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Abstract

Network simulations generate large volumes of data. This thesis presents an animated

visualization system that utilizes the latest affordable Computer Graphics (CG) hardware

to simplify the task of visualizing and analyzing these large volumes of data. The use of

modern CG hardware allows us to create an interactive system which allows the user to

interact with the data sets and extract the relevant data in real time. We also present an

alternate approach to the network layout problem, using Self Organizing Maps to find an

aesthetic layout for a network which is fundamental to a successful network visualization.

We finally discuss the design and implementation of such an network visualization tool.
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Opsomming

Netwerk simulasies genereer groot volumes data. Hierdie tesis stel voor ’n geanimeerde

visualisering wat gebruik maak van die nuutste bekostigbare rekenaar grafika hardeware om

die visualisering van groot volumes data te vergemaklik. Die gebruik van moderne rekenaar

grafika hardeware stel ons in staat om sagteware te skep wat n gebruiker in staat stel om

met die data te werk. Ons stel voor ’n alternatiewe benadering om die netwerk se uitleg

daar te stel, met die hulp van tegnieke wat gebruik word in die studie van neurale netwerke.

Ons bespreek dan die ontwerp en implementering van so ’n netwerk visualisering program.
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Chapter 1

Introduction

1.1 Information Visualization using Modern Computer

Graphics Hardware

Recently the computer graphics (CG) industry has undergone a major transformation. State

of the art CG hardware is now available to the consumer at a fraction of its previous cost,

creating a market that will drive CG technology for years to come.

The introduction of Graphics Processing Units (GPUs), a dedicated programmable graph-

ics chip, enables complex and information rich visualizations. The popularity of these

GPUs has prompted several companies to write high level Application Programming Inter-

faces (APIs) to make these GPUs easy to program.

The goal of this thesis is to visualize Multiprotocol Label Switching (MPLS) networks.

To achieve this goal we have to address a number of problems: defining an efficient in-

put/output system, utilizing the graphics hardware properly and obtaining an appropriate

metaphor to visualize MPLS networks.

Simulating a large computer network on a PC-class computer is likely to encounter scal-

ability problems. The same holds true for network animation. For a network animation

to be successful, a certain visual quality must be maintained. Since all the data cannot be

displayed at once the user might also be required to interact with the animation to extract

pertinent data.

Until recently PC-class computers were not capable of providing such functionality.

While such computers are capable of determining the specifics of the animation, they can-

not update the display fast enough for the animation to be of a satisfactory visual quality.

3
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In the late 1990’s specialized graphics hardware was designed to overcome this short-

coming. Although this solved the problem of animation, it did not solve the aspect of real

time interaction. A network animation might have hundreds of links transporting millions

of packets. Being able to interact with such an animation requires the Central Processing

Unit (CPU) to make millions of calculations per second which saturates the CPU’s ability

to perform other operations that render the animation.

The Graphics Processing Unit (GPU) solves this problem by freeing up the CPU from

graphics calculations. This can be viewed as a form of a parallel processing; while the

CPU determines what is to be drawn, the GPU computes the transformations and renders

the scene.

Although this technology was mainly intended for computer games, other fields such

as Information Visualization also benefited. GPU performance increases at approximately

three times the rate of Moore’s Law cubed [1]. The capability of visualization packages

will therefore increase dramatically.

1.2 Overview

As stated above, our goal is to visualize the quality of service, or QoS, in MPLS networks.

It is widely recognized that the MPLS network protocol can secure delivering guaranteed

QoS in next generation networks and we therefore selected this protocol as our visualization

goal. We will start with basic topology visualizations of networks and progress towards

visualizing more complex phenomena within networks.

One could also have used a graphical metaphor to convey the current state of the network

to a network engineer, but we feel that it could be difficult for someone not familiar with

the metaphor’s meaning to gain insight into a network. We therefore chose the node/link

layout visualization as a basis to serve as an intuitive approach in visualizing network data.

Chapter 4 explains how we expand on this idea to visualize network protocols.

This approach does not come without it’s own set of problems. Large networks can

quickly saturate screen space and create confusion about the connectivity of the network.

Since current computer displays are relatively small this problem can never be avoided.

However, one can employ a set of techniques that attempt to prevent such a scenario from

occurring. The use of bigger or multiple displays, the use of layout algorithms ( Chapter 2

) and the use of 3D graphics are but to name a few. One could also divide the network into

a hierarchical set of clusters if the network becomes too large to visualize. These clusters

might expand or contract on user demand to retain all network information as needed [2].

There aren’t any limitations concerning the origin of the visualization data. Since in-

terfacing with the visualizer is accomplished through a set of C++ libraries, any program
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with data that can be visualized with the node/link layout paradigm can be interfaced with

the visualizer with minimal effort. We avoid designing complicated scripting languages to

interface the data source with the data visualizer, as these scripting methods are tedious to

implement, generally slow and result in huge trace files. We did however make use of C++

member function pointers to serve as an optimized low level connection between the data

source and the visualization. We elaborate on this in Chapter 5.

Since network data vary over time, network animation plays an important part of the

of the visualization software’s design. For an animation to be successful the network dis-

played should at least update once every 30 msec to allow the user to interact with the

visualization. Interaction can be viewed as a very important part of the data extraction

process. For large networks users will be required to navigate hundreds of links and nodes

to focus on parts of the network that are important. One of the key concepts behind infor-

mation visualization research, is to enhance understanding of a domain by relying on the

ability of humans to rapidly recognize and make sense of large volumes of visualized data.

Writing structured code that performs well enough to be used for an animation is difficult

to achieve. Object oriented code tend to run slower than classic coding methods because of

the overhead associated with member function calls. A short discussion on how we attempt

to balance these two paradigms of coding in our project to achieve animation is discussed

in Chapter 3.

1.3 Network Visualization Background

With the rapid increase of computational power Computer Scientists began using comput-

ers for more than their ability to process numbers. Users could start to interact with the

computer in different ways one of which was to visualize complex phenomenon in such a

way that a better understanding of the problem under investigation could be gained.

Companies such as Silicon Graphics [3] started manufacturing specialized graphics work-

stations that were able to process much more complex visualizations than any personal

computer. It was on these specialized workstations that the development of the first net-

work visualizations were based. Few people had access to these expensive systems and the

lack of standards that are in place today hindered the progress of information visualization.

Although the basic groundwork of network visualizations began in the 1980’s, for exam-

ple the basic node/link representations and matrix representations by Bertin [4], we discuss

the work done in the mid nineties on graphics workstations as this is more related to our

current work. We will demonstrate how the problems that occurred in the mid nineties are

solved by using modern day computer graphics hardware.
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Becker, Eick and Wilks [5] introduced a visualization system called SeeNet which pro-

duced static 2D layouts of networks on geographic backgrounds to give more insight into

the geographic relationships of the networks. The problem encountered was that geo-

graphic layouts are highly susceptible to display clutter, where many links are overdrawn

in close proximity because of the particular geographic layout. To solve this they intro-

duced an information culling system where links that are “interesting” or most overloaded

are drawn last in such a way that they obscure the less interesting links below. Node maps

are also introduced where information about all links connected to a particular node are

aggregated into one parameter and visualized by the appropriate metaphor at the node’s

location. It was suggested that this technique solves the cluttering problem, but maybe too

aggressively as much link information is lost due to the aggregation of link data. Alterna-

tively they suggest a network layout that has no geographic information at all, consisting of

a network visualized as a matrix. Each node is assigned to a row i and column j and a link

connecting node i to node j is then coloured at position (i, j) according to the link load

from i to j. They then introduce the important concept of dynamic parameter focusing.

This requires the user to adjust certain parameters that govern the visualization to produce

a clearer view of the network data. The dynamic part entails display updates as the user

changes a particular parameter. Users are therefor required to use their cognitive skills to

adjust parameters in such a way as to obtain the optimum visualization.

Eick, Cox and Taosong [6] continued to develop SeeNet3D which uses 3D network dis-

plays to solve the display clutter problem. They introduce five novel ways of visualizing

time varying network data. The first two consist of geographical arc maps connecting

nodes located on either a sphere or a flat surface containing the earth’s continents which

are then viewable in 3D. The rest are so called “drill down views” that focus on certain

portions of a network for more in-depth information. They report that these techniques

are suitable for 1sparse networks, but for larger networks display clutter problems could

only be avoided by using suitable graph layout algorithms. Since our network visualization

visualizes hundreds to thousands of network nodes we do not retaining geographic infor-

mation, but rather make use of graph layout algorithms to obtain an optimal layout. Their

system also features parameter focusing by means of adjusting the viewing angle, zoom

and translucency to obtain an optimum visualization. Updating the display fast enough to

display these changes was difficult to accomplish because of the visual complexity of the

scenes which compromised the technique. One of our goals is to use the latest computer

graphics hardware available to avoid such problems. To illustrate how far computer graph-

ics hardware has come over the past few years, a typical SeeNet3D scene took one second

to render at the the time whereas today the same scene can be rendered hundreds of times

per second on a standard personal computer. Although this suggests that interactivity and

scalability issues are solved by today’s computational power however, depending on how

complex the visualization one can still run into performance problems that compromises

interactivity with the visualization.

1A network whose connectivity is less than 0.1
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Taosong and Eick [7] presented a object-oriented network visualization system written

in C++. Although the system does not provide any new network displays, it addresses other

issues involved with network visualization one of which is network data handling. Since

time varying networks generate large volumes of data, the storage of this data could ex-

haust the main memory of computer systems. They propose storing the data in a database.

This way certain data manipulating functions could easily be implemented through SQL

queries, for example selecting all the links with certain properties. Although this causes

other concerns, such as the delay caused by query performance when animating a network,

we feel that this is a useful way of approaching the data mining aspect of network visual-

ization and recommend further investigation in future work. They describe a network base

class providing rich functionality for visualizing a network. One can use these base classes

to derive specialized classes tailored for specific visualizations. We also followed the same

design paradigm for our network classes, providing basic functionality and building upon

them to provide more complex network representations.

More in accordance with our current research is VINT’s Network Animator or Nam

[8]. Nam was primarily designed to visualize trace files generated by ns2 simulations, but

can also be used to process data generated by a real network. Nam’s main feature is the

ability to animate packet flows over a network which is useful for network engineers when

designing a network protocol or investigating the workings of existing protocols. Special

mention is made about the invaluable roll Nam has played in protocol development by

network engineers. Nam visualizes packet flows in 2D without using any graphics hardware

acceleration which limits its potential. Interactivity is limited because of low frame rates

and packets can sometimes appear to be moving backwards on links. Nam also provides

statistical outputs in the form of 2D graphs to complement its visual system.

A part of our research involves implementing such a packet animator but on a large

scale using the best technology available. We then answer questions such as how big a

network can be animated using this technique and what insight can be gained through it.

We extend this idea to visualize next generation protocols such as the MPLS protocol to

provide network engineers with the same type of visual support systems.

The National Laboratory for Applied Network Research or NLANR [9] developed a

visualizer called Cichlid [10] to aid visualizing the large data sets generated by numerous

network monitoring projects at NLANR. Cichlid was designed to be a distributed system

consisting of a server side that gathers user data sending it over a TCP connection to a client

side visualization. Although our system also makes use of distributed sources of data, it

is implemented with less complexity. Cichlid gathers data converting it to an internal data

structure called a Data-Set, sending it in compressed form to the client side visualizer.

The client then decompresses the data for processing. Our system makes use of a byte

stream sent from the server to the client with all of the data processing handled by the

client. This way we ensure simplicity at the server side which makes the system easier to

2ns is a network simulation package that simulates network protocols on a packet level.
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use. This enables Cichlid and our visualization to perform real time network visualization

with different data sources as input. Cichlid uses bar charts and topology maps to visualize

network data in interactive 3D using graphics libraries such as GLUT[11]. While the use of

such libraries speeds up development time of an application the infrequent updating of such

libraries causes it to be of little value in accessing and using the latest graphics hardware

features. This causes Cichlid to perform sluggishly on performance systems which again

compromises the interactivity of the visualization.

1.4 Research Motivation and Goals

The goal of this thesis is to develop an network visualization tool that can assist network

engineers using their cognitive skills to understand occurrences of certain phenomena in-

side networks. At worst this might involve investigating as far down as the packet layer.

Our research involves finding the limits of packet visualization and reporting on the insight

gained by such a visualization. This involves integrating high end graphics programming

with suitable network object models to achieve animations of sufficient performance. We

strive to design such an object oriented model to best preserve data abstraction while not

compromising the performance because of object orientation.



