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Abstract
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Fundus Imagery

C.C. van der Westhuizen

Electrical and Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MScEng (Electronic)

December 2013

Diabetic- and hypertensive retinopathy are two common causes of blindness
that can be prevented by managing the underlying conditions. Patients suf-
fering from these conditions are encouraged to undergo regular examinations
to monitor the retina for signs of deterioration.

For these routine examinations an ophthalmoscope is used. An ophthal-
moscope is a relatively inexpensive device that allows an examiner to directly
observe the ocular fundus (the interior back wall of the eye that contains the
retina). These devices are analog and do not allow the capture of digital im-
agery. Fundus cameras, on the other hand, are larger devices that o�er high
quality digital images. They do, however, come at an increased cost and are
not practical for use in the �eld.

In this thesis the design and implementation of a system that digitises im-
agery from an ophthalmoscope is discussed. The main focus is the development
of software algorithms to increase the quality of the images to yield results of
a quality closer to that of a fundus camera. The aim is not to match the
capabilities of a fundus camera, but rather to o�er a cost-e�ective alternative
that delivers su�cient quality for use in conducting routine monitoring of the
aforementioned conditions.

For the digitisation the camera of a mobile phone is proposed. The camera
is attached to an ophthalmoscope to record a video of an examination. Soft-
ware algorithms are then developed to parse the video frames and combine
those that are of better quality. For the parsing a method of rapidly select-
ing valid frames based on colour thresholding and spatial �ltering techniques
are developed. Registration is the process of determining how the selected
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ABSTRACT iii

frames �t together. Spatial cross-correlation is used to register the frames.
Only translational transformations are assumed between frames and the de-
signed algorithms focuses on estimating this relative translation in a large set
of frames. Methods of optimising these operations are also developed. For the
combination of the frames, averaging is used to form a composite image.

The results obtained are in the form of enhanced grayscale images of the
fundus. These images do not match those captured with fundus cameras in
terms of quality, but do show a signi�cant increase when compared to the
individual frames that they consists of. Collectively a set of video frames
can cover a larger region of the fundus than what they do individually. By
combining these frames an e�ective increase in the �eld of view is obtained.
Due to low light exposure, the individual frames also contain signi�cant noise.
In the results the noise is reduced through the averaging of several frames that
overlap at the same location.
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Uittreksel

Doeltre�ende Registrasie van Lae Kwaliteit Okulêre

Fundus Beelde

(�E�cient Registration of Limited Field of View Ocular Fundus Imagery�)

C.C. van der Westhuizen

Electrical and Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Tesis: MScEng (Electronic)

Desember 2013

Diabetiese- en hipertensiewe retinopatie is twee algemene oorsake van blind-
heid wat deur middel van die behandeling van die onderliggende oorsake voor-
kom kan word. Pasiënte met hierdie toestande word aangemoedig om gereeld
ondersoeke te ondergaan om die toestand van die retina te monitor.

'n Oftalmoskoop word gebruik vir hierdie roetine ondersoeke. 'n Oftalmo-
skoop is 'n relatiewe goedkoop, analoë toestel wat 'n praktisyn toelaat om die
agterste interne wand van die oog the ondersoek waar die retina geleë is. Fun-
dus kameras, aan die ander kant, is groter toestelle wat digitale beelde van 'n
hoë gehalte kan neem. Dit kos egter aansienlik meer en is dus nie geskik vir
gebruik in die veld nie.

In hierdie tesis word die ontwerp en implementering van 'n stelsel wat
beelde digitaliseer vanaf 'n oftalmoskoop ondersoek. Die fokus is op die ont-
wikkeling van sagteware algoritmes om die gehalte van die beelde te verhoog.
Die doel is nie om die vermoëns van 'n fundus kamera te ewenaar nie, maar
eerder om 'n koste-e�ektiewe alternatief te lewer wat voldoende is vir gebruik
in die veld tydens die roetine monitering van die bogenoemde toestande.

'n Selfoonkamera word vir die digitaliserings proses voorgestel. Die kamera
word aan 'n oftalmoskoop geheg om 'n video van 'n ondersoek af te neem.
Sagteware algoritmes word dan ontwikkel om die videos te ontleed en om vi-
deogrepe van goeie kwaliteit te selekteer en te kombineer. Vir die aanvanklike
ontleding van die videos word kleurband drempel tegnieke voorgestel. Regis-
trasie is die proses waarin die gekose rame bymekaar gepas word. Direkte
kruiskorrelasie tegnieke word gebruik om die videogrepe te registreer.

iv
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Daar word aanvaar dat die videogrepe slegs translasie tussen hulle het en
die voorgestelde registrasie metodes fokus op die beraming van die relatiewe
translasie van 'n groot versameling videogrepe. Vir die kombinering van die
grepe, word 'n gemiddeld gebruik om 'n saamgestelde beeld te vorm.

Die resultate wat verkry word, word in die vorm van verbeterde gryskleur
beelde van die fundus ten toon gestel. Hierdie beelde is nie gelykstaande aan
die kwaliteit van beelde wat deur 'n fundus kamera geneem is nie. Hulle toon
wel 'n beduidende verbetering teenoor individuele videogrepe. Deur dat 'n
groot versameling videogrepe wat gesamentlik 'n groter area van die fundus
dek gekombineer word, word 'n e�ektiewe verhoging van data in die area van
die saamgestelde beeld verkry. As gevolg van lae lig blootstelling van die indi-
viduele grepe bevat hul beduidende ruis. In die saamgestelde beelde is die ruis
aansienlik minder as gevolg van 'n groter hoeveelheid data wat gekombineer is
om sodoende die ruis uit te sluit.
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Chapter 1

Introduction

1.1 Description

Fundus cameras and ophthalmoscopes are used to examine the inside of a
patient's eye. The back interior of the eye is known as the ocular fundus. Here
the examiner can observe blood �ow without any intrusion and with careful
observations, certain diagnoses can be made. In a routine examination, the
retina, the part of the eye capturing the incoming light, is inspected to ensure
that it is in a healthy condition. Any damage to the retina can lead to partial
or complete blindness.

Two common conditions that cause the degradation of the retina are hyper-
tension and diabetes. If a patient su�ers from these conditions, it is imperative
that the progression of the disease is carefully monitored, as proper treatment
of the underlying cause can reduce the damage to the retina.

As stated, two devices can be used to examine the ocular fundus. The �rst,
the fundus camera, is a large stationary device that takes high quality digital
images of the entire fundus. The second, the ophthalmoscope, is a handheld
analog device that o�ers a limited view of the fundus at a time. The quality
of the images obtained with a fundus camera are superior to that which can
be observed with an ophthalmoscope. However, the fundus cameras come at
a higher cost.

The aim is to design and implement a system that digitises imagery from an
analog ophthalmoscope and to combine this imagery in an e�ort to increase its
quality. This solution could o�er a cost-e�ective alternative to fundus cameras
that is ideal for use in the �eld.

The concept is that a number of limited FOV (Field of View) images can
be combined to yield an image that cover a larger section of the fundus. Also,
by combining several noisy images a better estimate of the true visual can be
obtained.

1
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CHAPTER 1. INTRODUCTION 2

1.2 Content Overview

Firstly an overview of the anatomy of the eye and the ophthalmic examination
process is given. These aspects dictate the nature of the captured imagery and
thus in�uences design choices at a later stage. Di�culties in the conduction
of a typical examination are also elaborated on.

Thereafter, a broad review of image registration is given. Methodologies
to solving registration and instances where it is used, is discussed. Literature
regarding the registration of retinal (or fundus) images is also covered.

A proposed system and its bene�ts are then discussed. The cost of the
system is compared to that of other devices. The bene�ts of having digital
images with increased quality are also commented on.

For the design of the algorithms a look is taken at the captured videos and
the quality they possess. Thereafter, the design choices are discussed in great
detail. Methods of achieving registration in the speci�c application as well as
speci�c optimisations are discussed.

Finally, the results are presented. The output of the system is enhanced
images. These are compared with benchmark images captured with a fundus
camera.

1.3 Objectives

Several objectives were set for the research. Firstly, emphasis is placed on the
cost and size of the device. The aim is to develop a system that is lightweight
while o�ering a reduced cost alternative to fundus cameras.

As the main focus is on the design of the algorithms, several objectives are
de�ned in terms of quality, speed and the robustness of these algorithms.

To attain quality, the aim is to achieve images of increased FOV as well as
an increase in detail observable. The aim is not to match the quality of fundus
cameras, but to investigate what can be achieved at a reduced cost.

Emphasis is also put on the speed of the processing since e�cient algorithms
could allow implementation directly on a mobile device.

The robustness of the algorithms are to be considered throughout the design
process. The algorithms should be able to operate with as little user input as
possible and should not be sensitive to changes in capturing conditions.
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Chapter 2

Ocular Fundus Examination

2.1 Introduction

An ocular fundus examination o�ers a view of the inside of a patient's eye;
here lies the only part of the body where in vivo blood �ow can be observed
directly without any intrusion. During the fundus examination a physician
inspects the interior of the patient's eye using an ophthalmoscope and checks
for certain diseases or conditions.

Before the examination process can be discussed, a brief overview of the
anatomy of the eye is given in the following section. Throughout this chapter
[32] is used as reference for the discussion on the anatomy and conditions
a�ecting the eye.

2.2 Anatomy of the Eye

The basic anatomy of the human eye is illustrated in �gure 2.1. Here some of
the main structures are highlighted.

3
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CHAPTER 2. OCULAR FUNDUS EXAMINATION 4

Figure 2.1: Anatomy of the Eye: 1) Posterior Compartment 2) Retina 3)
Choroid 4) Sclera 5) Fovea 6) Macula 17) Optic Disk 8) Retinal Arteries and
Veins 9) Lens 10) Iris 11) Cornea 12) Pupil [45]

The outer most layer of the eye consists of the transparent cornea, opaque
white sclera and the limbus (not shown) that connects the two. These lay-
ers protect the eye with the cornea covering and protecting the iris and lens
beneath it.

The task of regulating the amount of light entering the eye is executed by
the iris. Light enters the eye through an opening in the centre of the iris called
the pupil. Sphincter and dilator muscles allow the iris to dilate and constrict
to change the size of the pupil and thus changing the amount of light that
enters the eye. Light passing through the pupil is focused on the retina at the
back of the eye by the lens with the lens shape adjusted by the ciliary body.
As the shape of the lens is adjusted, so is the focal distance of the eye.

The area at the back interior of the eye is known as the optical fundus.
Fundus is a medical term that refers to the area of an organ visible opposite
to its opening. In the human eye this area lies opposite the lens and pupil and
can be observed through these structures. Figure 2.2 shows a clear image of a
human ocular fundus. The ocular fundus consists of several structures that are
of interest, namely the retina, optic disk, fovea and macula. These structures
are typically visible during an ophthalmic examination and are of importance
for this study. These structures also serve as landmarks to determine whether
a clear view of the fundus is obtained.
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CHAPTER 2. OCULAR FUNDUS EXAMINATION 5

Figure 2.2: Image of a healthy retina in an ocular fundus image [19].

Photoreceptors on the retina allow for the capture of images focused on
it by the lens. These images are then transmitted to the brain via the optic
nerves. The retina is a thin, delicate and transparent tissue with the only
observable part being the blood vessels that supply it. When looking at the
fundus the blood vessels of the retina can be seen against the background of
the choroid and scelera. Good blood supply is imperative to the functioning
of the retina and without proper supply, areas of the retina dies and leads to
partial or complete blindness. During an ophthalmic examination the focus is
the health of the vascular system since it is the component mostly e�ected by
disease. The retina itself is not inspected since it is transparent. There are
instances where the retina would be visible due to damage, however, this is
not the norm.

Another structure clearly visible on the fundus is the optic disk. The optic
disk is where nerves and blood vessels enter the eye. This area is also typically
inspected during an examination. Disease in other areas of the retina rarely
a�ect the whole eye. They start localised and increase in size as the damage
progresses. However, at the optic disk the situation is di�erent. Since blood
vessels and nerves convene here; conditions a�ecting the optic disk can compro-
mise the functioning of the whole eye and can cause complete blindness. The
optic disk is thus closely inspected during an ophthalmic examination. Shape,
colour and integrity of the optic disk is observed to check for irregularities.
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CHAPTER 2. OCULAR FUNDUS EXAMINATION 6

2.2.1 Diseases

Diabetic retinopathy, as the name suggests, is the degradation of the patient's
retina due to diabetes. It is a common cause of blindness accounting for 8% of
blindness among South Africans [10]. To prevent vision loss, careful monitoring
of the retina is suggested, with a fundus examination recommended once a year
for diabetic patients.

Treatment of diabetic retinopathy is conducted by managing the diabetes
itself. If the diabetes worsens; the indicators in the retina increases. These
indicators also serve as a method of gauging the damage to other organs caused
by diabetes.

If left unchecked, diabetic retinopathy develops into proliferative diabetic
retinopathy, with half of the cases of proliferative retinopathy resulting in com-
plete blindness of the patient. However, if the diabetes is carefully regulated
the damages caused in early stages may resolve without vision loss.

The indicators in the fundus of retinopathy are caused by a weakening
of the blood vessels that supply the retina and the choroidial wall. These
weakened vessels start to leak causing visible haemorrhages and in advanced
cases, leads to loss of blood supply to sections of the retina. In turn, the loss
of blood supply leads to starvation of the retina.

The indicators for diabetic retinopathy include:

� aneurysms

� exudates

� haemorrhages

� areas of neovascularisation

[32]
The indicators for proli�c diabetic retinopathy include:

� neovascularisation

� edema

� scarring

� vitreal involvement

[32]
Figure 2.3 shows some of these mentioned indicators.
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CHAPTER 2. OCULAR FUNDUS EXAMINATION 7

(a) Micro Aneurysm [13] (b) Hard Exudates [23]

(c) Cotton Wool Spots [23] (d) Flame Shaped Haemorrhages [23]

(e) Neovascularisation [23] (f) Macular edema [46]

Figure 2.3: Damages to the retina.

2.3 Examination

The examination of the fundus is conducted using a ophthalmoscope or a
fundus camera. An ophthalmoscope typically refers to a handheld device that
the physician uses to directly observe the retinal fundus. Fundus cameras refer
to larger stationary devices that stabilise the patients head and captures an
image using a targeting lens system and an image sensor.
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CHAPTER 2. OCULAR FUNDUS EXAMINATION 8

Handheld ophthalmoscopes are smaller, lighter in weight, and less expen-
sive than fundus cameras, but o�er images of poorer quality than those of
fundus cameras.

The following section discusses the construction of a handheld ophthal-
moscope. Thereafter the process of conducting and examination is discussed.
Lastly, factors that hinder the examination are described.

2.3.1 Ophthalmoscope

Figure 2.4 shows a cross section of the Welch Allen Pan Optic Ophthalmoscope
(A direct handheld ophthalmoscope). Other ophthalmoscopes may di�er in the
con�guration of the components, however, the principles remain similar.

Figure 2.4: Cross-section of the Welch Allyn Pan-Optic handheld opthalmo-
scope (Courtesy of Wayne Swart).

The examiner aims the ophthalmoscope into the patient's eye shown on
the right end and observes the re�ected light on the left.

Three components perform the main functioning of an ophthalmoscope.
These components are a light source; a beam splitter and a lens system. The
light source is used to illuminate the patient's fundus. An obstacle arises with
the placement of the light source since the beam of light should travel in along
the same axis as the re�ected light that the examiner observes. To achieve
the illumination along the axis of observation without obstructing the view
to the examiner, a beam splitter is used. The beam splitter is a mirror that
causes the light from the source to be redirected into the patient's eye while
allowing the re�ected light to pass through and be observed by the examiner.
The leans system is used to compensate for the lenses in both the examiner
and the patient's eye and focus the light re�ected from the patient onto the
examiner's retina.
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CHAPTER 2. OCULAR FUNDUS EXAMINATION 9

2.3.2 Procedure

Below, a list of the steps of conducting a fundus examination using the Welch
Allyn Pan Optic Ophthalmoscope is given. The guide is based on the infor-
mation available directly from Welch Allyn [2].

� Ensure that the examination room is darkened. This is not a prerequi-
site, but helps keep the patient's pupils dilated and eliminates undesired
external light that might enter the scope.

� Adjust the focal wheel of the scope while viewing a distant object (5m
away).

� Select the appropriate apeture using the aperture wheel. The ideal ape-
ture for view through an undilated pupil is the smaller apeture.

� Turn on the light source by turning the rheostat until its fully right. This
sets the source to the brightest possible setting.

� Instruct the patient to focus on a distant object while aiming the scope
towards the pupil. The examiner uses his left eye to examine the patient's
right eye, and his right eye to examine the patient's left.

� While aiming the scope, move closer to the patient's eye and aim towards
the red re�ex. The red re�ex is red light re�ected from the patient's
retina.

� Locate the optic disk. Adjust the rheostat to reduce the light intensity
for the patient's comfort.

� Trace the blood vessels outward from the optic disk to locate the macula
and examine the blood vessels themselves.

2.3.3 Obstructions

When conducting the examination, a clear view of the fundus can be obscured
by a number of obstacles and abnormalities. The following paragraphs discuss
these interferences with regards to the eye's normal reaction to light as well as
certain diseases or conditions that could obstruct the view of the fundus.

Reaction to light The duty of the pupil is to regulate the amount of light
that enters the eye. When too much light is present, the pupil constricts and
when too little light is present the pupil dilates allowing more light to pass
through to the retina.

Conducting a fundus examination thus has an inherent problem. To view
the fundus, it has to be illuminated, but the illumination causes the pupil to
constrict and limits the viewable area.
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Prolonged exposure to bright light can also cause irritation of the eye and
with this irritation comes blinking and tear formation.

Besides the obvious obstruction of the view, the eye blinking causes move-
ment and refocusing of the eye. These movements, called saccades, can cause
a di�erent section of fundus to be visible before and after the blink, causing
the examiner to lose track of what section is being observed.

Blinking also spreads tearing across the eye, keeping the eye from drying
out. This increased moisture can cause an increase in glare visible on the eye.
Glare is typically caused by internal re�ection in a lens system.In this instance,
the re�ection is between the lens of the patient's eye and the ophthalmoscope's
lens.

A method of avoiding pupil constriction is the use of mydricatic drops.
This causes an involuntary dilation of the pupil and allows a wider view of
the fundus. While these drops aid the process, routine examinations are often
conducted without them to increase patient comfort and reduce consultation
time. A study is provided in [4] discusses the diagnostic value of imagery
obtained from undilated pupils. They conclude that the imagery still contains
valuable diagnostic information when considering the unobtrusiveness of the
procedure.

Another method often used to circumvent pupil constriction in more ex-
pensive equipment, is the use of infra-red light to illuminate the eye. The
human eye is only sensitive to a certain section of the light spectrum. Infra-
red light falls just outside the visible range and is thus not observed by the
patient. The patient's eye does thus not react to the illumination and the
pupil does not constrict. A wider view of the fundus is achieved with minimal
discomfort to the patient, however, since the light is not detected by the hu-
man eye, the examiner is also not able to directly observe the results. When
using infra-red illumination, the use of a digital image sensor sensitive to the
range is required. These additional lighting sources and image sensors cause a
considerable increase in the cost of the device. This cost increase are discussed
further in section 4.2.3.

Obstruction due to Disease Certain eye conditions can also obscure the
view of the fundus. The following list is a brief mention of some of these
conditions.

� Cataracts are a opaci�cation of the lens, thus not allowing focused light
to pass through it. It causes partial blindness in the patient and would
obstruct the view of the fundus.

� Lens detachment can be caused by a number of factors and causes the
fundus to not be observable.

� Retinal detachment is the detachment of the retina from the choroid.
This leads to the blurring of the fundus at the region of detachment.
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Detachment leads to the tearing of the retina and constitutes a medical
emergency that requires immediate treatment to prevent blindness.

� Damage to the cornea in the form of scratches also obscures the view of
the fundus.

While all of these conditions require medical attention and can causes par-
tial or complete blindness, they are not associated with the routine fundus
examinations. Routine examinations are typically employed to monitor the
progression of the conditions mentioned in section 2.2.1.
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Chapter 3

Image Registration

3.1 Introduction

In this chapter an overview of what image registration entails is given, where
it is used and some common approaches to solving it explained. Some of the
approaches are discussed in more detail in areas where they were applied or
tested in later chapters. If unfamiliar with the topic, the reader is encour-
aged to acquaint themselves with the basic principles of image processing as
discussed in Appendix A before commencing with this chapter.

Image registration is in its simplest form the process of aligning images in
such a way that their corresponding features overlap. As explained by Zitova
and Flusser [53], it is the process of overlaying a set of images of the same scene
taken in di�erent conditions, at di�erent times and from di�erent viewpoints.

This fusion of information allows for a combination of multi-modal infor-
mation, the detection and comparison of di�erences in a scene as well as the
detection of certain objects [18].

12
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(a) Mountain scene

(b) Mountain scene under di�er-
ent conditions

(c) Combined images

Figure 3.1: The registration and combination of two images.

