value, NPV = negative predictive value, U = 

unit, mL = millilitre. ≥32, 38 samples, <32; 6 samples. 
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The lower WHO progressive motility reference value was also associated with the cut-off value of 

17.7 µmol/L (p = 0.07) for TBARS, with 80 % sensitivity, 51 % specificity and an AUC of 0.71 

(Figure 4.23 A). At the same lower progressive motility reference value, the cut-off value for SOD 

activity was 3.445 U/mg (p = 0.49), with a sensitivity and specificity of only 56 % and 60 % 

respectively and an AUC of 0.51 (Figure 4.24 A). Similarly, the cut-off value for DNA fragmentation 

was 15.6 % (p = 0.42), with sensitivity and specificity of 80 % and 60 % respectively and 0.53 as 

AUC (Figure 4.25 A).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 23: A. Receiver operator characteristic (ROC) curve showing TBARS (Umol/L) cut-

off value and the area under the curve. B. Distribution of TBARS values in samples with normal 

and below WHO progressive motility reference values. TBARS = thiobarbituric acid reactive 

substances, µmol = micromole, L = litre, WHO = World Health Organization, PPV = positive 

predictive value, NPV = negative predictive value. ≥32, 38 samples, <32; 6 samples. 
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Figure 4. 24: A. Receiver operator characteristic (ROC) curve showing seminal SOD activity 

(U/mg) cut-off value and the area under the curve. B. Distribution of SOD activity values in 

samples with normal and below WHO progressive motility reference values. SOD =superoxide 

dismutase, U = unit, mg = milligram, WHO = World Health Organization, PPV = positive 

predictive value, NPV = negative predictive value. ≥32, 38 samples, <32; 6 samples. 
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Figure 4. 25: A. Receiver operator characteristic (ROC) curve showing DNA fragmentation 

(%) cut-off value and the area under the curve. B. Distribution of DNA fragmentation 

percentages in samples with normal and below WHO progressive motility reference values. 

WHO = Wold Health Organization, PPV = positive predictive value, NPV = negative predictive 

value. ≥32, 38 samples, <32; 6 samples. 
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The WHO minimum reference value of 58 % for sperm viability was associated with seminal plasma 

TBARS cut-off value of 9.86 µmol/L (p = 0.02) with sensitivity and specificity of 81 % and 80 % 

respectively and an AUC of 0.79 (Figure 4.26 A). At the same sperm viability reference value, CAT 

activity cut-off value was 37.3 U/mL (p = 0.07) with a 100 % sensitivity and 59 % specificity and 

0.70 as AUC (Figure 4.27 A), while the cut-off value for SOD activity was 3.22 U/mg (p = 0.52) with 

sensitivity and specificity of 60 % and 65 % respectively, and an AUC of only 0.50 (Figure 4.28 A). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 26: A. Receiver operator characteristic (ROC) curve showing TBARS (µmol/L) cut-

off value and the area under the curve (AUC). B. Distribution of TBARS values in samples with 

normal and below WHO viability reference values TBARS = thiobarbituric acid reactive 

substances, µmol = micromole, L = litre, WHO = World Health Organization, PPV = positive 

predictive value, NPV = negative predictive value. ≥58, 38 samples, <58; 6 samples. 
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Figure 4. 27: A. Receiver operator characteristic (ROC) curve showing seminal catalase activity 

(U/mL) cut-off value and the area under the curve. B. Distribution of catalase activity values in 

samples with normal and below WHO sperm viability reference values. WHO = World Health 

Organization, PPV = positive predictive value, NPV = negative predictive value, U = unit, mL 

= millilitre. ≥58, 38 samples, <58; 6 samples. 
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Figure 4. 28: A. Receiver operator characteristic (ROC) curve showing seminal SOD activity 

(U/mg) cut-off value and the area under the curve. B. Distribution of catalase activity values in 

samples with normal and below WHO sperm viability reference values. SOD =superoxide 

dismutase, U = unit, mg = milligram, WHO = World Health Organization, PPV = positive 

predictive value, NPV = negative predictive value. ≥58, 38 samples, <58; 6 samples. 
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5 Chapter 5: Discussion 

5.1 Aim I: Effect of abstinence period on semen quality. 

Previous studies investigating the effect of ejaculatory abstinence on semen quality have yielded 

conflicting results due to numerous factors such as large variability of the parameters and small 

sample sizes.  The use of CASA together with advanced measures in the current study is expected to 

contribute extensively to a better understanding of the potential effect of ejaculatory abstinence on 

sperm quality using a considerably large population of normozoospermic men. In addition, this study 

also considered the application of a set of basic semen variables from the first ejaculate in a multiple 

linear regression model for the prediction of various basic and advanced variables of the second 

ejaculate.  

5.1.1 Ejaculatory abstinence and basic semen parameters 

All the results relating to the comparisons between short and long abstinence periods concerning the 

basic semen parameters will be discussed comprehensively in the following section. This includes 

interpretation, explanation and the potential mechanisms that are relevant to this study. 

5.1.1.1 Semen pH 

The slight alkalinity of seminal fluid is essential for neutralizing the acidic environment of the vagina, 

which is detrimental to spermatozoa (Nakano et al., 2015). Results of the current study showed 

marginally, but statistically significant increase in semen pH in samples collected after 4 hours 

compared to those collected after 4 days of abstinence. The mean pH values for semen collected after 

both short and long abstinence periods remained above the lower WHO reference value of 7.2 (WHO, 

2010). Only few studies considered seminal pH as a parameter when investigating the relationship 

between the abstinence period and semen quality (Choavaratana et al., 2014; Jurema et al., 2005; 

Valsa et al., 2013). Blackwell and Zaneveld (1992) analysed semen samples from ten men with 

abstinence periods of 1, 2, 3, 4, 5 and 10 days, and found that seminal pH remained relatively 
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unchanged. In addition, De Jonge et al. (2004) examined ejaculates from 11 men who had abstained 

for 1, 3, 5 and 8 days, and reported no significant differences in seminal pH across the four abstinence 

periods. Similar results were also reported in a recent study by Agarwal et al. (2016) who collected 

semen samples from seven men each abstaining sequentially for 1, 2, 5, 7, 9 and 11 days, and observed 

that semen pH remained relatively stable but declined significantly after 11 days of abstinence. The 

scarcity of studies examining seminal pH indicates that the significance of this semen marker has 

clearly been underestimated. 

The scientific base for the association between the length of the sexual abstinence and semen pH is 

not entirely clear. However, the accumulation of the metabolic end products such as CO2 within the 

cauda epididymis could have a role to play in increasing the hydrogen ion levels in the epididymal 

fluid which may, in turn, contribute to the acidity of the ejaculate. In addition, the epithelium of the 

cauda epididymis is structured to decrease the pH, which assist in keeping the metabolic rate of 

unejaculated spermatozoa minimised (Jones and Murdoch 1996; Valsa et al., 2013). 

Furthermore, split ejaculation studies, which examine properties of different ejaculate fractions 

(Valsa et al., 1994; Valsa et al., 2012), have shown that the initial fraction of the ejaculate is primarily 

made up of spermatozoa suspended in relatively pure prostatic secretion. The subsequent portion 

contains a combination of both prostatic and seminal vesicle secretions, while the last portion of the 

ejaculate is predominantly composed of residual spermatozoa suspended in a relatively pure seminal 

vesicle fluid (Mortimer, 1994). Accordingly, the relatively higher pH values associated with short 

abstinence may be a consequence of the unequal contribution of the accessory glands to the ejaculate 

volume in the short vs. long abstinence periods, since the shortage in the prostatic secretions appears 

to be more pronounced than that of seminal vesicle secretions. In support of this, considerably lower 

levels of zinc were found in semen samples collected after short abstinence period compared to those 

collected after long period, with the difference in fructose levels being insignificant (Elzanaty et al., 

2005; Mortimer, 1994). Interestingly, a negative correlation was observed between the Zn 

concentration in seminal plasma and the seminal pH (Lin et al., 2000). Given that seminal plasma 
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levels of zinc reflect the secretory function of the prostate gland (Alexandrino et al., 2011; Shilstein 

et al., 2004); the relatively higher pH values observed after short abstinence period may presumably 

be attributed to the insufficiency of the prostatic secretion to deposit adequate contributions to the 

volume of the second ejaculate. Moreover, residual accessory gland secretions may make their way 

into the second ejaculate, further increasing the pH. The reason could be that small volumes of the 

third and final portion of the ejaculate, which is almost exclusively made of the alkaline seminal 

vesicle fluid (Mortimer, 1994) may remain in the ejaculatory duct and consequently contribute to the 

subsequent ejaculate, especially those collected after extremely short periods of abstinence. 

5.1.1.2 Semen Volume 

Semen volume has consequently been suggested as an early marker of low semen quality even before 

identifying any abnormality in concentration, motility and morphology of spermatozoa. Semen 

volume has also been shown to provide a reliable indication of the secretory functions of the accessory 

glands, particularly the seminal vesicles (WHO, 2010). The volume of ejaculate in this study was 

significantly decreased after a short period of abstinence compared with a long period. However, even 

after such an extremely short abstinence period, the mean ejaculate volume remained above the lower 

reference value of 1.5 mL recommended by the WHO (WHO, 2010). There is robust and consistent 

evidence for the significant increase in semen volume with increase in abstinence period in men with 

normal (Agarwal et al., 2016; Mayorga-Torres et al., 2016; Valsa et al., 2012) as well as abnormal 

semen profiles (Bahadur et al., 2016a; Levitas et al., 2005; Sánchez-Martín et al., 2013). Interestingly, 

in healthy normozoospermic men, the greatest overall mean of daily increase in semen volume during 

the first 4 days of abstinence was calculated to be 11.9 % per day (Carlsen et al., 2004). Furthermore, 

the volume of ejaculate has generally been estimated to increase with an average of 0.4 mL per day 

as the interval between ejaculations increases and reaches a peak between the fifth and seventh day 

of abstinence (Ayad et al., 2018). However, only one study (Magnus et al., 1991) failed to show any 

significant change in semen volume in both normozoospermic and asthenozoospermic populations, 
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which is likely to be due to the small number of samples investigated, and the protracted period of 

the short abstinence. 

The reduction observed in the ejaculate volume after a shorter abstinence period could be attributed 

to a continual semen extraction from the epididymal reserve and the sluggish replacement by 

testicular, epididymal and genital accessory gland secretions of this reserve. It may also be interpreted 

as an insufficiency of the accessory glands to deposit adequate contributions to the ejaculate volume, 

particularly the seminal vesicles and the prostate gland, which are the major contributors to the 

ejaculate volume. The epithelial tissues of these organs are targeted by androgen, which is thought to 

regulate their mRNA production as well as the synthesis of rough endoplasmic reticulum,  thereby 

enhancing the production of seminal plasma proteins (Fawell and Higgins, 1984). Improved secretory 

capacities of seminal vesicles and prostate gland has been associated with higher endogenous serum 

testosterone levels in rats (Zanato et al., 1994), and men (Gonzales, 1994). In addition, higher 

testosterone serum levels have been reported following a prolonged abstinence period compared with 

a shorter abstinence (Jiang et al., 2003). Therefore, the potential stimulating effect of testosterone on 

the major accessory glands associated with long abstinence periods may contribute to the increased 

semen volume after prolonged abstinence periods. 