Chapter 2

Graph Visualization

2.1 Graph Layout Algorithms

Several node layout algorithms [12, 13, 14, 15, 16] attempt to approximate an aesthetic

graph layout. The most aesthetic layout could be defined as a layout that produces the least

amount of overdraw, where links obscure one another because they are drawn on top of

each other. Although no algorithm exists that minimizes the amount of overdraw occurring

in a particular layout, certain graph layout algorithms produce the desired effect. Given

enough nodes and links there exists a limit to the least amount of overdraw that can occur.

If a display has a rendering surface area A then it is guaranteed that overdraw will occur if

the rendering area taken up by the nodes, N = n1 + n2 + · · ·+ ni added to the area taken

up by the links, L = `1+`2+ · · ·+`j is bigger than the rendering surface area A. Ensuring

that N +L� A we keep the components ni and `j small enough to minimize the effects of

overdraw whilst keeping the components large enough to be visible on a computer display

system. The other primary attribute of an aesthetic layout is to convey as much information

about the structure of the network as to make sense of certain phenomena pertaining to

bandwidth allocations and link flows inside a network.

The spring modeling algorithm [16] is one such algorithm. This algorithm regards the

network as a set of interconnected springs, with each spring having its own potential en-

ergy. The overall energy of the network is calculated as the aggregate of all the spring

energies, which the spring modeling algorithm then minimizes. The system oscillates to

reach this low energy state which is an equilibrium that represents the final layout. Early

implementations of this heuristic approach were done in 2-dimensions, but 3-dimensional

implementations are also common.

9
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2.2 The Spring Modeling Algorithm

We implemented the spring modeling algorithm to explore the utility of such an heuristic

approach to achieve aesthetic layouts. A node is set to have a repulsive force with respect

to all other nodes that is inversely proportional to the distance between them. All connected

nodes are then given a spring force which acts as a weightless force between them. The

system is then “released” to converge to a state of low energy. This is achieved by calculat-

ing the average force vector for each node and then translating each node in the direction

of its average force vector by a distance proportional to the force. This process is repeated

until a steady state is reached.

This simple approach to solving the spring modeling algorithm, yields an aesthetic lay-

out. This method however leads to a number of problems pertaining the way the spring

modeling algorithm solves the layout problem. The respective input parameters for the al-

gorithm include spring length, spring stiffness, initial configuration and the repulsive forces

between nodes. The layout achieved is highly dependent on these parameters and no rela-

tionship could be found between these parameters and a network’s size and connectivity.

A large sparsely connected network will span across a large volume since the total re-

pulsive force between all nodes is too large for the springs to coalesce the network. In

the same way a large strongly connected network would tend to implode forcing differ-

ent nodes close to or on top of each other which causes overdraw. The problem becomes

more acute when a network has an uneven connectivity distribution where some parts are

sparsely connected and others are strongly connected. The resulting layouts of such net-

works have shapes that are elongated in different areas which makes viewing the network

as a whole difficult. Selecting the correct parameters for the quadratic force functions with

respect to different sized networks and their connectivity is a difficult problem

Although an aesthetic layout can often be achieved by constantly adjusting these input

parameters and evaluating the resulting layout, the process is time consuming and tedious.

We therefore considered another approach known as the Self-Organizing Map [17] (SOM)

from the field of neural networks.

2.3 The Self Organizing Map

A SOM can be viewed as a simple type of regression, where a function is fitted to a distri-

bution of input samples. The following example involves fitting a set of discrete reference

vectors to a distribution of vector input samples. The set of discrete reference vectors rep-

resents the locations of the network nodes inside a network layout.
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PSfrag replacements

x
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Figure 1: One iteration of the SOM algorithm. The nodes mi are trained on the random
input sample x by moving them closer to x.

Consider Figure 1 where the nodes i ∈ N are represented by a set of reference vectors

mi = (µi1, µi2, . . . , µin) ∈ <n.

The random input vector at time t

x(t) = (ξ1, ξ2, . . . , ξn) ∈ <n

is compared with the reference vectors mi and the location of the best matching node, ct,

is defined as the response node c ∈ N at time t.

Let x(t) ∈ <n be a random vector. The SOM is the nonlinear projection of an arbitrary

probability density function P (x) onto a set of reference vectors mi. There are many

ways of defining the closest match for an input sample x(t). In most cases the minimum

Euclidean distance ‖x−mi‖ between the sample x and the reference vector mi is used to

find the response node. Other methods include matching criteria based on the dot product

of x and mi. In Figure 1 let c denote the response node sought, then

‖x−mc‖ = min
i

(

‖x−mi‖
)

.

The process by which the nonlinear projections are formed is referred to as the learning

process. In the classic SOM, nodes that are topographically1 close to the response node c

will activate and also learn from the input sample x. This results in a local relaxation of the

nodes in the neighbourhood around the input sample, which if repeated leads to a global

ordering. This iterative process can be described by the equation

mi(t + 1) =

{

mi(t) + α(t) (x(t)−mi(t)) , i ∈ Nc(t)

mi(t), i /∈ Nc(t)
, where t ∈ N (1)

for arbitrary mi(1). α(t) represents the learn rate as a function of time and is covered

in more detail in section 2.3.2. The function Ni(t) is referred to as the neighbourhood

1Some nodes are connected to other nodes in a neighbouring relationship that forms the topology.
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function and plays a central role in the relaxation process. It is required for convergence

that α(t) → 0 when t → ∞, which results in mi(t + 1) ≈ mi(t) for large values of t.

The neighbourhood function can be used to control the “strictness” by which the reference

vectors approximate the input data.

The next sections describe how we modified the classic neighbourhood function to achieve

a global ordering that best represents the structure of the network.

2.3.1 The Neighbourhood Function

The SOM algorithm has many diverse applications, one of which consists of the reordering

of nodes on a plane according to certain criteria. One such application reorders nodes,

initially randomly located within an arbitrary volume, to approximate a certain shape. This

is accomplished by training the nodes on a set of randomly generated input vectors with

a probability density function resembling the desired shape resulting in the reordering of

nodes randomly located within the shape.

In the SOM algorithm each random input sample is compared with all nodes and the

response node is identified. This node and all its neighbours learn from the input sample

by moving closer to the response node. The algorithm begins by defining the neighbouring

nodes as the nodes that are connected, directly or indirectly, to the receptor node. A node’s

neighbours are therefore the nodes that are reachable through the network from that node.

Applying the SOM algorithm to achieve a network layout with this definition of a neigh-

bourhood function results in directly linked nodes residing closer to one another than in-

directly linked nodes. Nodes that are indirectly linked from a response node learn in pro-

portion to their distance (hop count) from the response node. The response node therefore

always learns the most with its neighbours learning to a lesser degree and so on.

We therefore start the process by taking each node and calculating the hop counts to all of

its neighbouring nodes. We calculate this before the main SOM algorithm starts by running

Dijkstra’s algorithm on each node, with the link weights set to one. This yields the shortest

paths and distances to each node’s neighbours which we use to set up the neighbourhood

function. If a response node c’s most distant neighbour hop count is denoted by Dc, define

the neighbourhood function hc,i(t) for a neighbour i with a hop count dc,i as

hc,i(t) =
Dc − dc,i

Dc

.

Figure 2 illustrates a simple 12 node network with the neighbourhood function calculated

for all of node 4’s neighbours. The resulting SOM is described by the equation

mi(t + 1) = mi(t) + α(t)hc,i(t) (x(t)−mi(t)) , with t ∈ N (2)

.
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Figure 2: The neighbourhood function calculated for node 4.

2.3.2 The Alpha Function

Since hc,i(t) 9 0 as t → ∞ we introduce a monotone decreasing function α(t) → 0

as t → ∞ to guarantee that convergence takes place. Observing the animation process

of the layout with a simple linear alpha function allowed us to investigate the qualities an

alpha function should have. We require a function that starts off with a “large” alpha value

and quickly converges to zero after some 30% of the total number of iterations have been

reached. We quantify a large alpha value by observing the layout process while displaying

the current alpha value. We determined that the initial alpha value should be large enough

to cause sufficient reordering of the initial node layout but small enough that this initial

shuffling does not take up most of the iterations. We started with the function

α(t) = 0.5− arctan(t)/π (3)

and determined experimentally that a suitable initial value would be α(1) = 0.5. Since

α(1) = 0.25 in Equation 3 we multiply by two and obtain

α(t) = 1− 2 arctan(t)/π (4)

which is shown in Figure 4.

Figure 3 shows that after a few of iterations the alpha value becomes small well before

the 30% iteration mark, since the algorithm typically runs for thousands of iterations. The

animation process shows that the layout converges after about 50 iterations. To achieve

a network layout with the alpha function described in Equation 2, the SOM algorithm



CHAPTER 2. GRAPH VISUALIZATION 14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  10  20  30  40  50  60  70  80  90  100

α 
(t

)

t

Figure 3: The function α(t) = 1− 2 arctan(t)/π.

would have to run for many iterations as each iteration only induces a small learning effect.

We therefor scale the x axis such that when the algorithm reaches its last iteration T , the

corresponding alpha value is 0.5×10−1. As stated above, this value has also been obtained

experimentally as values lower than this causes little or no learning by the nodes. Since the

original alpha function reaches this order of magnitude at some point t = R (the actual

point is t = 15) we scale the new alpha function to have the same shape as the original

alpha function up to t = R, but with arbitrary range T . We accomplish this by scaling the

iteration number t as a percentage of the total number of iterations T and using the result

as input to the alpha function. The function

σ(t) = Rt/T

where R denotes the range scaled over is the function we used to scale the range to acquire

the desired affect. The resulting graph shown in Figure 4 has the same form as the original

graph up to t = R, but with arbitrary range 8000. The range scaled over R can then be

adjusted to achieve better results for different sized networks. Choosing R = 7 is a good

value for large graphs while smaller graphs do better with R = (60, 120), although this is a

matter of fine tuning the alpha function for better performance as any value between 7 and

90 can produce the desired effect.
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2.3.3 Refining the Neighbourhood Function with Observations

In the previous section we discussed how we used observations to fine tune the alpha func-

tion. We do this by animating the layout process from the first to the last iteration and

observing the result. To test our algorithm we first created a network with a known layout,

which we then shuffle and fed back to the SOM algorithm as input. This reference net-

work consists of a network with nodes evenly distributed over a n× n × n cube structure

which is the optimum layout2. This enables us to compare the layout algorithm’s aesthetic

abilities with the known network layout and also to test the performance of different vari-

ations of the neighbourhood function, as certain variations require more iterations to reach

an aesthetic network layout.

Inserting the alpha function as computed in Equation 4 with the neighbourhood function

hc,i(t), we observe a resulting layout that approximates the reference layout’s structure to

an acceptable degree. The degree of acceptability is determined visually as the reference

layout is easily recognized. Although the SOM algorithm works well and achieves an

aesthetic layout, it takes a considerable time to compute3. Although we tried to reduce the

execution time by using advanced coding techniques, the algorithm proved to be inherently

2Refer to the cube network structure on the top right hand side of Figure 6 on page 18 for an display of the
optimum network layout.

3Some 30 seconds is required for a network of 100 nodes and 300 links on a P4 2.8GHz processor.
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slow. With the current definition of our neighbourhood function a network consisting of n

nodes would train 4 n− 1 neighbouring nodes on each random input sample x.

The literature suggests [17] decreasing the radius of the neighbourhood function over

time, but we found this to have little effect as initially the algorithm is still slow. This led

us to recognize only directly connected nodes as neighbours. We thereby improved the

algorithm by implementing a trivial neighbourhood function and at the same time substan-

tially5 reduced the execution time of the SOM algorithm since only the direct neighbours

of the response node learn from each random input sample. With reference to Figure 2 , if

node 4 generates a response then only the neighbours 1,11 and 12 learn from it, instead of

all the nodes directly or indirectly connected to node 4. Let Nc = Nc(t) denote the set of

neighbours of node c at time t. Define the new neighbourhood function to be hci = 1 if

i ∈ Nc and hci = 0 if i /∈ Nc.

This neighbourhood function requires slightly more iterations to achieve the correct net-

work layout, but since each iteration takes much less time to compute the total execution

time is much less. It is also not necessary to calculate Dijkstra’s algorithm on each node at

the beginning of the algorithm which saves execution time for large networks.

2.3.4 Implementing a Self Organizing Map, a Performance Analysis

In the following algorithm let x ∈ <3 and mi ∈ <
3. Let I denote the number of nodes

in the network. The algorithm runs for T iterations where it is observed that T ∼ 750I is

sufficient for convergence.