The concept is demonstrated with a trivial example. The two images shown
in �gure 3.1a and 3.1b cover the same mountain scene from slightly di�erent
views and were taken in di�erent weather conditions. To align these images,
one would note that some sections of the mountain are visible in both the
images and that the images can be moved around to have these mountain
sections overlap. The mountain thus serves as a constant to align the images
by and is called an invariant feature [11]. By rotating, scaling and moving the
images, the mountain lines up as shown in Figure 3.1c.

The image in �gure 3.1a is referred to as the reference image and the image
in �gure 3.1b the sensed image. These are common terms used throughout this
text. The reference image refers to an image acquired at a previous occasion
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and the sensed image is a new image that is to be aligned to the reference
image.

This example illustrates how a human operator would interpret and solve
the problem of registering two images. Ideally, one would want to design a
system that e�ciently and autonomously registers a larger set of images.

In early development of image registration, the process was human driven
to a large extent, with an expert selecting features that correspond between
two images [53]. In contrast with this, modern methods aim to operate au-
tonomously with minimal user assistance.

3.2 Image Registration Applications

Image registration has broad set of uses. In this section we discuss some
of the methodologies to image registration and elaborate with some example
applications.

A popular application is image mosaicking. Mosaicking is the combination
of a number of photos of a scene taken from di�erent viewpoints to compile
a wide angle image of the scene. The compiled image is at a higher pixel
resolution than what could be achieved with a single photo of the scene.

An extreme example of image mosaicking is the commercial Gigapan sys-
tem [38]. Here an electronic system incrementally pans a camera, with a zoom
lens attached, over a desired scene to gather a large set of high detail images.
These images are then combined to form a single high resolution image. The
scenes are typically static city- or landscapes since the process is slow and
temporal change would create undesired artefacts.

There is also a wide selection of panoramic mobile applications available
that execute the same task on a simpli�ed level. The user is prompted to sweep
the device's camera over a section of landscape, a series of images are captured
by the device and combined to form a single panorama. The accuracy of these
mobile applications are typically poor because of constraints in processing time
and power.

The combination of images from sensors capturing data in di�erent man-
ners, called multi modal image registration, is another common use of image
registration. This it typically used for medical applications where registration
is employed to combine data from di�erent scanning devices [53]. Figure 3.2
demonstrates the combination of MRI and SPECT scans. Note that the struc-
tures described by the respective scans are unalike, but that registration is
still achieved. Finding corresponding features in apparent dissimilarities is the
main focus of multi-modal registration.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. IMAGE REGISTRATION 15

(a) MRI

(b) SPECT
(c) Combined
MRI- and SPECT scan

Figure 3.2: Registration of Multi Modal Medical scans
[25].

The registration of aerial or satellite imagery is another common applica-
tion of image registration [52] [49] [47]. Registering aerial images of forested
areas o�ers a unique opportunity for environmental monitoring; satellite im-
agery taken over a certain timespan can be registered to give an indication
of the rate of deforestation over a region. Also, the well know Google Maps
utilises image registration to combine a vast amount of aerial and satellite
imagery.

Images are also registered to know models, where an example in this context
would be the aligning of an aerial photograph to a map of known roads and
buildings. Figure 3.3 shows an image aerial image from Google Maps with its
corresponding map shown beside it.

(a) Street map (b) Satellite image

Figure 3.3: Registration of a street map to satellite imagery [17].
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The last application of image registration discussed, is that of image super-
resolution. With super-resolution several low resolution images from the same
viewpoint are combined to form a single high resolution image estimation [42].
It is important to distinguish this from simple image mosaicking. With super-
resolution the high resolution estimation goes beyond the capabilities of the
image sensor. With simple mosaicking the highest spatial resolution captured
is determined by the capabilities of the image sensor.

With super-resolution images are registered with sub-pixel accuracy. Due
to slight movement in the image sensor, o�sets are obtained that can be ex-
pressed as fractions of a pixel. This information at slight o�sets allow the
construction of an estimate of a scene that has a spatial resolution higher than
that of the sensed images. Shown below is one of a series of sensed images 3.4a
and the super-resolution estimation of the scene 3.4b.

(a) Sensed image (1 of 30)

(b) Estimation result

Figure 3.4: Super-resolution algorithms applied to range of sensed images [42].

The applications mentioned here are only a few of the uses of image reg-
istration. It is important to note that the applications are very diverse and
that all of these examples requires (to di�erent degrees) a tailored solution
to achieve the desired results in terms of accuracy, speed and autonomy. In
the next section some common image registration terminologies are mentioned
and the typical steps involved with image registration discussed.

3.3 Process

As discussed in section 3.2, image registration has a wide range of applications,
with most requiring a tailored solution. Regardless, there are still a common
set of steps in the registration process that apply to most situations. These
steps as described by Zitovae and Flusser [53] are illustrated in Figure 3.5.
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Figure 3.5: Steps of image registration.

The �rst step is Feature Detection. Here invariant features are selected
through an appropriate algorithm or by a human operator. These invariant
features are expected to be present and unaltered in all the sensed images.
They are selected according to certain criteria that would have them identi�-
able in most of the instances in which they occur. After the features have been
detected, they are matched between images to determine which are present in
more than one. Sets of matching features over the range of images are then
noted. With features matched, the transformation between images is estimated
by calculating transformation between sets of matching features. Once the
transformation has been determined, all the registered images are transformed
(translated, rotated, stretched, scaled, etc.) to enable their corresponding fea-
tures to overlap.

Figure 3.6: Approaches to image registration.

These steps form the base for most registration processes and outlines the
similarity between di�erent implementations. However, the similarity ends
here. The steps outlined in �gure 3.5 can be approached in a number of
di�erent methodologies in di�erent domains.

A broad classi�cation of these main approaches as described by van der
Walt [42] are outlined in �gure 3.6. Image registration can either be addressed
in a the spatial domain, working with the coordinates as is, or in a transformed
domain. A wide set of transformations can be utilised for image registration,
e.g. conducting cross-correlation in the frequency domain rather than in the
spatial domain.

Furthermore, the spatial domain approach can be divided into sparse and
dense methods. Sparse methods operate by extracting certain features from
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an image and using them to estimate the transformation, while dense methods
use all pixel intensity values in the estimation process.

In literature dense methods are also referred to as area- or intensity based
methods while sparse methods are also referred to as feature based methods.
These terms vary and the classi�cation of a method is often deduced from the
implementation.

In the next section these di�erent approaches with regards to the typical
steps in image registration are discussed.

3.4 Feature Detection and Matching

Depending on the methodology the feature detection and matching stages can
be interdependent and are thus discussed together in this section.

The concept of invariant features were introduced in the example in Section
3.1 where the mountain serves as an invariant feature to detect and match.
This is a simple task for a human operator to perform, however, a mountain is
a complex object to recognize and for an automated algorithm it is preferred
to specify a feature on a much simpler level.

The following two sections ( 3.4.1 and 3.4.2) describe the identi�cation and
matching of these invariant features with regards to dense and sparse methods.

3.4.1 Dense Feature Methods

Dense methods put emphasis on feature matching rather than detection. Ex-
plicit detection and extraction of features are avoided as the whole intensity
map of an image is used during the matching. The speci�c location of features
are not extracted, but, certain operations are still performed on the input
images to highlight attributes. An example of such an operation would be
to increase the contrast of an image, to increase the visibility of the features
or to apply a smoothing �lter to eliminate noise. Section 3.6.1 discusses this
preprocessing further as typically applied to retinal images.

Matching for intensity based methods are achieved by using correlation-like
methods. Some of these methods can be executed in the spatial, as well as in
the frequency domain. In the following two paragraphs we discuss the spatial
domain approach and then it's frequency domain equivalent.

Spatial domain In the spatial domain the 2D cross correlation can be calcu-
lated by sliding a template image (or sensed image) (T ) over a reference image
(I); multiplying at each increment and summing the result. This operation is
de�ned by eq 3.1.

For images with a �nite size, the result dimensions will be: (I.width −
T.width+ 1; I.height− T.height+ 1). The size reduction is as expected with
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kernel convolution in image-processing operations as elaborated on in Ap-
pendix A.5.

Rccorr(x, y) =
∑
x′y′

[T (x′, y′).I(x+ x′, y + y′)]2 (3.1)

Spatial correlation is also referred to as template matching in image pro-
cessing as it is commonly used to locate the occurrence of a small template in
a larger image. It is typically reserved for small template images since its com-
putation is considerably more expensive than its frequency domain equivalent
when performed on larger images.

Figure 3.7 demonstrates the use of the operation to �nd occurrences of
the letter 'a' in a paragraph. The cross correlation is calculated between
the reference image (I) and the template (T ) and the result thresholded to
highlight prominent peaks. Each one of the peaks in Figure 3.7c represent the
location of an `a' character in the reference image.

(a)
T

(b) I

(c) Thresholded Rccorr

Figure 3.7: Matching of a template to an image.

To apply template matching to �nd the o�set between two images of the
same size, the reference image has to be padded. There is a range of padding
methods available: we demonstrate using zero-padding for simplicity. Fig-
ure 3.8 shows two cropped versions of the same image. Figure 3.8b is the
padded reference image and �gure 3.8a the sensed image. We note a single
strong peak in the result shown in �gure 3.8c. The peak is the location where
the features align and the distance measured from the centre of the correlation
to the peak is equal to the o�set between the images.
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(a) T

(b) I

(c) Rccorr

Figure 3.8: Estimation of the o�set between two images.

If the o�set between the images were zero, the peak would be located in the
centre of the cross-correlation map, i.e the location where the images correlate
the most. Figure 3.9 shows the autocorrelation of an image to demonstrate
this. Note the location of the peak in Rcorr.

(a) T

(b) I

(c) Rcorr

Figure 3.9: Image auto-correlation example.

A commonly used variation to the calculation of the cross correlation of two
images is to calculate the squared error or distance between two images as given
by equation 3.2 [3]. Here the obtained result is searched for a minimum, as
this represents the o�set between the two images where the error is minimized.

Rsq−diff (x, y) =
∑
x′y′

[T (x′, y′)− I(x+ x′, y + y′)]2 (3.2)

Note that this method of sliding (translating) one image over another is
only applicable if translation is the only transformation present between the
two images. The performance of this algorithm declines rapidly in the presence
of any other transformations like rotation or scale [53]. This shortcoming is
discussed further in section 3.5.
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Frequency Domain Cross correlation in the frequency domain is given by
equation 3.3. Here f(x, y) and g(x, y) are the reference- and sensed images
respectively and F denotes the discrete 2D Fourier transform. It yields similar
results to the operation in the spatial domain. For larger images, calculating
cross correlation in the frequency domain is more e�cient than doing so in the
spatial domain [53].

Rccorr normalised(x, y) = F−1
{
F(f(x, y)).F(g(x, y))∗

|F(f(x, y)).F(g(x, y))∗|

}
(3.3)

Figure 3.10 shows the comparison between the frequency domain and spa-
tial domain calculations. Note that results are similar with the peak found at
the same location in both images.

(a) Spatial domain
cross-correlation

(b) Frequency domain
cross-correlation

Figure 3.10: Cross correlation comparison.

3.4.2 Sparse Feature Methods

A sparse feature detection algorithm aims to isolate a set of salient and invari-
ant features. An invariant feature is a feature that remains unaltered when a
certain set of transformations are applied to it [41]. The locating of invariant
features that are immune against common transformations are invaluable to
image registration as they can be used as anchor points when estimating the
transformation between two images. These features are not necessarily im-
portant on a conceptual level and usually only consist of a pattern of pixels
that are expected to remain constant over a range of sensing conditions and
transformations.

Table3.1 lists some of the qualities that a good detected feature should
adhere to, as described by Tuytelaars et al [41].
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Quality Description

Repeatability An object or scene feature should be detectable
from di�erent views as well as in di�erent viewing
conditions.

Distinctiveness A set of detected features should be distinguishable
from each other in such a way that corresponding
features from di�erent images can be matched with
ease.

Quantity The quantity of detected features should be enough
for the intended application. Depending on the
registration problem, the number of required fea-
tures can vary.

Accuracy The location of the feature should be determined
accurately and should not drift in respective sensed
images.

E�ciency Feature detection should be executed in a timely
fashion. The execution time is dependant on the
intended application and desired accuracy.

Table 3.1: Qualities of features selected by detection algorithm

There are a great number of detection algorithms available. In this section
we simply note an example of one these algorithms, but do not discuss its
working. The detection algorithm is strongly determined by the application.
An application dictates the importance placed on the di�erent qualities listed
in table 3.1. For example, one could sacri�ce accuracy for e�ciency if the
application only requires accuracy within a certain speci�ed pixel tolerance.

An invariant-feature-detection algorithm should also take into account which
transformations a feature should be more robust against. In an application
where signi�cant scale changes are expected, but not as much rotation, one
would select an algorithm and parameters more robust to scale change than
rotation. [41]

A robust feature that is commonly used for tracking, is corners. Corner
features are not necessarily corners as in the traditional sense of the term.
A corner is simply a large change in adjacent pixel intensities. Whether this
relates to an actual corner, is not of concern. A corner is thus a region where
a large gradient in the pixel intensities is detected. These gradient changes
could constitute an actual 3D corner contained within the scene, edges in the
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scene, the boundaries of an object or simply a changing colour pattern on an
object [41].

Below is an example of the popular Harris corner detection algorithm [20]
applied to an image and a rotated version of the image. Detected corners are
marked with blue circles. Note that the same features are selected, even though
�gure 3.11 (b) is subjected to a 90◦ rotation. The feature-detection algorithm
is thus not sensitive to rotational transformation and would be suitable in an
application where signi�cant rotation is expected. The features in the image
are also selected based on their distinctiveness as de�ned in table 3.1.

(a) (b)

Figure 3.11: Harris corner detector applied to rotated versions of an image.

Once salient features have been detected, they have to be matched between
the reference and sensed images. Matches can be determined by applying
cross correlation-like methods between individual features, as described in the
previous section [53]. The cross correlation between large sets of features can
be calculated rather e�ciently since the image features are represented only
by small patches of pixels.

This section brie�y touched on feature detection and what a feature-detection
algorithm should achieve. For an in-depth discussion on the subject, consult
[41].

3.5 Transformation Estimation

After isolating or highlighting features, the transformation between them can
be estimated. The estimation can be conducted in the spatial domain or
a transformed domain. The frequency-domain phase correlation example in
section 3.4.1 is an example of a transformed domain solution. As mentioned
before, with the spatial domain, there are two approaches: dense and sparse
methods [42]. Sparse methods (also referred to as feature-based methods)
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operate on extracted features while dense methods (also referred to as area or
intensity-based methods) take all pixel values into consideration.

This section starts by discussing what a transformation function entails
and how it is denoted. The discussion then continues onto the dense-and
sparse transformation-estimation approaches respectively and ends with an
optimisation technique typically used for dense-feature registration.

3.5.1 Transformation Function

Given two images of the same scene taken from di�erent viewpoints, the pixels
from the sensed image can be mapped to the reference image given a transfer
function (h). This is illustrated in equation 3.4. The transfer function can be
non-linear and very complex, depending on the distortion present between the
images.

f0(x, y) = f1(h(x, y)) (3.4)

Figure 3.12 shows a possible non-linear transformation applied to an image,
however, we focus only on the linear transformations and the estimation of a
linear transform when given two sets of corresponding coordinates.

Figure 3.12: Non-linear spatial transformation applied to an image.

Figure 3.13 demonstrates a linear transform function applied to an image.
The corresponding features in the two images are noted. Given the location
of these corresponding features, the transformation between the set can be
calculated.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. IMAGE REGISTRATION 25

Figure 3.13: Template matching example.

A subset of linear transformations, called rigid transformations, are par-
ticularly of interest. Rigid transformations only represent translation and ro-
tation. A key feature of rigid transformations are that they maintain straight
lines and parallelisms between straight lines [53]. Figure 3.14 demonstrates
the application of linear (a�ne) transformations to a square.

Figure 3.14: Linear transformations applied to a square.

Rigid transformations of point in a 2D space can be represented by a 3x3
matrix multiplication (as shown in equation 3.5) where H is the is the trans-
formation matrix. x0y0

z0

 = H

x1y1
1

 (3.5)

To multiply a 2D coordinate with a 3 x 3 matrix, we write the coordinate in
the homogenous form where [x y]T becomes [x y 1]T . To convert a coordinate
back from Homogenous to Euclidean we divide by z0 [42]. When dividing by
z0, translation on the Z − axis in a 3D space is converted to a scale change in
a 2D space.

From equation 3.5 we deduce that the inverse of H can be used to get
the transformation in the opposite direction as shown in equation 3.6. If
H describes the transformation of the sensed image relative to the reference
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image, then H−1 describes the position of the reference image, relative to the
sensed image x1y1

z1

 = H−1

x0y0
1

 (3.6)

The form of H is given by equation 3.7 where the rotation is denoted by θ and
the translation by (tx, ty).

H =

cosθ −sinθ tx
sinθ cosθ ty

0 0 1

 (3.7)

The matrix in equation 3.7 can be expanded to include other linear trans-
formations like skew, scale and perspective, but is omitted here for simplicity.

Given a set of expected rigid transforms, we continue to estimate the trans-
formation between two sets of coordinates. By inspecting equation 3.7, we note
that the transformation matrix has three variables and would thus require a
minimum of three matching points between reference- and the sensed images.

In the next section (3.5.2) the estimation of the transformation matrix
using sparse methods is discussed. Estimating the transformation using dense
methods is discussed in section 3.5.3.

3.5.2 Sparse Feature Transformation Estimation

There are a number of methods to determine the transformations between
sparse feature sets. A method often used is that of error minimization, where
the aim is to minimize the error between (x0)e and (Hx1)e. Here xe denotes
the Euclidean form of the coordinate [42].

The shortcoming of a minimization of error approach is that it does not
compensate for outliers that do not �t the estimated model. Outliers are a
typical occurrence that happen when there are mismatched features present in
the feature set.

A popular approach to circumvent this problem is to use RANSAC (Ran-
dom sample consensus). The problem arises since it is not known which fea-
tures are inliers and which are outliers. With RANSAC a random subset of
features are selected and assumed to be inliers. The number of feature pairs se-
lected is equal to the minimum amount required to estimate all the parameters
of the transformation model. For the transformation model in equation 3.7 the
minimum is three. The transformation is estimated using these inliers with
a method such as the error minimisation. The estimated transformation is
tested against all features and inliers to the model are determined using a cer-
tain threshold. The accuracy of the model is then determined by calculating

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. IMAGE REGISTRATION 27

the error of all the inliers. This process is repeated for a prede�ned number
of iterations. At the end of the iterations the model with the smallest error to
all its inliers is selected as the best �t [12].

There are many variations of the RANSAC algorithm, as well as a vast
number of other methods for the transformation estimation of a sparse feature
set. They are not discussed here and the RANSAC method is simply o�ered
as an example of a typical approach.

3.5.3 Dense Feature Transformation Estimation

Registering dense features, o�ers its own unique obstacles. In this section
we discuss the increased execution time typically incurred by dense feature
registration and discuss solving dense feature registration in a transformed
domain for rigid transformations.

As discussed in section 3.4.1, cross-correlation- or error-minimisation meth-
ods can be executed by sliding the sensed image over the reference image and
determining the o�set where the best �t is achieved. Figure 3.15a shows the
cross correlation result between two images (The reference image was zero
padded to obtain the result, but the padding is omitted in the �gure). The
vector from the centre to the peak of the cross-correlation is equal to the trans-
lation between the reference and sensed image as illustrated in Figure 3.15b.
This o�set vector also describes the tx and ty components of the transformation
matrix in equation 3.7.

(a)

(b)

Figure 3.15: Estimating translation between sensed- and reference image using
cross correlation.
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A limitation of the sliding template approach is that it only caters for
translation between the reference- and sensed images. To extend this algo-
rithm to include rotation, one would have to slide as well as rotate the sensed
image to every anticipated position and calculate the cross correlation. This
approach is not practically feasible in most situations since the execution time
would increase exponentially for each additional transformation that has to be
accounted for. It can only be used in a setting where a very limited number
and range of transformations are expected, for instance, the situation where
full translation, but only a range of rotation of 5◦ is expected. Here the image
would be translated to all possible positions, but only rotated over a small
range with a �xed increment.

An approach to achieve dense registration where full rotation and trans-
lation is expected was proposed by Castro and Morandi [9]. The approach
solves the problem in a transformed domain. If an image is converted to a
domain independent of translation and only sensitive to rotation, the rotation
can be estimated in this domain. The estimated rotation can be used to cor-
rect rotation in the spatial domain and the translation solved using any other
methods.

To apply their method, a key observation is made: The magnitude of the
Fourier transform of an image is only sensitive to the rotation and not to the
translation of the original images. A translation in the spatial domain only
causes a phase shift in the frequency domain while the magnitude remains
unaltered. However, a rotation in the spatial domain also causes a rotation in
the magnitude spectrum.

One also notes that a rotation in a Cartesian coordinate system becomes
a translation in a Log-Polar system where the mapping from Cartesian to
log-polar is given by equation 3.8 and illustrated by �gure 3.16.