In order to predict the semen volume of the second ejaculate (dependent variable) from various 

parameters obtained from the first ejaculate, subset linear regression analysis was performed to find 

the best independent variables to achieve this. Three independent variables from the first ejaculate 

namely volume, progressive motility and VAP were identified through best subset linear regression 

as indicated in Table A1 (Appendix). The volume of the first ejaculate, as an independent variable, 

appeared as a predictor in all 20 of the top best models, thus identifying it as a particularly important 

predictor. Furthermore, it is shown that the semen volume of the second ejaculate could be predicted 

with relative accuracy, as nearly 63 % proportion of variance (R2 = 0.627) could be accounted for, 

while the new case predictability had a 56 % accuracy according to the cross validation R2 of 0.56. 

However, in terms of the physiological predictability relationship, the robustness of this test must be 
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validated using bigger sample sizes and wider variation of individuals, including samples from 

infertile patients.  

5.1.1.3 Sperm Concentration 

The concentration of spermatozoa in semen, expressed as millions per millilitre, is a critical indicator 

of semen quality and a prognostic factor for fertility potential (Guzick et al., 2001). However, it is not 

recommended as an accurate measure of spermatogenesis because it is influenced by the volume of 

secretions from the accessory sex glands in which the concentrated epididymal spermatozoa are 

diluted during ejaculation (WHO, 2010). The T.S.C. in the ejaculate, expressed as millions per total 

ejaculate and obtained by multiplying the sperm concentration by the semen volume, is suggested to 

be a better marker for the evaluation of spermatogenesis (Amann, 2009).  

Results of the present study showed that the T.S.C. as well as sperm concentration were significantly 

decreased in samples collected after short abstinence compared to those collected after long 

abstinence. Even with only 4 hours of abstinence, the mean values of these two parameters did not 

decline to below the lower threshold values of 15 × 106 spermatozoa/mL and 39 × 106 

spermatozoa/ejaculate respectively, as recommended by the WHO (WHO, 2010). The period of 

abstinence has usually been associated with an increased total number (Bahadur et al., 2016a; 

Marshburn et al., 2014; Sunanda et al., 2014) and higher concentration of spermatozoa (De Jonge et 

al., 2004; Marshburn et al., 2010; Sukprasert et al., 2013).  

During sexual inactivity, an estimated 400 million spermatozoa are reserved within the epididymis 

with the majority stored in the cauda epididymis and lesser in the caput and corpora with an average 

of 90 million in each of these sections. The paired vas deferens with its ampulla is estimated to contain 

about 75 million spermatozoa (Guzick et al., 2001). During the arousal phase, but prior to the emission 

phase, the population of spermatozoa in the paired ampulla increases dramatically as they move 

distally towards the urethra (Durairajanayagam et al., 2015).  After particularly long periods of 

abstinence, the bulk of the sperm population in the first ejaculate mainly consists spermatozoa stored 
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in the ampulla and vas deference, and partly those from the cauda epididymis. Consequent ejaculates 

in quick successions are typically characterized by a lower T.S.C. as the residual spermatozoa are 

flushed from the proximal cauda and corpus, and thereafter from the caput (Valsa et al., 2013), all of 

which contain much lower sperm reserves (Guzick et al., 2001). Despite these findings, Bahadur et 

al. (2016a) interestingly suggested that “combining the initial and consecutive ejaculates allows for a 

potential shift of severe oligozoospermia towards the normozoospermia”. This approach may lead to 

a change in the treatment strategies by possibly avoiding testicular biopsies and IVF procedures, if 

more sperm can be accumulated to make IUI procedures clinically viable (Bahadur et al., 2016b). 

The observed consistent positive association of sperm concentration and total count with increasing 

abstinence periods can be ascribed to daily sperm production, which is determined to be 

approximately 130-270 x 106 per day (Amann, 2009). The regulation of testicular functions and 

spermatogenesis necessitates a complex combination of endocrine and paracrine signals. Relatively 

higher levels of testosterone are essential for the maintenance and proceeding of spermatogenesis. 

Serum testosterone levels were shown to fluctuate mainly from the second to the fifth day of 

abstinence, reaching a peak (about 145 % of the baseline) after the seventh day of abstinence and 

remaining relatively constant even when the abstinence period was further prolonged (Jiang et al., 

2003). Simultaneously, according to the systematic review performed by Ayad et al. (2018), the 

largest increase in the overall mean of  T.S.C. observed in 18 studies was reported when the abstinence 

period extended from 6-7 days to ˃7 days (Ayad et al., 2018). 

Nearly 44% percent (R2 = 0.439) of the proportion of variance in the sperm concentration of the 

second ejaculate, as a dependent variable, could be predicted from an independent set of first ejaculate 

parameters, while new cases could be predicted with approximately 37 % accuracy according to the 

cross validation R2 of 0.37. Sperm concentration, progressive motility and BCF of the first ejaculate 

were identified as best independent variables (Table A2, Appendix). The sperm concentration of the 

first ejaculate as an independent variable occurred in 19 of the top 20 best models, thereby indicating 
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that sperm concentration in the first sample is the major contributor to predicting the concentration in 

the second sample.  

5.1.1.4 Sperm Viability 

 Sperm viability is one of the parameters that is routinely assessed in basic semen analysis, and is 

especially recommended in samples where the percentage of sperm motility is less than 40 % (WHO, 

2010). The percentage of viable spermatozoa in this study was not significantly different between the 

short and long abstinence periods. The mean viability percentage remained above the WHO lower 

reference value of 58 % (WHO, 2010) even after 4 hours of abstinence. These findings are consistent 

with those of previous studies which also observed slight or no statistically significant association 

between sperm viability and abstinence period (Agarwal et al., 2016; Choavaratana et al., 2014; De 

Jonge et al., 2004; Marshburn et al., 2010; Mayorga-Torres et al., 2016). Across the studies reviewed 

by Ayad et al. (2018), the overall mean percentage of viable spermatozoa was found to peak and 

remain relatively unchanged between the second and the fifth day of abstinence, and declined 

thereafter (Ayad et al., 2018). 

This study also showed that the proportion of viable spermatozoa in the second ejaculate as a 

dependent variable could be predicted from the first ejaculate as nearly 50 % proportion of variance 

(R2 = 0.503) could be accounted for, while new cases could be predicted with 47 % accuracy 

according to the cross validation R2 of 0.47. Sperm viability and LIN of the first ejaculate were 

identified as best independent variables, with sperm viability being the most important predictor as it 

occured in all 15 of the top best models (Table A3, Appendix). 

5.1.1.5 Sperm Morphology 

To be considered morphologically normal, the whole spermatozoon and its three distinct areas, that 

is, the head, midpiece and the tail, must fit the stringent criteria in terms of their size and shape (WHO, 

2010). It has also been reported that morphologically abnormal spermatozoa, with a special focus on 

the acrosomal region, have a lower chance to bind to the zona pellucida (Garrett et al., 1997). The 
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results of this study found no significant difference in the percentage of morphologically normal 

spermatozoa between short and long abstinence. After 4 hours of abstinence, the mean percentage 

morphologically normal spermatozoa remained above the WHO lower reference value of 4 % (WHO, 

2010). These findings are in line with the majority of previous studies, which also reported no 

significant association between sperm morphology and the period of abstinence (De Jonge et al., 

2004; Mayorga-Torres et al., 2016; Sunanda et al., 2014). In contrast, one study reported significantly 

higher percentages of spermatozoa with tail defects when the abstinence period was extended from 

2-3 days to 6-7 days, while the overall proportion of normal morphology did not differ between the 

two abstinence groups (Elzanaty et al., 2005). Furthermore, Levitas et al. (2005) reported that among 

mild to moderate oligozoospermic samples, the highest percentage of normal morphology was 

reported at ≤2 days of abstinence but this association was not observed in a normozoospermic 

population. Interestingly, Bahadur et al. (2016a) recently reported that an extremely short abstinence 

period of 30 minutes could significantly improve sperm morphology among oligozoospermic men, 

all candidates for IUI treatment. By contrast, shortening the abstinence duration in normal individuals 

from 3-5 days to only 18-30 hours resulted in a considerably lower percentage of morphologically 

normal spermatozoa (Sukprasert et al., 2013). It may therefore be advantageous for patients with 

oligozoospermia to abstain for shorter periods before sperm collection, as an option in the process of 

fertility treatment.  

Nevertheless, it must be taken into consideration that manual assessment of sperm morphology is a 

subjective analysis with inter- and intra-laboratory variation. This variability may be attributed to 

several factors including the use of different fixation and staining techniques (Maree et al., 2010), 

differences in interpretation (Kruger and Coetzee, 1999) and technician expertise (Barroso et al., 

1999). Another important factor that needs to be reiterated is that the WHO guidelines and reference 

ranges have changed over the years and may thus lead to differences in interpretation (WHO, 2010). 

In the current study the percentage of normal sperm morphology of the second ejaculate, as a 

dependent variable, could be predicted from a set of first ejaculate parameters which could account 
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for approximately 48 %  of the proportion of variance (R2 = 0.483), while a new case could be 

predicted with 46 % accuracy according to the cross validation R2 of 0.46. Three independent 

variables from the first ejaculate, that is, normal morphology, VCL and T.S.C. were shown to be the 

best possible predictors of the percentage of normal sperm morphology of the second ejaculate 

through best subset linear regression, as illustrated in Table A4 (Appendix). The percentage of 

morphologically normal spermatozoa of the first ejaculate displayed the strongest prediction as it 

appeared in all 20 of the top best models.  

5.1.1.6 Sperm Motility 

Motility is a critical variable in the evaluation of sperm parameters and is a significant indication of 

the functional capacity of spermatozoa (Gunalp et al., 2001). The issue of the influence of ejaculatory 

abstinence on motility characteristics of spermatozoa has been considered in several previous studies, 

but the results have often been conflicting. In this study, CASA results showed a significant increase 

in the percentages of total sperm motility as well as progressive motility after short abstinence 

compared with long abstinence. These findings are in agreement with numerous other studies where 

the proportions of total motility (Choavaratana et al., 2014; Levitas et al., 2005; Marshburn et al., 

2010; Valsa et al., 2013) and progressive motility (Bahadur et al., 2016a; Elzanaty et al., 2005; 

Sobreiro et al., 2005; Sunanda et al., 2014) were found to improve after shorter abstinence. The 

overall mean peaks of both total and progressive motility across the studies reviewed by Ayad et al. 

(2018) were reported after ≤ 1 day of abstinence. On the other hand, other studies failed to identify 

any significant difference in the percentages of total motility (Agarwal et al., 2016; Mayorga-Torres 

et al., 2015; Mayorga-Torres et al., 2016; Sánchez-Martín et al., 2013; Sukprasert et al., 2013), and 

progressive motility (Mayorga-Torres et al., 2015; Mayorga-Torres et al., 2016). Interestingly, the 

results of the current study are consistent with those reported by Magnus et al. (1991), who found that 

progressive motility of a normozoospermic population was increased after shortening the abstinence 

period. However, when Magnus et al. analysed an asthenozoospermic population, no such association 

Stellenbosch University  https://scholar.sun.ac.za



139 

was found, thereby corroborating the findings of the other relevant studies (Cooper et al., 1993; 

Jurema et al., 2005; Mayorga-Torres et al., 2015; Mayorga-Torres et al., 2016).  

These variations might be a result of differences in the populations studied, the small sample size as 

well as the potential counting and interpretation errors associated with the subjective visual 

assessment of sperm motility employed in their studies. CASA, in contrast to subjective manual 

motility estimation, is certainly a powerful approach for the objective assessment of sperm motion. 

The most recent WHO guidelines on semen analysis nevertheless indicate that the assessment of 

sperm motility percentage using CASA may be unreliable due to the potential misidentification of 

particulate debris as immotile spermatozoa (WHO, 2010). However, the SCA 5.4 used in the current 

study is an up-to-date CASA system equipped with intelligent filters to accurately identify the 

spermatozoa and eliminate debris and other cells, allowing for more accurate and objective 

assessment of sperm motility. Therefore, it is suggested that the current guidelines concerning the 

employment of CASA in semen analysis should be reconsidered. 