Algorithm 1 SOM

1. Initialize mi ∀ i ∈ {1 . . . I}
2. for t = 0 . . . T − 1 do
3. x← x(t)
4. c← min

i

(

‖x−mi‖
)

∀ i ∈ {1 . . . I}

5. α← α(t)
5. for i = 1 . . . I do
6. if i ∈ Nc(t) OR i = c then
7. mi(t + 1) = mi(t) + hci(x−mc(t))
8. end
9. end
10. end

The algorithm has time complexity O(I2) because of the lookups necessary on line 4. A

naïve implementation will cause the algorithm to execute inefficiently. We implemented a

3D hash function and utilized Intel Pentium 4’s SSE2 [18] instruction set to speed up the

best match on line 4 as well as lookup tables for the functions α(t)6 and Nc(t), reducing

4Refer to Figure 1 on page 11.
5The amount depends on the connectivity of the network.
6C++’s arc tan function executes slowly because of the high numerical accuracy it maintains.
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the execution time to O(I log I).

Our test system running a Pentium 4 2.8 GHz with 512 MB DDR 400 memory running

in dual channel mode was used to measure the execution time of the SOM algorithm. Our

test network consists of the network described in section 2.3.3, with the dimensions of the

network increased in increments of one from a 2×2×2 network to a 15×15×15 network

for each sample run. The time t taken for the SOM algorithm to produce each desired

reference network consisting of n nodes is shown in Figure 5.
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Figure 5: The time t in seconds to achieve an aesthetic layout with the SOM algorithm for
a network consisting of n nodes.

The points on the graph show the time taken for the SOM algorithm to complete each

network layout using 750× n iterations. The data can be approximately described by the

function

y(n) = 7.8× 10−4n log(n).

The long execution times usually associated with neural network implementations have

therefore been avoided by providing a simple but effective implementation that is optimized

to provide a scalable solution to the graph layout problem.

2.3.5 Customizing Network Layouts with the SOM Algorithm

It has been shown that a the SOM algorithm can be used to create layouts for different

sized networks without having any user input. The SOM algorithm does however provide
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a different way of customizing a network layout. If a user has an idea of what the network

might look like, he can “instruct” the SOM algorithm to approximate this shape, which can

be 1, 2 or 3-dimensional taking on any size or volume. It is in this way that we set up our

test network described in section 2.3.3. We generated a network topology that is known to

have an optimum layout in the shape of an cube. We then configure the SOM algorithm to

generate the random input vectors within the interior of a cube, thereby forcing the network

to approximate the shape of a cube with nodes evenly distributed therein.

Changing the manner in which the input samples are generated has a marked effect on

the resulting layout. A set of nodes can be ordered differently according to the different

probability densities of the random input samples. This makes the SOM algorithm very

flexible. Figure 6 illustrates the effect of random input samples with different probability

densities on the final network layout. In the first case the random input variables were

generated within the interior of a cube which results in the network layout approximating

a cube. The second network was created by generating random vectors within the interior

of a sphere. In principal the same network structure can be made to approximate any area

or volume with non-homogeneous densities, by generating random input samples from the

appropriate probability distributions.

Figure 6: The effect of different probability density functions on the resulting layouts for
the same network structure.



Chapter 3

Program Design

3.1 The Design Paradigm

Although there exists no general rule as to what constitutes as a proper program design,

we discuss the design for building a network visualization application that worked for us.

Before designing a program one has to determine which language to use for the implemen-

tation. This is important since although different languages can accomplish the same task,

some languages are more suitable for to certain types of programs than others. Since we are

developing a performance application our choices are limited to the Delphi and C++ pro-

gramming languages. We chose C++ on a Linux platform as our implementation language

as our expertise lies mostly therein.

Before choosing an implementation language one needs to be fully acquainted with the

functionality of such a language and in particular its class operation. Designing a class

inheritance model without fully understanding a language’s capabilities is bound to lead to

design problems later on [19]. Although designing a program before it is developed is the

best way to start, it does not always lead to the desired results. When designing a program,

the future functionality of the program is never as clear as its immediate application, which

can lead to a premature design compromising the program’s extensibility later on. A so-

lution is to be flexible about the entire design paradigm. There exists no right or wrong

design for any particular program and a design must be allowed to evolve to incorporate

the better understanding gained from working with the program and language over time.

The TCP/IP network protocol has been deeply embedded into todays networks. Design-

ing a network visualization application solely for the purpose of visualizing such protocols

has its disadvantages. Writing a visualizer to visualize only one protocol would compro-

mise its ability to keep up to date with networking technology. It is our goal to prevent

this from happening. Since it would be a daunting task to write code specially tailored for

19
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each possible network protocol, our design philosophy is based on a design that can be

extended to visualize any protocol with minimal extra effort. We must therefore identify

the commonality between many network protocols, for instance the fact that they all use

nodes, links, packets and routes for their operation, and use these objects as building blocks

to visualize different network protocols. We therefore set out to develop a visualizer that

visualizes these different network components (nodes,links and packets) according to cer-

tain inputs. One can argue that this is an obvious way to develop a network visualization

tool, but scalability issues can be solved by developing code that is designed to capture

the essence of a protocol and thereby automating protocol behaviour to such an extent that

very little input is required. We stated in Chapter 1 that our goal is to visualize a MPLS

network, which does not mean the program is designed to do only that. On the contrary, we

typically create more complex generic classes (nodes,links and packets) and extend them

into lightweight MPLS versions to provide for MPLS protocol visualization. The following

sections describe how we used a object oriented language to accomplish this.

3.2 An Object Oriented Approach Using C++

Object orientation is a way of producing simple understandable code that can be easily un-

derstood and extended. Programs developed with an object oriented code design produce

the same results as programs developed in a non object oriented environment, but with cer-

tain advantages and disadvantages. Performance losses are incurred due to data hiding, also

known as data encapsulation, which is commonly encountered with developing object ori-

ented code. Since we are writing a graphics application, certain decisions have to be made

relating to the degree of strictness in which we will adhere to data encapsulation. If we

keep too strictly to data encapsulating practices, all data exchange between classes has to

be mediated through a member function call. Sometimes the performance overhead caused

by these member function calls does not justify the small amount information retrieved by

them, especially when in our case they are called thousands of times per second. On the

other hand, if all class variables are publicly accessible, the debugging of such code can be-

come troublesome and would negate the advantages gained from data hiding. We attempt

to strike a balance between the two models by encapsulating all class variables by default

and unhiding them when it is clear that retrieval of such a class variable is frequent enough

to induce an unacceptable performance penalty. These performance threatening variables

do not occur very often, hence we feel that it is a good practice to follow when designing

an application with potential scalability problems. Figure 7 presents our class structure in

its final form as evolved over time and we discuss its meaning.
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Figure 7: A suggested optimum class structure of our network visualization program.
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3.2.1 The Class Diagram Key

Before we discuss the individual classes we first explain how to interpret the class diagram.

We used our own class diagram format which has the same look and feel as standard class

representation models, such as UML[20], but with a few modifications. We first explain

the diagram key located in the middle left hand side of the class diagram. The different

arrows indicate how to interpret the relation between different classes. The relation is

revealed by reading the class name on the left hand side of the arrow followed by the the

arrow translation, followed by the class name on the right hand side. We next explain the

individual meanings of the different translations by the arrows:

• The Uses relation: This relation indicates that the left hand class relies on func-

tionality obtained from the right hand class to perform its duty. The left hand class

typically contains a pointer to the right hand class, which it then uses to make mem-

ber function calls through. The left hand class can also have a container of pointers

pointing to many instances of the right hand side class. The different shades of grey,

as seen in the key, provides an indication as to which relation is used.

• The Extends relation: This relation is the more familiar of the three relation types.

The class that is pointed to by the arrow extends the class that is not pointed to by

the arrow. This relation represents C++’s derived class concept, whereby an extended

class consists of the functionality of the base class, but with extra functionality added

to it.

• The Indirectly Uses relation: This relation indicates two related classes that are not

related in the same way as classes with the Uses relation, but that are dependent on

each other. We added this relation to clear up the confusion caused by classes using

other classes through a parent interface class. Note that no two classes can have this

of type relation if their parent classes do not have a Uses relationship between them.

This dependency relationship lies at the core of the design.

The other piece of information we added to the diagram is the colour key. This key gives an

estimate of how many instantiations a certain class is expected to have in a typical execution

of the program. We find this information vital to understanding the roles different classes

play in a program. We have four different instance ranges which represent educated guesses

of the typical instance count expected. Note that a class that is only instantiated once can

be expected to have a fat interface consisting of rich functionality, while classes that are

instantiated many times can be expected to be small and optimized with little interface

functionality. The instance count therefore gives a good indication of the role played by

certain classes inside a program.
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3.2.2 The Proposed Class Design Model

We next discuss how we obtained our design model and how we interpret it in terms of vi-

sualizing network protocols. As mentioned before, our design is based on a code reusability

model where we build a set of tools and extend them to different specializations that rep-

resent visualizations of different protocols. To do so we require a model that allows a class

to be extended many times with the least amount of code duplication. We discuss the com-

mon pitfalls encountered when seeking such an design and our solution to this problem.

Second, we show how we use this solution to provide the optional ability to visualizing

highly customized network systems. We now give an overview of a few selected classes

that contributed to the core design.

RenderBase

Although the RenderBase class is one of the smallest classes, it is conceptually one of

the most important. This class alone allows us to provide a code reuse environment that is

fundamental to our design goals. Since we did not find this design by accident we give the

background as to how we chose this design model.

To understand why this model works we first explain why other, more widely prac-

ticed models, do not work. Consider the class Network in Figure 7. Such a class would

typically contain all the functionality associated with building, storing and managing a

network structure inside a program. Member functions such as InsertNode() and

InsertLink() are typical functions associated with such a class. Adding code that

renders the network represented by the Network class, a typical approach would be to ex-

tend Network into a graphical object class which we call glNetwork (this is not the class

structure depicted in Figure 7, but merely an example). In doing so glNetwork inherits

all the necessary data, the link and node lists etc., to visualize the network. Although this

rendering code can be placed inside Network, it is not desirable to have a mixture of code

implementing network management with code implementing the rendering path. Having

them apart saves compile time and eases debugging considerably.

So far the implementation is clean, effective and can be viewed as a suitable design.

However, when extending the classes to the next level certain problems arise. Say for

example we desire a specialization of the Network class, a label switched path network

called MPLS_Network, that includes the functionality contained within Network com-

bined with the functionality required to manage a label switched path network. The current

model proves to be unusable with such a configuration. When we extend Network to

MPLS_Network there exists no way to reuse the code, written inside glNetwork, to visu-

alize the network represented by the MPLS_Network class which is for the most part the

same. The class glMPLS_Network, which renders the extra features represented by the

MPLS_Network class, would then have to be rewritten and since it would contain most
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Figure 8: The circular inherency problem encountered with a simple network class model.

of the code written inside glNetwork, would violate the principle of code reusability. The

circularity of this problem is shown in Figure 8.

To solve the problem we have no choice but to break the circular dependency. We choose

to break the derivation from the network objects to their respective graphic counterparts,

which causes two adverse affects. Firstly, since we broke the inheritance between the

graphical objects and the network objects, the graphical objects lose access to the data

structures necessary to visualize the network. The second problem is similar to the first,

but in reverse. Network classes now need pointers to instances of their respectable graphics

classes in order to render themselves. We need to find a way to ease the development of

such classes because extending these base classes would require the user to know exactly

which functions to overload.

We solve this problem by introducing a simple and lightweight1 interface class called

RenderBase. RenderBase contains one variable, a pointer m_pRenderer to a Render-

Base interface implementation. It also contains a set of member functions (these denote the

rendering interface) commonly associated with objects that are graphically represented,

such as the Render() member function call. All the member functions inside the inter-

face are virtual and have only one purpose, to redirect a requested interface function call

to the instance pointed to by m_pRenderer. To give an illustration we give a small code

extract of the RenderBase class:

class RenderBase :glInt{

Protected:

RenderBase* m_pRenderer;

Public:

void RenderBase();

void ~RenderBase();

//....

1A class that consumes very little or no memory that is normally associated with interface classes.
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virtual void RenderBase::Render()

{

m_pRenderer->Render();

}

//.....

};

Every network related2 class is set to derive from the RenderBase interface. This allows

some other class to call upon them to render through the standard interface. To give an

example of how this works, refer to the class diagram in Figure 7 where the first rendering

call for each frame originates from the window manager3, which is represented by the large

circle. The window manager calls the Network object to render itself through the heavier

interface class glFX, which is necessary to encapsulate the complexity of the window man-

ager. The Network class then iterates through its lists of network component classes4 and

calls them to render themselves. Now because the component classes extend the Render-

Base interface, the RenderBase interface automatically intercepts and redirects these calls

to the appropriate rendering object pointed to by the respective m_pRenderer pointers.

These pointers are set to point to the appropriate rendering classes for each different net-

work object, for example the Node class will set its m_pRenderer pointer to point to

glNode, which implements the rendering interface. The glNode class therefore contains

the appropriate overloaded member functions, defined as virtual in the interface, to render

the Node object.