ρ = log
(√

x2 + y2
)
, θ = tan−1

(y
x

)
(3.8)

y

x

log( )

θ

θ
ρ

Figure 3.16: Mapping a Cartesian image to the log-polar domain [36].
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If the spectral magnitude of the image is converted to a log-polar coordinate
system, the Fourier-Mellin domain representation is obtained. It is then found
that a rotation of an image in the spatial domain results in a translation in the
Fourier-Mellin domain. And also that a translation in the spatial domain has
limited e�ect in the Fourier-Mellin domain. As long as the translation does
not cause signi�cant clipping of the images.

Figure 3.17 shows two overlapping sections of the same image. The section
in �gure 3.17b is rotated by 20◦. Below the images and their respective spectral
magnitudes are shown in �gure 3.17c and 3.17d. Note the 20◦ rotation between
the two spectrums. The log-polar plot of the spectrums are shown in �gure 3.17
and it is noted that rotation has been converted to a Cartesian translation.

(a) Image A (b) Image B (c) Spectrum A (d) Spectrum B

(e) Fourier-Mellin A(f) Fourier-Mellin B (g) Combined images

Figure 3.17: Registration in the Fourier-Mellin domain.

The translation in the Fourier-Mellin space can be estimated using the
conventional cross-correlation- or error-minimisation methods described ear-
lier. Once the rotation is estimated, the rotation of the sensed image can
be corrected in the spatial domain. And after the rotation is corrected, the
translation is estimated in the spatial or frequency domain.

3.5.4 Optimisation Technique

The template matching approach (typically used for dense feature registration)
has the main drawback of the exponential increase of execution time as the
number of expected transformations increase. An attempt to optimise the
process is to conduct image registration at multiple resolutions. Starting at
a low resolution- and working towards to a high resolution estimation. This
process is often achieved with the use of image pyramids. An image pyramid
is the deconstruction of an image into its components at di�erent resolutions.
Figure 3.18 demonstrates this deconstruction of an image.
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Figure 3.18: Image pyramid representation.

The top level (level5) of the pyramid contains the largest features present,
and the bottom level (level0) contains the smallest features of the image. The
high-resolution features can be considered as the high-frequency features and
the low-resolution features as low-frequency features from a signal processing
point of view. Figure 3.19 shows level0 and level5 of the pyramid scaled to
the same size. Note how level0 contains all the detail of the image and that
level5 only describes the general shape of the of the content.

(a) Level 0 (b) Level 5

Figure 3.19: A comparison of an image to its low resolution descriptor.

A number of di�erent methods can be used for the deconstruction of an
image into its pyramid. However, the general process remains the same. An
image is subjected to a succession of �lters and down samples. The pyramid
in �gure 3.20 is a Gaussian pyramid. Here a Gaussian blur is applied and
then the image is down-sampled by a factor of two. Each level yields lower
resolution information contained within the image. The deconstruction can be
repeated until the lowest desired resolution is achieved. Refer to appendix A.5
for a discussion on �lter operations and the Gaussian �lter in particular.
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Figure 3.20: Deconstruction of an image into a Gaussian pyramid.

To register two images, the sensed- and reference image are �rst decon-
structed into their respective pyramids. A coarse to �ne registration is applied
to images by starting at the highest level (levelk) of the pyramids. The highest
levels are registered and the transformation between them estimated. Since
the pixel resolution on these levels are very low, the estimation is calculated
rapidly for a number of assumed transformations. The low resolution esti-
mation is upscaled and serves as a starting point for registration at the next
level. This process is repeated until registration at the highest resolution is
achieved. At each level the template matching is only conducted in the region
of the estimate provided by the previous.

This approach greatly increases the execution time of an exhaustive search
for the transformation between two images. One disadvantage, however, is that
an error at a low resolution can be relayed to the high-resolution estimate. This
occurs when data at a low frequency correlates at a di�erent location than that
of the higher frequencies contained in the image. The high-resolution estimate
will then be based on the low resolution error.

Image pyramids are not only reserved for dense methods but can be utilised
with sparse methods as well. With a sparse feature set, the more prominent
features are registered �rst and then the algorithm moves onto the detection
and registration of features at a higher resolution.

3.6 Retinal Image Registration

Retinal image registration follow the general steps of image registration as de-
scribed in the previous section. Features that are to be tracked are selected and
matched between images and the transformation between them are estimated.

The invariant features to track in a retinal image, are typically the blood
vessels and the optic disk since they are clearly visible and not expected to
change in shape. Other areas of the retina consist of large uniform regions
with no visible landmarks to track.
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Retinal image registration has two areas generally addressed in literature.
The �rst is the segmentation of the blood vessels from the rest of the observed
areas and the second is the unique variations in the registration methods that
are required because of the di�ering appearance of retinal images captured
under di�erent conditions.

3.6.1 Blood Vessel Segmentation

Blood vessel segmentation of retinal images is a problem commonly addressed,
not only for its use in image registration, but also in its added value in diagnos-
tic purposes. Abnormalities in the shape of the blood vessels can indicate the
conditions discussed in section 2.2.1 and automatic segmentation of the vessels
in retinal images is often suggested to aid the physician or perform an auto-
matic diagnosis [50], [30] and [1]. Here, the extracted blood vessels, could serve
as input to a diagnostic application where classi�ers automatically determine
if a patient should be referred to a physician for additional screening.

Numerous methods, which range in complexity and e�ciency, have been
suggested to achieve this goal, we brie�y discuss some of them in this section.
The output of the segmentation algorithm is typically a binary mask indicating
highlighted vessels.

A common suggestion for segmenting blood vessels, is to select the green
channel of a retinal image as vessels are more prominent in this channel [48] [26] [15].
Shown in �gure 3.21, is a retinal image separated into its red, blue and green
colour channels. Note the higher contrast between the blood vessels and the
background in the green channel.
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(a) Original Image (b) Red channel

(c) Green channel (d) Blue channel

Figure 3.21: A retinal image divided into its red, green and blue colour channels
[37].

The intensity map of the green channels is now used to segment blood
vessels from the background. The methods for achieving this are diverse and
we describe general approaches while focusing on the preprocessing aspect.

The exact implementation and combination of operations vary between
situations. Preprocessing is concerned with increasing the contrast of the ves-
sels and the removal of noise and interference. Typically preprocessing is
applied before more complex operations and classi�ers are applied to extract
the vessels[48] [37]. For a more in depth overview of blood vessel-segmentation
techniques, consult Mabrouk et al [29].

Filtering Filtering is ubiquitous in image processing. It is employed to iso-
late a signal from its background, reduce noise or remove any known interfer-
ence. In segmenting blood vessels, it is mainly used in two ways: The �rst is
for the removal of known interference in retinal images and the second is the
highlighting of vessels using matched �lters.

Most retinal images su�er from what is known as vignetting. Vignetting
is strong central illumination of an image that decreases radially outwards
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from the central camera axis towards the sides of the captured image [21].
Figure 3.22 shows a model of a vignette pattern.

Figure 3.22: A model of vignetting [27].

Vignetting has the consequence of blood vessels around the centre of a
retinal image to have a higher contrast against the background than those
around the edges. Non-uniform illumination and contrast poses a problem
to a dense feature registration algorithms since it can cause corresponding
features to appear dissimilar in di�erent images [6].

A simple solution is to normalise retinal images through the application
of a high-pass �lter. [48] uses a median �lter to estimate the background
illumination and subtracts this from the original image. Since the median
�lter is a smoothing �lter, the result of the operation is the highlighting of any
high-frequency content and the discarding of low-frequency components.

Figure 3.23 shows the result of the operation. Here the retinal image con-
tains non-uniform illumination and a varying-background intensity that is re-
moved. The result is then inverted to have only the vessels remain on a dark
background.

(a) (b)

Figure 3.23: Retinal image with varying background illumination removed [48].

The second use of �lters in retinal image segmentation is the use of matched
�lters. A matched �lter is a �lter that resembles a certain feature in appear-
ance. By convolving with the �lter, these matched features are highlighted.

For retinal images, matched �lters can be constructed that resemble blood
vessels and can aid in their extraction. An observation is made that the pro�le
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of a blood vessel resembles a Gaussian curve [7]. A matched �lter is constructed
that estimates the shape the vessels with a Gaussian curve. This curved is
rotated to di�erent orientations to match vessels at di�erent orientations.

The Gabor �lter is typically employed to achieve this goal as demonstrated
in [37]. The Gabor �lter consists of a Gaussian modulated sinuous function
as described by equation 3.9. The intensity map of the �lter is shown in
�gure 3.24. Here the �lter has a bright ridge surrounded by dark valleys. The
blood vessels can be seen as piecewise linear sections that match with the �lter
at di�erent orientations.

g (x, y) = e

[
−π

(
x2p
σx

+
y2p
σy

)]
cos (2πxp)

xp = x cos θ + y sin θ

yp = −xsinθ + y cos θ (3.9)

Figure 3.24: 2D Gabor kernel.

[37] Demonstrates the response of an inverted retinal image to the applica-
tion of a Gabor �lter. Here, an estimate to the average blood vessel width is
made and used to construct the Gabor �lter. The result is shown in �gure 3.25.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. IMAGE REGISTRATION 36

(a) Inverted retinal im-
age

(b) Blood vessels high-
lighted using Gabor �lters

Figure 3.25: Highlighting of blood vessels using a Gabor �lter [37].

These �lter operations are used for preprocessing an highlighting the fea-
tures. After the vessels are highlighted, either a threshold is applied to create
a mask, salient features are extracted for registration, or a graph representing
the vessel structure is estimated.

Di�erence Operators Di�erence operators are convolution kernels that cal-
culate the gradient components of an image at each pixel. These convolution
kernels highlight pixels with high gradients against their neighbouring pixels.
A high gradient in a signal translates into a high contrast in the image. By
examining the gradients contained within a retinal image, an estimate of the
edges can be made. The contrast between a blood vessel and its surrounding
background is high and a high gradient is expected at their boundaries. By
thresholding the gradient intensities the boundary locations of the vessel are
determined. These operations typically yield a binary mask, indicating where
edges are located. Many edge detection operators exist and we simply note the
result of applying a selection of them to a retinal image in �gure 3.26. Consult
[29] for a discussion on the di�erent operators with regards to blood vessels
segmentation.
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(a) Inverted image

(b) Result of Sobel operator (c) Result of Robert operator

(d) Result of Prewitt operator (e) Result of Canny operator

Figure 3.26: Highlighting of retinal blood vessels using various edge detection
methods[29].

Morphologic Operators Morphological Operations, discussed in Appendix
A.5, is often employed in blood vessel segmentation and is used in two distinct
ways. The �rst is in gradient detection. The operation serves as a morpho-
logical method of edge detection. Here the result of an erode operation is
subtracted from the result of an opening operation. The result of the subtrac-
tion is thresholded to yield strong edges in the image.

The other application in retinal images is the removal of interference in
thresholded images. The binary mask, obtained by thresholding a preprocessed
retinal image, typically contains noise. The noise is di�erent in structure from
the blood vessels in the mask and can be removed using the morphological open
operator. The open operator consists of a successive erode and dilate operation
and will remove small unconnected regions in a binary mask. The erosion
shrinks all structures and in the process eliminates the smaller structures.
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The following dilation restores the remaining structures to their original size.
Figure 3.27 demonstrates the use of the operator. Note that the large blood
vessels are maintained and other smaller structures are removed.

(a) Image containing noise (b) Noise removed

Figure 3.27: Highlighting of retinal blood vessels using morphological opera-
tions [29].

3.6.2 Registration Methodologies

For retinal image registration, the main source of landmarks are the extracted
or highlighted blood vessels extracted, as discussed the previous section.

Common problems to the registration of retinal images arise and have to
be addressed. The �rst is that small overlaps between images tend to have
too little information to estimate the translation between the images. This
is especially true when calculating the higher order translation between the
images, since the transformation model for the overlapping region might not be
applicable for the whole image. Second is that high-resolution images contain
large areas that do not contain signi�cant landmarks [6].

The methodologies vary greatly for di�erent retinal registration applica-
tions, with each tailored to cater for a speci�c need. In the following section
we brie�y discuss the use of dense- and sparse-feature registration.

Dense- and Sparse Methods Earlier studies in the registration of retinal
images suggest the use of dense registration methods. [33] Discusses the reg-
istration of retinal images on what would be considered limited resources by
current standards. Due to the increased computational power required, meth-
ods of optimisation when using correlation is also elaborated on. Minimization
of error as a similarity measure is preferred over cross correlation. The rea-
son being is that cross correlation entails more multiplication and division
operations that are more processor-intensive than subtractions.

The other optimisation is the use of a multi-scale approach calculating the
downscaled translation and using the result as an estimate for calculating the
upscaled solution. The last optimisation, they suggest, is a threshold for early
termination of calculating the similarity at a speci�c o�set. If the cumulative
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error exceeds the threshold, the similarity calculation is abandoned for the
position and the template is moved to the next location. This threshold could
be a prede�ned value of be speci�ed as the current minimum error found during
the similarity calculations.

Recent methods tend to be more sparse feature based with literature cover-
ing various novel methods for the detection of salient features [5] [16] [51] [28].

Some methods operate on the highlighted blood vessels while other aim to
isolate invariant salient features that can be identi�ed regardless of variations
in background illumination [14].

Because of the nature of retinal images, there is no general solution to all
problems. [6] Suggests the use of a hybrid approach. They employ sparse
feature methods for regions that contain easily identi�able areas, such as the
regions around the optic disk and larger blood vessels, and employ correlation
methods in areas that are low in features like the areas around the macula and
between blood vessels. They employ dense feature methods to calculate the
0th order o�set between and then calculate the higher order o�set based on
the o�set of local features.

In most cases of sparse feature registration methods operate on images
with a su�ciently large �eld of view. The areas covered by blood vessels are
su�cient to calculate the o�set between images and yield a estimation for
areas that do not contain visible landmarks. The macula does not contain as
many features, but is surrounded by enough blood vessels to achieve accurate
registration for it.
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Proposed System

4.1 Setup

A system for the capturing and processing of an ocular fundus examination
is proposed. For capturing, the Welch Allyn Pan optic ophthalmoscope is
combined with a mobile phone. The camera of the mobile phone is aligned
with the eye cup that the examiner would use, allowing the camera to capture
imagery that is usually observed by the examiner. A live feed of the imagery
is displayed on the screen of the device allowing the examiner to direct the
device while the mobile phone records the procedure. The physical setup is
discussed in greater detail in Appendix D.

A video of the examination is recorded on the mobile device and the videos
transferred to a PC where relevant data can be processed. Sections of the video
that contain valid fundus imagery are isolated analysed. The isolated sections
are then registered with regards to one another and a composite image of the
fundus is formed. The algorithms and their design are discussed in detail in
Chapter 5. These algorithms and their tailoring for the speci�c application
are the main focus of the research.

4.2 Motivation

Two main factors motivate the proposed implementation. The �rst is the
ability of enhancing digital imagery from an analog device to aid diagnosis.
This enhancement is not possible for a pure analog device. The second is the
use of digitised imagery for remote diagnostic purposes.

The next two sections discusses the bene�ts of enhancing the data and
the need for digitised data for use in remote diagnosis. Thereafter, the cost
bene�ts of the proposed system are discussed.

40
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4.2.1 Analogue Scope Enhancement

The direct handheld ophthalmoscope is a portable battery operated device
that is often used in the �eld for monitoring patients. The main drawback is
that these ophthalmoscopes are usually analog devices with a limited image
quality compared the larger, stationary fundus cameras.

Digitising the imagery captured by the device, greatly enhances the diag-
nostic capabilities of the data captured as possessing a digital copy allows for
highlighting and aggregation.

An example of this aggregation is to increase the �eld of view. The FOV
refers to the total area visible in a single image. The FOV of the handheld
device can be increased by collecting a number of images that cover a broader
area of the fundus and combining them. Information from several images can
also be combined to enhance the image taken for a speci�c area. When a signal
has a large SNR, but several copies of the same signal exists, the copies can
be super-positioned to yield a resulting signal with a lower SNR.

Another bene�t of having digitised information is the ability to highlight
certain features within the data. This can be done to emphasise areas of
interest. As the case with retinal images, they are often enhanced to highlight
the blood vessels as irregularities in their structure is used to diagnose disease.

Other bene�ts of obtaining digital data are the inherent bene�ts typi-
cally associated with digitised records. The sharing and storing of previously
recorded data, allow the tracking of the development of certain conditions over
time. Information can also be shared between healthcare practitioners oper-
ating in remote locations. This remote monitoring and diagnosis of disease, is
often referred to as telemedicine.

The next section brie�y discusses the bene�ts of telemedicine in a South
African setting.

4.2.2 Remote Diagnosis

The South African public healthcare system is over burdened with a large
number of patients being tended to by only a limited number of healthcare
practitioners. Often the burden is shifted to primary-level practitioners to
perform the �rst level of care and then refer patients to a physician if further
assistance is required. These primary-level practitioners perform invaluable
work, but often lack the skills to conduct proper monitoring of chronic deceases
[40].

In these situations telemedicine, is suggested as a viable option. Telemedicine,
per de�nition, is the use of information and communication technologies to re-
lay consultation information to a physician capable of making a diagnosis of
data collected by a primary-level practitioner [34]. Suggestion of the physi-
cian is relayed back to the patient or the primary-level practitioner using the
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same communication channels. It is employed in rural settings where access
to proper medical care is di�cult to obtain.

The proposed solution o�ers a lightweight, cost-e�ective device that can
easily be used in the �eld and the proposed software algorithms o�er a method
of condensing the data before sending it to a physician to inspect.

The data is condensed to reduce the amount transmitted over a bandwidth
restricted channel, since the mobile coverage in a rural setting is very limited.
Since mobile coverage is often the only available connection to the internet,
it is often the only method of communication for telemedicine applications in
rural areas.

In rural areas the mobile data coverage is often restricted to the slower
GPRS and EDGE service. In �gure 4.1 the mobile data coverage of a leading
South Africa cellular provider is shown. Note that this map indicates weak
to no coverage in rural areas. The light-red areas indicate GPRS and EDGE
connections. In these areas a stable data connection would exist, however, it
would be slow when relaying multimedia content such as videos or images.

Figure 4.1: South African mobile coverage map of a leading cellular
provider [44].

Although telemedicine is a possible use of the setup, the main focus of the
research is on the development of the algorithms to enhance the quality and
condense the captured data. The relay of the captured data is not addressed
since numerous systems to achieve this is already the focus of a number of
studies.

4.2.3 Cost Bene�t

Field of view, is one of the important attributes of an ophthalmoscope or
fundus camera. FOV indicates the maximum area of the eye that can be
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viewed through the device at a time. In practice, the FOV values only range
between 5◦ and 60◦ with schematic in �gure 4.2 demonstrating three commons
FOV's.

Figure 4.2: Typical FOVs from di�erent fundus cameras and ophthalmoscopes.

Section 2 elaborated on the structures in the eye and their importance.
Note that a larger FOV is more favourable for diagnostic purposes since it
allows for a better view of these structures.

The limiting factor when selecting an appropriate device is that cost in-
creases exponentially as the FOV increases. Figure 4.3 shows the plot of price
versus FOV for ophthalmoscopes and fundus cameras. The prices in the plot
are estimates for speci�c devices on the market compared to their advertised
FOVs.
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Figure 4.3: Price versus FOV of fundus cameras and ophthalmoscopes

The devices with a larger FOV (indicated in red), also have an image sensor
to capture the visuals and often an electronically-driven lens system that can
be guided by the physician. These two factors also attribute to the signi�cant
increase in the cost of the devices.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. PROPOSED SYSTEM 44

The proposed setup o�ers two distinct bene�ts in terms of cost. First is
the bene�t of digitising an analog device to obtain digital images at a reduced
cost. Second is the ability to use the limited FOV images from a cheaper
device to construct a larger FOV image. A handheld analog device with an
image sensor attached would then emulate the results of the larger, and more
expensive fundus camera.
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Chapter 5

Processing and Registration of

Captured Imagery

5.1 Overview

This chapter discusses the design of the image-processing algorithms. The
basic �ow of our implementation is illustrated in �gure 5.1.

Figure 5.1: Steps in processing the examination video �les.

The input to the system, is the videos captured during an examination.
A typical examination video is described in the section 5.2. A retinal exam
is a di�cult process and a signi�cant portion of the data captured, will not
be usable and not contain valid retinal images. Section 5.2 also elaborates
on obstructions typically encountered and the resulting quality of the imagery
captured.

Due to the low quality of the imagery, an e�cient selection process has to
be devised to select frames from the video sequence that contain retinal images
and can be processed further. Once candidate frames are selected, they have
to be enhanced to highlight certain features. The features to be highlighted
are the blood vessels as they will serve as the invariant features to align the
frames by. Section 5.3 discusses these two aspects in detail. The output of the
processing is a large number of frames. These frames correspond to a list of
the Frame class of the code discussion in Appendix C.

Once the appropriate invariant features have been isolated, the video frames
can be registered. The frames produced by the preprocessing stage are assumed
to be consecutive and assumption is made that each frame has a close-to-zero
o�set with respect to its immediate predecessor. This yields an initial o�set
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estimate and is leveraged to perform the bulk of the registration e�ciently. The
registration is conducted using spatial correlation methods and the frames are
grouped into clusters. These clusters correspond to the Cluster class discussed
in Appendix C. Section 5.4 discusses this approach in depth.