The subset linear regression showed that the percentage of sperm progressive motility of the second 

ejaculate as a dependent variable could be predicted from a set of the first ejaculate parameters, which 

could account for nearly 58 % proportion of variance (R2 = 0.0.576), and a new case could be 

predicted with 55 % accuracy according to the cross validation R2 of 0.55. Both progressive motility 

and ALH of the first ejaculate were identified as best independent variables (Table A5, Appendix), 

and sperm progressive motility of the first ejaculate as an independent variable appeared in all 14 of 

the top best models, showing that it is the principal predictor. Furthermore, two independent variables 

from the first ejaculate namely percentage of total motility and ALH were identified through best 

subset linear regression for the prediction of proportion of total motility in the second ejaculate from 

the first, as shown in Table A6 (Appendix).  The proportion of sperm total motility in the first 

ejaculate as an independent variable emerged as predictors in all 14 of the top best models, thus 

identifying it as the most significant predictor.  The percentage of sperm total motility of the second 

ejaculate could, thus, be predicted with approximately 55 % accuracy as a substantial proportion of 
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variance (R2 = 0.549) could be accounted for, and new cases could be predicted with 52 % accuracy 

according to the cross validation R2 of 0.52. 

Sperm velocity is considered one of the most important determinants of sperm competition outcomes 

and is vital in predicting the fertilization success (Tourmente et al., 2011). The CASA results of the 

present study showed a significant increase in the proportion of Type A spermatozoa after short 

abstinence compared with long abstinence, whereas the proportions of type C and type D spermatozoa 

were significantly lower after short abstinence. The proportion of type B spermatozoa was not 

significantly different between the abstinence periods. Similar trends were reported in a recent study 

by Bahadur et al. (2016a). 

This study also found a significant increase in the kinematic parameters of VCL, VSL, VAP, LIN, 

STR and BCF after short abstinence compared with long abstinence, while no differences were 

detected in WOB and ALH. The only other study investigating the impact of ejaculatory abstinence 

on sperm kinematics, among other markers of semen quality, had been conducted by Elzanaty et al. 

(2005). In this study, semen samples collected from patients with a wide age range undergoing 

infertility assessment were grouped into three categories based on the abstinence period. Significantly 

higher VSL and LIN values were observed among the group of men with the shorter abstinence while 

VAP and VCL values, in contrast to the present study, were not significantly different between the 

abstinence groups. It is worth mentioning that variation in semen characteristics among individuals 

may enhance the potential for observation bias (Keel, 2006). However, in the current study the 

ejaculations of both short and long abstinence were collected in quick succession from the same 

donor, thereby eliminating confounding variables. 

The increase in semen volume and sperm concentration with a long abstinence period was 

accompanied by substantial deterioration in sperm motility characteristics, especially progressive 

motility and velocity. Although the exact mechanism as to how ejaculatory abstinence may affect 

changes in semen quality is still largely undefined, a number of possibilities can be suggested and 

will subsequently be explained in the following section. 
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Senescence of unejaculated spermatozoa: With increasing abstinence time, older and senescent 

spermatozoa are gradually accumulating in the epididymis. Under normal conditions, the precise 

mechanism by which unejaculated senescent spermatozoa are eliminated from the epididymal duct is 

not fully understood. However, few reports are available regarding the potential role of the epithelial 

cells and intraluminal phagocytes in the uptake and the disposal of these defective spermatozoa 

(Alvarez and Obregon, 1995; Holstein, 1978; Sutovsky et al., 2001). The relative contribution of these 

senescent spermatozoa to the subsequent ejaculation impairs semen quality, unless they are ejaculated 

and removed from the male reproductive tract at regular intervals (Mortimer, 1994; Sánchez-Martín 

et al., 2013). Therefore, semen samples collected after prolonged abstinence are generally 

characterized by substantially higher sperm concentration, but poor quality (Choavaratana et al., 

2014; Levitas et al., 2005; Marshburn et al., 2010). Reduction in the storage period within the 

epididymis may minimize the exposure of unejaculated spermatozoa to motility inhibitory factors 

and enzymes released from the degenerating cells within the same microenvironment (Valsa et al., 

2013). 

Effect of sperm motility quiescence factors: During prolonged abstinence periods, spermatozoa 

stored within the cauda epididymis become more docile whilst immersed in this environment, as they 

are constantly exposed to various sperm motility quiescence factors (Iwamoto and Gagnon, 1988; 

Skandhan, 2004). In addition to the inhibitory effect of the relatively acidic epididymal environment 

on sperm motility, several other factors present in the male reproductive fluids of mammals, have 

been shown to have the capacity to enforce quiescence on the caudal spermatozoa (Acott and Carr, 

1984).   In the rat caudal epididymis, sperm motility is suppressed mechanically due to the effect of 

a high molecular weight glycoprotein known as Immobilin, which raises the viscoelastic drag of the 

epididymal fluid surrounding the spermatozoa (Usselman and Cone, 1983).   

The presence of motility quiescence factors has also been reported in human seminal fluids and 

suggested to contribute significantly to the etiology of motility impairment of ejaculated spermatozoa. 

Iwamoto and Gagnon (1988) purified a seminal plasma motility inhibitor (SPMI) and examined its 
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potential effect on ejaculated human sperm motility.  This study showed a considerable decrease in 

the motility and velocity of the spermatozoa incubated with the SPMI in a dosage and time-dependent 

manner. Although the association between abstinence period and these motility quiescence factors 

has yet to be elucidated, it can be speculated that the release of spermatozoa through more frequent 

ejaculations could reduce the action of these inhibitory factors, as their concentrations decrease to 

basal levels. This may eventually help to reduce the severity of these factors and minimize their 

adverse effects on sperm motility.f 

Effect of crowding and limited space: Previous studies have shown that the total number of 

spermatozoa accumulated in the cauda epididymis and subsequently released in the ejaculate may 

vary substantially even among individuals sharing the same period of abstinence (Carlsen et al., 2004; 

Levitas et al., 2005; Marshburn et al., 2014;  Sunanda et al., 2014; Valsa et al., 2013).  In the current 

study, long abstinence-associated increase in sperm concentration was accompanied by a relative, 

though not significant, elevation in semen viscosity. With increased viscosity, the sperm cells become 

closely packed with restricted fluid space available for spermatozoa to move freely. This is presumed 

to be supported by the findings of previous studies, which have shown a negative correlation between 

sperm count and motility characteristics in patients with a remarkable increase in sperm concentration 

(Amelar et al., 1997; Patil et al., 2013). 

Depletion of energy source: Fructose, the primary carbohydrate formed in semen, is an essential 

source of energy for sperm motility (Gonzales, 2001; Gonzales and Villena, 2001). The entire process 

of fructolysis, in bull sperm for instance, is estimated to produce about 6 x 106 ATP molecules per 

sec for each motile sperm, with an average of 2 mg fructose being utilized by 1000 x 106 sperm per 

hour (Rikmenspoel et al., 1969). Interestingly, an inverse association has been reported between 

seminal plasma levels of fructose and sperm concentration (Ahmed et al., 2010; Rajalakshmi et al., 

1989). Thus, it can be assumed that as the number of spermatozoa increases, as in during prolonged 

abstinence, the amount of fructose available for each individual spermatozoon decreases, leading to 

the depletion of energy necessary for the sperm to move spontaneously. This may rationalize the 
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positive correlation between seminal fructose levels and sperm motility, as was previously reported 

(Patel et al., 1987). 

Accumulation of Frequent heat exposures: Reserved spermatozoa are believed to be highly sensitive 

to increased external temperature (Mortimer, 1994); hence, they are situated in the epididymal cauda, 

which is the coolest part of the scrotum (Bedford, 1978). The severity of the detrimental effect of 

increased scrotal temperature on the unejaculated sperm cells has been shown to vary depending on 

the intensity of the heat stress, as well as the frequency and the period of exposure (Durairajanayagam 

et al., 2015; Rao et al., 2015). Therefore, extending the abstinence period may possibly enhance the 

susceptibility of unejaculated spermatozoa to recurrent genital heat exposure.  

Repeated exposures to temperatures higher than the optimum scrotal temperature may adversely 

affect the motility characteristics of epididymal spermatozoa via altering the properties of the motor 

apparatus of the sperm flagellum. This may presumably occur by increasing the probability of thermal 

denaturation of proteins involved in the motor apparatus of the sperm flagellum (Saikhun et al., 1998). 

In addition, substantial changes in the membrane phospholipid architectures of cauda epididymal 

spermatozoa have also been reported in male mice subjected to few degrees above the core body 

temperature for three consecutive days (Wechalekar et al., 2010). Frequent and accumulating heat 

exposures may also cause changes in the composition of the epididymal fluid, which in turn influence 

its normal function. An abnormal epididymal milieu may reduce the time needed for sperm 

maturation via accelerating the epididymal transit time, thereby leading to increased proportions of 

spermatozoa with impaired motility in the ejaculate (Rao et al., 2015). Consequently, reducing the 

abstinence period may minimize the frequency and time span of heat exposure, thereby leading to 

improved motility. 

5.1.2 Ejaculatory abstinence and advanced semen parameters 

Conventional semen parameters provide the essential information on which clinicians base their 

preliminary diagnosis (Giwercman et al., 2010). Approximately 25-40 % of idiopathic infertile males 
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have been reported to have normal semen profiles (Gudeloglu et al., 2015). Therefore, a range of 

advanced sperm quality parameters have been developed to circumvent the limitations of the 

conventional semen analysis (Erenpreiss et al., 2006). In the following section, all the results relating 

to the influence of abstinence period on the advanced semen parameters measured will be discussed 

comprehensively. This includes interpretation, explanation and the potential mechanisms involved. 

5.1.2.1 Acrosome Reaction 

The percentage of acrosome-intact spermatozoa was not significantly different between short and 

long abstinence periods. However, there are no previous reports in the existing literature with which 

to compare these results. In clinical settings, the rate of spontaneous (premature) acrosome loss may 

provide little indication on the fertilizing ability of spermatozoa, unless the values are particularly 

high (Pilikian et al., 1992). 

Epididymal spermatozoa are characterized by low membrane fluidity and limited intracellular 

calcium levels, thus, their acrosome integrity remains almost constant throughout the epididymal duct 

(Fàbrega et al., 2012). The inability of most mammalian spermatozoa to undergo the acrosome 

reaction during epididymal passage and storage is generally attributed to the presence of 

decapacitation factors in the epididymal milieu (Thomas et al., 1984). For instance, the acrosome 

stabilizing factor (ASF), which was isolated from the epididymal fluid and seminal plasma of some 

mammals, is thought to be synthesized and released by principle cells throughout the epididymal duct. 

The ASF has been shown to play a role in stabilizing the spermatozoa and preventing the process of 

acrosome exocytosis during epididymal transit and storage. The average levels of ASF were found to 

be considerably varied among different segments of the epididymis with lowest ASF levels being 

observed in the caput and corpus epididymal fluid, whereas the highest level was in the cauda 

epididymal fluid and vas deferens.  In the cauda epididymal fluid, the ASF consists about a quarter 

of the total proteins in this segment (Reynolds et al., 1989; Thomas et al., 1984). 
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As mentioned earlier, spermatozoa stored in the vas deferens and cauda are released during the first 

ejaculation, whereas the remainders from the cauda and corpus and later from the caput are released 

in the subsequent ejaculations (Valsa et al., 2012). During prolonged sexual abstinence, spermatozoa 

stored in the cauda are increasingly susceptible to various acrosome reaction inhibitory factors. 