Media classes

The media classes combined with the the classes derived from the RenderBase interface

include all the classes needed for extension to make a specialized visualization possible.

Referring to the diagram in Figure 7, the media classes consist of the cluster of classes

at the bottom of the page. We stress that it is not always necessary to extend classes to

visualize every network, but we feel that it would be ill advised to create a model that does

not allow for extension when they are definitely needed. Different models of a network are

rarely the same and hence special modifications have to be made to visualize them.

We will explain some of the media classes in order to explain how the different classes fit

together in visualizing a new protocol. We begin with the Stream_Base and Filter_Base

classes. These two classes encode the data input and output of the system. We do not

make use of trace files as many other visualizers do when acquiring data, because of their

encumbering size. Stream_Base is the class that provides the functionality of streaming

2Such as nodes, links and packets for example.
3We use a windows manager called Qt in Linux.
4Such as the nodes, links and packets.
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data from the source to the visualizer through a local area network or a file. Filter_Base

reads this data and presents it to network classes for interpretation.

Converging Media, Network and Graphical classes

We conclude this chapter by explaining how we extend existing classes to provide special-

ized visualizations. To repeat, our design defines a set of classes to create a basic network

visualization which are then extended to form a more complex visualization if needed. It

is not necessary to extend the model for every new visualization, but if an existing im-

plementation lacks the means to handle certain unique circumstances, such extensions are

unavoidable. We create the opportunity to augment the program directly instead of writing

a complex5 scripting system ourself that would not be as well defined and functional as the

C++ language.

We create a specialized visualization in three steps. First we extend the class Stream_Base,

or any of the classes derived from it containing functionality suitable for reuse. This new

class is used to stream customized data to the filter classes. We therefore extend the Fil-

ter_Base class to create an extended class capable of interpreting such a data stream. This

step allows us to adapt a standard data stream to contain one or more extra network events

that are normally not associated with a standard6 network. We add the member functions

necessary to stream such events, through the use of a derived class. Since the corresponding

filter is now incapable of interpreting these extra events inside the data stream, it is extended

to read in these events. The extended filter class is therefore tasked with interpreting the

extra events and passing these events to the network core classes.

It is clear that the network classes must be adapted to handle the new data sent to it by

the filter class. We proceed to extend the network classes to manage this data so that it

can be visualized. It should be clear that the media classes only handle the transport and

delivery of data streams to the network classes. It is at the delivery part where the extended

network classes are needed. If an extended network class does not exist then the filter class

extracts the extra events from the data stream and discards them. In practice this would

never happen but it demonstrates the granularity of the system. Different components can

be put into place and connected to augment the standard visualization. This eases the

development phase and helps with version control.

Once the data is inside the network classes the graphical classes can be extended. These

extensions are optional as the extra event data given to the network classes might effect

already visualized network phenomena. The optionality is achieved by the extended net-

work classes setting their renderer pointers to point at graphical classes that already exist.

This is the most complex part of the procedure since most developers know the C++ pro-

gramming language but few have experience in coding complex graphical routines in them.

5Which involves defining and interpreting a scripting language.
6The standard network visualizer provides for common network events.
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There are no shortcuts around this problem. We have implemented many helper functions

to aid graphical development, but one needs to understand the graphics API OpenGL [21]

to be able to make graphical contributions. The advantage however is that most network

visualization packages have no support for such customizations.

This process is illustrate in Figure 9. The diagram shows the classes written for visu-

alizing a fictitious network “My Network”. Although it appears as if various classes need

extending, the extended classes are mostly empty and contain only a few extra functions

since they make heavy use of their parent classes’ functionality.
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Figure 9: The diagram indicates which classes are suitable for extension when writing a
customized visualization for network data originating from a unique source.



Chapter 4

Visualizing Network Data

Having an overall view of the network’s physical structure is helpful in identifying band-

width allocation and bottlenecks within a simulation. However, having snapshots of the

entire state of a network at different time instants can be even more helpful. This requires

the simulator to send detailed information to the visualizer in order for the visualizer to

display these snapshots. One way of achieving an animation is to make the simulator send

the event information with an accompanying event time. The visualizer then animates the

network on a frame by frame basis, adding new visualizations at the appropriate event

times. This is a simple process which can become complicated with regards to visualizing

different phenomena inside a network. If, on average, event times are far apart, then simple

implementations can be used to synchronize the event times with the visualized effects.

With regards to packet visualization though, difficult decisions have to be made about the

granularity of different event times and in which format these event times are transmitted to

the visualizer. As we will see later, these decisions have a significant effect on the numeri-

cal stability and scalability of the system. Since there can be only one time system within

the visualizer, the optimum implementation needs to be found.

It would be ideal if the visualizer could run in the same execution thread as the simu-

lator. This would enable the simulator to make direct calls to the visualizer which is the

most efficient way of transferring event information to the visualizer. In practice this is not

possible, because of insufficient computational power to execute both processes at the same

time. We therefore construct a second network structure between the simulation process

and the visualization process, with the first network structure residing inside the simula-

tor. In this way the second network, and therefore the visualization, is driven by a stream

of events from the simulator instead of by the computationally intensive algorithms that

drive the simulation process. The second network serves as an abstraction layer between

the simulation and the visualization of a network. A simulated network now only needs to

29
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communicate with the cloned network instead of the graphics process directly. The graph-

ical process in turn uses the second network’s state information to visualize the network on

screen at hundreds of frames per second, completing the visualization process.

This approach has several advantages. Not only does it take most of the complexities

away from the simulator, which results in improved user friendliness, but also creates a

visualization platform that can be automated and equipped with features. For example, the

simulator does not need to send millions of packet events to the visualizer, but rather sends

one packet event that indicates a packet departure on a certain Origin Destination (OD)

pair. The consequences of this event, for example rendering the packet flow on a certain

route, is then handled by the second network process. Other examples include the colouring

of nodes or links according to some value transmitted through an event by the simulator,

not being necessary anymore. This does however require a sophisticated network process

running on the visualization side.

In Chapter 3 we discussed how we extended the application to visualize different types

of networks. We extended the standard network classes to more specialized versions to

achieve custom visualizations where needed. In this chapter we discuss the visualization

of these standard network classes. The idea is to write visualizations for as many standard

networks as possible, thereby simplifying the process of making custom network visual-

izations. We implemented node, link, packet and LSP visualizations as our standard set of

network graphical components and discuss them in the following sections.

4.1 Representing Network Nodes

The nodes inside the visualization can have many different interpretations depending on

the sort of network being visualized. Since the network data can originate from many

different types of simulators and even real networks, nodes can either represent countries,

autonomous systems, routers or IP switches. If more than one type of node exists inside

a network then we need to visualize these with different shapes. The standard shapes

currently supported consist of a sphere, a cube and a tetrahedron. If more shapes are needed

they can easily be added by extending the Shape interface class. Shapes can be used to

visualize different node entities by altering their size, colour and their rotational properties.

Although these parameters can be customized to visualize any aspect concerning nodes,

we propose a set of intuitive meanings and implement them as a default.

• The type of graphical object used to visualize a node (also known as a glyph) might

be used to indicate different types of nodes inside the network. Setting this parameter

depends upon the user’s interpretation of the different types of nodes existing inside

the network. By default a sphere is used to visualize a node, but other types can be

defined and implemented.
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• Different sized nodes are used to indicate nodes carrying different loads. This load

parameter can represent the total aggregate flow going through a node, or the number

of label switched paths (LSPs) going through a node, depending on which type of

network is visualized. The size parameter is implemented as a dynamic parameter

which means that as the values change while the network is being animated, a change

in size is observed.

• Colouring a node can be used to visualize the current utilization of a node. While

the size indicates the total bandwidth available, the colour visualizes the current uti-

lization of that bandwidth. When visualizing an MPLS network we change the inter-

pretation of a node and call it a label switched router or LSR. Since there is no notion

of a total amount of LSPs that are allowed to flow through a LSR, or the fact that if

such a limit existed would it ever be reached, we choose to visualize the “utilization”

of a LSR as the number of LSPs flowing through it. We do this by finding the LSR

with the most LSPs flowing through it and then colouring all other LSRs relative to

that LSR. A red colour indicates the LSRs with the most LSPs flowing through them

and a green colour indicates few LSPs flowing through a LSR.

• A node may be rendered so that it spins around its own center of gravity. Although

a spinning node has no intuitive meaning, spinning a node at certain speeds might be

used to attract attention to that node. A node can configured to have some dampening

force working against some spinning force. Such a spinning force might be equal to

the rate of change of some node parameter. To give an example, if a LSR’s number

of LSPs flowing through it changes rapidly, a LSR node might be made to spin to

attract the users attention. Other uses can also be implemented.

Figure 10 illustrates node visualization inside a network. For clarification, this example

visualizes nodes that are sized according to a load factor. Since our test network is not

driven by a simulation process, all of our examples are generated by a simple artificial

network event generator. We use this artificial network instead of a simulated network

because it allows us to control the visualization to illustrate ideas.

4.1.1 Providing Network Engineering Tools for Simulator Testing

One of the goals of this thesis is to provide an environment that allows a network engineer

to query certain phenomena inside a network. To use an analogy, in the same way as com-

puter programmers use integrated development environments (IDEs) to aid in debugging

source code, we provide a debugging environment for network engineers. This functional-

ity can be useful in finding errors and algorithm flaws inside network simulators. To give

an example, we implemented an extra visualization feature concerning nodes that can aid

a network engineer in “debugging” the simulation process. This feature consists of an All
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Figure 10: Visualizing different types of nodes inside a network.

Pair Shortest Path algorithm that computes and highlights nodes and links traversed along

the shortest path between any OD pair. A possible use might be as follows.

Firstly, upon closer examination of Figure 10 one observes the shortest path between

node 117 and node 6. The path is depicted by the darker coloured links along the traversal

of nodes 117, 92, 87, 82, 57, 56, 31 and 6. To acquire this shortest path the user selects two

nodes and request the shortest path between them. An engineer can then set the visualizer

to only draw packets flowing between this OD pair and observe the optimality of the flow

directly, as indicated by the links, and hypothesize why a certain flow, flows as it does.

The shortest path visualization can also be updated every t simulation seconds to indicate

changes in the route of the path over time, if so desired. Is is important to realize that these

functions can be executed in real time which means that the simulator need not send spe-

cialized event information to prompt the visualization of a shortest path between a certain

OD pair, or even the set of LSPs that exist between a OD pair, at a certain point in time.

Furthermore, a shortest path at time t can be computed by using the residual bandwidth at

time t, or any other desired metric, as link weights. This way a realistic shortest path at

time t can be obtained without the help of the simulator.

Although we implemented only one such feature, many other engineering tools can be

trivially implemented, but because it does not add anything new to the concept we leave

such ideas for further studies.
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4.2 Link Visualization

The visualization of links is slightly more complex than the visualization of nodes. First,

having a non-optimal link visualization system would compromise the interactivity of the

visualizer which makes it difficult to navigate the network. Second, it must be kept in mind

that the visualized links will later serve as packet carriers. Links have to be rendered in

such a way that visualizing packets on them creates the least amount of confusion.

4.2.1 Selecting an Appropriate Graphical Object to Represent a Link

Cichlid [10] provides a network visualization mode called “Vertex-Edge Graphs” which

attempts to give real time packet visualization with the use of OpenGL. Nodes are drawn

with edges connecting them with packets flowing over the edges. When the Cichlid visu-

alization is run with the demo provided, the shortcomings become immediately apparent.

The visualization slows down to an unacceptable degree. This makes navigation impossi-

ble and confusing packet flows are displayed that appear to move backwards in time. We

discuss some of the reasons why such shortcomings are encountered and the solutions for

overcoming the shortcomings.

First, computer graphics hardware was not available to justify the creation of a packet

animation system of that scale. The first GPUs were only released in August 1999 which

means the earliest implementations could only have come in the year 2000. Even then

the GPUs were not nearly as powerful as those of today. Second, even if the hardware

was available at the time, the software drivers for Linux were not. They only became

available from April 2000. All these factors mean that at the time of implementation only

old techniques were used to achieve visualization. The fact that this type of visualization

did not scale at the time meant devoting resources elsewhere to find appropriate ways of

visualizing network data.