Once the frames have been grouped into clusters, the clusters are matched
with each other and combined to form larger clusters. The set of clusters
to be registered are in no particular order and it can thus not be assumed
that consecutive clusters also contain mutual information. Other methods of
optimising the searching for matches are devised. Section 5.5 discusses an
e�ective method of matching random clusters in a large set. When a matching
pair of clusters are isolated, they are combined using spatial cross correlation.

At each step of the registration the cross correlation has to be veri�ed.
Di�erent methods for veri�cation are suggested for the registration of sequen-
tial frames than for cluster registration. For the sequential-frame matching
the strength of the correlation peak is utilised to split sequences of frames
into clusters. When matching random clusters, the correlation is inspected to
determine if a valid overlap of features have been found. Section 5.6 discusses
this in further detail.

Throughout this chapter, the spatial cross-correlation method of deter-
mining the o�set between two images is utilised. Refer to section 3.5.3 for a
discussion on this method. This chapter, will rather, focus on methods of opti-
mising and verifying the results of the spatial cross correlation for the speci�c
application.

We assume no rotation and scale changes between images and do not de-
velop the algorithms to take this into consideration. However, where appli-
cable, it is mentioned how the algorithms can be modi�ed to take rotational
changes into consideration.

5.2 Captured Data

Inspecting the examination video is imperative for the design of algorithms
that extract the data. Certain attributes of the video is caused by the physical
setup and a�ects the way in which the data can be interpreted and extracted.
Anticipating certain characteristics necessitates the use of custom registration
methods. By tailoring these algorithms optimisation towards this speci�c ap-
plication can be considered.

In this section, some of the characteristics of the video are discussed and in
later sections refer to how the algorithms are adapted to suit the nature of the
captured data. A full length video of a typical examination using our setup is
available here [43].

The �rst attribute noticed in the recordings is that for a signi�cant duration
subjects other than the desired fundus, is captured. A portion is dedicated to
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aligning the camera with the patient's eye and an attempt to get a clear view.
In other portions the view of the retina is obscured by interferences.

The long duration of the videos to be parsed prompted the addition of
the push button (discussed in Appendix D) to allow the examiner to only
record required sections of the process with little additional interaction with
the system.

Another attribute that is noticed, is that a signi�cant section of each video
frame contains black region not recording any data. The information in each
frame is contained within a clipped regions that is caused by the viewing
�eld of the ophthalmoscope. These regions can be discarded without further
inspection.

Vignetting is another phenomenon that causes a distortion. Vignetting is
the curved illumination commonly seen in retinal images. This curved illumi-
nation is caused by the strong directional lighting and its strong fallo�. The
consequence is that the brightness, as well as the contrast, decreases from the
centre of the frame towards the sides. This decrease in contrast and brightness
increases the di�culty of distinguishing the blood vessels from the background.

In general, the video also has low contrast and therefore a low SNR. This
is due to the overall low light exposure used in the examination. The low light
exposure is used to avoid excessive blinking, tear formation and further pupil
constriction. The low intensity of the signal poses a signi�cant drawback since
it prevents the identi�cation of smaller blood vessels.

During the examination two, obstructions are typically present. The side
of the pupil is often captured if the alignment between the ophthalmoscope
and the patients eye is not perfect or the patient moves his eye. The other
obstruction is caused by lens �are. Lens �ares cause signi�cant di�culties
since even a perfect alignment of the opthalmoscope can be compromised if
�are is still obstructing the view of the fundus. Lens �are occurs because of
internal re�ection between lenses. In this instance it is caused by re�ection
between the lens of the ophthalmoscope and the eye.

The last attribute noted is the limited FOV. The e�ective FOV is consider-
ably lower for the captured video than for the examples in literature discussed
in section 3.6. A limited FOV means fewer features visible at a time and
increases the di�culty of registering the imagery considerably.

5.3 Preprocessing

5.3.1 Frame Selection

Image thresholding is a simple and commonly used technique in image pro-
cessing. It is employed to segment an image and determine regions of interest.
Thresholding is applied to a single channel of an image where its values are
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mapped to a binary image to yield a mask. Values above the threshold map
to a 1 and values below the threshold to a 0.

Thresholding can be applied separately to all colour channels of an image
and the results combined. This is referred to as multi-band thresholding.
Consult Appendix A for an explanation of the colour thresholding process.

For the examination video, thresholding techniques can be used to segment
frames into areas that possibly contain retina and areas that do not. Based
on the size of the area returned, a distinction can be made on whether to keep
or to reject a frame.

A simple observation of areas containing retina in a captured frame is that
they are reddish in colour and are neither too bright nor to dark. Thresholding
values should aim to isolate colours that fall within this range.

The YCrCb colour space is selected to specify the threshold values. Upon
inspection, the CrCb plane (a slice of the YCrCb space) o�ers a continuous
region that resembles the colour range of a typical ocular fundus. The HSV
colour space also contains an appropriate colour range, however, the range is
discontinuous and the YCrCb space thus takes preference.

A threshold range for the CrCb plane is suggested in �gure 5.2. Here
values in the Cr channel above 50% intensity and values in the Cb channel
below 50% intensity are chosen. These threshold values are selected with slack
to compensate for possible colour variations and avoid the over speci�cation
of parameters. The Luma channel's (Y) threshold values are also speci�ed
broadly with intensity values ranging between 10% and 50%, classi�ed as valid
regions. An upper limit to the Luma channel is imposed in an e�ort to remove
glare.

Figure 5.2: Threshold region on the CrCb plane to identify areas of retina.

The application of these thresholds yields three separate masks for each
channel. These masks are combined to form a single mask with the use of
an `AND' operation. The resultant mask thus consists of the regions where
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all three separate masks overlap. In �gure 5.3 a captured frame that contains
retina and its resultant masks is shown.

(a) (b)

Figure 5.3: Thresholding of a frame containing retina and the resultant mask

Note that there are two discontinuous regions visible in the mask. Discon-
tinuities are caused by an obstruction in front of the fundus. In this instance,
the obstruction falls within the speci�ed colour range and is also classi�ed as
fundus. It is caused by the side of the pupil (the iris) and the bright yellow
region is the outer part of the eye (the sclera). A solution is to select only
the best of the regions and to reject the others. The shape of an obstruction
typically varies from the shape of usable section of retina. Note that the retina
section has a rounded shape and that the unwanted structure is elongated and
narrow. We can de�ne a good section as one that covers a large, but compact
area.

Compact shapes can be identi�ed by applying the distance function. The
distance function is applied pixel-wise and returns the distance of each non-
zero pixel from a zero pixel. Figure 5.4a shows the results of applying this
distance function to the mask in �gure 5.3a. Note that the values are higher
in the interior of the region. By searching for the maximum value in the results,
a region is identi�ed that is both large and compact. This region is selected
as retinal candidate for this frame. Figure 5.4b shows the mask of �gure 5.3a
with only the desired section selected.
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(a) Distance transform of a
mask

(b) Section selected in mask based on
peak in distance transform

Figure 5.4: Mask region selected based on the distance function.

With the possible area of fundus highlighted in a frame, a decision can be
made on whether a frame will be processed further. The simplest approach is
to specify a minimum size of the fundus to be present in a frame to classify
the frame as usable.

The thresholding method is not the �nal decision on whether a frame is
valid or not, but rather o�ers an e�cient educated guess to reduce the bulk of
unusable frames. If the examiner were to record any other red objects besides
a valid fundus, the frames would also be selected as possible candidates. These
false frames would be processed further. However, it will be found that these
frames cannot be consolidated with other frames that do contain valid regions
of fundus.

There will also be cases where the wrong section of a particular frame will
be selected when the interference is reddish in colour. However, in these cases
the viewable area fundus is typically small and of low quality.

For feature highlighting, a high-pass spatial �lter is utilised. The motiva-
tion for not using more advanced techniques as outlined in section 3.6.1 is that
the features in a single frame are often blurry and di�cult to detect. More
advanced techniques based on matched �ltering would not be able to detect
blood vessels in noisy data.

The high-pass �lter serves two main functions: The �rst is the highlighting
of blood vessels of a certain prede�ned size, and the second is the removal of
the non-uniform illumination of the fundus.

The �ltering is conducted in three steps on a grayscale image. First a
Gaussian �lter is applied to the image to determine the low frequency com-
ponent of the image. The low-pass image is then subtracted from the original
image to have only the high-pass components remaining. This is illustrated in
equation 5.1.

Ihigh_pass = Ioriginal − Ilow_pass (5.1)
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The remaining components are then inverted to have the blood vessels as
bright features on a dark background. Equation 5.2 illustrates this inversion
of a normalised image.

Ihigh_pass_invert = 1− Ihigh_pass (5.2)

We combine equation 5.1 and 5.2 and ignore the constant component to
yield equation 5.3

Ihigh_pass_invert = Ilow_pass − Ioriginal (5.3)

Figure 5.5 demonstrates the di�erent steps in the highlighting.

(a) I (b) Ilow_pass (c) Ihigh_pass_invert

Figure 5.5: High-pass �ltering of a retinal image.

The features are inverted to have the blood vessels highlighted instead of
the shape created by the clipping region. If the clipping region were high-
lighted, the registration would fail as the clipping region would be registered
instead of the continuously moving features.

To demonstrate the e�ect of the �ltering for di�erent frequencies, �gure 5.6
shows the highlighted blood vessels when using di�erent kernel sizes for the
Gaussian smoothing. The size of the kernel (k) is expressed as a multiple of the
estimated blood vessel diameter (d) in pixels. Note that the parameter is not
extremely sensitive and that registration of the images can be achieved as long
as the features are discernible and the constant pattern of the background
illumination is eliminated. The robustness of cross-correlation registration
will compensate for the vague or varying features that occur due to parameter
choices.
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(a) k = 2 ∗ d (b) k = 4 ∗ d (c) k = 9 ∗ d (d) k = 18 ∗ d

Figure 5.6: E�ect of kernel size on high-pass �ltering

5.4 Consecutive Frame Registration

If given two consecutive frames in the video sequence, methods has to be
devised to accurately determine the translation between their extracted data.
This extracted data refers to the highlighted blood vessels.

Dense registration methods are typically used for medical applications; the
reason being that the information contained in these images are of poor quality
or limited resolution. The low quality of the images prevents the extraction of
salient features typically required for sparse feature registration.

In this application the conditions are similar with captured retinal frames
containing noisy data with low spectral resolution. Low spectral resolution is
mainly caused by the low light exposure during the capturing process.

The method registering two dense feature sets, is typically determined by
calculating the cross correlation between two images. In this application, the
intensity maps of the highlighted blood vessels are cross correlated. The cor-
relation can be calculated in two domains: the spatial- and the frequency
domain. The spatial domain is selected due to the optimisations capable when
calculating the cross correlation for a small region.

As mentioned, a key observation of the captured frames is that the trans-
lation between the blood vessels in consecutive frames approaches zero as the
frame rate increases. This observation allows for great optimisation of the
correlation calculations and is discussed with regards to the calculation of the
spatial cross correlation in the following section.

5.4.1 Spatial Correlation

As described in section 3.4.1, spatial cross correlation can be expressed using
equation 3.1. To utilise the bene�t of a strong estimation of where the frames
overlap, the correlation can be calculated for only a small region. The region
for which the cross correlation is calculated is controlled by the amount of zero
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padding added to the reference image. Refer to section A.5 for the equations
to determine the cross-correlation dimensions based on the dimensions of the
reference- an sensed images.

As the reference image is zero padded, the cross correlation is calculated
for a larger region and thus di�erent translations between the images occur.

This is demonstrated with the correlation of two images of identical size.
The images are windowed regions extracted from a larger image. The o�set
between the two images are exactly 10 pixels in the x-direction. In �gure 5.7,
the enlarged cross correlation for three cases are presented. In the �rst, the
reference image is padded by 5 pixels on all sides. In the second, the reference
image is padded with 10 pixels on all sides. Lastly the reference image was
padded with 15 pixels on all sides. We note that the 5 and 10 pixel padding
is not su�cient to identify the peak at the 10 pixel o�set. Only when the
padding of 15 pixels could the peak be located with certainty.

(a) 5 pixel padding (b) 10 pixel padding (c) 15 pixel padding

Figure 5.7: Su�cient padding to determine a 10 pixel o�set between two
images.

In �gure 5.8 the full cross correlation contains the peak at the 10 pixel
o�set.

Figure 5.8: Full cross correlation map to enable location of peak.
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Calculating the full cross correlation has the bene�t of an increased pos-
sibility of locating the o�set between two images, but comes with a penalty:
as the size of the images increases so does the computational load. Figure 5.9
show the execution time of the cross-correlation of two N × N sized images
in relation to the amount of zero padding (P ) added to the reference image.
Equation 5.4 describes the computational load as expressed by the number
of individual pixel multiplications required to calculate the cross correlation.
The derivation of the plot is given in Appendix I.
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Figure 5.9: Cross-Correlation computational load relative to image padding
(P) and image size (N).

multiplications = P 2 ×N2 (5.4)
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We conclude that a low image size (N), low padding (P ) or ideally both,
should be maintained to avoid a drastic increase in the computational load of
the calculation.

Two methods are suggested to achieve a reduction in computational load.
The �rst is to keep the zero padding to a minimum and make a safe assumption
that consecutive frames have a close to zero o�set. The second optimisation is
to crop away unnecessary content in the sensed images and only retain plau-
sible areas of retina. Only these plausible areas of retina are cross-correlated
opposed to the cross correlation of entire video frames. The masks obtained
in section 5.3.1 would be used to identify these plausible areas and indicate
which areas of a frame can be cropped away.

A problem with only cross-correlating a frame only with its immediate
predecessor to determine its position, is the phenomenon of dead reckoning.
The next section discusses this phenomenon and possible solutions.

5.4.2 Dead reckoning

With the small o�set between consecutive frames comes the drawback of round-
ing errors. These occur because the o�set is often in the order of a fraction
of a pixel. By ignoring the sub-pixel o�set, the error between two frames is
hardly noticeable, but if the error accumulates over a larger set of frames, it
would cause a drift between the real and estimated translation.

This is a phenomenon, referred to as dead reckoning, commonly associated
with a navigational system where one's position is only based on an increment
to a previous position and the process repeated for several iterations.

Dead reckoning can be avoided by determining a current position relative
to a �xed reference, rather than from a previous position. The equivalent in
our application is to estimate the position of a frame not only on its immediate
predecessor's position, but also with regards to a single frame that serves as a
�xed reference to all other frames in the cluster.

To demonstrate the concept, a synthesised set of frames were created where
there is a 1.5 pixel x-o�set between consecutive frames. The �rst frame in the
set is considered to be the reference frame with a 0 pixel x-o�set. The o�set
of all the other frames are described with regards to this reference frame.

The o�set of each frame is calculated by using three methods. The �rst
method simply uses dead reckoning to determine a frame's position based on
its immediate predecessor. The second method correlates all the frames with
the �rst frame in the set (the reference frame) to directly determine its o�set.
The last method correlates a frame with a running average of its predecessors
translated to their estimated positions.
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Figure 5.10: Comparison of frame to frame registration methods accuracy.
∗The �xed- and accumulated reference frame approach o�ered identical results

in this example.

Figure 5.10 show the results of the estimation techniques. Note the large
drift that is present when the only dead reckoning is used. At each stage of
the correlation a rounding error occurs since the correlation calculates a whole-
number o�set. This rounding error accumulates and causes the drift between
the estimate and actual position. Using the �xed reference solution o�ers an
estimate closer to the actual o�set, here the rounding error occurs, but does
not accumulate.

The problem with the �xed reference solution is that, at a certain o�set, the
sensed image will not overlap with the reference image anymore. A solution is
to select a new reference image once a certain o�set has occurred. However,
we propose a more continuous solution where each new frame is accumulated
onto the reference image. Here the accumulated reference frame is calculated
as described by equation 5.5.

referencenew = α.referenceold_windowed + β.framenew (5.5)
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The windowed version of the reference frame refers to the section of the
reference frame that is estimated to overlap with the new frame. Refer to
section C.1 for a detailed explanation of windowed operations. The α and β
constants indicate the speed at which the accumulation occurs with the sum
of α and β being equal to one. In the example in �gure 5.10, the accumulated
reference-frame method and the �xed reference frame method returned the
same o�set.

The accumulated reference-frame method is favoured since features in a
new frame is compared with an average of all other frames that overlap with
the initial estimate of the new frame's position.

5.4.3 Sub pixel Registration

The cross-correlation based methods in the previous section o�er a translation
estimate in whole-pixel increments. These methods can be expanded to achieve
registration with sub-pixel accuracy. By upsampling the sensed- and reference
images, the estimate can be re�ned. Upsampling does not add additional
information, but increases the resolution of the images and thus increases the
spatial resolution of the cross correlation. The process entails upsampling the
reference- and sensed images by a certain factor, estimating the o�set between
them and then downscaling the result by the same factor.

The di�erence here is that the input images are upscaled by a factor of
two and yields a translation estimation resolution of 0.5 pixels. We note that
in the example demonstrated in �gure 5.10 the estimation obtained with this
sub-pixel accuracy would follow the actual o�set exactly. The resolution is
su�cient to track the simulated 1.5 pixel o�set between frames. This method
yields a better estimated o�set, but comes at the cost of increased calculation
time.

5.5 E�cient Cluster Matching

Clusters are constructed from consecutive video frames with relative e�ciency.
However, a problem arises with the grouping of clusters since consecutive clus-
ters would not necessarily cover the same region as expected with consecutive
frames.

Clusters are often split up by interference while conducting the examina-
tion. This interference, be it blinking, eye movement or glare, would cause the
physician to realign the device and would cause a discontinuity in the region
being photographed. The clusters thus have to be sorted and aligned using a
di�erent approach and a method of rapidly locating matches in a large set of
clusters is required.

In this section we discuss two possible approaches to optimise the matching
of a large set of clusters. The aim is not to design a matching algorithm
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with high accuracy, but rather one that can group together a large number of
clusters with great speed. The sorting algorithm only serves as a method to
do the bulk of the matching rapidly and cross correlation and error checking
is then conducted to join proposed matches.

The focus is on the development of an e�cient pairwise matching of two
clusters solution. This pairwise matching is then used iteratively to �nd
matches in a larger set. The matching strategy utilising the pairwise matching
is brie�y outlined in the next section.

5.5.0.1 Matching Scheme

Given a pairwise-matching algorithm for two clusters, a method still has to
be devised to apply it to a larger set. The approach outlined here aims to be
simple in implementation and strategy.

Given a set of clusters the �rst step is to arrange the clusters from best to
worst. The qualities that describe a good or bad cluster are subjective, and
we simply sort them based on the amount of features they contain. A cluster
with more content, i.e. a higher total intensity, is considered to contain more
information in the desired frequency range originally �ltered for.

Clusters with considerably lower content than that of the other clusters
typically has too low content to be registered further and are discarded. The
threshold of discarding clusters would be speci�ed as a very low fraction of the
total content in the best cluster. Discarded clusters typically contain content
that vaguely correlates and managed to pass the �rst tier of thresholding, but
does not contain visible blood vessels.

To do the pairwise matching, the �rst cluster is selected from the sorted
list and is matched exhaustively with all the other clusters. The matching
starts with the best clusters, those with the most content, and traverses to the
worst, those with less content. This approach ensures that the best clusters
are matched �rst and could allow for early termination of the matching if a
su�cient match is found for a selected cluster.

Once a matching pair has been established the two clusters are removed
from the set, their correlation veri�ed; and combined to form a new cluster.
The newly combined cluster is then added to the set and the process repeated.
The matching process is considered to be complete once there are no good
matches found in the remaining set of clusters. The remaining clusters are
considered to be uncorrelated and impossible to combine.

In the next two sections, 5.5.1 and 5.5.2, we discuss possible pairwise
matching methods and compare their performance in section 5.5.3.

5.5.1 Low resolution descriptor matching

The �rst method we suggest for pairwise matching, is the use a downsampled
representation of the cluster to serve as a low-resolution descriptor. When
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matching a pair of clusters their descriptors are then cross correlated to de-
termine their similarity. The cross correlation peak is then used to gauge the
similarity. A higher peak value indicates an overlap of more features.

The cross correlation of the descriptors are conducted over a broader area
than for the frames. A correlation over a broader area between two candidates
has to be calculated and can cause a signi�cant increase in the execution time.
As demonstrated in Appendix I, the speed of calculating the cross correlation
is proportional to the size of the images. By signi�cantly reducing the size of
the cluster images to form the descriptors, o�ers the bene�t of increasing the
speed of calculating the cross correlation.

A descriptor for each cluster is calculated once by smoothing and down-
sampling the cluster signi�cantly. This descriptor is stored and used for all
matching operations. The matching entails calculating the full cross correla-
tion for a pair of descriptors. For a smaller descriptor, the matching would
be faster, but it has the possibility of reducing the accuracy too much. With
a too low accuracy, slower speed would be induced since the matches would
be rejected at the error-checking stage. A bene�t of using these descriptors is
that it o�ers an initial low-resolution estimate to where clusters overlap. This
estimate can be used when performing the high-resolution correlation when
combining two clusters.