However, consequent ejaculates in quick successions may presumingly decrease the effectiveness of 

these factors as their concentrations are minimised to basal levels. This could be a possible reason for 

the relatively, but not significantly, lower percentage of acrosome-intact spermatozoa observed in the 

current study after the short abstinence period. 

5.1.2.2 DNA Fragmentation 

 Assessment of sperm DNA integrity, in addition to routine semen analysis, provides further valuable 

information about sperm quality as well as pregnancy outcomes (Borini et al., 2006; Tesarik et al., 

2004). It has been shown that high proportions of spermatozoa with DNA fragmentation above 20 % 

increase the risk of infertility regardless of having normal basic semen parameters (Giwercman et al., 

2010). The current study showed no significant difference between short and long abstinence periods 

regarding the percentage of sperm DNA fragmentation. Conflicting results have been reported in this 

regard. The finding of the current study concurs with a number of previous studies (De Jonge et al., 

2004; Gosálvez et al., 2011; Mayorga-Torres et al., 2015). Other studies, however, reported increased 

levels of DNA damage with increasing abstinence period (Agarwal et al., 2016; Sánchez-Martín et 

al., 2013; Sukprasert et al., 2013). Surprisingly, an extremely short abstinence period of only two 

hours was reported to be associated with higher levels of sperm DNA fragmentation (Mayorga-Torres 

et al., 2016). The latter might be the result of a small sample size (n=3) as well as the large variations 

in values obtained. 

The use of different methodologies (e.g. Comet assay, sperm chromatin structure assay and sperm 

chromatin dispersion test) in the evaluation of sperm DNA damage may also be responsible for such 

contradictory findings among studies, as different techniques may assess different aspects of 

chromatin integrity (Ribas- Maynou et al., 2013). The TUNEL assay used in this study allows for the 
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measurement of both single and double DNA strand breaks, wherein spermatozoa are scored as 

TUNEL positive or negative according to their fluorescence intensity detected by flow cytometry. 

As depicted in Table A7 (Appendix), five independent CASA variables from the first ejaculate, i.e. 

progressive motility, ALH, BCF, sperm concentration and T.S.C. were shown through best subset 

linear regression to be useful for the prediction of the percentage of sperm DNA fragmentation of the 

second ejaculate from the first ejaculate. The kinematics ALH and BCF of the first ejaculate, as 

independent variables, were found to be the most important predictors as they appeared in all 20 of 

the top best models. Thereby, the percentage of spermatozoa with DNA fragmentation in the second 

ejaculate could be predicted with relatively high accuracy as approximately 75 % proportion of 

variance (R2 = 0.739) could be accounted for, and new cases could be predicted with 42 % accuracy 

according to the cross validation R2 of 0.42.  

5.1.2.3 ROS generation and oxidative stress markers 

O2
−• is the major initial form of ROS produced by sperm. The physiological or pathological effects 

of ROS on sperm function are thought to be influenced by the type and the amount of reactive species 

involved (Kothari et al., 2010), and importantly the period of exposure in the context of abstinence. 

In the current study intracellular O2
−• levels, although not significant, were slightly lower after short 

abstinence compared to longer abstinence. Decreased time spent in storage within the epididymis 

reduces the production of by-products of aerobic metabolism, and minimises the susceptibility of 

spermatozoa to external factors, such as heat exposure, leading to less ROS production. 

Three studies (Agarwal et al., 2016; Mayorga-Torres et al., 2015; Mayorga-Torres et al., 2016) are 

available on the relationship between the abstinence period and sperm intracellular ROS production, 

while only one study examined the relationship in terms of seminal ROS concentration (Desai et al., 

2010). These studies consistently reported no association of abstinence period with either intracellular 

ROS production or seminal ROS levels. However, among the relevant studies a general trend of 

reduction, albeit non-significant, was observed in intracellular ROS levels after short abstinence in 
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comparison with long abstinence, as shown in the current study. Interestingly, when four repeated 

ejaculates were collected on the same day at two-hour intervals, a significant reduction in intracellular 

ROS production was observed in the fourth ejaculate compared with the initial one obtained after 3 

to 4 days of abstinence (Mayorga-Torres et al., 2016).  

The subset linear regression analysis, in the present study, showed that none of the independent basic 

semen variables from the first ejaculate could predict sperm intracellular O2
−• levels (dependent 

variable) in the second ejaculate as shown in Table A8 (Appendix).  

During their maturation and storage, spermatozoa are continuously susceptible to oxidative damage 

induced by intracellular and extracellular reactive species. Spermatozoa are highly sensitive to ROS 

damage by lipid peroxidation due to their membranes being highly rich in PUFA (Du Plessis et al., 

2015). In addition, spermatozoa have limited intracellular enzymatic defense against oxidative stress, 

partly due to cytoplasmic extrusion during spermatogenesis. This deficient capacity is effectively 

compensated for by a group of cellular detoxifying enzymes with powerful antioxidant properties 

including SOD and CAT found within the seminal plasma (Du Plessis et al., 2010). Activities of these 

enzymes in seminal plasma have been related to spermatozoa’s functional capacity (Foresta et al., 

2002; Idriss et al., 2008). The current study found that seminal plasma TBARS levels as well as CAT 

activity were not significantly different between the short and long abstinence periods, whereas the 

SOD activity was significantly higher after short period of abstinence. 

Surprisingly, only one study had examined the influence of ejaculatory abstinence period on seminal 

plasma antioxidants and lipid peroxidation of the sperm membrane (Marshburn et al., 2014). By 

analysing ejaculates of forty men undergoing IUI, Marshburn et al. observed a significant 

improvement in the total antioxidant capacity of seminal plasma after one day of abstinence compared 

to four days whereas, as shown in the present study, no significant difference was found with regards 

to the lipid peroxidation of the sperm membrane between the two abstinence periods. They therefore 

suggested that short abstinence-related increase of total antioxidant capacity in seminal plasma could 
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defend spermatozoa against oxidative stress through a mechanism that is independent of lipid 

peroxidation.  

The current study has expanded these findings by investigating the seminal SOD and CAT activities 

in addition to the sperm intracellular O2
−• levels and the amount of membrane lipid peroxidation as 

assessed by TBARS. In the present study, a long abstinence-associated increase (insignificant) in 

sperm intracellular levels O2
−• was accompanied by a depletion of seminal SOD and CAT activity, 

apparently through their reductions of O2
−• and H2O2 respectively. It can therefore be assumed that 

the capacities of SOD and CAT to reduce oxidative stress were being overwhelmed as lipid 

peroxidation was still occurring as indicated by the relatively increased levels of seminal plasma 

MDA (TBARS). 

High seminal plasma levels of lipid peroxidation have been reported in infertile men (Colagar et al., 

2013; Mahanta et al., 2012). Furthermore, sperm parameters (e.g. progressive motility and 

morphology) have been associated positively with SOD activity and negatively with lipid 

peroxidation (Atig et al., 2012; Fazeli and Salimi, 2016; Marzec-Wróblewska et al., 2011; Murawski 

et al., 2007). A negative association was also reported between SOD activity and MDA levels in 

seminal plasma, suggesting the importance of this enzyme in protecting against lipid peroxidation 

(Tavilani et al., 2008). Accordingly, reducing the residence time of spermatozoa within the 

epididymis, by shortening the abstinence period in this study, would promote the antioxidant defences 

in the semen and protect spermatozoa from the membrane peroxidative damage. 

Three independent basic semen variables from the first ejaculate namely semen volume, pH and 

sperm concentration were identified through best subset linear regression for the prediction of 

TBARS levels of the second ejaculate (Table A9, Appendix). The semen pH of the first ejaculate as 

an independent variable occurred as a predictor in all 19 of the top best models, identifying it as a 

very strong predictor. Seminal plasma TBARS levels of the second ejaculate could be predicted with 

relative accuracy since nearly 62 % of proportion of variance (R2 = 0.614) could be accounted for, 

while a new case could be predicted with only 33 % accuracy according to the cross validation R2 of 
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0.33. For CAT activity, the subset linear regression displayed that seminal plasma CAT activity of 

the second ejaculate, as a dependent variable, could be predicted from the first ejaculate with 

approximately 67 % accuracy as a large proportion of variance (R2 = 0.67) could be accounted for, 

and a new case could be predicted with 52 % accuracy according to the cross validation R2 of 0.52. 

The T.S.C. and normal morphology of the first ejaculate were found to be the best independent 

variables (Table A10, Appendix), with sperm normal morphology of the first ejaculate occurring in 

all 20 of the top best models. Furthermore, two independent basic variables from the first ejaculate 

namely semen pH and sperm viability were identified through best subset linear regression for the 

prediction of seminal plasma SOD activity in the second ejaculate (dependent variable) from the first 

ejaculate, as shown in Table A11 (Appendix). Both of these independent variables showed to be the 

best predictors as they occurred in all 18 of the top best models. Seminal plasma SOD activity of the 

second ejaculate could, thereby, be predicted with relatively poor accuracy as only 19 % proportion 

of variance (R2 = 0.185) could be accounted for, while new cases could be predicted with only 7 % 

accuracy according to the cross validation R2 of 0.07. 

5.2 Aim II: Relationship between basic and advanced semen parameters 

This study has effectively used multivariate analysis in establishing a statistical correlation between 

various semen analysis parameters and a set of modern markers of semen quality. Despite the great 

potentials of advanced semen parameters, this study also considered the possibility of determining 

cut-off values for advanced semen parameters from the basic measurements, which are affordable, 

undemanding, and having established reference values. 

5.2.1 Intracellular O2
−• levels 

In conditions where the intracellular redox homeostasis is disturbed, ROS become highly reactive 

and instigate peroxidative damage, which adversely affect sperm quality (Du Plessis et al., 2015; 

Sharma et al., 2012). In the current study, a significant and negative correlation was observed between 

the proportion of morphologically normal spermatozoa and intracellular O2
−• levels. These findings 
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are consistent with previous studies also showing an inverse association between sperm morphology 

and ROS production (Aziz et al., 2002). Likewise, substantially higher levels of ROS were reported 

in teratozoospermic samples compared with normozoospermic controls (Agarwal et al., 2014a). The 

link between abnormal sperm morphology and ROS overproduction is generally attributed to the 

presence of excess residual cytoplasm in the midpiece due to deficient cytoplasmic extrusion 

following spermiation (Aitken, 1997). NADPH oxidase 5 (NOX5), a novel NADPH oxidase 

responsible for the generation of O2
−• in a calcium-dependent manner, has recently been reported to 

have a significant positive correlation with the incidence of sperm abnormal morphology (Agarwal 

et al., 2014b), which further support the negative correlation observed in the current study between 

sperm normal morphology and O2
−• levels. In addition, abnormal spermatozoa are believed to 

contribute considerably to ROS production (Gil-Guzman et al., 2001; Oborna et al., 2009). By 

implication, the relationship between increased ROS levels and sperm morphological abnormality 

appears to be a vicious cycle indicating a cause and effect relationship that warrants further studies. 

Intracellular O2
−• levels in this study were negatively, although not significantly, correlated with the 

proportions of total and progressive motility as well as rapid spermatozoa. The non-significant 

correlation between intracellular sperm ROS and motility has also been revealed by Pasqualotto et al. 