Other lessons to be learned from Cichlid concern the kind of glyphs they used to visu-

alize the network. Of particular interest to us are the link visualizations. Cichlid used 3

dimensional cylinders to visualize links between nodes. Although they look pretty they are

an impractical surface to visualize network packets on. Cichlid opted to use small cubes

flowing in the path of a link to represent packets. This is not a good idea if more compli-

cated and realistic packet visualization is to be attempted. Large packets would obscure the

links they are flowing on. Furthermore, having to translate, rotate and scale thousands of

cubes would require a huge amount of processing power, which at the time was provided

solely by the CPU. Each packet visualized requires a [4 × 4][4 × 1] matrix-vector multi-

plication for each of the 4 vertices of the cube. Even on todays GPU hardware this is a

expensive operation if done thousands of times per frame. Bidirectional flows of packets

would also create confusion as they flow on top and over each other.
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The other more familiar packet animator Nam [8] uses a better system. The links are

visualized in 2 dimensions by rectangles with bidirectional packets flowing on either side

of the rectangles. In this way the packets do not obscure each other and create no confusion

about where a packet is headed. We use a similar system, but in 3 dimensions. Because

of the third dimension certain issues arise. Since we want to use a flat surface to represent

links, viewing problems arise when navigating around such a flat surface in 3 dimensions.

Extending the rectangle to a rectangular prism would solve the problem of a rectangle

appearing flat from certain angles, but causes the same problems that result from using

cylinders. Using 3 dimensional shapes to represent links requires complex 3 dimensional

packets to flow inside them which is too expensive to render because of the numbers of

packets to be rendered.

We therefore use rectangles but we rotate them in such a way that they are always per-

pendicular to the viewing angle. A flat surface rotated to always face the viewer is known

as a sprite, which is a widely used technique in 3D graphics. This way the links only use

4 vertices but more importantly, packets only use 4 vertices. Since there will be thousands

of packets flowing, it is necessary to keep the vertex count per packet as low as possible.

Although the calculations required to rotate the link sprites in the right direction are fairly

complex which slows the rendering process down, we still use them because of the gains

made by the resulting packet model.

4.2.2 Link Visualization Interpretations

The visualized links symbolize the physical connections between two network nodes. Al-

though it would be possible to draw “virtual” links between OD pairs, it would not be

practical. There are many more virtual links in a network than there are physical links and

rendering them all would clutter the display area to such an extent that nothing would be

gained from it.

As with nodes, the link visualization can be altered to convey state information. Links

can be altered in colour and in size and we give possible intuitive meanings for each.

• The colour of a link can be controlled by many factors. A utilization indication

would be the first obvious choice. Since links may be bidirectional, two independent

colours are needed on each link to visualize incoming and outgoing bandwidth uti-

lization. We do so by splitting the link in half, with each side representing incoming

bandwidth utilization. The entire link can also be coloured according to its overall

average utilization or some parameter based on the number of LSPs flowing through

it. Many possibilities exist and are easily implemented. The advantage of this system

is that the colours change in time according to the current network state and require

no information from the simulator’s side.
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Figure 11: Visualizing network links with different bandwidths indicated by links widths.

• The width of a link is adjusted according to the bandwidth it carries. Other parame-

ters might also be made to influence the width of a link but a bandwidth indication is

an intuitive one. Having a bidirectional link with different bandwidths is handled by

adjusting the width of the link ends independently.

Figure 11 illustrates the link sprites used to represent network links. Notice how different

links are rotated to appear as if they were 3 dimensional objects. The mechanisms in place

to govern these packets are explained in the next Section.

4.3 Rendering Packets

No network visualization tool is complete without some form of packet visualization.

The most widely known network visualization tool that achieves packet-level animation

is VINT’s1 network animator Nam[8]. Nam consists of a 2 dimensional network view with

packets flowing on links. Nam packets have a rectangular shape extruded on the one side

to form a point that indicates the direction of flow on the link. Our packets are based on

a similar concept using texture mapping. Figure 11 illustrates packets flowing on network

links in both directions. The packets are rendered as a rectangular polygons with an arrow

1Virtual InterNetwork Testbed.
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shaped texture mapped onto it. This visualization method helps to identify back to back

packets.

The main feature that sets our system apart from Nam is in that we use modern computer

graphics hardware allowing us to achieve packet animation on a larger scale. To understand

the differences and the advantages gained by using this technology we first explain how

different graphical systems work.

4.3.1 Understanding Interactive Computer Graphics (CG)

In its most basic form CG can be created by writing low level routines that access a memory

buffer inside the video card. Upon accessing this memory buffer, colour values can be

placed inside the buffer which results in pixels being displayed on screen. This was the

first technique used to provide basic computer graphics to end users in the form of games

such as “Space Invaders”. Essentially the technique calculated each pixel’s colour value

for each frame, with successive frames calculated as fast as possible to achieve animation.

This method was only useful at very low resolutions such as 320× 280 ( = 89600 pixels

). Executing a loop 89600 times to calculate each pixel’s colour value in under 0.033msec

per frame was no easy task with the processing power available at the time. However,

this technique can be used to display mostly static graphical objects, which is still used to

produce today’s window-like operating systems. The standard GDI2 Nam uses this GDI

to provide its network animations, which works as long as computer processors are fast

enough to “paint” the animation fast enough.

It became clear that this system (which has been dubbed software rasterization) had no

future if more complicated CG was to be attempted. A new system was developed that

shifted the rasterization (paint) process, which was done by software (CPU) at the time,

to video hardware. Therefore, instead of sending the video card an entire set of pixels to

represent some shape (for example a rectangle), only the vertices or corners are sent with

the hardware rasterizer painting the pixels in between. This revolutionized the interactive

computer graphics industry. Complex graphical scenes could now be constructed at high

resolutions running at high frame rates.

Although scenes grew in visual quality and complexity a new problem emerged. Before

the shapes that the millions of vertices represent can be painted, they (the vertices) need to

be translated into place. This requires the construction of a so called 4× 4 “world” matrix

for each object, which comprises translation, scaling and perspective information. The re-

spective world matrices are multiplied with each vertex of an object, to translate an object

into place. This is an expensive operation that can saturate today’s fastest CPUs. The solu-

tion to this problem is much the same as the solution to the software rasterization problem:

move the computations to specialized video hardware. Because of marketing reasons or

2Graphical Device Interface.
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because of the complexity involved in creating this new form of hardware, vendors decided

to give the chip that performs these computations a name: the Graphics Processing Unit

(GPU). Because the GPU was specially built to perform Hardware Transform and Lighting

(known as Hardware T&L), it could perform these duties much faster than the non special-

ized CPU (known as Software T&L) could, while in the process also freeing the CPU to do

other calculations.

The last piece of information necessary to understand how we implemented the packet

animation system is a concept known as vertex shading. In most 3D applications vertex

shading would not be used. Normally objects to be rendered are mostly static and few in

number. By static we imply that the vertex data do not change on a frame by frame basis.

The rectangular prisms used to visualize packets are an example of a static object. When a

packet is created its vertices are created in such a way as to convey its size and thus never

change while the packet is flowing down a link. A dynamic object would represent some-

thing like a water surface with waves. Vertex data change constantly according to a sine

wave function. Implementing such vertex changes on a frame by frame basis is expensive

and hence the necessity for a vertex shader. A vertex shader effectively changes the posi-

tion of static vertex data (the flat water surface) according to some function programmed

inside a vertex shader program. Just as a C++ compiler is used to generate code for CPU’s,

a vertex shader compiler compiles a vertex shader program for the GPU.

4.3.2 Using the Vertex Shader to Improve Packet Animation Perfor-

mance

Now that we know how the basic vertex shader process works we explain how we use it

to gain a significant performance improvement when animating packets. We mentioned

that the vertex shader helps improve performance of dynamic objects, but noted that the

packet objects are static. Furthermore, we claimed that vertex shaders are normally only

used when inter vertex movement of the same object does not occur in unison, because if

they did they could all be translated using a common world matrix. So why then use a

vertex shader to translate a packet over a link? The reason lies in the fact that packets occur

in large numbers, so many that the normal method of translating each individual packet

into position would be too costly. Furthermore, closer inspection reveals that visualizing

packets is indeed required to be dynamic, if only for a short period of time. When a packet

reaches the end of a link or is located at the beginning of a link, its length needs to be

reduced otherwise it would extrude outwards beyond the ends of the links. This poses an

optimization issue because the packet vertex data now also need to be updated on a frame

by frame basis. When rendering more than ten thousand packets per frame, this vertex

updating severely impacts upon the performance of the system.

Consider the number of operations needed to translate a packet that is P% complete at
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the correct location on a link using the conventional method. Each packet’s vertices are

defined to be located at the link where they have completed 0% of their journey.

1. Save the current world matrix ([4 × 4] matrix copy). This step ensures that the

next packet to be put in place has a fresh world matrix containing no translation

information of the previous packet. The world matrix currently only contains world

rotation and perspective information, not translation.

2. Create the initial packet translation vector ([4 × 1] vector copy). This vector is

created by setting it equal to the direction vector of the current link the packet is

traveling on. This direction vector has a magnitude equal to the current link’s length

and because nodes may be moved by the user, a link’s direction and length might

change. Such changes therefore need to be updated into the translation vector for

every frame.

3. Create the final packet translation vector (3× floating point multiply). We now

multiply each of the initial packet translation vector’s components with P , the com-

pletion status value that represents the actual position of the packet on the link.

4. Multiply translation information into the world matrix ([4 × 4][4 × 4] floating

point matrix multiplication). When specifying a translation vector to be added to

the world matrix OpenGL converts this vector into a matrix and multiplies it with

the world matrix. The setup of the world matrix is now complete and unique to this

packet on this link.

5. API Render call (hardware performs a [4×4][4×1] floating point matrix vector

multiply 4 times). The hardware translates and rotates each of the packet’s 4 vertices

into place. It does so with the use of the computed world matrix. It then proceeds to

render the packet onto the screen.

6. Restore the world matrix ([4× 4] matrix copy). Restore the world matrix saved in

step one for the next packet to use.

These 6 steps are not expensive to compute once, but executing these 6 steps for each

packet on each link for each frame for many frames per second adds up to a large number

of instructions. The most costly steps are steps 4 and 5, but they all contribute to make the

entire process very slow.

The question presents itself, can we do better? The answer is that we are in fact doing

better. We mention in step 5 (computationally the most expensive step) that the matrix

vector multiplications are done using graphics hardware, in other words the GPU. This

takes much of the workload from the CPU. Acquiring such functionality is already a major

step forward and requires complicated mechanisms to acquire the the correct set of circum-

stances necessary for such hardware acceleration to take place. However, with the help of

a vertex shader program we can do better.
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With our vertex shader method the number of operations required on a per packet basis

by the CPU is 0. Steps 1,2,4 and 6 are eliminated with steps 3 and 5 handed to the GPU

for processing, with the aid of the vertex program. The idea behind this is that we instruct

a link to render all the packets traveling on it at once, with the individual packet translation

information embedded within each vertex of every packet. For rendering purposes, each

packet’s vertices consist of four floating point values, three to specify its position and one

to be used later by the transformation process to store 3D perspective division information.

We propose to piggy back in this fourth value the P (the position of the packet on the

link) value described earlier in this section. This provides the necessary information to

position each unique vertex of each unique packet at the right location on the link it is

traveling on. Without a vertex shader program to intercept this P value the rendering

process would break down since the fourth value for each vertex is required to be equal to

1 by the renderer. This P value is also meaningless if we do not know in which direction

to translate the vertex into and that is why we stop at the link level when rendering packets

(in other words we cannot render all the packets flowing inside the network with one API

render call). Before every link makes the API call to render the packets flowing on it, it

specifies a constant value to be input to the vertex shader program. This constant value is

the direction of the link. When the rendering call is made, the vertex shader program is

run with every packet vertex as input which in turn collects the P value from the vertex’s

fourth value and translates the vertex P × linkDir into that direction. It then resets the

fourth value to 1 and completes by multiplying the translated vertex with the world matrix.

The entire program can be viewed in Appendix A.

Although there are further subtleties involved in rendering the packets flowing on a link

with one API render call, they are of a technical nature. They involve maintaining an index

buffer for each link for each frame, which the API then uses to determine which packet

vertices are to be drawn for a particular frame. The index buffer is updated every time a

packet enters end leaves a link. The CPU and GPU are also working in parallel. While the

GPU is busy transforming and rendering the thousands of packets, the CPU is continuing

to read the next set of events from the trace file and setting up the index buffers for the next

set of rendering calls. This results in a large performance increase.

4.3.3 Performance Evaluation

In the previous sections we described how our packet visualization system works. We

complete this discussion with a performance evaluation of the system. We focus mainly

on performance reports concerning the packet visualization system, as the node-link visu-

alization does not present the type of scalability issues that the packet visualization does.

A question such as “How many packets can be visualized at any one time without compro-

mising interactivity?” is the type of question we answer here.
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Our test system is running on Pentium 4 2.8 GHz CPU with 512 MB DDR 400 mem-

ory running in dual channel mode. The system also runs a Nvidia GForce FX 5900 3 series

graphics card, which at the time of the benchmark was about the 4th fastest card on the mar-

ket and by no means a slow GPU. The vertex shader and therefore the packet visualization

performance is directly dependent on the speed of the GPU.