Another optimisation, besides the reduction in size, is to specify a minimum
required overlap between two descriptors. When conducting cross correlation,
the strength of the peak is directly proportional to the size of the area where
the images overlap. Checking clusters for a very small overlap would thus
be redundant, because even a valid cross correlation that has a small overlap
would be weak.

We demonstrate this concept with a simple example. Shown in �gure 5.11
are two overlapping cluster pairs and their cross correlations. In both cases,
the reference image is su�ciently zero padded. The two cross correlations are
jointly normalised to highlight the intensity di�erence in the two peaks. The
correlation for the 25% overlapping clusters is much weaker than for the 50%
overlapping clusters, even though they both contain valid overlaps.
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(a) 25 percent overlap (b) 50 percent overlap

Figure 5.11: Cross correlation of partially overlapping clusters.

5.5.2 Histogram of Oriented Gradients Matching

HoG Descriptor Histogram of oriented gradients is a method proposed by
Dalal and Triggs [8]. They suggest it as a method to e�ciently identify the
presence of pedestrians within images. With this method, an edge detection
is utilised to break an image up into a collection of gradients. The intensity
and the orientations of the gradients are noted in a histogram. The histogram
stores the total edge magnitudes over a range of orientations and is known as
the Histogram of Oriented Gradients (HoG) descriptor. This descriptor is then
classi�ed using one of many mathematical classi�ers to determine if a certain
object is present in the image.

For the edge detection, a convolution kernel is used to identify edges and
their orientation. A number of kernels were proposed and tested by Dalal and
Triggs. Two pairs of these kernels are shown in equations 5.6 and 5.7

dx =
[
−1 0 +1

]
(5.6a)

dy =

−1
0

+1

 (5.6b)

sobel dx =

−1 0 +1
−2 0 +2
−1 0 +1

 (5.7a)
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sobel dy =

−1 −2 −1
0 0 0

+1 +2 +1

 (5.7b)

In both cases the kernels are used to calculate the derivative in both the x-
and y-direction respectively. The kernels in equations 5.6a and 5.6b simply
calculates the �rst order derivatives while the kernels in equation 5.7a and
5.7b calculates what is known as the Sobel derivative. The Sobel operator is
a popular edge detection kernel often used in image processing.

To obtain the gradient components, the image is separately convolved with
two kernels and the result is two intensity maps that represent the gradient in
the x and y directions. The orientation and magnitude of the edges is calcu-
lated for each pixel's x-and y-gradient components. Equations 5.8 and 5.9 are
used for the calculations, where Gx and Gy denotes the gradient components,
θ, the orientation angle and G the total magnitude.

G =
√
G2
x +G2

y (5.8)

θ = arctan(
Gy

Gx

) (5.9)

The magnitudes and orientations are used to construct a 1D histogram of
magnitudes in di�erent orientation bins. An appropriate bin size is chosen for
the histogram and the magnitudes summed for the di�erent orientations.

The bin size should be selected carefully to ensure enough data resolution
is retained while not being too sensitive to noise. A bin that is too small
would be sensitive to noise, while a bin that is too large would average out the
information.

Figure 5.12c shows an example of the HoG descriptor constructed for a
square rotated to 45◦ and 70◦ respectively. Note that this descriptor calcu-
lated for the shape, corresponds to our understanding of the shape's edges.
The square has four large edges that are orientated in four directions. These
four edges are clearly visible in the HoG descriptors, with the orientations of
the edges corresponding with the peaks, at their respective angles, in the his-
togram. Any similar collection of edges would have a similar HoG descriptor.
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(a) Square rotated to
45◦

(b) Square rotated to
70◦
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(c) Descriptors for a Square Rotated to Di�erent Angles

Figure 5.12: Rotated Square HoG Descriptors.

A number of methods are available to match histograms or determine the
distance between them. In this setting two techniques prove bene�cial. By in-
terpreting two histograms as one-dimensional discrete signals and calculating
the cross correlation between them, the matching can become rotation invari-
ant. By normalising the histograms, a scale change in the shape would not
a�ect the descriptors. Normalised HoG descriptors are used in �gure 5.12c.
We note that the scale change has no e�ect on the descriptor, while the rota-
tion becomes a translation of the 1D signal. The translation can be estimated
using 1D cross correlation as shown in equation 5.10

rccorr =
∞∑

k=−∞

h1[k].h2[x+ k] (5.10)

A feature of the HoG descriptor is that it is not a�ected by translation.

Modi�ed HoG Descriptor The key bene�t of the HoG descriptor is that
it o�ers a short summary of the content of an image. This summary is consid-
erably smaller than the original image and is thus much faster to compare to
those of other images. In this section a modi�ed HoG descriptor is proposed
to suit our application.

The HoG descriptor is typically employed in situations where a decision
has to be made whether an object is present or not present in a scene. A
mathematical classi�ers that operates in a N-dimentional space is typically
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used in such a situation. For this application, however, the descriptor is only
used to �nd the descriptor most similar to it.

A proper comparator has to be selected to match descriptors. The assump-
tion is made that there are no scale changes or any rotation present between
clusters. The normalisation is thus not required and the peaks in similar de-
scriptors, are not expected to shift. Not normalising the histogram, yields
a more robust descriptor as it describes the absolute number of features in
images and not a relatively scaled value.

This implies that a su�cient comparator could simply determine the squared
distance between two histograms as described by equation 5.11. When com-
paring a histogram with a set of others, the best match is the one with the
smallest error when calculating the square distance.

SquareDistance =
N∑
n=0

(h1[n]− h2[n])2 (5.11)

To extend the matching to include rotation between clusters, the cross
correlation between two histograms can be calculated as described earlier in
equation 5.10. The strength of the correlation peak would indicate how good
the match is and the cluster with the highest peaks between their descriptors
are the best matches.

The other modi�cation made to the HoG descriptor is the method in which
the gradients are detected. The typical process entails calculating the deriva-
tive in two directions and then determining the edges and their orientations
from these derivatives.

For this application, the edges to be detected would be the edges of the
blood vessels and the descriptor should mostly describe the layout of the blood
vessels in an image. Given the resolution of the captured frames, a relative
approximation to the size of the blood vessels can be made. With the blood
vessel width determined, a cluster can be searched for blood vessels at di�erent
orientations rather than searching gradients at any resolution.

Searching for blood vessels is conducted by convolving the image with a
simpli�ed template that represents the structure of a blood vessel. An in-
verted section of blood vessel typically consists of a bright ridge with dark
areas around it. This can be approximated with a white rectangle on a dark
background. A number of the proposed convolution kernels, generated for
eight di�erent orientations, are shown in �gure 5.13. These kernels operate
in a similar manner to the Gabor �lter discussed in section 3.6.1. In this ap-
plication, the simpli�ed kernels prove su�cient since the �lter is not used to
enhance the image quality, but simply to extract certain metrics.

Note that the kernels only range between 0◦ to 180◦ instead of the typical
360◦ used for the HoG descriptor. The reason for this is that a short section
of a blood vessel is not discernible from its 180◦ rotated counterpart.
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(a) 0◦ (b) 22◦ (c) 45◦ (d) 67◦ (e) 90◦ (f) 112◦ (g) 135◦ (h) 157◦

Figure 5.13: Blood vessel detection kernels generated for eight orientations.

Another important feature of the kernels is that the dark areas represent a
value of -1 instead of 0 and the white areas a value of 1 as shown in �gure 5.14.
This allows for the suppression of noise in the convolution process and prevents
false highlighting of blood vessels in a area only containing interference, noise
or other structures.

Figure 5.14: Enlarged view of detection kernel.

Figure 5.15 demonstrates the concept with a 1D analogy. A simulated
input signal in �gure 5.15a represents a 1D slice of a 2D image. It contains
two signi�cant regions; on the left is a possible blood vessel slice and on the
right some interference. In �gure 5.15b and 5.15c, two possible kernels are
shown. The kernel in �gure 5.15b is a mean shifted version of the kernel in
�gure 5.15c. Here the `o�' sections of the kernel is represented by -1 and not
0. To test the performance of these kernels, they are convolved with the input
signal. With the results we note that the convolution using kernel, suppresses
the interference, while the kernel in �gure 5.15c also generates a peak for the
interference. It is thus bene�cial to use Kernel B and to reject the convolution
results below 0.
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Figure 5.15: 1D analogy of proposed blood vessel detection kernels.
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Convolving with each of the kernels in �gure 5.13 yields a score for the
total amount of blood vessels with a speci�c orientation. The total score for
each kernel convolution is determined by the summing the convolution results.
These scores is used to construct the histogram, where the score for each kernel
is the value for a speci�c bin in the histogram.

Shown below, in �gure 5.16, is a typical cluster convolved with kernels at
di�erent orientations. Bright areas in the result indicate regions where the
blood vessel has the same orientation as the kernel. Also note that the noise
visible in the cluster is not ampli�ed by the convolution.

Figure 5.16: Convolution with detection kernels at di�erent orientations.

5.5.3 Comparison

To test the performance of these algorithms, a scenario is set up where arti-
�cial clusters are used to measure the speed and accuracy of the algorithms
respectively. Clusters are created by selecting a random window from the ref-
erence image and adding temporal noise to it. The temporal noise is scaled in
size such that its spatial frequency is the same as that of the blood vessels. A
large set of clusters is created in this manner and used as a test data set.

It is ensured that each cluster in the set has a match that covers exactly
the same region. Note that these two corresponding clusters would cover the
same region, but would di�er slightly in appearance because of the temporal
noise added. Several conditions are selected for the tests. The �rst is scaling
the cluster images down to 20% of their original size. This scaled image is
used as the low resolution descriptor and the HoG descriptor is also calculated

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. PROCESSING AND REGISTRATION OF CAPTURED

IMAGERY 67

from this smaller image. Further, the minimum overlap in the cross-correlation
matching is set to 25%. The cross-correlation method would thus not check
for overlaps smaller than 25% when matching the clusters. Testing the al-
gorithms entails exhaustively searching the dataset for the best match. The
best match would ideally be the cluster that covers exactly the same region.
Since the clusters are all created arti�cially, their coordinates are known and
the accuracy of a match can be determined. The accuracy is speci�ed as the
percentage by which two matched clusters overlap.

A test is �rst conducted to measure the speed of the two algorithms. In
this scenario the size of the test set is incrementally increased and the time
required to locate the best match for 10 di�erent clusters is noted. Since the
pairwise matching typically executes with a constant time, the total searching
time is expected to increase linearly as the number of clusters that are to
be searched, increases. The plots below show the execution time for the two
methods. It is clearly visible that the execution of the cross-correlation method
is considerably slower than that of the HoG descriptor matching.
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(b) HoG Descriptor Matching

Figure 5.17: Execution times for �nding matches in a large set of clusters.

Note that the linear increasing trend is visible for this with both plots.
However, the execution time for the HoG descriptor matching is so low that
this trend can be ignored. The typical number of clusters gathered from a
single video is not expected to be higher than 300 as used in the test case and
for the HoG descriptor, �nding the best match in a set of 300 is executed ten
times in under 3ms.

The second test is to measure the accuracy of the algorithms. Matching is
conducted between a cluster and a 300 random-clusters test set. The matching
is conducted 500 times and the normalised results noted in the respective
histograms in �gure 5.18a. Figure 5.18b shows the accuracy of the matching
when using cross correlation of a low-resolution descriptor and �gure 5.18b
shows the accuracy of the matching when using the HoG descriptors. Lastly,
the plot in �gure 5.18c serves as a baseline and indicates the accuracy when a
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random cluster is selected form the test set as a best match. As expected, the
accuracy in the last distribution is extremely low.
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(a) Cross-Correlation Descriptor Matching
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(b) HoG Descriptor Matching
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(c) Random Matching

Figure 5.18: Accuracy of respective matching algorithms.

Note that the cross-correlation method is better at �nding exact overlaps
in the presence of the noise than the HoG descriptors. Regardless of this, the
accuracy of the HoG descriptor is satisfactory, since a 70% overlap between
clusters is still su�cient for the accurate combining of clusters. If we impose
threshold of a 25% overlap to indicate a successful match between two clusters,
the accuracies for the respective methods will be as shown in table 5.1.
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Method Accuracy

Cross-Correlation Descriptor Matching 76%
HoG Descriptor Matching 88%
Random Matching 20%

Table 5.1: Matching Algorithm Accuracy.

From these simulated test cases, it is deduced that the modi�ed HoG De-
scriptor o�ers a robust and e�cient method of matching a large number of
clusters with each other. The overhead of calculating the HoG descriptors is
overshadowed by the extensive gain in matching time.

We also note that the execution time for the HoG Descriptor matching
is so signi�cantly low that the ine�ciencies of an exhaustive search is not of
concern with a limited set.

The last apparent bene�t of the HoG descriptor is that it requires consider-
ably less memory for storage than the low-resolution descriptors. This feature
makes it possible to store images in secondary memory and only retain their
descriptors in main memory. The images would then only be retrieved if their
HoG descriptor indicates that they will be a good match.

5.6 Cross-Correlation Veri�cation

At various steps of calculating the transformation between the retinal images,
a method of validation has to be established. In this section we discuss the
analysis of the cross-correlation result to determine the accuracy of an estima-
tion.

The validation at two distinct steps are discussed here. The �rst is moni-
toring the correlation peak value when grouping frames into clusters and the
second is the validation of the cross correlation when two random clusters are
matched.

5.6.1 Frame Grouping

When calculating the cross correlation of two images, the value of the peak
suggests the number of features that correspond at a certain o�set. The more
features overlap, the higher the peak value.

Monitoring the peak value is a method we suggest for initial grouping
of consecutive frames into clusters. This peak value is utilised to gauge the
number of mutual features in consecutive frames.

When monitoring this peak value for consecutive cross correlations, a sud-
den decrease in the sequential peak values could indicate a loss of track-
ing. Loss of tracking would indicate that the features could not be correctly
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matched between frames. A sudden increase in the peak intensity would indi-
cate the start of tracking between frames. Small �uctuations in the peak value
are ignored as this could be caused by certain additional features moving in
and out of the viewing �eld as well as noise present in the frames. Consecutive
frames with similar cross correlation-peak values are then grouped together
into clusters.

Figure 5.19 demonstrates a hypothetical plot of the cross correlation-peak
value for a sequence of frames and how they will be grouped into clusters

Figure 5.19: Peak values of the cross correlation of a sequence of frames utilised
to group the frames into clusters.

Here it is possible that cluster B and C do contain mutual information, but
C simply captures a region with fewer features. In this scenario, the clusters
will be combined during the cluster matching.

5.6.2 Cluster Match Veri�cation

When calculating the cross correlation between random clusters, the situation
is slightly di�erent than for that of the sequential frames. Sequential frames
will always contain some mutual information. Clusters that are to be matched
could possibly contain no mutual information if the descriptor matching was
erroneous.

A method typically used to gauge the strength of the peak is to use a
normalised cross correlation. With normalised cross correlation, the resulting
map is divided by the theoretical maximum correlation value for each pixel. In
this application the normalised cross correlation would indicate the number of
overlapping blood vessels divided by the product of the total number of blood
vessels in the two clusters. The normalised cross correlation has the bene�t of
a peak for a small valid overlap having a similar peak for a valid larger overlap.

In this section we discuss the classi�cation of the peaks as being valid or
invalid by calculating the normalised cross correlation as well as by character-
ising the peak's shape and uniqueness.

To characterise the peaks, some of the typical observations are demon-
strated in the following section. Section 5.6.4 elaborates on the concept of
normalised correlation versus regular correlation. Thereafter, section 5.6.5
discusses a method of classi�cation based on the observations.
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5.6.3 Peak Characterisation

The images in �gure 5.20 shows a selection of images that contain elongated
features similar to blood vessels. The cross- and auto correlation of these
images will be used to illustrate certain characteristics.

(a) Image A (b) Image B

(c) Image C (d) Image D

Figure 5.20: Sample images.

Figure 5.21: Auto correlation of Image A.

The �rst correlation is the auto correlation of Image A shown in �gure 5.21.
This would represent a perfect match between two images, however, note that
in the correlation, the peak is elongated. This elongated peak could easily
cause misregistration since a ridge of high-intensity values are present and the
absolute peak, di�cult to locate. With the presence of noise this task would
prove even more di�cult.

The reason for this appearance, lies in the nature of the features being
correlated. The features are all orientated in one direction and not spread out
over a range. In the situation where the ends of the line features are caused
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by clipping of the viewing �eld, the actual o�set is di�cult to extract. The
true o�set can by represented by any of the peak values on the ridge.

Figure 5.22 shows the auto correlation of Image B. Here the features
are orientated perpendicular to each other. The correlation between the two
identical images yields an easily locatable peak. Since the features are perpen-
dicular, the exact o�set between the images can be determined and there is
no drift in any direction.

Figure 5.22: Auto-correlation of Image B.

In the last three examples the auto correlation of Image C and Image D
and the cross correlation between them are noted respectively in �gures 5.23a, 5.23c
and 5.23b. The auto correlation for Image C yields an easily identi�able round
peak. The roundness of the peak is attributed to the large range in feature
orientations. For a mathematical discussion on the roundness and size of the
peak as a result of the orientations present in the features, consult Appendix H.

The cross correlation for Image C and Image D indicate a strong peak
where the features overlap. This causes a problem since the occurrence of
a peak does not necessarily indicate an actual overlap of the features. The
images do contain overlapping features, but are not a match.

For the auto correlation of Image D the peak is elongated and note the
similarity with the cross-correlation of Image C and Image D. The reason
for the similarity is that the features in Image D are wholly contained within
Image C. The reason for the auto correlation of Image C di�ering from the
cross correlation, is that Image C contains additional features not present in
Image D.
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(a) Auto correlation of
Image B

(b) Cross correlation of
Image C and Image D

(c) Auto correlation of
Image D

Figure 5.23: Cross correlations.

5.6.4 Normalised Cross Correlation

Normalised cross correlation is calculated in a manner manner to regular corre-
lation, except that the peak values are normalised using a normalisation map.
The normalisation map contains the theoretical maximum value for each value
in the cross correlation. By normalising the correlation map, the peak value
has a maximum of 1. With 1 indicating a perfect overlap of data. The equa-
tion for normalised cross correlation is given by equation 5.12. Here T is the
template or sensed image, I the reference image and Z(x, y) the normalisation
map.

Rccorr_normed(x, y) =
Rccorr(x, y)

Z(x, y)
=

Σx′y′ [T (x′, y′).I(x+ x′, y + y′)]2√
Σx′,y′T (x′, y′)2.Σx′,y′I(x+ x′, y + y′)2

(5.12)
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Figure 5.24 demonstrates the cross correlation and the normalised cross
correlation of two images with the normalisation map is shown in �gure 5.24.

(a) Correlation (b) Normalisation map (c) Normalised

Figure 5.24: Normalisation of cross correlation.

The normalised versions of the cross correlations in �gure 5.23 is noted
below in �gure 5.25. The normalised peak values are indicated in the �gures.
Note that �gure 5.25a and 5.25c represent valid overlaps and that �gure 5.25b
represents an invalid overlap. The normalised peak value in �gure 5.25b is
lower since the peak only represents an overlap of a subsection of the data and
is normalised with regards to all the data at the particular o�set.

(a) Peak = 1 (b) Peak = 0.69 (c) Peak = 1

Figure 5.25: Normalised cross correlations.

5.6.5 Proposed Correlation Veri�cation Method

A method for determining if the cross correlation results indicates a valid
overlap based on the peak classi�cation and the normalised cross-correlation
peak value is proposed.

When a candidate peak is identi�ed, the overlapping cluster sections are
isolated and recorrelated. The peak is thus recalculated for only the overlap-
ping sections and normalised by the features contained within in these sections.
This normalised peak value is used to assign a score to the match. Shown be-
low in �gure 5.26 are the scores achieved for peak representing valid overlaps
for arti�cially created clusters.
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Figure 5.26: Scores obtained for valid peaks.

Figure 5.27 shows scores obtained for peaks representing invalid overlaps.
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Figure 5.27: Scores obtained for invalid peaks.

The distribution in �gure 5.26 has a easily identi�able mean with a small
deviation. This score thus serves as a su�cient scoring system when combining
clusters.

There are, however, cases that the scoring system would not account for.
The �rst is the case of multiple or elongated peaks. The second problem is
that a normalised peak for a small overlap is often erroneous since only a small
section of data is compared between the images. The resulting score can thus
be arti�cially high since the value is normalised for a small region.

A simple method to check for peak uniqueness and shape is proposed.
When the cross-correlation map is inspected, the peak and an area around it
is zeroed for a speci�c radius. The radius would typically be a value close to
the blood vessels' diameter. The remaining values in the correlation map are
then searched for any values that are similar to the candidate peak. If any
values with a value similar to that of the peak is found, it will indicate an
uncertainty in the identi�ed peak.

Figure 5.28 demonstrates two cases with three normalised intensities indi-
cated in a cross-correlation map. Here there are two peaks with equal values
as well as a slow fallo� in one direction for both of the peaks. This case
would be rejected since no safe assumption on the true correlation peak can
be established.
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(a) Image A (b) Image B (c) Cross-correlation

Figure 5.28: Uncertain peaks of normalised cross correlation.