(2000). However, several studies have shown that increased levels of seminal ROS were significantly 

correlated with decreased motility parameters, including total motility, progressive motility and rapid 

motility (Agarwal et al., 1994; Aziz et al., 2004; Khosravi et al., 2014; Padron et al., 1997). It is 

important to note that these studies have mainly focused on extracellular ROS in seminal plasma, 

while the sperm intracellular ROS has apparently been disregarded. Interestingly, exogenous ROS 

has been suggested to cause more serious adverse effects on sperm quality compared to equivalent 

levels of endogenous sperm ROS (Shi et al., 2012). In the current study, flow cytometry was used to 

determine sperm intracellular levels of O2
−•. Flow cytometry assay has been recognized as highly 

reproducible technology for the measurement of specific intracellular ROS in spermatozoa with a 

greater degree of accuracy (Mahfouz et al., 2009; Ghaleno et al., 2014). 
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Despite not observing a significant correlation between O2
−• levels and sperm motility, significantly 

higher O2
−• levels were found in samples with progressive and total motility below that of the WHO 

reference values compared to those with normal values (p<0.05). As depicted in Figure 4.20 A, the 

optimal cut-off value to distinguish between asthenozoospermic and men with normal motility was 

227 MFI using flow cytometry techniques. At this cut-off value, the positive and negative predictive 

values of the test were 44 % and 97 % respectively. In addition, the WHO minimum reference value 

of 32 % for progressive motility was associated with a 128 MFI as a cut-off value for intracellular 

O2
−•, with a sensitivity and specificity of 100 % and 65 % respectively and 0.79 as AUC (Figure 4.21 

A). The distribution of intracellular O2
−• levels for the two groups above and below the WHO 

reference values for total motility and progressive motility are given in Figures 4.20 B, and 21 B 

respectively.  

This study also revealed a significant negative correlation between sperm intracellular O2
−• and the 

kinematic parameters VCL, VAP and ALH. These observations suggest that increased concentrations 

of intracellular O2
−• could initiate alterations in sperm swimming patterns, after which sperm quality 

may further deteriorate. The VAP is considered an important indicator of the forward swimming 

speed of spermatozoa; it estimates the time-averaged velocity of the sperm head along its average 

trajectory (Nagy et al., 2015; Pereault, 2002). The observed inverse relationship between sperm O2
−• 

levels and VAP may demonstrate the possible role of this anion in the decline of the actual rate of 

sperm forward movement within the female reproductive tract.  

On the other hand, the parameters VCL and ALH describe the movement characteristics of the sperm 

head, which depend on the pattern of the flagellar beating (Mortimer and Mortimer, 1990; Rathi et 

al., 2001). Considerable increases in the values of VCL and ALH are generally identified to be 

characteristic signs of sperm hyperactivation at the site of fertilization (Mortimer and Mortimer, 

1990). At low concentrations, the role of O2
−• in the initiation of hyperactivation has been recognized 

(Lamirande and Gagnon, 1993). However, the strong negative correlation between O2
−• and these 

kinematics suggests that excessive production of sperm intracellular O2
−• may contribute to decreased 
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hyperactivated motility, which is critical to the success of fertilization. Further studies are needed to 

elucidate whether this is an actual cause and effect relationship or just a statistical correlation. 

Intracellular O2
−• is not the only oxygen species affecting sperm motility, the exposure to exogenous 

H2O2 has also been shown to have an inhibitory effect on various sperm motility and kinematic 

parameters in a dose and time dependent manner (Maia et al., 2014). Furthermore, a recent study 

conduct by Takeshima et al. (2017) showed a significant and inverse correlation between the overall 

ROS levels and the parameters VCL, VSL and ALH as measured by CellSoft 3000™. Conversely, 

when sperm motion parameters were assessed using the sperm motility analysing system, a new 

CASA system, only ALH showed a strong correlation with ROS levels, while VCL and VSL were 

not correlated with ROS levels (Takeshima et al., 2017). 

In contrast to the above cited findings, the current study observed no correlation between intracellular 

O2
−• levels and STR, while the correlation with regards to the VAP was highly significant. It is, 

however, worth mentioning that these parameters might not be comparable among different CASA 

systems due to variations in the video sampling rate, the quality of the camera and the algorithms 

used by CASA systems (Lu et al., 2014; Mortimer, 2000; Mortimer and Swan, 1999). This 

necessitates appropriate standardization of CASA systems to improve the consistency and reliability 

of sperm motion measurements across laboratories. For the current study, the video sampling rate of 

50Hz was used as recommended by ESHRE guidelines for the utilization of CASA (Mortimer et al., 

1998). 

5.2.2 Seminal plasma lipid peroxidation  

A statistically significant negative correlation was found between TBARS levels and seminal plasma 

pH. The preservation of the semen pH within its reference ranges (7.2–8.2) is of great importance for 

the regulation of various physiological sperm functions (Zhou et al., 2015). This correlation could 

possibly be explained by the fact that at physiological levels of pH in seminal plasma MDA, the major 

end-product of lipid peroxidation, is present as an enolate ion with low reactivity. However, lowering 
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the pH causes the formation of highly reactive compound known as beta-hydroxyacrolein, which can 

react with other molecules in the vicinity and cause a considerable increase in lipid peroxidation 

(Papac-Milicevic et al., 2016). Furthermore, the accumulation of MDA in a highly acidic milieu 

results in the formation of long oligomers, which causes hydrolytic cleavage of recently produced 

MDA oligomers. This process ends with the formation of additional highly immunogenic epitops on 

major cellular macromolecules that play a part in secondary deleterious reactions (Ayala et al., 2014; 

Papac-Milicevic et al., 2016). 

Seminal plasma TBARS levels were significantly and negatively correlated with the proportion of 

rapid spermatozoa. A similar, though non-significant, trend was observed with regards to the 

proportions of progressive and total motility, whereas the correlation of TBARS levels with the 

proportions of medium and slow spermatozoa were significant and positive. The negative correlation 

between lipid peroxidation and sperm quality parameters of motility has been reported in a number 

of studies (Akbari et al., 2010; Colagar et al., 2013; Patel et al., 2009). Interestingly, substantially 

elevated concentrations of MDA were found in sperm pellet suspensions (Suleiman et al., 1996; 

Tavilani et al., 2005) and seminal plasma (Colagar et al., 2013) of patients with asthenospermic 

compared to normozoospermic fertile men. In addition, the in vitro exposure of human spermatozoa 

to electrophilic lipid aldehydes, such as acrolein and 4-hydroxynonenal (4HNE) produced by lipid 

peroxidation, resulted in a significant decline in both total and progressive motility percentage, while 

sperm viability was not compromised (Aitken et al., 2012). The findings of the current study also 

show that the detrimental effect of lipid peroxidation on sperm motility could occur even before cell 

death was observed. 

This study also found a statistically significant negative correlation between TBARS levels and the 

sperm kinematics VCL, VSL, VAP and BCF. Similar but non-significant trends were observed with 

regards to percentage of ALH. The parameters VCL, VSL and VAP are measures of sperm 

progressive velocity and are revealed to play a vital role in sperm competition (Malo et al., 2005). 

They have also been suggested as potential reliable indicators of male fertility (Farooq et al., 2017; 
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Nagy et al., 2015; Santolaria et al., 2015). BCF is one of the useful parameters that contribute 

substantially to the overall sperm linear progression. It indicates the rate at which the curvilinear path 

crosses the average path; however, it may vary in value depending on the VAP setting on the CASA 

instrument (King et al., 2000; Lu et al., 2014). The sensitivity of these parameters to the deleterious 

effects of lipid peroxidation appears to be higher than that of the percentage motility, which was not 

correlated with TBARS levels in this study. 

Although the concentration of seminal plasma TBARS was not correlated with sperm viability, 

significantly elevated levels were observed in samples with sperm viability percentages below that of 

the WHO reference values compared to those with normal values (p<0.05). The optimal cut-off value 

to distinguish between samples with compromised and normal viability on the basis of TBARS was 

9.855 µmol/L. At this cut-off value, the positive and negative predictive values of the test were 97 % 

and 36 % respectively. The distribution of TBARS levels for the two groups above and below the 

WHO viability reference value as well as sensitivity and specificity of the test are given in Figure 

4.26 A and B. 

In general, the most remarkable effect of lipid peroxidation on cellular function is related to the 

physicochemical properties of cellular and organelle membranes. The specific lipid composition of 

these membranes is essential to maintain the overall normal sperm function (Agarwal et al., 2014b; 

Ayala et al., 2014). Spermatozoa membranes contain an extraordinary high content of PUFA (Henkel, 

2011). The rate of fatty acid oxidation can differ according to their chain length, degree of 

unsaturation, and position and configuration of double bonds (DeLany et al., 2000). The distribution 

of the lipid composition of the sperm plasma membrane has been shown to be regionally different, 

allowing for the distinctive functions of these domains (Connor et al., 1998). As compared to the 

sperm head membrane, the sperm tail is estimated to contain substantially higher amounts of total 

and individual unsaturated fatty acids, mainly docosahexaenoic and arachidonic acids (Connor et al., 

1998). The enrichment of the tail membrane with these unsaturated fatty acids contributes to its 

fluidity and flexibility, which is critical for tail motility (Agarwal et al., 2014b; Rooke et al., 2001). 
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These fatty acids are also known to be amongst the most biologically active (Else and Kraffe, 2015), 

which further enhances the susceptibility of the sperm tail to oxidative alterations.  

The role of mitochondria in energy production for human sperm motility has been established 

(Piomboni et al., 2012). Dysfunctions of mitochondrial membrane integrity may represent a major 

feature of sperm motility impairment (Paoli et al., 2011; Pelliccione et al., 2011). The inner 

mitochondrial membrane is especially important, as it is the site of electron transport chain and ATP 

synthesis. This membrane is highly susceptible to lipid peroxidation due to its high PUFA content 

and close proximity to ROS production within the mitochondria (Castilho et al., 1999; Kalogeris et 

al., 2014). Unlike the plasma membrane, the inner mitochondrial membrane exclusively contains high 

levels of the phosphatidylglycerol cardiolipin which is particularly prone to peroxidation (Paradies et 

al., 2009; Schenkel and Bakovic, 2014). Under normal physiological conditions, the inner 

mitochondrial membrane is selectively permeable to only neutral small molecules. However, in case 

of oxidative stress, peroxidation of mitochondrial membrane phospholipids can trigger alterations 

mitochondrial membrane potential (Piomboni et al., 2012; Wei et al., 2001). These changes have 

recently been suggested to be an early indicator of motility impairment as they occur in parallel to or 

even prior to any detectable changes in overall sperm motility (Agnihotri et al., 2016; La Piana et al., 

1998). This further supports the importance of rapid progressive motility linear velocity variables as 

early and sensitive indicators of lipid peroxidation that could be impaired prior to any detectable 

deterioration in other sperm motion characteristics. 

5.2.3 Seminal plasma antioxidant activity 

In order to prevent possible cellular damage, excess ROS are constantly scavenged to maintain low 

concentrations essential for vital cell functions. Seminal plasma is well provided with numerous 

enzymatic antioxidants including CAT and SOD (Baumber et al., 2000; Fujii et al., 2003; Hsieh et 

al., 2002). The activity of SOD causes the dismutation of O2
−• radicals and their conversion into O2 

and H2O2. The H2O2 produced is subsequently detoxified by CAT to produce H2O and O2 (Zelen et 

al., 2010; Zini et al., 1993).  
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In this study, seminal plasma CAT activity was correlated significantly and positively with the 

proportions of total, progressive and rapid motility as well as normal morphology spermatozoa, and 

significantly and negatively with the proportion of immotile spermatozoa. Similar, but non-

significant trends were observed for the SOD activity. These results are in agreement with those 

reported by Khosrowbeygi et al. (2004), who demonstrated a significant positive correlation between 

CAT activity and the percentages of progressive motility and normal morphology, while the 

correlations with SOD activity were not significant. Previous studies have further shown a 

substantially higher seminal plasma activity of CAT in normozoospermic men as compared to men 

with asthenozoospermia (Atig et al., 2012; Bykova et al., 2007; Siciliano et al., 2001; Tavilani et al., 

2008) or asthenoteratozoospermia (Khosrowbeygi et al., 2004). The observed positive correlations 

between CAT activity and sperm motility and morphology indicate the importance of this enzyme in 

the alleviation of ROS-induced oxidative damage, thus reducing the cytotoxicity to spermatozoa. 