Our test network being simulated consists of a 125 node 300 link cube-like network

seen in most of the figures. Because we incorporated complex culling techniques which

speed up the performance if links are not visible, we made sure that the entire network is

visible at all times. Every link on the network is injected with a constant packet stream in

both directions. We inject the packets and start taking performance readings only when the

network reaches its maximum packet count. We start off with only a few packets per link,

which results in an overall packet count for the network of 750, until we saturate the links

with as many packets as they can carry resulting in a total packet count of 12000 visualized

on screen. The links are set up to visualize a link speed of 1Gbps in both directions with a

link latency of 0.25msec4. When all these links are fully utilized we obtain 12000 packets

flowing in the entire network. Performance is quantified by the average frames per second

(FPS) achieved over a visualization period of 60 seconds.

Figure 12 shows two graphs depicting the average FPS achieved for visualizing x pack-

ets where x is 750 to 12000. The solid line graph shows the FPS achieved when using

the vertex shading packet visualization method, with the second graph showing the FPS

achieved when using conventional techniques which make use of standard GPU transfor-

mation power. The error bars represent the minimum and maximum FPS obtained for a

certain test visualization, with the average somewhere in between. The second graph in

Figure 13 shows the average percentage gain over the amount of packets visualized.

The results are promising for both techniques, with the less efficient of the two tech-

niques starting to fail when more than 6000 packets are visualized. The goal is to obtain

a rendering speed of more than 30 FPS, as FPS below this compromises the interactivity

of the network visualization. Figure 13 shows that under heavy load our vertex shading

rendering path achieves as much as a 350% increase in performance.

With a larger network than the one we tested here the performance would not necessarily

drop in normal use. In reality only parts of the network would be in view at any one time.

Because of the culling techniques in place, invisible links together with the packets flowing

on them are culled to increase performance. This means that while navigating through a

network, frame rates of 40 FPS can be expected when there are 12000 packets currently in

view. This is a promising result.

Another factor that influences the performance of the system is the rate at which the

3Graphic card performance is currently increasing at a phenomenal rate. Within 2 years this graphics card
might be as much as 30 times slower than the leading edge product.

4
0.25msec is the time taken for one bit to propagate through a fiber of length 50Km.
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Figure 12: The average frames per second FPS achieved when rendering n packets.

visualization animates the network. These performance measures were taken when visual-

izing the network at 1/15000th of the actual speed. In theory this has an influence on the

performance, as injecting and removing packets at high rates requires more bookkeeping

in terms of setting up the correct index buffers for each link etc. by the CPU. With the

non-vertex shader technique this is indeed the case with performance dropping rapidly as

the speed of the visualization is increased.

However, because of the optimized parallel nature of our vertex shader solution we found

the speed factor to have no effect on the performance. Our explanation of this observation is

the fact that the GPU must be lagging behind the CPU while trying to finishing its rendering

tasks. Therefore, while the GPU is still rendering the current frame’s batch of packets the

CPU has had enough time to setup the next frame’s rendering state. We set out to confirm

our theory with experimental results acquired when visualizing the network with 12000

packets.

Firstly we discuss the background of the test conditions. In the render path, before the

next frame’s batch of packets can be rendered it is necessary to instruct the GPU to finish

with its current rendering queue, thereby synchronizing the GPU with the CPU. This is

necessary for every frame because a situation can arise where vertex data are being changed

before they are rendered. To achieve synchronization a special API function is used called

glFlushVertexArrayRangeNV(). This instructs the GPU to finish with its current queue of

render calls while blocking the CPU. We set out to measure the time before and after this



CHAPTER 4. VISUALIZING NETWORK DATA 42

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0  2000  4000  6000  8000  10000  12000

%

n

Percentage gained

Figure 13: The average percentage gain achieved over the same number of packets n ren-
dered as in Figure 12.

function call to get an idea of how long on average the CPU waits for the GPU to finish its

rendering queue in extreme conditions.

For the non-vertex shaded implementation we find that on average the CPU waits 4.1msec

for the GPU to finish with its rendering tasks. When increasing the speed of the visualiza-

tion to 1/1000th of the actual speed we find a large performance drop with an average

waiting time of 1.1msec. This indicates that the CPU and GPU finish with their tasks in

more or less the same time. Because of the very low FPS acquired in this test we also

deduce that both the CPU and GPU are being overworked. Installing a faster GPU will

gain no additional FPS, and only when installing a faster GPU and CPU together can an

increase in the frame rate be expected.

For the vertex shaded implementation the situation is different. We find the average

waiting time to be 15.4msec and dropping to 12.25msec when the speed is increased, with

no apparent FPS loss. This indicates that the CPU still has 12.25msec left to do more

bookkeeping duties. If a faster GPU is installed this average waiting time would come

down and the average FPS would go up until the CPU becomes the bottleneck again.
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4.3.4 The Physics Involved in Packet Visualization

In the previous sections we discussed the bookkeeping required for packet visualization.

It mainly referred to the process of keeping track of which packets are currently flowing

on a link and which packets are in a standby buffer. Although special techniques must be

applied for optimization reasons, it is implementation specific and up to the programmer

to implement correctly. Now we will discuss the physics behind the packet system as it

dictates what the simulator needs to send to the visualization system.

We conclude that there are no abstractions we can use to visualize packets with less

accuracy, that would make it easier to use for a simulator. Furthermore, if the physics is

not implemented correctly it would provide very little useful information to the user. The

disadvantage is that if a simulator wants to use packet visualization, it needs to imple-

ment a packet engine to generate data fit for visualization. Unfortunately we found that

few network simulators go to this trouble, with the the exception of the ns [22] simulator.

Most simulators work with aggregate flows and therefore cannot benefit from raw packet

visualization.

The requirement placed on the simulator is that as it generates packet departure events,

the event times must be realistic. We argue in the next section why such realism might

help a network engineer gain more insight into a protocol’s failure or success. The possible

violation of the packet physics would be a scheduled packet departure event on a link when

a previous packet event is still being signalled onto the link . Other issues would also arise if

a packet does not compensate for the latency incurred when packets propagate over a link.

This might cause the visualization of packets that are out of sync. We therefore explain

the calculations used to visualize packets in order to clarify the requirements necessary to

generate events that can utilize the packet visualization system.

Minimum Inter Packet Departure Times, Collisions and Queueing

Network simulators can use inaccurate inter packet departure times for simulation purposes

and still generate useful data from such models. These do however present a problem when

generating event data for the visualizer. The problem is that in order for the visualizer to do

most of the work it needs examine the packet event times and accurately place the packets

on a link in such a way that the packets do not overlap. If they do overlap then graphical

anomalies are produced which are distracting. The time taken for a packet to be transmitted

on a link is

τ`(s) = 8s/βe

where τ`(s) represents the transmit time in seconds of a packet of size s bytes onto the

link, and Be represents the bandwidth of the link in bits per second. Since the formula
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is not computationally intensive we can calculate these values when simulating an event

stream and reject those packets with incorrect event times. The simulator is required to

do the same calculations and thereby stream correct event times. This double checking of

event times can be useful for debugging simulators, if such an event is accompanied by an

error message. In practice this functionality might indicate occasional packets generated

with incorrect event times by the simulator. If the visualizer has to reject packets too often

the visualization would slow down considerably because of output error text overhead.

The simulator can also request that the visualizer enable an automatic visualization queu-

ing system. This is only recommended for label switched path network simulators that have

a relaxed or simplified packet physics system. Such simulators would typically inject pack-

ets at ingress node and leave it to the visualizer to visualize the correct behaviour of the

packet flow until the packets reach the egress router. In such a mode a packet is inserted

into a priority queue when they reach a congested link. If all packets have the same priority

this queue would become a FIFO queue. The visualizer can then place packets on the link

when it is ready to send another packet. If the queue becomes full packets are dropped. If

however the simulator keeps track of queueing events, it can request a different queueing

mode where it then can send queue and drop events for the visualizer to visualize. This

way queueing strategies such as Random Early Detection can be correctly visualized.

The next step is to calculate the packet lengths correctly.

The Packet Length, Propagation Delay and Link Visualization Length Dilemma

The next step is to size the packet visually in proportion to its length on a link. To render

the length of a packet on a link, we use the percentage of the link’s storage capacity used

by a packet to calculate its length. A link’s storage capacity refers to the number of packets

that can be in transit on the link. If a link ` has a storing capacity of β` bytes and a graphical

representation vector v` = p`,o − p`,d, then the length of the packet is calculated by

ρ`(s) =
s

βe

× ‖v`‖

where

β` = βeρe

with ρe equal to the propagation delay on link `. p`,o and p`,d represent the position vectors

of the two endpoints of the link.

Although this algorithm calculates the length of a packet correctly, we use a different

method of visualizing packet length. Because of the extruding packet problem, the cal-

culated length needs to be adjusted at the ends of a link. Since we make use of the vertex

shader we not only propagate the vertices of a packet over a link, but we dynamically adjust
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them to portray the correct length. In the case of a platform not capable of vertex shading,

the previous method is employed in conjunction with scissor boxes. We start by creating

all 4 packet vertex positions at the edge of a link with the head of the packet’s two vertices

overlapping with the two tail vertices. When each individual packet’s P value is then set

for each vertex we start by adjusting the head vertices and then after a time τl(s) we adjust

the tail vertices. When reaching the end of a link we stop adjusting the head vertices and

continue adjusting the tail vertices. We therefore bypass the calculation of adjusting the

packet’s length according to the packet’s position and because the renderer cannot know

when such changes might start altering a packet’s geometry, it must update the packets

geometry for every frame and hence the performance penalty.

The final step is to create a realistic packet system where packets on different links

can be compared by their lengths to gauge their size. This might be helpful if a network

carries different sized packets or has different bandwidths on different links. However, a

link’s propagation delay is proportional to its length, while in visualized form it is not.

The SOM algorithm achieves a layout without any compensation for link latencies. In

the current system, a link with a large latency might be visualized as short and therefore

result in packets appearing shorter on that link. Thus we can compare different packets

on the same link, but not between links. A possible solution to this problem might be to

size the links in proportion to their latencies after the SOM algorithm completes its layout.

This is a unexplored problem as using latency information might result in unpredictable

layouts being generated on artificially generated networks. We have not implemented such

a system as we are not sure how insightful it would be to compare sizes of packets flowing

on alternate routes.

Packet Position and Removal

A packet p’s position Pp,` on link ` is easily calculated. We compute the total time ∆tp a

packet has been flowing on a link by subtracting the packet’s service time µp (a possible

queuing delay) from the packet’s event time tp,e and then subtracting that from the cur-

rent simulation time tS (this is the time used by the visualizer to do its own simulation

calculations and has no relation to the simulator’s time)

∆tp = tS − (tp,e − µp).

We then divide the total time by the propagation delay of the link the packet is flowing on

Pp,` = ∆tp/`pg.

We then remove the packet from the link if the packet’s total time in the system is greater

than its maximum time in the system Λtp,` where

Λtp,` = `pg + τ`(s) + µp
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4.4 Visualizing Label Switched Path Networks

The basic idea behind visualizing a label switched path network is the creation of a system

whereby the simulator need not calculate predictable values for the network visualizer.

Therefore, concepts such as sending a packet down a route need not be decomposed into

packet/queue events for each link by the simulator. If the visualizer is aware of a route then

it could send the packet down successive links itself. Because the system was designed

to be extensible, this functionality can be written by a user who wants to visualize a label

switched path network, but because next generation network engineering will use such

functionality we use this as an example of how to implement such an extension.

We start by defining the network classes that would be used by such a network. Since

we have already written a class structure of a basic network visualization, very little needs

to be done for the new set of classes. For instance, we defined a class called LSR which

represents a label switched router. This router has the functionality of a basic network node

but with extensions, such as keeping track of which routes flow through it. We therefore

derive the LSR class from the Node class and reuse the code written for the class Node.

This includes inserting nodes etc. We need not write any code that renders a LSR, since

this is inherited from the Node class. If we derive LSR from Node and add no extra code,

LSR would behave exactly like the Node class because of the Renderbase interface that

does everything automatically. If the LSR class does not override any of the interface calls,

the Node’s implementation of the interface would be used. If the LSR class does override

an interface call, it may choose to use or supplement the Node class’s interface, or bypass

it and define its own implementation.

The second extension works in the same way as the first. This includes the media classes

used to stream network information to the visualizer. We extend the classes to send extra

information to the visualizer which can be used by the extended network classes. Basic

functionality is retained through extension.

Since a label switched path functions differently from an administrative point of view

with no rendering changes we generally need not write new graphics code to visualize the

network. Depending on what needs to be visualized a derived class such as LSR is allowed

to change the colour field of its parent class’s renderer object with information pertaining

the number of routes going through the LSR. In this way a single point of failure might

be identified. We derived a set of classes that functions in this way which can be seen in

Figure 7 in Chapter 3.