The second problem of peak veri�cation is addressed by specifying the
minimum overlap that a valid peak is allowed to represent. We use the test
case illustrated in �gure 5.26 and specify a score of 0.7 or higher to indicate
a valid peak. Figure 5.29 shows the accuracy of the peak classi�cation versus
the overlap they represent. Note that peaks that represent a small overlap, are
generally erroneous. In this scenario we would disregard peaks that represent
an overlap of less than 30%.
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Figure 5.29: Peak classi�cation versus the overlap that they represent.
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Chapter 6

Results

6.1 Introduction

The proposed system was implemented in the form of an Android application
for a mobile device and a C# .NET application running on a PC. A wrapper
of the OpenCV library was used to perform the image processing. A discus-
sion on this library is provided in Appendix B and a discussion on the code
implementation in Appendix C. The typical use of these implemented systems
are illustrated in Appendix F.

Besides the PC implementation, a proof of concept for processing the videos
directly on the device was conducted. This is brie�y described and the results
shown in Appendix E.

This chapter discusses the performance of the system in terms of accuracy.
Accuracy is di�cult to quantify and the appearance of the results are compared
with images obtained with another device.

6.2 Image Quality

To demonstrate the quality of the results obtained, they are compared with
two control cases. The �rst comparison is made with a single frame for the
video sequence and the second comparison is made with regards to images
obtained with another commercial fundus camera, the Optomed SmartScope.
The Smartscope is a digital fundus camera with a considerably larger FOV
than the PanOptic Ophthalmoscope. Additional Information on the optomed
smartscope is available here [31].

Two attributes of the results, with regards to its appearance, are discussed.
The �rst is the spatial resolution of the obtained images and the second is the
e�ective FOV obtained. Note that these features have a subjective element to
them and are discussed in a partially subjective manner. The increased quality
of the processed images are also case speci�c with the result being dependant
on the amount of data accumulated. A large number of frames for a speci�c
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region o�ers an increased spatial resolution and a large sweep in the video
sequence yields a larger FOV.

6.2.1 Increased resolution

The unprocessed images captured typically have a high SNR. This high SNR
is due to the low light exposure. The camera on the mobile device increases
the gain to compensate for the low amount of light and the result is a grainy
image with the visibility of some features being compromised.

When the registration is conducted, a number of frames covering the same
content is aligned and averaged. In signal processing the e�ect of combining
multiple instances of the same signal is an increase in the SNR. It is thus
expected that the average of several overlapping video frames will yield a
clearer signal, with the signal in this case being the structure of the blood
vessels.

Shown in �gure 6.1, are two images of a patient's optic disc. Figure 6.1a
is a single video frame from a captured video sequence using the proposed
setup. Figure 6.1b is an image of the same optic disk taken with the Optomed
Smartscope. Note that the image in �gure 6.1a is considerably clearer with
some features visible that are not visible in �gure 6.1b. The image in �gure 6.1b
has a higher quality and can serve as a control to compare manipulated data
against.

(a) Optic disk photographed with
use of Pan Optic ophthalmoscope

(b) Optic disk photographed with
use of Smartscope fundus camera

Figure 6.1: Comparison of captured imagery.

The results of the processed video frames are shown �gure 6.2. The com-
posite consists of a number of images similar to the one in �gure 6.1a that had
its features highlighted and then averaged.

Note that there are several features clearly visible in the composite image
that are not visible in the individual frame. Even though the frame in �g-
ure 6.1a and the processed image in �gure 6.2 have the same image resolution
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their spatial resolution di�ers. The images have the same size (in terms of
pixels), but the spatial resolution of the composite image is said to be higher
in the composite since �ner features are clearly observable. These �ner fea-
tures are checked against the control image to verify that they are not simply
artefacts of the processing.

Figure 6.2: Composite image constructed from a number of video frames.

The mean horizontal diameter of a human optic disk is known to be 1.88mm
with little variation. This measurement allows the addition of a scale to the
images. The scale in turn allows the accurate measurement of the detail visible
in a particular image that can be compared between any ocular fundus image.

Figure 6.3 shows the images from �gures 6.1a, 6.1b and 6.2 on the same
scale. The images of �gures 6.1a, 6.1b have had simple preprocessing tech-
niques applied to them to highlight their blood vessels. A highpass �lter has
been applied to remove the varying background and the contrasts adjusted
with intensity mapping.

Figure 6.3: A scale comparison of optic disk images.

Note that the diameter of the vessels for the unprocessed Pan-Optic image
appear slightly smaller than for the other two images. This is due to low
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contrast between the vessel and its background. This indicates that the edges
of the vessel are at the cusp of being observable.

For an objective assessment of the composite image, a criteria for a vessel
being observable, is established. We classify a section of vessel to be observable
if its intensity is continuous for a length longer than the diameter of the vessel.

Using this criteria, a few vessels in �gure 6.3 are classi�ed. The red arrows
indicate vessels that are not detectable versus green arrows indicating vessels
that are. It is noted that the composite image has a spatial resolution closer
to that of the Smartscope than to the unprocessed frame.

Using the scale to conduct measurements, the size of the smallest detectable
vessels can be made. For the unenhanced images captured with the Pan-Optic,
the minimum blood vessel diameter is 0.07mm while in the Smartscope and
enhanced images, blood vessels with a diameter in the range of 0.045mm are
detected. These measurements can serve as a comparable parameter between
other fundus images.

As mentioned, the SNR of the composite image is expected to increase as
the number of frames used to construct the image increases. Results are thus
better for areas that are recorded for a longer duration. Figure 6.4 demon-
strates this. Here the clusters are constructed by aggregating very high fre-
quency content from the frames covering the same region. Note that as the
number of frames increase, so does the image quality.

(a) 1 Frame (b) 40 Frames (c) 80 Frames (d) 120 Frames

Figure 6.4: Clusters consisting of an increasing number of frames.

6.2.2 Increased Field of View

The increase of the FOV is based on the area covered in the video sequence. If
a larger region is captured, a larger e�ective FOV is achieved. A speci�c case
an the achieved FOV is demonstrated. The FOVs are compared since this is
an attribute typically speci�ed for ophthalmoscopes and fundus cameras and
is to be used as a benchmark here.

A method for determining the e�ective FOV is established to enable an
objective measurement of the image. Figure 6.5 suggests a method of deriv-
ing the FOV given the measurements of the observed image and the known
diameter of the human eye.
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Figure 6.5: Calculation of FOV form a fundus image

The size of the image can be determined by using the size of the optic
disk as reference. The FOV can be estimated by calculating the angle (β)
in equation 6.1. Here the radius of the arc (r) is equal to the diameter of
the human eye (25mm) and the arc length (s), equal to the diameter of the
observed image.

β =
s

r
.
180

π
(6.1)

An image from the Smartscope is used as a reference with a range of e�ec-
tive FOVs calculated using the described method. The results are indicated in
�gure 6.6.
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Figure 6.6: FOVs indicated on a Smartscope fundus image.

Figure 6.7 shows an individual frame and a composite cluster with their
FOVs indicated. In this instance the FOV of the composite image does not
match that of the Smartscope. However, it is still considerably larger than
that of an individual frame.
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(a) FOV of a single video frame

(b) FOV of a composite image

Figure 6.7: Illustration of the increased FOV obtained by combining a large
amount of frames.
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Chapter 7

Conclusion

Chapter 2 discussed the anatomy of the eye, the structures observed during a
fundus examination, the retinal disease that is typically monitored and how
the examination is conducted. An understanding of the examination process
is imperative as this dictates the nature of the data to be captured and, in
e�ect, the design of the registration algorithms.

The concepts of image registration were introduced in chapter 3. Here
the di�erent approaches to conducting image registration were discussed and
emphasis put on the large range of applications as well as the extensive tay-
lorization of methods for speci�c task. The di�erent approaches used for reg-
istration of retinal images were also discussed. Again, it was noted that even
for the very speci�c application, di�erent approaches are developed based on
capturing conditions. Chapter 3 also discussed typical approaches to isolating
the blood vessels in fundus images and it noted that these isolated vessels are
either used for registration processes or for diagnostic purposes.

Chapter 4 discussed the proposed setup. The physical setup and the de-
sired outcome of the algorithms were brie�y mentioned. The usefulness of the
proposed system referring to economic factors as well as the diagnostic bene�ts
were commented on.

The design of the software algorithms to achieve registration for this spe-
ci�c task, were discussed in Chapter 5. The initial focus was on the nature
of the captured imagery. It was emphasised that understanding the charac-
teristics that made the situation unique, were imperative to the design of the
custom algorithms. Some of these characteristics were elaborated on and it
was mentioned as to how they could hinder the process.

To conduct the registration, there was heavily relied on spatial cross cor-
relation as it proved to be e�cient in a setting where the imagery is of limited
quality. It was noted that this is often the case for medical imagery.

The initial problem addressed was that of rapidly parsing the input videos
to isolate frames to be processed further. This was achieved with the use of
colour-thresholding techniques. This method of isolating candidate frames was
not completely accurate but provided an e�cient way of sorting the bulk of
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the frames.
With the candidate frames selected, a method of �ltering was discussed.

This �ltering provided a method of determining the amount of content that a
frame contains within the desired frequency range. The high frequency content
was typically the blood vessels. These blood vessels proved ideal to register
the frames by.

Spatial cross correlation was then discussed as it served two functions.
Firstly, it was used to determine the o�set between consecutive frames and
secondly the peak value was used to gauge the number of features contained
within a frame compared to its predecessors. This comparison allowed for e�-
cient grouping of consecutive frames based on the relative amount of features
they contained.

After the grouping of frames into clusters were discussed, methods of e�-
ciently grouping clusters were investigated. Two methods for rapid matching
of clusters were demonstrated and compared. The �rst was the use of a down
sampled descriptor that allowed for faster conduction of cross correlation. The
down sampled cross correlation o�ered a method of e�ciently calculating a low
resolution estimate to where clusters overlap and an indication of how many
features overlap. In comparison to the down-sampled descriptor, the matching
of HoG Descriptors was proposed. The HoG Descriptor o�ers a summary of
the gradients contained within an image. The HoG descriptors were consid-
erably faster to compare and required a fraction of the memory compared to
the down-sampled descriptors. The HoG descriptor took preference in terms
of speed with a small sacri�ce in accuracy.

With matches compared within a set of clusters a method was devised to
measure the accuracy of a match. Characterisation of the cross-correlation
peak shape was discussed as well as the use of normalised cross correlation as
a scoring method.

Registration of �ltered frames were conducted and the averaging of the
�ltered frames were presented in Chapter 6. The results were compared to
the quality of single frames captured with the setup as well as with images
taken with a commercial digital fundus camera. It showed a clear increase in
the captured spatial resolution of the combined images. A larger �eld of view
was obtained by combining several videos frames that jointly covered a larger
region.

The system was designed to be robust against variables as well as e�cient
in terms of computation power required. It was kept robust by designing
algorithms to use relative parameters for sorting and registration. Frames and
clusters were grouped according to relative feature similarities. This approach
avoided the use of hard thresholds to classify data and allowed the better
solutions to surface automatically. Here, the better solutions were the clusters
with the most correlating high frequency data.

E�ciency was kept in mind throughout the design and implementation of
the system. Where possible, simpler, but more e�cient methods were favoured.
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During the implementation, optimisation was maintained by retaining as little
as possible resources in primary memory. Once a frame has been processed its
data was released and only the descriptors of the clusters retained in primary
memory. The clusters were sorted and the best ones were reconstructed by
re-fetching the frame data from secondary memory.

These optimisations and the promising results in terms of the constructed
imagery, makes the proposed system an attractive solution in resource con-
strained environments. The e�ciency also makes the complete implementa-
tion of algorithms on the mobile device an attractive approach. With the
ever-increasing mobile processing power, this could be realised in the near
future.
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Appendix A

Image Processing Concepts and

Common Operations

A.1 Introduction

Image processing is signal processing methods applied to a 2D discrete signal.
The signal is in the form of a digital image. The output of image processing
algorithm can also be another image or it could be certain parameters extracted
from the image. In most cases the input is converted to either an representation
or a decision.

In this Appendix, we aim to give an overview of the common terms and
concepts of image processing.

A.2 Image Representation

A digital image is described by a 2D array of pixels, with individual pixels
each assuming a di�erent colour. A pixel is the smallest spatial discretisation
described within an image and an image processing algorithm typically oper-
ates on these individual pixels, where the pixel values are seen as discrete two
dimensional signals.

A pixel, is in turn, is described by a number of intensity values that are
combined to represent a speci�c colour. A pixel can consist of any number
and range of intensity values depending on the colour space and depth of an
image.

Intensity values can require di�erent sizes, depending on the number of
bits used to describe the pixel. This is referred to as the depth of the images.
The higher the depth of a pixel, the greater its ability to re�ect small changes
in light intensities. Together with the image resolution, the depth determines
the amount of memory an image requires to be stored. For a higher resolution
and higher depth, more memory is required to load and process an image.
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Image resolution is a term often used when working with digital images.
Resolution commonly covers two concepts, namely spatial and pixel resolution.
Pixel resolution refers to the size of the image where an image with a higher
pixel resolution consists of a larger number of pixels. Spatial resolution is
often a more subjective term and refers to the level of detail contained within
the image. In most instances, the term resolution would refer to the pixel
resolution of an image.

The typical representation of an image is 24-bit RGB. Here each pixel
is represented by three components, red, green and blue and each of these
components are described by an 8-bit value. The image is said to consist of
three colour channels.

A 24-bit RGB pixel would thus consist of three intensity values that range
from 0 to 255. With 0 indicating that a colour component is not present,
while 255 indicates that the component assumes the strongest value for the
pixel. Shown below, in �gure A.1, are a selection of 24-bit colours with their
respective RGB values, written in the format: (Red,Green,Blue)

(a) (0,0,0) (b) (255,255,255) (c) (255,0,0) (d) (0,255,0)

(e) (0,0,255) (f) (40,20,100) (g) (140,255,255)

Figure A.1: A selection of RGB colours.

The RGB Colourspace is one of many that is used. The next section
describes some of the common colour spaces utilised in image processing.

A.3 Colour Spaces

Image processing algorithms bene�t from using multiple colour spaces. A
colour space describes the speci�c way in which a pixel's intensity values are
combined to map a certain colour. Switching between colour spaces is often
useful since a particular one might be better at highlighting certain features
within an image than another.
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Below some of the common colour spaces are described. Their origin or
mathematical formulation are not discussed; their appearance is simply noted.
Also note that switching between spaces can be conducted using speci�c map-
pings. For further reading on the development of these colour spaces, consult
[39].

Figure A.2 demonstrates the contribution of the three colour channels in
the RGB space that are combined to form the image. Usually when a single
channels is extracted it is shown as a grayscale intensity map. However, in
this example two of the three channels were zeroed to demonstrate the colour
of the third. Grayscale intensity maps are discussed later in this section.

(a) Full colour (b) Red channel (c) Green channel (d) Blue channel

Figure A.2: An image split into its RGB colour channels.

The RGB space is modelled in the way in which the human eye perceives
light with speci�c rods and cones sensitive to each of these components [39].
The values of the components are typically expressed as a value in a range be-
tween 0 and 255, but can be written in a normalized fashion as well. Figure A.3
shows a 3D representation of the colour space.

Figure A.3: The RGB colour space [22]

A shortcoming of the RGB space is that it does not directly describe the
brightness of the colour. The brightness is implied from the combination of the
three components with a normalised RGB value of (1,1,1) being the brightest
colour, white, and (0,0,0), being the darkest, black. The following two colour
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spaces addresses this problem by dividing the colour space into separate colour
and intensity components.

The HSV and HSL spaces are shown in �gure A.4. Both are represented
by a cylindrical coordinate system. HSV and HSL stand for Hue, Saturation,
Value and Hue Saturation Lightness respectively. Note that the hue in both
colour spaces represents the actual colour and that the brightness of the colours
are determined by the saturation-, lightness- and value components.

Hue is typically expressed in degrees of a 360◦ rotation. The hue at 0◦ is
red, and moves through the colour spectrum and returns to red at 360◦ . This
is illustrated in both �gure A.4c and A.4d.

(a) (b)

(c) HL colour space

(d) HV colour space

Figure A.4: HSL and HSV colour space representations [35].

Another common colour space is the YCrCb space. Here a pixel is described
by two colour components and the brightness by a third component. The
brightness is described by the luma component (Y) and the colour by Chroma
components; Chroma Red (Cr) and Chroma Blue (Cr). This colour space
only has two colour components as it aims to eliminate redundancy present in

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A. IMAGE PROCESSING CONCEPTS AND COMMON

OPERATIONS 91

the RGB colour space. Figure A.5 show slices of the YCrCb colour space for
di�erent normalised values of Y.

(a) Y = 0 (b) Y = 0.5 (c) Y = 1

Figure A.5: Slices of the YCrCb colour space.

For most image processing operations, images are converted to a grayscale
colour space to simplify the process. A grayscale image consists of only channel,
so each pixel is only described by one intensity value. A colour image can be
converted to grayscale by either performing some operation on the colours to
yield a single gray intensity value or by extracting a single colour channel and
using the intensities as gray-level intensities. Figure A.6a shows an RGB colour
image from �gure A.2a converted to grayscale by averaging the RGB values.
Figures A.6b, A.6c and A.6d show the di�erent channels extracted from the
RGB channels to yield gray-level representations.

(a) Gray Averaged (b) Red channel (c) Green channel (d) Blue channel

Figure A.6: An image split into its RGB colour channels.

The last colour space, or rather image representation that is discussed, is
variations of grey scale images. Binary images are a subset of grayscale images
where the intensity is only described by one or zero, black or white. Binary
images are typically used to mark areas of interest and are also referred to
as binary masks. Areas of interest are isolated typically by using threshold-
ing techniques with the result stored as a binary mask. Figure A.7 shows an
image thresholded for blue areas and the resulting binary mask is shown in �g-
ure A.7b. This thresholding, as well as other intensity mappings, are described
in the next section.
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(a) (b)

Figure A.7: Thresholding for blue regions in an image.

A.4 Intensity Transformations

Intensity transformations is the mapping of single-pixel intensity from an input
image to a transformed one. Each of the pixel intensities in the input are
subjected to some transformation (T ) as illustrated in equation A.1.

g[x, y] = T [f [x, y]] (A.1)

Figure A.8 shows three typical mappings between normalised intensity val-
ues. The �rst transform, shown in �gure A.8a, is a power mapping where the
input is raised to a number n. This is utilised for increasing the contrast of
an image. The second transform, shown in �gure A.8b, is an thresholding
transform. Here values below a certain cut-o� value is mapped to zero and
the others to one. This transform is utilised as a simple method for isolating
regions of interest in an image. The last transform, shown in �gure A.8c, is an
inverse transform and is used to perform an inversion of the input's intensity
values.

(a) (b) (c)

Figure A.8: Commonly used intensity transforms.

The results of applying these transforms to a grayscale image, are illus-
trated in �gure A.9.
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(a) Input image (b) Power transformation

(c) Threshold transforma-
tion

(d) Inverse transformation

Figure A.9: Examples of intensity transformations.

A.5 Spatial Filtering

Spatial �ltering is a common operation in image processing. It is utilised for
tasks such as smoothing an image, determining the cross correlation between
images or highlighting and isolating certain features within an image. If inten-
sity transformations, discussed in the previous section, describes the mapping
of a single pixel's intensity from an input image to an transformed image, then
spatial �ltering describes the mapping of a group of pixels of an input image
to the transformed image.

With spatial �ltering, a 2D kernel is convolved or correlated with an input
image. Figure A.10 illustrates the process where a 3x3 kernel is convolved
over a input image. The kernel is slid over the input image with a one pixel
increment at a time. At each position the kernel's coe�cients are multiplied
with overlapping pixel values in the input image. The sum of the multiplied
coe�cients at each position, yields the output image's values.
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Figure A.10: Kernel convolution.

2D convolution is analogous to 1D convolution applied to a discrete sig-
nal. Equation A.2 demonstrates the process of a 1D discrete convolution while
equation A.3 demonstrates the convolution equation expanded for a 2D dis-
crete signal.

f [x] ∗ g[x] =
∞∑

k=−∞

f [k].g[x− k] (A.2)

f [x, y] ∗ g[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2].g[x− n1, y − n2] (A.3)

Similar equations can be written for image correlation. The di�erence for
correlation, is that the kernel is not �ipped as with convolution. Equation A.4
and Equation A.5 demonstrate 1D and 2D cross correlation between two dis-
crete signals.

f [x] ? g[x] =
∞∑

k=−∞

f [k].g[x+ k] (A.4)

f [x, y] ? g[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2].g[x+ n1, y + n2] (A.5)

Note that in practice the convolution and correlation can not be calculated
for pixels on the border of the input images since all the values of the kernel
would not overlap with input image values. Two methods of coping with
this limitation are available: either the input image could be padded with
additional pixels, or the output image would have a reduction in size. For
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padding the image, the following condition applies. The amount of pixels
padded around the image, is equal to (N − 1), where N is an odd number
that denotes the size of an N ×N kernel. For typical applications, the size of
N is chosen to be odd. Note that this is the amount of padding required to
yield an output image with the same size as the original input. In the case of
reducing the size of output image the size is as follow: (I.width−K.width +
1; I.height −K.height + 1), where the kernel is denoted by K and the input
image by I.