Available literature provides inconsistent results about the relationship between SOD activity and 

sperm quality.  Some studies have revealed that increased SOD activity in seminal plasma is 

correlated with a significant improvement in the sperm overall motility (Atig et al., 2012; Murawski 

et al., 2007; Yan et al., 2014). Other studies have also reported similar, but non-significant results 

(Hsieh et al., 2002; Khosrowbeygi et al., 2004; Macanovic et al., 2015). The current study did not 

find a correlation between SOD activity in seminal plasma and sperm motility parameters, while the 

correlations with VCL and ALH were significantly positive. This suggests that elevated SOD activity 

in seminal plasma might be an indication of the development of spontaneous premature 

hyperactivated motility of spermatozoa in the ejaculate. However, sperm regulation is a highly 

complex process involving multiple variables, thus, the specific role of SOD in the control of sperm 

motility remains poorly understood and necessitates further research. 

The results of the current study exemplify the importance of CAT activity in seminal plasma as a 

major marker of the antioxidant status of the ejaculate. The ability of CAT to improve sperm motility 

indicates that H2O2 is the ROS that represents the dominant cytotoxic effect upon spermatozoa.  In 
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contrast, the lack of significant correlations between O2
−• levels and sperm motility as well as between 

SOD activity and sperm motility suggests that O2
−• plays a considerably less cytotoxic role in 

spermatozoa. These observations are consistent with those obtained by Aitken et al. (1993), 

Armstrong et al. (1999) and Baumber et al. (2000) who concluded that H2O2 is especially responsible 

for the motility impairment of spermatozoa. These experiments also demonstrated that addition of 

CAT, but not SOD, to the incubation medium could ameliorate the decline in sperm motility induced 

by oxidative stress. 

There has been a wide consistency among studies about the deleterious effects of H2O2 on the quality 

of sperm movement, with progressive motility being the most affected parameter (Calamera et al., 

2001; Du Plessis et al., 2010; Maia et al., 2014). Moreover, the observed decline in sperm motility 

associated with increased H2O2 concentrations was reported to occur in the absence of any measurable 

signs of plasma membrane damage (Baumber et al., 2000; Calamera et al., 2001). This may 

substantiate the lack of significant correlation between CAT activity in seminal plasma and sperm 

viability observed in the current study.  

Due to its high permeability across biological membranes, H2O2 is assumed to have direct effects on 

the intracellular enzyme systems (Maia et al., 2014). Several possibilities have been suggested to 

explain the mechanism through which H2O2 deteriorates sperm motility. However, the exact 

mechanism appears to be not entirely elucidated and merits further investigations. Some studies have 

ascribed this effect to the potential capacity of the H2O2 to deplete intracellular ATP levels 

(Lamirande and Gagnon, 1993; Armstrong et al., 1999; Bilodeau et al., 2002), leading to impaired 

phosphorylation of axonemal proteins essential for sperm motility. In contrast, Calamera et al. (2001) 

demonstrated that the loss of sperm motility after incubation with H2O2 was associated with a 

corresponding increase in intracellular ATP levels due to decreased ATP utilization by non-

progressive and immotile spermatozoa. Moreover, excess intracellular concentrations of H2O2 have 

also been assumed to deteriorate sperm motility throughout the inhibition of intracellular ROS 

scavenging activity (Krzyzosiak et al., 2000; Maia et al., 2014).  
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5.2.4 Acrosome Reaction 

In order to attain full fertilization potential, spermatozoa undergo an exocytotic process characterized 

by the release of the acrosome's lytic enzymes to enable the fusion of the spermatozoa outer plasma 

membrane with the oocyte (Esteves and Verza, 2011). The physiological acrosome reaction is an 

irreversible event that must occur at an appropriate time during the early stages of sperm-egg 

interaction. Thereby, premature spontaneous acrosome reaction renders the spermatozoon unable to 

bind and penetrate an oocyte normally (Liu and Baker, 1994; Tesarik, 1989).  

The proportion of acrosome-intact spermatozoa, in the current study, was significantly and positively 

correlated with the proportions of type C, medium and slow spermatozoa, while its correlations with 

other semen analysis parameters were statistically not significant. These findings appear to contradict 

those reported by Parinaud (1996), who found that the proportion of spontaneously acrosome-reacted 

spermatozoa was negatively correlated with progressive motility. Such variation could possibly be 

due to the utilization of different techniques for the assessment of acrosome integrity, which allows 

for the detection of different stages of the acrosome reaction (Köhn et al., 1997). In the above cited 

study (Parinaud, 1996), the acrosome reaction was evaluated using FTTC-GB24 which primarily 

binds to the inner acrosomal membrane. This assay detects only spermatozoa that have undergone a 

complete acrosome reaction (Parinaud et al., 1993), since labelling with GB24 lectin necessitates the 

exposure of this membrane subsequent to a complete loss of the acrosomal content (Fenichel et al., 

1989). However, in the present study, identification of acrosome-reacted spermatozoa was performed 

using FITC-PSA. The PSA lectin is known to bind with the acrosomal matrix (Risopatron et al., 2001) 

and thereby allows for the identification of both partially and completely acrosome-reacted 

spermatozoa (Jaiswal et al., 1999; Ozaki et al., 2002). 

The observed positive correlation between sperm acrosome integrity and non-progressive motility 

may presumingly be attributed to an increased fluid resistance to motion and inertia caused by the 

sperm with larger acrosomal area. In consonance, previous experiment performed in our laboratory 

showed a negative correlation between the acrosome size and progressive motility in post-swim-up 
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samples (Murray, 2007). Although prematurely acrosome-reacted spermatozoa might have the ability 

for forward motility, they are not able to penetrate the zona pellucida and thereby unable to fertilize 

the egg.   

5.2.5 DNA Fragmentation 

Despite the remarkable developments in automated semen analyses, the parameters of the 

conventional semen analysis remain of relatively limited value in clinical practice (Evgeni et al., 

2014; Oleszczuk et al., 2013; Vogiatzi et al., 2013). More valuable information about the quality of 

sperm as well as pregnancy outcome can be obtained via combining results from the conventional 

semen analysis and validated sperm DNA fragmentation assays (Borini et al., 2006; Evgeni et al., 

2014; Fernández-Gonzalez et al., 2008; Sheikh et al., 2008). In this study, a significant negative 

correlation was observed between the proportion of DNA fragmentation and sperm viability. This 

result is comparable with the previous findings from Brahem et al. (2012) that revealed a strong 

negative correlation exists between sperm DNA fragmentation and the percentage of viable 

spermatozoa. Higher levels of necrozoospermia were also observed among men with elevated levels 

of sperm DNA fragmentation. Furthermore, the increase in sperm DNA fragmentation induced by 

long-term in vitro incubation was reported to be accompanied by a substantial loss of sperm viability 

(Muratori et al., 2003). Similarly, a more recent study also demonstrated a strong negative correlation 

between sperm DNA fragmentation and viability in semen samples with DNA fragmentation rates ≥ 

30 % (Samplaski et al., 2015). The current study confirms the observations of the above mentioned 

studies and suggests that sperm viability might represent a potential indicator and a cost-saving 

measure for semen quality. 

Both DNA integrity and viability of spermatozoa are known to be important markers of semen 

quality. The mechanism responsible for the incidence of DNA fragmentation in ejaculated human 

spermatozoa is not fully elucidated. One hypothesis proposes DNA breaks within ejaculated 

spermatozoa to be the result of apoptotic DNA cleavage during the early stages of spermatogenesis 

(Sakkas et al., 1999). However, at the stage of DNA break down, the apoptotic process is irreversible 
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and the cells would be eliminated by Sertoli cells prior to ejaculation (Agarwal et al., 2012). Another 

postulation points to the excessive exposure to ROS as being the causative agent for DNA 

fragmentation in ejaculated spermatozoa (De Lamirande and Gagnon, 1999). Sperm DNA 

fragmentation has previously been shown to correlate significantly and positively with the levels of 

ROS generated by spermatozoa (Barroso et al., 2000). Despite not being able to measure ROS and 

DNA fragmentation in the same samples, the current study showed a significant negative correlation 

(r = -0.33; P = 0.04) between sperm intracellular O2
−• levels and the proportion of viable spermatozoa, 

thereby, indirectly implying a relationship between ROS and DNA fragmentation. 

The current study also observed a positive correlation between the sperm DNA fragmentation and the 

kinematic parameters, VCL, LIN and STR. This shows that DNA fragmented spermatozoa might still 

have the capacity for rapid forward motility. However, these spermatozoa might not be able to 

develop a state of hyperactivated motility at the site of fertilization as was indicated by the negative 

correlation observed in this study between the proportion of DNA fragmentation and ALH. 

Several studies have been undertaken to investigate the possible correlation between sperm DNA 

fragmentation and a number of semen characteristics such as sperm concentration, motility and 

morphology. Not all studies, however, have come to the same conclusions. Some studies have 

revealed poor correlations, as was observed in the present study, between the amount of sperm DNA 

fragmentation and the basic semen parameters of sperm concentration, motility and morphology 

(Cassuto et al., 2012; Chenlo et al., 2014; Giwercman et al., 2003; Karydis et al., 2005; Xia et al., 

2005). In contrast, other studies have shown significant negative correlations between sperm DNA 

fragmentation and many of these semen variables (Lin et al., 2008; Sheikh et al., 2008; Zini et al., 

2001). More recently, Boushaba and Belaaloui (2015) reported negative correlations between sperm 

DNA fragmentation and sperm concentration as well as motility, while no significant correlation was 

found with regards to sperm morphology. As stated in a review by Evgeni et al. (2014), the 

inconsistencies among different studies concerning the correlation between sperm DNA 

fragmentation and semen characteristics could be ascribed to several factors. These factors include 
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various assays used to quantify DNA fragmentation, the use of different techniques for the assessment 

of semen quality as well as dissimilarities in the characteristics of the populations across studies. The 

use of flow cytometry-based TUNEL assay in the current study allows for the simultaneous 

measurement of real DNA damage in a large population of spermatozoa, providing more objective 

and statistically reliable outcomes (Chenlo et al., 2014; Sharma et al., 2013). Nevertheless, none of 

the sperm quality parameters (concentration, motility and morphology) displayed a significant 

correlation with the proportion of DNA fragmented spermatozoa. The result of this study highlights 

the importance of the TUNEL assay in predicting sperm function, independent of any quantifiable 

changes in sperm concentration, motility or morphology as measured by CASA in a population of 

normozoospermic men. 
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Chapter 6: Conclusion 

6.1 Aim I: Effect of abstinence period on semen quality 

The data from this study, the most comprehensive study of its kind, challenges the generally accepted 

guidelines relating to  the prolonged ejaculatory abstinence periods of 2-7 days (WHO, 2010), since 

the results show  that 4 hours of abstinence has a beneficial effect on sperm function, as indicated by 

the significant improvement in sperm total motility, progressive motility and velocity parameters. It 

is also worth mentioning that even after an extremely short abstinence period of only 4 hours, the 

mean values of all the basic semen parameters always remained above the lower reference limits as 

recommended by the WHO in its latest version. In addition, the use of best subset linear regression 

models enabled, for the first time ever, the predicting of various basic and advanced semen parameters 

of the second ejaculate (4 hours of abstinence after the first ejaculate) from a set of basic semen 

parameters obtained from the first ejaculate, which was collected after 4 days of abstinence. 