4.4.1 The Advantages of LSP Network Visualization

The LSP network classes allow us to handle events such as adding multiple LSPs to an

OD pair and removing them later on, visualizing the changes as they happen. Substantial
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optimization can be achieved with packet rendering. Instead of many events inside the

trace stream for packet departure times we can now only have one packet event per route.

Because of the network structure in place, the visualizer knows that when a packet finishes

on one link it needs to be forwarded to the next link along the LSP until its destination

is reached. Packet information can be copied from the one link’s packet buffer to the

next, thereby saving the reload needed from the network event stream. This results in

significantly smaller trace files.

In this mode the standard packet priority queueing model explained above is always used.

It would be impossible to code every different queueing scenario and if the basic queueing

functionality is not sufficient, the simulator’s queue functionality needs to be implemented

inside the visualizer so that packets are animated properly.

Other advantages are that ideas can be quickly tested with this type of network visual-

ization. If a network engineer wants to test an idea, s/he can simply instruct the visualizer

to create an LSP between an OD pair and not specify a path. The network code embedded

within the visualizer would then select the shortest path at that time between the OD pair

according to the respective link weights. The path can also be controlled by changing link

weights by the simulator throughout the animation, or an explicit path can be specified.

Packets can be sent down this path. This can be achieved without writing any simulation

code, but by using the visualizer’s standard behaviour.

An OD pair can specify a maximum latency QoS value for packets traveling over some

of its LSPs. Packets flowing along these LSPs can be coloured as they flow according to

their aggregate latency built up by propagating links and experiencing queueing or other de-

lays. Thus, although a flow algorithm might compute a network configuration that achieves

maximum aggregate flow, the packets themselves might exceed acceptable latency limits.

The deployment of voice over IP in next generation networks will require setting up routes

with the least latency which will become a bigger priority than generating revenue per unit

bandwidth sent. Using tools such as the packet visualization will allow analysts to explore

the QoS of a network more effectively than sifting through large amounts of packet data.

Many other types of visualizations are possible by adjusting the colours of rendered

objects. We implemented a few to convey the idea, but in reality many of the visualization

effects would be configured by the user.
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Data Interface

In this thesis we have examined the data transfer between a simulator and the visualizer. In

practice, network data can have any number of sources and we therefore designed an inter-

face to abstract the underlying complexities of encoding and decoding network data. This

chapter does not discuss the more commonly associated meaning of a user interface, which

is the interface used to interact with the visualization. We have not implemented such an

interface because it does not add any scientific value the this thesis. It is a time consuming

coding exercise to extract data inside the visualization and display it using different graphs

or graphical effects. Such a user interface will be designed when it has been determined

that the underlying visualization system is complete and scalable.

5.1 Classic Data Exchange Models

We start by explaining commonly used methods of providing network event data as input

for a visualization program. Most implementations use a text data format to specify event

data, for example NAM [8] uses such a trace file format. Not only is the data stored in text

format, but it is also readable. This has advantages and disadvantages. Having a readable

trace file format permits the developer of the visualization system to debug trace files that

do not work properly, by being able to read the line that caused the problem. Test cases

can be developed with minimal effort. Normally this sort of trace file format is convenient

when providing input to a program. One can read the inputs given to the system and gain a

better understanding of how the system works.

With most systems a readable trace file would be the preferred method of transferring

data. However, because of the volumes of data associated with network trace data we claim

that this is not an appropriate way to transfer data. Computers can read more obscure

formats than humans can and creating trace files that are not readable can save space. All

48
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the descriptive names and spaces between different values etc. can be substituted by a set

of serialized bytes.

ASN1 [23] is a well known encoding-decoding standard. It takes a set of variables,

data structures and events from one computer system, encodes it into the ASN1 encoding

format, then sends it to a second computer system for decoding and processing. The ASN1

coding-decoding rules are simple and can encode a general set of variable length data units

in one stream. The data unit consist of a header and a payload. The header describes

what kind of data unit this packet represents with the accompanying payload consisting

of a variable number of bytes as data. The decoder looks up the packet type in a table

from which it determines the nature of the data. The size of the payload is decoded from

the header and the payload is extracted and processed. Because of the generality of the

ASN1 format, we implemented our own encoding format that works in a similar way, but

is optimized in terms of event data storage capacity. We do not need an encoding-decoding

standard that can encode-decode any number of data structures with arbitrary sizes in one

stream. This approach is too general and complicates the encoding-decoding stages of the

data transfer. We only need a system that can encode-decode simple network event data

structures of which the nature of the payload size and meaning are known. Using this type

of data encoding in conjunction with C++ function pointers we created a system that is

optimized to cater for the amount of network data we are working with.

5.2 Using C++ Member Function Pointers to Simplify the

Data Interface’s Design and Implementation

To properly demonstrate the effectiveness of this method let us consider how to implement

a data interface in an ideal situation. As stated above an ideal situation (given enough

processing power) would be to have the visualizer and the simulator contained inside the

same application. The simulator would make procedure calls to the visualization subsys-

tem. Since in reality these two subsystems, the simulator and the visualizer, do not exist

inside the same program such a simple and effective method is not possible. Such a solution

would require the source code of the simulator to be combined with the source code of the

visualizer. Such a feat is possible and would work, but it would not be practical. Hardware

requirements for the simulator and the visualizer differ radically and combining the two

would limit the functionality of the two programs. The simulator would typically require a

fast computer with possibly multiple CPU’s and a large amount of memory. The visualizer

requires a different kind of computer where state of the art graphics hardware is a key ele-

ment and CPU processing power is not as important. Since the computers with the biggest

processing power available do not have the capability to receive graphical hardware, one

starts to realize that such a combination of source codes would not be possible.
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Using procedure calls to drive the visualization from the simulator is therefore not pos-

sible and traditionally some form of message transfer has been used to communicate be-

tween the two systems. Messages would be written to a file and the visualization would

parse these messages and act accordingly. It is in this parsing step where we make our

optimization by using a different system than that which is normally used. Our system can

be described as a type of remote procedure call interface. Traditionally a message can be

represented as:

<eventNr> <eventId> <time> <ingress> <egress> ...

-------------------------------------------------

1 packet 2673 20 50 ...

2 packet 2678 4 20 ...

3 packet 2685 35 4 ...

which would have to be scanned, parsed and acted upon. A scanner would convert the

“packet” string into a number or token which is then input to the parser that combines dif-

ferent tokens to decode the meaning of the message. Our system eliminates this scanning

and parsing stage. Instead of writing readable messages we write numbers embedded in-

side a byte stream to indicate which procedure of the visualizer we want to call. These

numbers serve as indexes into an array of pointers to member functions1. The entire scan-

ning parsing system has therefore been substituted by simply reading 4 bytes from a stream

and interpreting those 4 bytes as an integer value which is used as an index into an array of

functions.

It only remains to pass parameters to these functions. With reference to our system we

would make function calls with parameters to drive the visualization. We have described

how we select which function is to be called but not how the parameters are handled.

Solving the parameter problem is trivial as in addition to the function index embedded

within the byte stream we also add parameter values. The function index is extracted,

the function at that index is invoked and the function itself reads the correct number of

parameters from the stream. Figure 14 illustrates the concept.

Although the byte stream also contains network setup information etc. 99% of the trace

file consists of event data. When simulating a network with 125 nodes and 300 links all

running at one gigabits per second for a tenth of a second with all the links running at

full capacity our system generates a trace file with a size of 77Mb. Compression schemes

might be used in future implementations to reduce the size of the files. Doing a standard

compression of the file yields a file size of about 10Mb which is manageable.

In the previous chapter we explained that although our visualizer can visualize data that

specifies packet event data per link, a more advanced use would be to specify packet event

data per LSP. This would reduce the size of the trace file considerably. Instead of the

1A member function is the name given to function that is associated with a C++ class construct.
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Figure 14: Illustration of the data interface used to transfer event data.

simulator sending packet event data for each packet traveling along each link along an LSP,

it would be more advantageous if it could only send a packet event per LSP. Since our

visualizer supports an LSP network and does its own physics calculations on the packets

(for rendering purposes) this feature was not difficult to implement. Therefore when using

a simulator that generates packet flows over a LSP network, a simulation can be visualized

over a much larger time frame and on a bigger network without being encumbered by huge

trace file sizes.

5.3 Data Interface Implementation

The above section describes the concept used to transfer data between the simulator and the

visualizer. The implementation of this concept is more complex because we have different

network types that build on each other and because we designed the data interface to be

extendible with the least effort. These complexities involve C++ specific issues and do not

add any value to the thesis.

To hide the technical complexity of the way that data is transferred we have written a

lightweight library that is separate from the visualizer. This library is linked together with

the simulator and is used to generate the trace file output. A simulation software package to

output visualization data can therefore be modified without being concerned with technical

issues involving the generation of a trace file that can be read by the visualizer. The library

consists of procedure calls that the simulator can use to visualize its network. The library

converts the sequence of function calls and their respective parameters into a trace stream

that conforms to what the visualizer expects.
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5.3.1 The Standard Network Stream

The following functions are provided by the standard network stream:

void Begin( unsigned int gNoNodes, unsigned int gNoLinks )

The network topology setup phase is started by making a call to this function. The

parameters gNoNodes and gNoLinks specify the number of nodes and links in the network.

These parameters serve as a hint to the visualizer for performance optimization reasons. If

the exact numbers are not know then specifying zero values would be sufficient albeit at a

minor initial performance loss.

void End()

This function is called when the network topology setup is complete. This function

invokes post processing functions by the visualizer such as network layout etc. No further

changes to the network topology can be made after this function has been called.

unsigned int NewNode( unsigned int gType, float gSize, unsigned

int gColor = 0 )

This function can only be invoked between an Begin()/End() sequence. This function

adds a network node to the topology. The parameter gType specifies the type of the node

ranging from 1 . . . n where n is the number of types implemented. Specifying different

type values would result in different visualizations of a node. The current implementation

supports 3 types (sphere, cube and pyramid) but more can be added. The parameter gSize

is used to scale the visualization of the node to be either bigger or smaller. The gColor

parameter is used to specify the color of the node which is interpreted as an array of 4 bytes

each specifying r,g,b,a values. The return value is the ID assigned to this node. This ID

will later be used to connect two nodes with a link. IDs start at 0 and end at n − 1 where

n is the number of calls to NewNode(). The return value is provided for convenience and

need not be explicitly stored.

unsigned int NewLink( unsigned int gNode1, unsigned int gNode2,

unsigned int gCapReceive, unsigned int gCapSend )

This function can only be invoked between an Begin()/End() sequence. This function

creates a link between two nodes. The gNode1 parameter specifies the ID of the source

node and gNode2 the destination node. The IDs are obtained from the NewNode() function

or can be specified manually as long as it is between zero and the number of nodes minus

one. gCapReceive is this link’s receiving capacity in bits per second, that is traffic from

gNode2 to gNode1, and conversely for gCapSend. The return value is the ID of this link.

As with nodes, IDs start at 0 and increment as more links are created.

void PacketEvent( float fTime, unsigned int gDirection, unsigned
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int gLID, unsigned int gSize )

This function can only be called between a BeginOfSimulation()/EndOfSimulation() se-

quence. This function triggers a packet event at time fTime on the link with ID gLID. To

indicate whether a packet was sent from gNode1 to gNode2 or vice versa the gDirection is

set to either indicate a send or a receive. Zero indicates receive and anything else indicates

a send. gSize specifies the size in bytes of the packet.

void BeginOfSimulation()

This function must be called before simulation data is streamed and is necessary to signal

to the visualizer that a new simulation is starting.

void EndOfSimulation()

This function must be called when the simulation has finished.

5.3.2 The LSP Network Stream

The LSP network stream is built on top of the the standard network stream. The two

streams designs are similar with the standard network stream being a subset of the LSP

network stream. In addition to the functions specified in the standard network stream the

LSP network stream provides the following functionality:

void NewLSP( unsigned int gLSPid, unsigned int* aLSRs, unsigned

int gLength, unsigned int gBwReceive, unsigned int gBwSend )

This function creates a new label switched path within the network. Since label switched

paths can be created and torn down in the course of a simulation this function is handled as

an event and must be called between a BeginOfSimulation()/EndOfSimulation() sequence.

The parameter gLSPid is a simulator assigned ID to the LSP it created.With the creation

and tearing down of LSPs it is required that the simulator keeps track of different LSPs

and their IDs. aLSRs is a pointer to an array of label switched router (which are nodes)

IDs which describes the path through the network. The two parameters gBwReceive and

gBwSend are the capacities assigned to this LSP in bits per second.

void RemoveLSP( unsigned int gLSPid )

This function removes LSP with ID gLSPid from the network and must be called be-

tween an BeginOfSimulation()/EndOfSimulation() sequence.

void PacketEvent( float fTime, unsigned int gDirection, unsigned

int gLSPid, unsigned int gSize )

This function signals that a packet of size gSize is to be sent down the LSP with ID

gLSPid at time fTime. As with the standard network stream the gDirection parameter
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specifies if the packet is being sent or received.