Image smoothing is the most common application �ltering. A number
of di�erent kernels exist, but the principle remains the same: a pixel in the
output image is based on the sum, or a weighted sum, of adjacent pixels in the
input image. The patch wise average of groups of pixels in the input image,
is thus calculated. This averaging causes the loss of high-frequency image
components and yields a smooth output. For these reasons, the smoothing
�lters are also referred to as low-pass or averaging �lters. A feature of these
smoothing operations is that a larger kernel o�ers more smoothing.

A kernel commonly used for smoothing operations is the Gaussian kernel.
Here the kernel consists of a 2D Gaussian distribution. The Gaussian distri-
bution is given by equation A.6. The Figure A.11 illustrates the application
of two Gaussian kernels with di�erent values to an image. Note that the larger
σ value yields more smoothing. Often the results are subjective and chosen
for the desired result based on appearance.

G(x, y) =
1

2πσ2
e−

(x2+y2)
2σ2 (A.6)

(a) Kernel A:
σ = 3

(b) Kernel B:
σ = 9

(c) Input image (d) Smoothed with kernel A (e) Smoothed with kernel B

Figure A.11: Gaussian smoothing with di�erent kernel sizes.
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Another application of spatial �ltering, is sharpening and edge detection.
With image sharpening, the high frequency components of an image are high-
lighted, yielding pronounced edges. An edge detection spatial �lter highlights
the high frequency components and discards the lower frequencies, yielding
just the sharp edges contained within the image. Figure A.12 illustrates the
use of a sharpening- and an edge-detection �lter applied to an image. Note
the similarity of the two kernels with only the centre coe�cient varying.

(a) Original image

(b) Edge detection (c) Image sharpening

Figure A.12: Spatial �ltering for edge detection and sharpening.

Morphological operations applied with spatial �lters is the last application
to be discussed discuss. With a morphological operations, the kernel di�ers
from the convolution kernel. The morphological kernel simply speci�es a logic
rule as the kernel is convolved over the image and does not specify numerical
values for each element in the kernel. Morphologic operations can typically be
used to isolate or merge certain regions or objects in a boolean image. The
four main morphological operations are: dilate, erode, open and close.

Dilation is used to enlarged structures in a binary image, while erosion is
used to shrink them. Dilation is typically achieved with the use of a 3 × 3
kernel where the output value is determined by the maximum value in the
area covered by the kernel. Erosion is achieved by using the minimum value
in the area covered by the kernel. Figure A.13 demonstrates the dilation of an
image using a 3× 1 kernel where the mapping of two positions of the kernel is
illustrated.
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Figure A.13: The operation of morphological �lters.

The open operation is achieved with a erode operation followed by a dilate
operation. The closing operation is achieved with a dilate operation followed
by a eroding operation. These two operations are useful for separating or
joining structures of an image whilst maintaining their size.

Figure A.14a shows an image of beans and a thresholded version of the
image in �gure A.14b. The the four morphological operations are applied to
the thresholded image to demonstrate their e�ects. In �gure A.14d, we note
that the erosion operator decreases the size of the rice grains. The size of the
grains are increased with the dilate operation shown in �gure A.14d.

The more useful operations are the open and close operations as illustrated
in �gure A.14. Note that the open operation separates adjacent entities in the
input image, while the close operation joins them. However, these operations
maintain the original size of the entities.
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(a) Original (b) Mask

(c) Dilate (d) Erode

(e) Open (f) Close

Figure A.14: The e�ects of di�erent morphological operations.
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OpenCV

OpenCV, as the name suggests, is an open source library for computer vision.
It is written in C and C++ with builds for a number of systems, including
Windows and Android. OpenCV has a strong focus on realtime video process-
ing, but is also employed for other image processing tasks. The library is free
for academic and commercial use under the BSD license agreement. Visit the
OpenCV website for additional information and download links to the various
library builds at: http://opencv.org. Full documentation, with API and
tutorials, is available here: http://docs.opencv.org.

Apart from the standard builds for OpenCV, there exists ports and wrap-
pers that allow use on other platforms not o�cially supported. A wrapper of
particular interest is a .NET wrapper known as EMGU. The EMGU wrap-
per allows the use of OpenCV's optimised image processing algorithms while
leveraging .NET's capabilities for the rapid development of interactive Win-
dows desktop applications.

For the implementation of the proposed algorithms in the text, the EMGU
library is selected and development conducted in C#. The IDE used is Mi-
crosoft's Visual Express that allows free use for non-commercial purposes. Us-
ing this environment, Windows desktop applications were created that use
OpenCV functions at its core.

The translation of the algorithms for use on any other OpenCV supported
platform is conducted with relative ease since the EMGU documentation spec-
i�es which base OpenCV functions are utilised. This allows for the easy im-
plementation of the algorithms directly on a mobile device, running Android
or IOS, once they are fully re�ned on a higher-level testing platform.

The EMGU installation, API documentation and Wiki is available here:
http://www.emgu.com. The EMGU download o�ers an installation �le that
installs the SDK. To use the libraries in a .NET application, one simply refer-
ences the EMGU DLLs provided in the SDK.

In the following three paragraphs we illustrate the simple use of the EMGU
library in C#. First we discuss how an image is represented, then it is demon-
strated how a video �le is iterated and lastly how an individual frame is pro-
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cessed. For an in depth guide to the algorithms available in OpenCV, their
use, practical implementation and mathematical equations, consult Learning
OpenCV [3]. Learning OpenCV o�ers the C++ code for a vast array of appli-
cations, however, these examples are found to be interpreted and translated
easily for use with EMGU.

Image Representation Images can be represented in multiple ways. The
image is declared based on its colour space and depth. The colour space can
assume any of those discussed in Appendix A.3 as well as a multitude of others.
The depth can assume any of the number depths available in the C# runtime.

Shown below is the declaration of images with di�erent colour spaces and
depths. To instantiate these images, a parameter has to be passed to indicate
the size of the image. This allows for the allocation of su�cient memory to
store the image.

Size size = new Size(50, 50);

Image<Bgr, byte> image_a = new Image<Bgr, byte>(size);
Image<Ycc, double> image_b = new Image<Ycc, double>(size);
Image<Gray, float> image_c = new Image<Gray, float>(size);
Image<Hsv, int> image_d = new Image<Hsv, int>(size);

The number of channels assigned to an image depends on the colour space.
Most, besides the gray space, consist of three. The code section below demon-
strates the separation of the channels of a colour image. The extracted chan-
nel is inherently a grayscale image. Since the middle channel is extracted, the
grayscale image represents the green channel of the original image. Note that
the depth of the two images have to remain the same during the extraction
since only a pointer to the existing data is used for the extracted image.

Image<Bgr, byte> image = new Image<Bgr, byte>(size);
Image<Gray,byte> green_channel = image.Split()[1];

Converting between colour spaces is conducted as demonstrated in the
following section.

Image<Bgr, byte> image = new Image<Bgr, byte>(size);
Image<Hsv,float> converted_image = image.Convert<Hsv,

float>();

Here a new depth can also be speci�ed, since a new image is created in
memory for the converted intensity values.

Capture A video �le consists of a series of still images captured at a cer-
tain frame rate. To perform operations on a video sequence, the frames can
be accessed sequentially from the start of a video �le. This is achieved using
the EMGU capture object. For processing �les, a Capture object is created
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that points to the video �le. The capture object is then queried repeatedly to
retrieve images from the video �le. The code below shows a typical implemen-
tation.

Capture capture = new Capture("c:\test.avi");
Image<Bgr, byte> video_frame = capture.QueryFrame();

while (video_frame != null)
{

ProcessVideoFrame(video_frame);
video_frame = capture.QueryFrame();

}

This section shows the common approach to processing a video using
OpenCV or EMGU. The �le is processed sequentially until the Capture object
returns a null, indicating that the end of the �le has been reached. Random
access to the video �le is allowed, but is considerably slower. Video �les are
typically compressed and the content of a speci�c frame is compressed along
with the content of its predecessor. The accessing of a random frame would
thus require the decompression of several of its predecessors.

Image Processing Once an image has been loaded into memory, it can
be subjected to a vast number of operations. The operations, or types of
operations, are too vast to discuss here. In the section below we give a simple
example of some operations performed on an image. This image could be part
of a video sequence or a still image obtained through a number of ways.

Image<Bgr, byte> image = new Image<Bgr,
byte>(@"C:\image.jpg"); //Creates a new image form
content located on the disk

Image<Gray, byte> gray_image = image.Convert<Gray, byte>();
//Converts the RGB image to a Gray image by averaging the
channels

Image<Gray, byte> scaled_image = gray_image.Resize(0.65,
INTER.CV_INTER_CUBIC); //Resizes the Gray image using
bi-cubic interpolation

scaled_image._ThresholdBinary(new Gray(128), new Gray(255));
//Thresholds the gray image for pixels with an intensity
greater than 128 and sets their intensities to 255

gray_image.Save(@"C:\gray_image.jpg");
scaled_image.Save(@"C:\scaled_image.jpg");
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Figure B.1 shows the input and output �les of the algorithm. Note the in-
place application of the thresholding to the scaled image. In place operations
are considerably more e�cient since the image does not have to be copied from
one memory location to another processing can start.

(a) image.jpg (b) gray_image.jpg

(c) scaled_image

Figure B.1: Image processing example.
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Code Discussion

In this section we discuss key points in the implementation of the algorithms
and give code samples where appropriate. Two key structures are designed,
namely the Frame- and Cluster class as illustrated in the UML diagrams in
�gure C.1. Each instance of the Frame class maps to a speci�c frame in the
video sequence while the Cluster class consists of a selection of Frame objects
that correlate and cover a speci�c region of the retina.

Figure C.1: UML diagram illustrating two main classes used for the imple-
mentation.

We discuss the two classes separately and aim to give a description of their
key properties and methods. First, however, we note the leverageing of image
windowing when utilising EMGU.

C.1 Windowing

OpenCV(and EMGU) o�ers the ability of having two images reference the
same underlying data. Typically, an image would be created in memory and
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another smaller image pointer would be created to point to a subsection of
this larger image. The area that the smaller images references is referred to
as an ROI (region of interest) of the larger image. The ROI is speci�ed as
a rectangle with an o�set and a speci�c length and width. The code section
below demonstrates the use of an ROI rectangles to reference a subsections of
a larger image. Operations that are performed on the on the subsections, are
re�ected in the larger image since they reference the same data.

Image<Gray, byte> image_a = new Image<Gray, byte>(new
Size(60, 60));

image_a.SetValue(255);

Rectangle roi_b = new Rectangle(new Point(10, 10), new
Size(30, 30));

Rectangle roi_c = new Rectangle(new Point(20, 20), new
Size(30, 30));

Image<Gray, Byte> image_b = image_a.GetSubRect(roi_b);
Image<Gray, Byte> image_c = image_a.GetSubRect(roi_c);

image_b._Mul(0.5);
image_c._Mul(0.5);

image_a.Save(@"C:\image_a.jpg");

The result of the above code is shown in �gure C.2. Here the halving of
the intensity of image_a is performed on two sections.

Figure C.2: Example of an operation applied to two sections of a larger image.

The bene�t of using the subregions is that certain operations can be per-
formed on a small region of an image with little overhead while keeping the
larger image intact. For the proposed application it proves bene�cial since
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cross correlation can be conducted on small sections of larger images. Another
bene�t is that by referencing the subsection directly the costly operation of
copying the image to another memory location is avoided.

C.2 Frame Class

As mentioned, each instance of the Frame class maps to a speci�c video frame.
As a video is parsed, a Frame object is created for each video frame in the
sequence. Many of these frames are quickly removed if they are not deemed �t
for use. After the Frame objects have been created, operations are performed
to highlight and extract data and they are then grouped together to create a
cluster.

Figure C.1 outlined the key methods and properties for a frame object.
The following paragraphs below describes each of these:

colour_image This image contains the actual content grabbed from the
video. From this colour image an ROI and mask are extracted. This images
is also thresholded to extract the blood vessels and form the feature_map.

feature_map This grayscale image contains the highlighted features from
extracted from colourimage.

mask The mask indicates the area of the frame possibly containing retina
and is calculated using thresholding methods on colour_image.

o�set This is a point structure indicating the o�set of a frame relative to a
�xed reference in the Cluster.

roi The ROI indicates the region of the image that contains retina and is
equal to the bounding box around the area marked by the mask.

frame_number This number indicates the frame in the video sequence to
which the object corresponds. It allows for re-fetching of data at a later stage.

Threshold As discussed in the text, thresholding is conducted in the YCrCb
colour space. The image is initially split into the three channels and the tresh-
olding is applied to each of them separately. The results are then combined
using an �AND� operation. The listing below demonstrates how the thresh-
olding is executed. Note that the mask is calculated on a down-sampled image
to increase the speed of the operation.
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Image<Bgr, Byte> thumbnail;
Image<Gray, Byte> mask_temp;
Image<Ycc, Byte> ycc;

mask = new Image<Gray, byte>(color_image.Size);

mask.SetZero();

thumbnail = color_image.Resize(color_image.Width /
SCALE_FACTOR, color_image.Height / SCALE_FACTOR,
INTER.CV_INTER_CUBIC);

ycc = thumbnail.Convert<Ycc, Byte>(); //Convert RGB image to
YCrCb colour space

Image<Gray, Byte>[] channels = ycc.Split();

Image<Gray, Byte> y_channel = channels[0];
Image<Gray, Byte> cr_channel = channels[1];
Image<Gray, Byte> cb_channel = channels[2];

cr_channel._ThresholdBinary(new Gray(128), new Gray(255));
//In place thresholding of the Cr channel

Image<Gray, Byte> tmp;

cb_channel._ThresholdBinaryInv(new Gray(128), new
Gray(255)); //In place thresholding of the Cb channel

tmp = y_channel.ThresholdBinary(new Gray(10), new
Gray(255)); //Thresholding of the Y channel to eliminate
dark colours

y_channel._ThresholdBinaryInv(new Gray(128), new Gray(255));
//Thresholding of the Y channel to eliminate bright
colours

y_channel._And(tmp); //Combining Y channel masks

mask_temp = cr_channel.And(cb_channel); //Combining Cr and
Cb masks

mask_temp._And(y_channel); //Combining all masks
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mask = SelectLargestRegion(mask); //Selects largest region
in mask

mask = mask_temp.Resize(color_image.Width,color_image.Height,
INTER.CV_INTER_CUBIC); //Resize mask to original size

CropToRoi Once the mask is calculated, the ROI is determined, indicating
the area containing retina and the feature_map is cropped to only include
this region. This is achieved by calculating the bounding rectangle around the
area indicated by the mask and discarding areas in colour_image that do not
fall within this region.

this.roi = FindRoi(); //Obtains the bounding box from the
frame's mask

mask = mask.GetSubRect(roi);
color_image = color_image.GetSubRect(roi);

MatchFrame The MatchFrame method aims to determine the o�set of a
frame's content relative to another frame. This method is reserved for consec-
utive frames and when calling it, a close-to-zero o�set between the two frames
are expected. It is important to note that all frames in a cluster will have an
o�set calculated in a shared coordinate system. The o�set would point from
the origin of the cluster to the top left corner of a cropped section of frame as
illustrated in �gure C.3 where the, V1 and V2, describe the positions.

A problem arises when the frames are cropped according to their ROIs,
since the close-to-zero o�set is compromised. This is demonstrated in �gure C.3
where the overlapping ROIs for two consecutive frames are shown. If there is
a large shift in ROIs positions, the close-to-zero translation estimate does not
hold true, even though the actual scene did not experience any translation.

In �gure C.3 the actual o�set has not been determined yet, but in this
instance we estimate it to be zero (VSceneTranslation = 0). The frames are
expected to overlap with a zero o�set, however, the overlap of the ROIs will
di�er.
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Figure C.3: Vectors describing the positions of overlapping consecutive frames
and their ROIs.

In this scenario the goal is to determine the vector V2, given all the other
information. If the scene translation is ignored, V2 can be expressed as shown
in equation C.1.

VFrame2 = VFrame1 + (VROI2 − VROI1) (C.1)

In the code implementation, a rough estimate of V 2 is calculated and VSceneTranslation
is then estimated by calculating the cross correlation of the overlapping sec-
tions of ROI. The code listing below show the initial calculation of V2.

frame.offset.X = this.offset.X + (frame.roi.X - this.roi.X);
frame.offset.Y = this.offset.Y + (frame.roi.Y - this.roi.Y);

After the translation for a cropped section is estimated, the original concept
of a subregion in a larger frame is discarded and the frame simply treated as
a clipped section with an absolute o�set in a cluster.

Using the initial estimate of V2, the overlap of the two sections are ex-
tracted. Frame1's image is padded with a prede�ned amount of pixels (i.e. 5
pixels). The cross correlation between the padded section for frame1 and the
section for frame2, is calculated. The listing below shows the padding as well
as the correlation calculation.

this.CalculateOverlap(frame); //Calculates the overlapping
sections of the frames. The overlap is stored as a
private member for both frames.
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Image<Gray, Byte> image_a = new Image<Gray,
byte>(this.overlap.Size); //Creates an image for the
frame's overlapping section

Image<Gray, Byte> image_b = new Image<Gray,
byte>(frame.overlap.Size);//Creates an image for the
frame's overlapping section

frame.feature_map.GetSubRect(frame.overlap).CopyTo(image_b);
//Copies the data for the frames overlapping section

this.feature_map.GetSubRect(this.overlap).CopyTo(image_a);
//Copies the data for the frames overlapping section

Image<Gray, Byte> image_a_padded = new Image<Gray,
Byte>(image_a.Width + window, image_a.Height + window,
new Gray(0)); //Creates an image slightly larger than
image_a

CvInvoke.cvCopyMakeBorder(image_a, image_a_padded, new
Point(window/2, window/2), BORDER_TYPE.CONSTANT, new
MCvScalar(0));//Pads image_a

Image<Gray, float> cross_correlation = new Image<Gray,
float>(image_a_padded.Width - image_b.Width + 1,
image_a_padded.Height - image_b.Height + 1); //Creates an
image for the cross-correlation result

cross_correlation = image_a_padded.MatchTemplate(image_b,
TM_TYPE.CV_TM_CCORR);

Once the correlation is calculated, VSceneTranslation is extracted from the corre-
lation result by locating the peak. The listing below shows the locating of the
peak and the addition of VSceneTranslation to the initial V2 estimate.

//Output parameters for finding max location in
cross-correlation (Only using max_val)

Point max_loc = new Point(0, 0);
Point min_loc = new Point(0, 0);
double min_val = 0;
double max_val = 0;

CvInvoke.cvMinMaxLoc(cross_correlation.Ptr, ref minVal, ref
maxVal, ref minLoc, ref maxLoc, IntPtr.Zero);//Search
image for minimum and maximum points
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//Adds the value of Vscene translation to V2
frame.offset.X += maxLoc.X - window/2;
frame.offset.Y += maxLoc.Y - window/2;

As discussed in the text, in order to avoid the phenomenon of dead reck-
oning, each new frame is averaged with the previous frame. The listing below
demonstrates the accumulation of the data.

this.CalculateOverlap(frame);//New overlap is calculated for
refined offset

image_a = feature_image.GetSubRect(this.overlap);//Select
overlapping region

image_b = frame.feature_image.GetSubRect(frame.overlap);
//Select overlapping region

image_a._Mul(0.5); //Adjust accumulating weight
image_b._Mul(0.5); //Adjust accumulating weight

image_a = image_a + image_b;

C.3 Cluster

A Cluster object consists out of a number of Frame objects that are regis-
tered to a �xed reference point. In this section we describe the methods and
properties as outlined in �gure C.1.

frames - A list of Frame objects that together form the content of the
Cluster.

hog_descriptor - The histogram of gradients descriptor for the cluster.

composite - An image composed from the featuremaps of the individual
Frame objects.

divider - A map of the amount of data accumulated for speci�c areas of the
composite.

RealignFrames When the frames are registered, the location of the �rst
frame in the cluster is regarded as the origin. This has the e�ect of a scene
translation in the western direction to yield frame o�sets that are negative.
The realign method shifts the frames such that they all have a positive o�set.
Figure 3.11b demonstrates this.
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(a) Frames with a negative o�set (b) Realigned frames

Figure C.4: O�set shift of a set of frames.

After the frames are shifted, the required size for the composite image is
determined by locating the furthest data points on the x- and y-axis.