Interestingly, each basic dependent variable of the second ejaculate was shown to be particularly 

predictable by the same basic independent variable measured in the first ejaculate. 

Future studies involving biomarkers of epididymal, prostate and seminal function might shed further 

light on these findings. Despite the fact that this study was performed on normozoospermic men, 

future studies using infertile men might yield similar findings that could lead to the employing of 

short abstinence as a strategy to improve the outcome of Assisted Reproductive Technology (ART) 

and fertility preservation. Therefore, shortening the abstinence period prior to semen collection may 

be a potential strategy to improve sperm quality. It is thus recommended that the current guidelines 

regarding the prescribed abstinence period be revisited 

 

Stellenbosch University  https://scholar.sun.ac.za



163 

6.2 Aim II: Relationship between basic and advanced semen parameters. 

The combination of both basic and advanced markers of semen quality remains important to improve 

the diagnostic and prognostic values of semen analysis. The correlations observed in this study 

indicate that changes in the measurements of basic semen analysis are related to alterations in the 

advanced functional semen parameters. Sperm morphology, viability motility and velocity variables 

were shown to have significant correlations with oxidative stress markers, while sperm DNA 

fragmentation was correlated with sperm viability and various kinematic characteristics. The optimal 

individual semen marker that provides the most accurate prediction of the fertilization potential of 

human spermatozoa remains a controversial issue. However, the use of ROC curve analysis in this 

study enabled defining the cut-off values for intracellular O2
−• levels (227 MFI) which could 

distinguish between asthenozoospermic and normozoospermic samples. Furthermore, the cut-off 

value of 9.855 µmol/L for seminal plasma TBARS levels of was shown to differentiate between 

samples with compromised and normal viability. This information is of great importance as the cut-

off values are highly valuable when identifying the difference between normozoospermic individuals 

and patients with different abnormalities. While further and larger studies are needed, the correlations 

between basic and advanced semen parameters observed in this study could possibly assist in limiting 

the necessity for advanced sperm functional assays, which are complex, highly expensive and lack 

universal standardization. The prediction of advanced variables from the core basic parameters would 

also enhance the applicability of basic semen analysis, which remains the bedrock of any semen 

diagnosis, as a more cost-effective and efficient approach for the diagnosis of idiopathic and 

unexplained male infertility.   
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6.3 Limitations/recommendations of the study 

Although the study has successfully reached its aims and objectives, there is always opportunity for 

improvement and a number of shortcomings and limitations were retrospectively identified. First, the 

study focused on; therefore, all the donors included were healthy, normozoospermic and potentially 

fertile males, aged between 20 to 30 years. However, the inclusion of infertile patients with different 

abnormalities (i.e. oligozoospermia, teratozoospermia and asthenozoospermia) categorized into 

different age groups would bring more attention to the potential clinical applications of short 

ejaculatory abstinence as a possible modality to improve sperm quality. Second, all the basic semen 

analysis measurements, including sperm morphology, were performed by CASA. Despite being a 

powerful tool for the rapid and objective assessment of sperm kinematics and morphometry, CASA 

systems lack the ability to assess sperm tail characteristics as required by the WHO guidelines. 

Therefore, the study results regarding sperm morphology should be interpreted with caution, 

however, no significant difference was observed in sperm morphology between short and long 

abstinence periods. Furthermore, due to the logistical and financial constraints, the sample sizes used 

for the determination of the advanced semen parameters were relatively small (n = 20). The inclusion 

of larger sample sizes for these parameters would allow for better generalisation of the findings, 

especially with regards to the second aim of the study. In addition, for the evaluation of ROS 

generation, intracellular O2
−• was quantified by means of flow cytometry using DHE as a probe. This 

technique has been proven to be a highly reproducible and robust method for detecting even minute 

changes in the sperm intracellular O2
−• levels, thereby, it was certainly appropriate for the purpose of 

the current study. Despite O2
−• being a major ROS and a common contributor to oxidative stress, it 

would have been advisable to measure other ROS members such as H2O2 and OH• as well as total 

ROS, both intra- and extracellularly.  Measuring only ROS and not total antioxidant capacity (TAC) 

furthermore provides a rather one sided view on oxidative stress. Therefore, determining a ROS–

TAC score or measuring the oxidation-reduction potential would provide a more comprehensive view 

of the oxidative status of a semen sample. 
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6.4 Future studies 

Considering the above-mentioned limitations together with the findings of the current study opens 

many avenues to further explore and apply this modality of short ejaculatory abstinence in both 

laboratory and clinical settings. Subsequently, a few interesting ideas for future research with regards 

to the effect of abstinence on sperm quality and fertility outcomes will be discussed. 

 Upon ejaculation, spermatozoa are terminally differentiated mature cells and any subsequent 

important functional changes are assumed to be exerted by the biochemical composition of the 

epididymal and accessory sex glands (i.e. prostate, seminal vesicles) secretions. Seminal plasma 

is rich in fructose, which along with glucose is one of the prefered energy substrates of sperm, in 

addition to numerous ions (i.e. Ca++, Zn+, Na+) and micronutrients (i.e. amino acids, citric acid, 

peptides, proteins) that support the metabolic needs of the sperm (Juyena and Stelletta, 2012). 

The role of seminal plasma on the development of sperm functional capacity has been widely 

studied; however, the extent to which these effects may be influenced by the length of ejaculatory 

abstinence and the subsequent effect on seminal plasma composition have not been given much 

attention. Only one study addressed the effect of abstinence period on semen quality in relation to 

the epididymal and accessory sex gland secretions, and found significant differences in the 

concentrations of the selected accessory sex gland biomarkers (Elzanaty et al., 2005). However, it 

is worth mentioning that the concentration of a specific biomolecule in the overall ejaculate may 

not reflect the actual availability of these molecules per individual spermatozoon, due to variations 

in the seminal plasma volume/T.S.C. ratios among semen samples. Alternatively, considering the 

total amount of a specific molecule in the ejaculate, and dividing that value by the T.S.C., would 

provide a more representative view of the absolute availability of these biomolecules per 

individual sperm. 

Therefore, in order to establish a causal relationship between the length of the ejaculatory 

abstinence and sperm quality markers investigated in the current study, it would be interesting for 
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future research to identify variations in the secretions of these glands (per individual sperm) after 

the two different abstinence periods (4 hours vs. 4 days) and how these variations may reflect on 

semen quality as a whole. Furthermore, conducting a correlation analysis between selected seminal 

plasma biomarkers from specific accessory glands (i.e. fructose, citric acid, alpha glucosidase, 

Ca++, Zn+, etc.) and CASA-derived parameters can assist in establishing a potential cause and 

effect relationship, which might contribute towards the further elucidation of idiopathic male 

infertility. 

 Semen proteomics have developed tremendously during the last few years owing to the 

advancement in technology. “The term proteomics has come to encompass the systematic analysis 

of protein populations with a goal of concurrently identifying, quantifying, and analysing large 

numbers of proteins in a functional context. As such, the ultimate goal of most proteomic studies 

is to determine which proteins or groups of proteins are responsible for a specific function or 

phenotype” (Verrills, 2006). Human seminal plasma is considered an extremely rich source for 

protein analysis, as it is easily accessible and contains an extremely high protein concentration, 

ranging from 35 to 55 mg/mL (Gilany et al., 2015). A long list of distinct protein biomarkers has 

been identified in human seminal plasma; unfortunately, none of these biomarkers has successfully 

been translated into clinical practice to improve infertility diagnosis. The seminal plasma proteome 

is not static, but is rather, like many other body fluids, characterized by a highly dynamic range of 

protein biomarkers. The number and amount of proteins as well as the properties of individual 

proteins fluctuate over time in response to various physiological and environmental conditions 

(Milardi et al., 2013). Furthermore, the interaction between proteins and the status of post-

translational modifications can both contribute considerably to the complexity and variability of 

proteomic picture at any given time (Davalieva et al., 2012). 

Consequently, it would be interesting for future studies to investigate the time-based changes in 

the seminal plasma protein profile in the context of ejaculatory abstinence. This could be achieved 

by selecting samples from normozoospermic men, abstaining sequentially for ≤ 1 day, 2−3 days, 
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4−5 days, 6−7 days and ˃7 days. Collecting semen samples from the same individual would be an 

effective approach to controlling for potential confounding influences, thereby allowing for the 

ejaculatory period to be the primary intervention. The identification of differentially expressed 

seminal plasma proteins and their roles in protein interactions and signalling pathways will provide 

a deeper insight into the mechanisms by which short abstinence may improve semen/sperm 

quality, as observed in the current study. 

 The purpose of sex selection in humans is to avoid the transmission of sex-linked genetic disorders 

and to achieve a balance in sex composition within the family. Compared to Y chromosome-

bearing spermatozoa, the Y chromosome-bearing spermatozoa have been shown to swim faster 

and more progressively, but display a shorter lifespan and cannot tolerate exposure to acidic 

environments or oxidative stress for a prolonged period of time (Oyeyipo et al., 2017). In the 

present study, short periods (4 hours) of abstinence was associated with higher pH levels and 

antioxidant capacity and concomitantly increased the proportion of progressively and rapidly 

motile spermatozoa. It would therefore be important to investigate the possible effect of short 

ejaculatory abstinence on the ratio of the X- and Y-chromosomes bearing spermatozoa, as it may 

have a direct impact on the sex of the offspring. 

 The evidence from this study implicates a role for short abstinence period in the improvement of 

various conventional and functional semen quality parameters. Although the study was originally 

designed to target normozoospermic healthy males, future studies should follow up on these 

findings, incorporating similar designs and targeting patients with abnormality of semen (e.g. 

oligozoospermia, asthenozoospermia, teratozoospermia). Patient groups should be homogenous in 

terms of the type and severity of semen abnormality, allowing ejaculatory abstinence to be the 

primary intervention. It would be interesting to explore whether consecutive ejaculates with short 

abstinence (i.e. 1 hour, 2 hours, 3 hours, 4 hours etc.) can improve specific sperm abnormalities 

and if so, identify the most optimal ejaculatory period for a specific abnormality. 
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 Assisted reproductive technologies (ART) involve a number of procedures, which aim to address 

fertility problems and improve a couple's chances of conception. Another important direction for 

future studies is to determine the influence of ejaculatory abstinence on fertilization, pregnancy 

outcome and live birth rates post IUI, IVF and ICSI. This can be achieved by recruiting couples 

with male factor infertility attending fertility clinics. Patients can be categorized according to the 

period of ejaculatory abstinence (4 days vs. 4 hours, or any other abstinence period selected) prior 

to ART (IUI, IVF or ICSI). Controlling for the influence of ejaculatory abstinence may provide 

important information for counselling couples with male factor infertility undergoing fertility 

treatment and might possibly lead to better outcomes. 
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6.5 Research Outputs 

Published article 

 Ayad, B.M., Van der Horst, G. and Du Plessis, S.S., 2017. Short abstinence: A potential 

strategy for the improvement of sperm quality. Middle East Fertility Society Journal. (In 

press). 

 Ayad, B.M., Van der Horst, G. and Du Plessis, S.S., 2018. Revisiting the relationship between 

ejaculatory abstinence and semen characteristics. International Journal of Fertility & Sterility, 

11(4), 238-246. 

 Ayad, B.M., Van der Horst, G. and Du Plessis, S.S. Cementing the relationship between 

conventional and advanced semen parameters. Systems Biology in Reproductive Medicine. 

UAAN-2017-0224. 