5.4 An Example

We proceed to give an example of how the data interface can be used by a simulation

process. The example we give here is not driven by a simulation process but rather a

simple loop that causes all the nodes to send a constant byte stream to neighbouring nodes.

The code presented here is C++ as currently the data interface libraries can only be linked

to by an C++ compiler. It is possible to write a data interface in any language which can be

used with a simulator written in that language.

The example we give here is the code that was written to create the network which

consists of a an n × n × n node network, which is presented in several Figures in thesis.

The code starts off by creating all the nodes contained within the network followed by a

simple loop to connect the nodes in a mesh like structure as illustrated in the figures. The

last part consists of generating event data for visualization which in this case is a simple

loop that causes all the nodes to send packets down the links at full capacity.

#define dimension 5

//A simple function mapping 3 coordinates into an array

int gd( int i, int j, int k)

{

return i + j * dimension + k * dimension * dimension;

}

//The test network

void Media::TestNetwork()

{

//Variables

int size = dimension;

int noNodes = (unsigned int)pow( (float)size , (float)3 );

int noLinks = size * size * ( size - 1 ) * 3;

Stream_Std ui( Stream_Base::FILE, "netTrace1.tfl" );

//Start of the network definition phase

ui.Begin( noNodes , noLinks );

//Create all the nodes

for( int c = 0; c < size * size * size ; c++ )

ui.NewNode( 5, rand()%4 + 2 );
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//Create all the links

for( int i = 0; i < size; i++ ){

for( int j = 0; j < size; j++ ){

for( int k = 0; k < size; k++ ){

//Create a link with a bandwidth of 1000000 * 1000 bps

if( i + 1 < size )

ui.NewLink( gd(i,j,k), gd(i+1,j,k), 1000000, 1000000 );

if( j + 1 < size )

ui.NewLink( gd(i,j,k), gd(i,j+1,k), 1000000, 1000000 );

if( k + 1 < size )

ui.NewLink( gd(i,j,k), gd(i,j,k+1), 1000000, 1000000 );

}

}

}

//End of network definition

ui.End();

long double t = 0.0;

//Begin of simulation commands

ui.BeginOfSimulation();

//Simulation lasting 0.1 sec

for( t = 0 ; t < 0.1; t+=0.000012)

{

//For all the links

for(int c = 0; c < noLinks; c++ )

{

//Send and recieve a packet of size 1500 bytes

ui.PacketEvent( (float)t, Receive, c, 1500 );

ui.PacketEvent( (float)t, Send , c, 1500 );

}

}

//End of simulation commands

ui.EndOfSimulation();

}
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The code is simple and is easy to understand and illustrates the entire sequence of func-

tion calls necessary to create a network visualization. The example network and its simula-

tion have been kept simple to keep the code as compact as possible. In practice the function

calls would be inserted in different places of an simulator’s implementation to extract the

trace data needed for visualization.
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Conclusion

Visualizing large and complex systems to some degree of abstraction is of great use to

scientists today. Although it might not always be used as a tool to prove tangible results,

it serves to initiate investigations into complex systems. Analyzing large simulations of

networks is one of the many fields where quantifying results in terms of a single number

is very hard to achieve, but yet is sometimes done to simplify results. A simulation might

reveal that a network that performs well in certain aspects, such as bandwidth utilization

and the number of dropped calls, but only for the network as a whole. These numbers are

sometimes obtained by aggregating performance results from different areas of a network

over time and combining them into a single value. The problem with such a technique

is that although the network might be performing well, some subsets of nodes and links

might not be performing according to the QoS requirements. This can skew the outputs of

simulation runs so that they look more favourable than they really are.

6.1 The Use of Network Visualization

6.1.1 Network Visualization as an Analysis Tool

Our visualization attempts to identify situations where a part of a network might during

some intervals not be performing well, by visualizing the performance of the network us-

ing graphical constructs. A network engineer can with little effort identify problematic

areas and launch an investigation by examining the raw data of the simulation and drawing

conclusions from there.

Network visualization can also be used as a tool to test whether or not certain algorithms

function as intended when building network simulators. It may not always be possible

to predict the effect an algorithm will have on traffic patterns within a large network, but
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concepts can be tested on smaller networks that can be visually inspected. Once the vi-

sualization of a small network shows the predicted traffic flows, one can simulate larger

networks with greater assurance that the algorithm is working as intended. Other problems

can immediately be identified such as certain links not carrying any traffic, large queues at

certain nodes or packets whose end to end delays are higher than they should be.

6.1.2 Visualizing QoS in Real Networks

Another matter worth investigating is the visualization of the QoS in real networks, and in

particular, MPLS networks. The idea is as follows.

First, it should be realized that a real time visualization would not be practical as the

overhead of acquiring the performance data from different parts of the network in real time

might be too large. However, insight into how the network was performing in the recent

past can be obtained. Apart from fluctuating packet flows inside a network caused by faulty

hardware resulting in packet loss, packet flows follow fixed routes inside a label switched

path network and hence can be reproduced to a certain degree of accuracy. Detailed in-

formation will be necessary to determine the packet service times on each hop and how

large router queues can get before they start dropping packets. Information about router

scheduling together with the algorithms used to prioritize packet flows of different service

levels will also be needed.

Second, it would be necessary to record the utilizations of all the ingress/egress pairs over

time. Since today’s networks have programs that monitor link utilizations such information

is available and can be used as input data for a visualization. The visualizer can process

this information to produce a good approximation of the packet flows inside the network at

any given point in time.

A powerful computer would be needed to do the calculations, especially for large net-

works, and the computation would be feasible for label switched networks with OD pairs

and routes ranging in the thousands. For large networks one can keep the computations

manageable by working with aggregate flows by discarding detailed packet information

altogether.

6.2 Aspects of Network Visualization

A goal of this thesis was to justify the validity of visualizing network data. Information vi-

sualization has been used in other fields to successfully present large result sets, to enhance

understanding of certain problems and find the answers to them. For example consider

the visualization of the air pressure around the surface of a new type of wing. Although

the visualization of the result will not give a definitive answer as to whether or not the
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configuration of this wing would provide more lift and less drag than other configurations

tested, it could serve as a good indication. With time and experience scientists would be

able to predict which visualizations represent better results than others and thereby save a

considerable amount of time sifting through raw data.

We aim to create the same visualization for network engineering, not to give engineers

a definite yes or no answer, but to give them an overall picture of what is happening inside

the network. We believe that such visualization software can serve as a valuable tool to

develop different algorithms that manage flows inside a network. We implemented several

basic simulations to test the visualizer and many times the visualization quickly showed

when mistakes were made in the simulator logic, or when certain things we expected to see

were not being shown. The visualizations served as a valuable tool to initiate investigations

into the different phenomena observed.

The areas of network visualization focused on in this thesis concern the visualization

of large result sets as opposed to how to use different graphical constructs to highlight

problematic areas within a network. To put things in clear perspective the following section

summarizes the aspects of visualization we did and did not cover in this thesis

6.2.1 Graph visualization

The first problem that we encountered was creating a suitable visual representation of an

input network. We need to present a system whereby the connectivity of a network could be

used to generate a graph that could be visualized in three dimensions. Since most networks

do not contain geographical data we had to artificially create the geographic locations to

best convey the structure or connectivity of the network, while also being suitable for a

three dimensional representation that is not confusing.

The Self Organizing Map algorithm is a useful tool in this regard. The algorithm is

flexible and can be configured to create a layout of a large network within seconds. The

algorithm can also deal with different sized networks much better than other conventional

layout algorithms such as the spring modeling approach where a considerable effort has to

be put into creating a visualization of each network.

By coding an optimized graph layout system we are confident that we can generate

flexible layouts for variable sized networks in an acceptable amount of time.

6.2.2 Program Design

Many platforms and languages exist that can be used to write network visualization soft-

ware. While the platform is not all important, the code base needs to be well designed to
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simplify the development of such a visualizer. By implementing a proper set of base net-

work classes we have shown that creating visualizations of more advanced network con-

structs can easily be achieved by building on existing functionality. Network visualization

in particular lends itself to an object oriented design which if done correctly can provide

substantial advantages over more conventional coding techniques.

Although a simpler design would be quicker to implement and can provide the same

visual results as our object oriented design, it would not result in a pragmatic code base

and would most likely be useless. Extending the functionality of a program built upon a

simple design would require a large amount of code duplication if not a complete rewrite.

It is important to note that we have shown that with a proper object oriented design the

visualizer can be extended to to visualize a new type of network with little effort.

6.2.3 Visualizing Network Data

The visualization of the nodes and links of a network can be done in many ways using

modern graphical languages. The challenge is to create a balance between the quality

and the practicality of the graphical objects used. One has to consider that networks can

be large and a poor choice of graphical objects could compromise the scalability of the

visualization.

We have chosen the representation of nodes, links and packets to retain graphical viewing

quality while not sacrificing the scalability of the system. We have shown that by using

our choice of graphical objects acceptable performance is achieved, even when visualizing

large networks.

6.2.4 Data Interface

Trace data that can serve as input to a visualization program can become cumbersome to

work with. It is not uncommon for large trace files to be generated by network simulators.

To address this issue we devised a novel way of transferring data between the simulator

and the visualizer. To hide the complexity of this data transport model we implemented a

set of libraries that can be integrated with a simulator to transfer data to the visualizer with

minimal complexity. Since not all simulators can link with C++ libraries a different library

needs to be created for each different language/platform.

6.2.5 Network Performance Visualization

One area that warrants more investigation is what we refer to as “Network Performance

Visualization”. We touched on this subject in Chapter 4 where we explained what certain
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colours mean on nodes, links and packets. There may be other aspects that one would like

to visualize when monitoring the performance of a network of which we only implemented

visualizations for nodes, links and packets. These performance criteria might differ from

simulation to simulation and therefore we cannot implement a global metric that encap-

sulates the performance of all possible networks. For example some performance metrics

might be based on how much flow each link carries, while others base it on how many paths

traverse each link that is capacitated with a certain amount of bandwidth.

Different types of networks require different performance criteria and although imple-

menting them all would properly demonstrate the power of using a network visualization

tool, it would be a daunting task. One would have to develop a user interface that is highly

customizable so that a user can configure what he wants to see, be they paths through a node

or bandwidth carried on a link. We feel that although this can be accomplished it would

require a considerable amount of work to make such a system sufficiently configurable to

be of proper use, and we left it for future studies.

6.3 Final Remarks

Today’s networks deliver guaranteed quality of service to their users. Users pay to to use

a network and they expect to receive the service they paid for. With the deployment of 3G

networks, and the quality of service they promise, network engineers are turning to more

advanced methods and algorithms to make sure that they are using the network infrastruc-

ture to its fullest. We are convinced that network visualization can be used to aid in the

design and management of such networks, although the use of network visualization to the

level expressed in this thesis is still unusual.

When these types of networks become more popular, network operators will have to

use more advanced tools to effectively identify problem areas inside a network as band-

width demands increase. A visualization tool can greatly assist in identifying such network

deficiencies.



Appendix A

The Vertex Shader Program Used

to Achieve Packet Animation

struct VertexIn { // Define our input vertex format

float4 position :POSITION;

float4 colour :COLOR;

float4 texCoord :TEXCOORD0;

};

struct VertexOut { // Define our output vertex format

float4 hPosition :POSITION;

float4 colour :COLOR;

float2 texCoord :TEXCOORD0;

};

// Main vertex program starts here.

// Returns : A vertex with format VertexOut

// Parameter 1: The input vertex with format VertexIn

// Parameter 2: The translation direction for the packets

// Parameter 3: The current world matrix

VertexOut main( VertexIn vtxIn,

uniform float3 linkDir,

uniform float4x4 worldMatrix ) {

VertexOut vtxOut;

float3 vertexTranslation;

// Setup the translation vector.

vertexTranslation = linkDir * ( vtxIn.position.w );
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// Translate the input vertex into position

vtxIn.position.xyz = vtxIn.position.xyz + vertexTranslation;

// Restore the piggy back value to 1.0f

vtxIn.position.w = 1.0f;

// Do world transformation, rotation and perspective correction

vtxOut.hPosition.xyzw = mul( worldMatrix, vtxIn.position );

// Set output vertex colour

vtxOut.colour = vtxIn.colour;

// Set output vertex texture coordinates

vtxOut.texCoord = vtxIn.texCoord;

// Return the output vertex to the pixel shader

return vtxOut;

}
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