The listing below demonstrates the shifting and size estimation.

int x_min = Int32.MaxValue;
int y_min = Int32.MaxValue;
int width = 0;
int height = 0;

foreach (Frame frame in this.frames)//Iterate all frames
{

if ((frame.offset.X < x_min)) //Determine smallest
x-offset

{
x_min = frame.offset.X;

}

if ((frame.offset.Y < y_min)) //Determine smallest
y-offset

{
y_min = frame.offset.Y;

}

if (((frame.offset.X + frame.roi.Width) >
width))//Determine biggest x-offset

{
width = frame.offset.X +

frame.roi.Width;
}
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if (((frame.offset.Y + frame.roi.Height) > height))
//Determine biggest y-offset

{
height = frame.offset.Y + frame.roi.Height;

}

}

width -= x_min; //Determine collective width
height -= y_min; //Determine collective height

foreach (Frame frame in frames)
{

frame.offset.X -= x_min; //Remove total x-offset
frame.offset.Y -= y_min; //Remove total y-offset

}

return (new Size(width, height)); //Return the size
collectively spanned by frames

DrawFrames The DrawFrames method creates a composite image of the
frames contained in the cluster. A pixel's intensity in the composite image is
equal to the average of the various frame intensities at that point.

When the frames are to be drawn, the �rst task is to realign the them
and to determine the size of the composite image using the RealignFrames
method.

Thereafter, the frames are iterated and accumulated at their respective
positions. There will be areas of the composite image that has more frames
accumulated than others. After the accumulation, the composite image is
divided by a map that indicates how much data is accumulated at each pixel.
The divider_map is constructed by accumulating the mask of the frames
in a similar manner as the data is accumulated. Areas of the cluster that
contain more accumulated data would thus consist of bright regions on the
divider_map.

The listing below demonstrates the accumulation of the data for the composite,
as well as the accumulation for the divider_map. Once the images have been
constructed, the composite is divided by the divider_map. Note that the
depth used for the images is �oat, not byte, since the accumulated values are
expected to exceed the 255 range limit for bytes.

foreach(Frame frame in frames){
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Rectangle drawing_region =
new Rectangle(frame.offset.X,frame.offset.Y,
frame.feature_image.Width,frame.feature_image.Height);

matching_region_composite =
composite_float.GetSubRect(drawing_region);

matching_region_divider =
divider.GetSubRect(drawing_region);

// Image<Gray, Byte> mask_sub =
mask.GetSubRect(drawing_region);

Image<Gray, float> mask_sub_float =
mask_sub.Convert<Gray, float>();

Image<Gray, float> d = new Image<Gray,
float>(mask_sub.Size);

Image<Gray, float> divtmp =
matching_region_divider.Add(d); //Was new Gray(1)

mask_sub._Or(frame.mask);

img = frame.feature_image.Convert<Gray,float>();

Image<Gray, float> tmp =
matching_region.AddWeighted(img, 1, 1, 0);

tmp.CopyTo(matching_region);
divtmp.CopyTo(matching_region_divider);

}

Image<Gray,float> composite_float_divided =
composite_float.Mul(1/divider);

composite = composite_float_divided.Convert<Gray, Byte>();

}
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AddCluster The AddCluster method is used to combine two clusters after
their relative o�set from one another has been determined. The frames of
one of the cluster is removed, the relative o�set added to them and then they
are added to the other cluster.

After the frames are combined in one Cluster, a new composite image for
the is created.

CalculateHogDescriptor A discussion on the calculation and use of the
hog descriptor, is given in the text. The �rst step is the construction of the
kernels for a prede�ned number of orientations and the known blood vessel
width. These kernels only have to be constructed once not and for every
descriptor calculated. The listing below demonstrates this construction.

int kernel_width = bloodvessel_width * 3;

Image<Gray, float> line = new Image<Gray,
float>(kernel_width * 2, kernel_width * 2);

line.SetValue(-1);

Point point_1 = new Point(kernel_width,0);
Point point_2 = new Point(kernel_width,kernel_width*2);

line.Draw(new LineSegment2D(point_1, point_2), new Gray(1),
bloodvessel_width); //Draw a line segment that serves as
a blood vessel representation

double angle_increment = 180 / directions; //Rotation
increment between consecutive kernels

Image<Gray, float>[] kernels = new Image<Gray,
float>[directions];//Create an array to store kernels

for (int i = 0; i < directions; i++)
{

Image<Gray, float> kernel = new Image<Gray,
float>(kernel_width, kernel_width);//Create new
kernel image

kernel = line.GetSubRect(new Rectangle(c.X -
kernel_width / 2, c.Y - kernel_width / 2,
kernel_width, kernel_width)); //Select sub-region
from the line segment to serve as kernel
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double average = kernel.GetAverage().Intensity;
//Calculates average intensity

kernels[i] = k1;//Adds kernel to array
line = line.Rotate(angle_increment, new

Gray(0));//rotates line section with a increment
}

Once the kernels are in place, they are employed to determine the amount
of features that are orientated in the various directions. The listing below
demonstrates the implementation. Here an image is correlated with a speci�c
kernel and the sum of the resulting intensity map is noted. This sum is con-
sidered to be the weight of the features that share the same orientation as the
kernel. This process is repeated to calculate the weight in all directions an the
result is noted in an array of integers.

for (int i = 0; i < directions; i++)
{

Image<Gray, float> composite_float = composite.Convert<Gray,
float>();

Image<Gray, float> correlation =
composite_float.MatchTemplate(k1,
TM_TYPE.CV_TM_CCORR);//Correlation image with kernel

Image<Gray, float> mask = correlation.ThresholdBinary(new
Gray(0), new Gray(1)); //Create mask representing
positive values

correlation._Mul(mask); //Reject negative values

hog_descriptor[i] = correlation.GetSum().Intensity; //Enter
weight into histogram

}

MatchHogDescriptors The matching of descriptors is conducted in a sim-
ple method by calculating the total square di�erence between the weights of
the di�erent orientations. The smaller the distance; the better the match.
This distance is returned by the methods and can be used as a relative score.

MatchCluster Cluster matching is implemented in a manner similar to
the method described for Frame matching. The only di�erence is that the
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clusters are correlated over a larger region since there is no initial estimate to
where two random clusters overlap. The composite images of the two Cluster
objects are used for the matching process.
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Appendix D

Physical Setup

To digitise the analog ophthlamoscope, an image sensor has to be attached to
it. Various solutions exist, for instance, the use of a webcam or DSLR camera,
however, a mobile phone takes preference. The use of a mobile phone and its
onboard camera, is proposed. A mobile phone is selected over any other device
containing an image sensor for the following reasons:

� The ubiquitous use of mobile phones.

� The interactive capabilities of the device. The user can interact with the
data as it is being captured.

� The ease of writing custom software. The custom software can guide
the examiner during the capturing process or process the data before
transmitting it.

� The direct visual feedback on the screen.

� The telemedicine capabilities of sending the data directly from the device.

� A mobile device is lightweight and does not interfere with the examina-
tions.

Figure D.1 shows the prototype used for the study. It consists of a mo-
bile phone attached to an ophthalmoscope. The phone is placed in the same
position as the examiners eye would be. Any light that would normally be ob-
served by the examiner is now captured by the device's camera and displayed
on the screen.
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Figure D.1: The prototype used to conduct the research.

A trigger button connected to the phone's audio jack, allows the examiner
to only record sections of the process. The button eliminates the need to
interact with the device using the touch screen, as this can hinder the precise
positioning of the scope to achieve a clear view of the fundus. The examiner
would thus hold the scope in one hand while controlling the recording with
the other.

The ophthalmoscope used, is the Welch Allyn Pan Optic. It is a hand-
held, analog, battery operated ophthalmoscope that o�ers an increased FOV
of 25◦ over the 5◦ typical for smaller handheld ophthalmoscopes. The battery
operated feature means it is portable and ideal for use in the �eld while the
increased �eld of view yields better visuals of the fundus for a slight increase
in price.
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Appendix E

Android Application Proof of

Concept

A proof of concept was developed to illustrate the possibility of processing the
images directly on the mobile device. The OpenCV build for Android was
utilised and some of the basic functionality of the algorithms discussed in the
text, were implemented.

Due to the limited resources available on the device, certain compromises
were made. Firstly the videos were recorded at a very low frame rate, to reduce
the data to be parsed. And secondly, there was more reliance placed on the
user to guide the process.

To classify the frames, they are sorted based on the amount of content
they contain in the desired colour range and the user prompted to select the
best from the collection. Shown in �gure E.1 are the frames as sorted by the
application. The frames with the white borders are those selected by the user.
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Figure E.1: A selection of frames presented to the user.

Once the desired frames are selected, the user instructs the application
to stitch them together. To register the frames exhaustive cross-correlation
matching is performed between them to �nd their relative o�sets. This ex-
haustive search is not scalable, but proved su�cient for the proof of concept.
In this example only �ve frames were used. Shown below, in �gure E.2, are
the combined frames.
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Figure E.2: Retinal images as combined on the device.

It was found that the resources were to limited to implement and execute
the designed algorithms in full. Problems arose with the speed of parsing
the video and the large amount of memory required for image processing in
general. Also, the OpenCV build for Android is relatively new and lacks a
lot of the functionality o�ered by the full build. Even though these problems
exist, a full implementation of the algorithms could be realised on a mobile
device in the near future. The capabilities of mobile devices are also increasing
rapidly and the OpenCV build for Android is actively being developed.
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Appendix F

Proposed Work�ow

The proposed work�ow utilises the physical setup, as demonstrated in Ap-
pendix D, and two software packages to implement the algorithms discussed
throughout the text. The �rst software package is an application that runs on
the mobile device that captures a video from the ophthalmoscope. The second
package runs on a PC and conducts the processing the captured data. The
following two paragraphs discuss the use of the Android capture application
and the processing of the captured videos on a PC.

F.1 Android Capture Application

The Android application is a custom application that allows the examiner to
create a record for each session conducted with a patient. The launch screen is
shown in �gure F.1. Here, the examiner is prompted for an optional identi�er
for the patient. A record for the patient along with a timestamp of the session
is stored in an XML sheet on the device. An example of an XML sheet
containing session records, is shown in Appendix G.
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Stellenbosch University  http://scholar.sun.ac.za



APPENDIX F. PROPOSED WORKFLOW 123

Figure F.1: Patient identi�er prompt screen.

Once the identi�er is entered, the start button is clicked. A live feed from
the camera is shown on the screen of the mobile device. Figure F.2 shows a
screenshot of the video feed and further operator instructions.
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Figure F.2: Video feed on Mobile Device.

The examiner can now use the video feed to adjust the focus of the ophthal-
moscope and conduct the examination as usual. A push button is provide that
allows the examiner to record sections of the examination is provided. The
examiner uses the button to start recording when a clear view of the fundus
is obtained. The push button o�ers an unobtrusive manner for the examiner
to do the �rst level of classi�cation of the data obtained. The alternative is to
record the entire session and have a much longer video to parse. The added
push button thus signi�cantly reduces the amount of data to be classi�ed by
the software algorithms and greatly increases the performance of the system.
As many sections as desired can be recorded in a session with all the cap-
tured data saved to the device's memory as segmented video �les. Once the
examination is complete, the application is be exited. At this stage, a new
examination can be started or the ones already conducted, can be processed
on a PC.

F.2 Processing the Data

The data can either be processed directly by the examiner or at a later stage by
another user. To start, the mobile device is connected to a PC via a USB cable.
The software is started and all the sessions recorded with the mobile device
are displayed in the startup screen as shown in �gure F.3. The information
displayed here is derived from the XML records stored on the device. A session
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is selected to be processed. At this stage, the relevant video �les are copied
from the device to the PC to start processing.

Figure F.3: A list of records to be processed is displayed to the user.

The video �les are all parsed and their frames are sorted into clusters.
The videos are processed at a reduced resolution to increase the speed of the
processing. Larger images require more time to be copied into memory and
the correlation operations get slower as the size increases. Another method to
conserve memory, is not to retain the frame content in memory. This would
quickly result in the application running out of memory. Instead pointers to
the speci�c frames in the relevant videos are retained. The only data retained
in primary memory, is the composite images of each cluster. After the clusters
have been created, they are displayed to the user as shown in �gure F.4.

Figure F.4: The initial clusters constructed by parsing the video �les.

At this stage the user can manually sort and join the clusters or initiate the
automatic grouping. To join the clusters manually the user simply holds down
the `+' character and drag a cluster over another. The best o�set estimate
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between the clusters is calculated and the frames of the two clusters are joined.
A new composite image for the cluster is calculated.

When grouping the clusters automatically, the matching scheme (discussed
in the text) is used to sort the bulk of the clusters. The result is several large
clusters and numerous low quality clusters that could not be joined as shown
in �gure F.5.

Figure F.5: Clusters constructed by joining several smaller ones.

The user can also manually join any remaining clusters missed by the sort-
ing algorithm.

The last step is the investigation of the clusters. The user double clicks
a cluster to bring up the cluster scaled to the original capture resolution.
Here the user can select a section of the cluster to be reconstructed. The
frames constituting the selected section are fetched from the video �les and
recorrelated to form a high-resolution estimate. The new estimate consists of
numerous frames and contains more detail than an individual frame.
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XML Record Storage

The examination records are stored in a XML �le on the mobile device. The
listing below shows a typical XML sheet containing three session records. Each
record contains four �elds. The �rst is an identi�er unique to each record. This
identi�er is used to indicate a unique folder that contains the video �les speci�c
to the record. The second is the name associated with the record. The name
does not have to be unique. This allows for multiple records for a speci�c
patient. The third property is a timestamp. The timestamp indicates the
time of the examination and allows for the monitoring of the progression of a
condition. The last �eld indicates whether a record has been processed. This
is set after a record has been processed on a PC.

<?xml version='1.0' encoding='UTF-8'
standalone='yes' ?>

<records>

<record>
<id>fc952342-6516-4cd9-a1fb-29eb33d10261</id>
<name>Renly Baratheon</name>
<timestamp>2013-01-01T03:49:05</timestamp>
<processed>false</processed>

</record>

<record>
<id>458956d7-ab5f-4678-8149-aeeea5c59f7e</id>
<name>John Snow</name>
<timestamp>2013-01-01T03:49:49</timestamp>
<processed>false</processed>

</record>

<record>
<id>a94e1b38-2a0c-436e-8f14-a4505df537e7</id>
<name>Ned Starke</name>
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<timestamp>2013-01-01T04:02:19</timestamp>
<processed>false</processed>

</record>

</records>

Stellenbosch University  http://scholar.sun.ac.za



Appendix H

Ideal Cross-Correlation Peak

Shape

The shape of the cross-correlation peak, yields information on the data being
correlated. Typically an elongated peak indicates the predominant orientation
of the features correlated. This attribute is suggested for use in �ow estima-
tion of particles, where a long-exposure rate causes a blur in the direction of
the �ow. The �ow direction is then extracted from the cross correlation of
consecutive frames [24].

In this application, the elongated peak is not desired since it indicates
an uncertainty to the exact location of the peak. Much similar to the �ow
of particles, an elongated peak indicates the �ow of features, an undesired
observation.

As mentioned in the text, the pro�le of a blood vessel is often estimated
with a Gaussian curve. We use this curve to prove certain concepts and at-
tributes of the cross-correlation peak. A two-dimensional Gaussian curve is
de�ned in equation H.1 that o�ers an elliptical Gaussian distribution as shown
in �gure H.1. The shape of the curve is speci�ed by the variance in the x- and
y-direction (σ2

x and σ
2
y respectively).

f(x, y) = Ae
−
((

(x−x0)
2

2σ2x

)
+

(
(y−y0)

2

2σ2y

))
(H.1)
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Figure H.1: 2D Gaussian curve.

To resemble the appearance of a blood vessel, variance in the y-direction
(σ2

y) is set the to in�nity. For simplicity the x-o�set (x0) is set to zero. Equa-
tion H.2 demonstrates the result while �gure H.2 shows the resulting curve.

f(x, y) = Ae
−x2

2σ2x (H.2)
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Figure H.2: Elongated 2D Gaussian curve.

To demonstrate the e�ect of cross correlation of blood vessel the auto-
correlation for equation H.2 can calculated along the x-axis. The y-component
is ignored since the function is independent of y. Two identical blood vessels are
assumed and thus calculating the auto correlation of the blood-vessel pro�le
is equivalent to calculating the cross correlation.

Continuous cross correlation is given by equation H.3.

(fFg)(x) =

∫
f(τ)g(x+ τ)dτ (H.3)
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The function in equation H.2 is substituted into equation H.3 as given by
equation H.4.

(fFf)(x) =

∫ ∞
−∞

Ae
−τ2

2σ2x Ae
−(x+τ)2

2σ2x dτ (H.4)

The simpli�cation of the correlation function is given by the following equa-
tion (equation H.5).

∫ ∞
−∞

Ae
−τ2

2σ2x Ae
−(x+τ)2

2σ2x dτ =

∫ ∞
−∞

A2e
−τ2−(x2+2xτ+τ2)

2σ2x dτ

= A2e
− x2

2σ2x

∫ ∞
−∞

e
−2τ2

2σ2x e
−2xτ

2σ2x dτ

Note that, ∫ ∞
−∞

e−aτ
2

e−2bτdτ =

√
π

a
e
b2

a

therefore,

a =
1

σ2
x

b =
x

2σ2
x

and thus,

(fFf)(x) = σx
√
πA2e

−x2

4σ2x

(H.5)

An important attribute of the resulting function in equation H.5 is that it
yields a Gaussian curve with a higher peak and a larger variance. In �gure H.3
the resulting correlation curve is shown.
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Figure H.3: Auto correlation of elongated Gaussian curve.

Note that the peak of the cross correlation is simply a ridge and that the y-
o�set between the two functions can not be determined. In a similar manner to
the example above, the cross correlation for identical blood vessels positioned
along the x-axis, can be determined.

A useful property of the cross-correlation operation, is that it holds valid
against the distributive law. Equation H.6 demonstrates this law.

fF(g + h) = fFg + fFh (H.6)

Using the distributive law, the cross correlation for an image containing
features along the x-axis as well as the y-axis, can be calculated by summing the
two individual results. The resulting cross correlation is shown in �gure H.4.
Note the strong and easily locatable peak. The `�ow 'of the peak is signi�cantly
reduced.
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Figure H.4: Combination of two elongated Gaussian curves at di�erent orien-
tations.
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From this result, we deduce that the wider the range of orientations in the
features that are to be correlated, the more certain the cross-correlation peak
is.

The ideal solution would be to have features in all possible directions.
This is simulated by integrating the correlation result over a 180◦ rotation.
The integration yields the sum of the cross correlation in all directions. The
calculation of this sum is allowed by the distributive law.

A variation of the Gaussian function that allows for the speci�cation of the
orientation of the curve is given in equation H.7. The orientation is speci�ed
by the angle θ.

f(x, y) = Ae−(a(x−x0)
2)+2b(x−x0)(y−y0)+c(y−y0)2)

where:

a =
cos2 θ

2σ2
x

+
sin θ

2σ2
y

b =
sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

(H.7)

Again, the variance in the y-direction is set to in�nity. The variance is set
to the variance obtained in equation H.5 such that σ2

x
′ = 2σ2

x. The o�sets, x0
and y0, are set to zero. The amplitude is speci�ed as A′, where A′ = σx

√
πA2,

the amplitude calculated in equation H.5. The resulting integral is given by
equation H.8. ∫ π

0

A′e
−(x2 cos2 θ

2σ2x
′ +2xy sin θ cos θ

2σ2x
′ +y2 sin2 θ

2σ2x
′ )dθ

which simpli�es to: ∫ π

0

A′e
− 1

2σ2x
′ (x cos θ+y sin θ)

2

dθ (H.8)

Equation H.8 is solved using numerical methods with the result shown in
�gure H.5a. The resulting curve resembles a modulated radially symmetrical
Gaussian curve. If a Gaussian curve is �tted to the function it is found to
have variance three times that of the original blood vessel in equation H.2.
Figure H.5b shows a Gaussian distribution with a matching variance of 3σ2

x.
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(a) Numerically integrated function
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(b) Matching Gaussian curve

The deduction can be made that the ideal cross correlation peak for a
scene containing blood vessels with a Gaussian pro�le with a variance of σ2

x,
is a function resembling a radially symmetrical Gaussian distribution with a
variance of 3σ2

x.
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Appendix I

Cross-Correlation Execution Time

Derivation

When matching two images using cross correlation, the template image is slid
over the reference image and the sum of the multiplication of all overlapping
pixels, are noted at each position.

If the reference image and the template is the same size, the reference image
has to be padded to allow the sliding of the template. Figure I.1 notes the
two images with both dimensions N × N and the reference image padded by
P × P pixels.

Figure I.1: Parameters of the sensed and reference images.

Adapting the cross-correlation equation given in equation A.3, the two
�nite signals yields equation I.1 where g[x, y] is the reference image and f [x, y]
is the template image. Figure I.2 demonstrates this process.

f [x, y]Fg[x, y] =
P∑

p1=0

P∑
p2=0

N∑
n1=0

N∑
n2=0

f [n1, n2].g[x+ n1 + p1, y + n2 + p2] (I.1)
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Figure I.2: Sensed image being slid over reference image.

At each position that the template image assumes, all its pixel values are
multiplied with the corresponding reference image pixels. This operation would
require N ×N individual multiplications. The total amount of possible posi-
tions that the template image can assume, is equivalent to the padding around
the reference image. For a padding of P , P × P positions can be assumed.

Since the number of multiplications at each position is equal to N ×N and
P ×P positions can be assumed, the total number of individual multiplication
operations required to calculate the cross correlation between two images, can
be described by equation I.2.

multiplications = P 2 ×N2 (I.2)
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