 Goss, D., Ayad, B.M., Skosana, B., Van der Horst, G. and Du Plessis, S.S., Human Fertility. 

THUF-2017-0203. 

Published Abstracts 

 Ayad, B.M., Van der Horst, G. and Du Plessis, S.S., 2018. Abstinence length and sperm 

parameters. Andrology, 4(S2), 38-39. 

International Conferences contributions 

 Ayad, B.M., Van der Horst, G. and Du Plessis, S.S. Effects of abstinence duration on sperm 

physiology. Physiology 2016. Joint meeting of the American Physiological Society and The 

Physiological Society. Convention Centre Dublin, Ireland. 27 July 2016. 

 Du Plessis S.S., Ayad B.M., and Van der Horst G. Abstinence length and sperm parameters. 

The 9th Congress of the European Academy of Andrology. De Doelen International Congress 

Centre, Rotterdam, The Netherlands. 21-23 September 2016. 

Local Conference contributions 

 Ayad, B.M., Van der Horst G., and Du Plessis S.S. Different abstinence periods alter sperm 

kinematics. 59th Annual Academic Day of the Faculty of Medicine and Health Sciences, 

Stellenbosch University. Tygerberg Campus, Cape Town, South Africa. 13 August 2015. 
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 Du Plessis S.S., Ayad B.M., and Van der Horst G. Alterations in sperm motility, velocity and 

superoxide levels due to a shorter abstinence period. 44th Annual conference of the Physiology 

Society of Southern Africa. The River Club, Cape Town, South Africa. 28-31. August 2016. 

 Goss, D., Ayad, B.M., Van der Horst, G., Skosana, B.T., and Du Plessis, S.S. (2017).  

Abstinence period: Impact on seminal citric acid and sperm motility. 45th Annual conference 

of the Physiology Society of Southern Africa. Groenkloof campus, Pretoria South Africa. 27 

to 31 2017. 

MSc student co-supervise 

 Dale Goss. 2017. Seminal plasma proteomics and metabolomics of semen samples collected 

from normozoospermic men after long and short abstinence periods.  
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Appendix 

Linear regression analysis for the prediction of basic and advanced variable of the 2nd ejaculate (dependent variables) from a 

set of basic semen parameters from the 1st ejaculate (independent variables). 

 

 

mL = millilitre, VAP = average path velocity, LIN = linearity, T.S.C. = total sperm count, VCL = straight-line 

velocity, VSL = average path velocity, STR = straightness, WOB = Wobble, ALH = lateral head displacement, 

BCF = beat cross frequency. µm = micrometre, s = second, Hz = hertz. 

Table A 1. Linear regression summary for the dependent variable: Semen Volume (mL) of the 2nd 

ejaculate (Y2) R²= 0.62717074, CV-R2=0.56 
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Figure A 1: Regression analysis between predicted variable (semen volume [mL] of the 2nd ejaculate) and the 

residual scores (a set of basic semen variables). mL = millilitre. 
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Figure A 2: Histogram representing the distribution of basic semen variables as independent variables, which 

are considered top in the prediction of the semen volume (mL) of the second ejaculate as a dependent variable. 
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Table A 2. Linear regression summary for the dependent variable: Sperm Concentration (106/mL) of the 2nd 

ejaculate (Y2) R²= 0.43940466, CV-R2=0.37. 

mL = millilitre, WOB = Wobble, BCF = beat cross frequency, T.S.C. = total sperm count, VCL = straight-line 

velocity, VSL = average path velocity, VAP = average path velocity, LIN = linearity, STR = straightness, ALH = 

lateral head displacement. µm = micrometre, s = second, Hz = hertz. 
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Figure A 3. Regression analysis between predicted variable (sperm concentration [106/mL] of the 2nd ejaculate) 

and the residual scores (a set of basic semen variables). mL = millilitre. 
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Figure A 4. Histogram representing the distribution of basic semen variables as independent variables, which 

are considered top in the prediction of sperm concentration (106/mL) of the second ejaculate as a dependent 

variable. 
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Table A 3. Linear regression summary for the dependent variable: Sperm Viability (%) of the 2nd ejaculate 

(Y2) R² = 0.50290624, CV-R2=0.4 

LIN = linearity, T.S.C. = total sperm count, VCL = straight-line velocity, VSL = average path velocity, VAP = average 

path velocity, STR = straightness, WOB = Wobble, ALH = lateral head displacement, BCF = beat cross frequency. 

µm = micrometre, s = second, Hz = hertz. 
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Figure A 5. Regression analysis between predicted variable (sperm viability [%] of the 2nd ejaculate) and 

the residual scores (a set of basic semen variables). 
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Figure A 6. Histogram representing the distribution of basic semen variables as independent variables, which 

are considered top in the prediction of the sperm viability (%) of the second ejaculate as a dependent variable. 
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Table A 4. Linear regression summary for the dependent variable: Sperm Normal Morphology (%) of the 2nd ejaculate 

(Y2) R²= 0.48290006, CV-R2=0.4 

T.S.C. = total sperm count, VCL = straight-line velocity, VSL = average path velocity, VAP = average path velocity, 

LIN = linearity, STR = straightness, WOB = Wobble, ALH = lateral head displacement, BCF = beat cross frequency. 

µm = micrometre, s = second, Hz = hertz. 
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Figure A 7. Regression analysis between predicted variable (sperm normal morphology [%] of the 2nd ejaculate) 

and the residual scores (a set of basic semen variables).  
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Figure A 8. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of sperm normal morphology (%) of the 

second ejaculate as a dependent variable. 
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Table A 5. Linear regression summary for the dependent variable: Sperm Progressive Motility (%) of the 2nd 

ejaculate (Y2) R²= 0.57582490, CV-R2=0.55. 

ALH = lateral head displacement, T.S.C. = total sperm count, VCL = straight-line velocity, VSL = average path velocity, 

VAP = average path velocity, LIN = linearity, STR = straightness, WOB = Wobble, BCF = beat cross frequency. µm = 

micrometre, s = second, Hz = hertz. 
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Figure A 9. Regression analysis between predicted variable (Progressive Motility [%] of the 2nd 

ejaculate) and the residual scores (a set of basic semen variables).  
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Figure A 10. Histogram representing the distribution of basic semen variables as independent variables, which 

are considered top in the prediction of sperm progressive motility (%) of the second ejaculate as a dependent 

variable. 
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Table A 6. Linear regression summary for the dependent variable: Sperm Motility (%) of the 2nd ejaculate (Y2) R²= 

0.54891289, CV-R2=0.52. 

ALH = lateral head displacement, T.S.C. = total sperm count, VCL = straight-line velocity, VSL = average path 

velocity, VAP = average path velocity, LIN = linearity, STR = straightness, WOB = Wobble, BCF = beat cross 

frequency. µm = micrometre, s = second, Hz = hertz. 
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Figure A 11. Regression analysis between predicted variable (Sperm Motility [%] of the 2nd ejaculate) 

and the residual scores (a set of basic semen variables).  
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Figure A 12. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of the sperm motility (%) of the second 

ejaculate as a dependent variable. 
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Table A 7. Linear regression summary for the dependent variable: Sperm DNA Fragmentation (%) of the 2nd 

ejaculate (Y2) R²= 0.73943379, CV-R2=0.42 

VAP = average path velocity, LIN = linearity, T.S.C. = total sperm count, VCL = straight-line velocity, VSL = average 

path velocity, STR = straightness, WOB = Wobble, ALH = lateral head displacement, BCF = beat cross frequency. 

µm = micrometre, s = second, Hz = hertz. 
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Figure A 13. Regression analysis between predicted variable (DNA fragmentation [%] of the 2nd ejaculate) 

and the residual scores (a set of basic semen variables).  
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Figure A 14. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of the sperm DNA fragmentation (%) of the 

second ejaculate as a dependent variable. 
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Table A 8. Linear regression summary for the dependent variable: Sperm Intracellular O2
−• (MFI) of the 2nd ejaculate 

(Y2) R²= 0.28767301, CV-R2=0.12 

O2
−• = superoxide, MFI = median DHE fluorescence intensity, VSL = average path velocity, WOB = Wobble, T.S.C. 

= total sperm count, VCL = straight-line velocity, VAP = average path velocity, LIN = linearity, STR = straightness, 

ALH = lateral head displacement, BCF = beat cross frequency. µm = micrometre, s = second, Hz = hertz. 
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Figure A 15. Regression analysis between predicted (sperm intracellular O2
−• of the 2nd ejaculate) and 

the residual scores (a set of basic semen variables). O2
−• = sperm superoxide, MFI = median 

fluorescence intensity. 
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Figure A 16. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of the sperm O2
−• (MFI) of the second ejaculate 

as a dependent variable. O2
−• = sperm superoxide, MFI = median fluorescence intensity. 
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Table A 9. Linear regression summary for the dependent variable: Seminal Plasma TBARS (µmol/L) level of the 

2nd ejaculate (Y2) R²= 0.61361095, CV-R2=0.33 

TBARS = thiobarbituric acid reactive substances, µmol = micromole, L = litre, T.S.C. = total sperm count, VCL = 

straight-line velocity, VSL = average path velocity, VAP = average path velocity, LIN = linearity, STR = straightness, 

WOB = Wobble, ALH = lateral head displacement, BCF = beat cross frequency. µm = micrometre, s = second, Hz = 

hertz. 
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Figure A 17. Regression analysis between predicted (seminal plasma TBARS [µmol/L] of the 2nd 

ejaculate) and the residual scores (a set of basic semen variables).  TBARS = thiobarbituric acid 

reactive substances, µmol = micromole, L = litre 
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Figure A 18. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of the seminal plasma TBARS [µmol/L] levels 

of the second ejaculate as a dependent variable. TBARS = thiobarbituric acid reactive substances, 

µmol = micromole, L = litre. 
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Table A 10. Linear regression summary for the dependent variable: Seminal Plasma CAT (U/mL) activity of the 2nd 

ejaculate (Y2) R²= 0.67005441, CV-R2=0.52 

U = unite, mL = millilitre, T.S.C. = total sperm count, WOB = Wobble, VCL = straight-line velocity, VSL = average 

path velocity, VAP = average path velocity, LIN = linearity, STR = straightness, ALH = lateral head displacement, 

BCF = beat cross frequency. µm = micrometre, s = second, Hz = hertz. 
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Figure A 19. Regression analysis between predicted (seminal plasma CAT activity [U/mL) of the 2nd 

ejaculate) and the residual scores (a set of basic semen variables). U = unite, mL = millilitre. 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



253 

 

Figure A 20. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of the seminal plasma CAT activity (U/mL) of 

the second ejaculate as a dependent variable. U = unite, mL = millilitre. 
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Table A 11. Linear regression summary for the dependent variable: Seminal Plasma SOD (U/mg protein) activity 

of the 2nd ejaculate (Y2) R²= 0.18538541, CV-R2=0.07 

SOD = superoxide dismutase, U = unite, mg = milligram, mL = millilitre, T.S.C. = total sperm count, VCL = straight-

line velocity, VSL = average path velocity, VAP = average path velocity, LIN = linearity, STR = straightness, WOB = 

Wobble, ALH = lateral head displacement, BCF = beat cross frequency. µm = micrometre, s = second, Hz = hertz. 
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Figure A 21. Regression analysis between predicted (seminal plasma SOD activity [U/mg protein) 

of the 2nd ejaculate) and the residual scores (a set of basic semen variables). U = unite, mg = 

milligram. 
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Figure A 22. Histogram representing the distribution of basic semen variables as independent 

variables, which are considered top in the prediction of the seminal plasma SOD activity (U/mg 

protein) of the second ejaculate as a dependent variable. U = unite, mg = milligram. 
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