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Abstract 

Control of the feeder for a reconfigurable assembly system 

K. Kruger 

Department of Mechanical and Mechatronic Engineering 

Stellenbosch University 

Private Bag X1, 7602 Matieland, South Africa 

Thesis: MSc.Eng (Mechatronics) 

March 2013 

This thesis documents the research conducted into the control of the feeder 

subsystem of a Reconfigurable Assembly System (RAS). The research was 

motivated by a new set of modern manufacturing requirements associated with an 

aggressive and dynamic global market. The motivation can be more specifically 

attributed to the need for selective automation, through the installation of 

reconfigurable systems, in the South African manufacturing industry. 

The objective of the research was to implement and evaluate Multi-Agent 

Systems (MASs) and IEC 61499 function block systems as potential control 

strategies for reconfigurable systems. The control strategies were implemented for 

the control of the feeder subsystem of an experimental RAS at Stellenbosch 

University. The subsystem‟s hardware consisted of a singulation unit with a 

machine vision camera, part magazines and a six DOF pick-„n-place robot. 

The structure of the control strategies is based on the ADACOR holonic reference 

architecture. The mapping of the subsystem holons to the structures of the control 

strategies is explained. The development and implementation of the control 

strategies, along with the accompanying lower level software, is described in 

detail. 

A system reconfigurability assessment was performed and the results are 

discussed. The assessment was performed at two levels – the Higher Level 

Control (HLC) (where the control strategies were implemented) and the low level 

control and hardware. The assessment was done through four reconfiguration 

experiments. The evaluation of the HLC was done through both quantitative and 

qualitative performance measures. The implications of the reconfiguration, 

involved in each of the respective experiments, on the low level software and 

hardware are discussed. 

The experimental results show that agent-based control adds more 

reconfigurability to the feeder subsystem than IEC 61499 function block control, 

and that agents have more advantages regarding customizability, convertibility 

and scalability than IEC 61499 function blocks. Also, the ability of agent-based 

control to implement reconfiguration changes during subsystem operation makes 

it more suitable to the case study application. 
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Uittreksel 

Beheer van die voerder vir ‘n herkonfigureerbare monteringstelsel 

K. Kruger 

Departement van Meganiese en Megatroniese Ingenieurswese 

Universiteit Stellenbosch 

Private Sak X1, 7602 Matieland, Suid-Afrika 

Tesis: MSc.Ing (Megatronies) 

Maart 2013 

Hierdie tesis dokumenteer die navorsing gedoen in die beheer van die voerder 

sub-stelsel vir „n herkonfigureerbare monteringstelsel. Die navorsing was 

gemotiveer deur „n nuwe stel vereistes vir moderne vervaardiging wat met „n 

aggresiewe en dinamiese globale mark geassosieer word. Die motivering kan 

meer spesifiek toegeskryf word aan die behoefte tot selektiewe outomatisasie, 

deur middel van die implimentering van herkonfigureerbare stelsels, in the Suid-

Afrikaanse vervaardigingsnywerheid. 

Die doel van die navorsing is om multi-agent stelsels en IEC 61499 funksie-blok 

stelsels, as potensiële beheerstrategiëe vir herkonfigureerbare stelsels, te 

implementer en evalueer. Die beheerstrategiëe was geïmplementeer vir die 

voerder sub-stelsel van „n eksperimentele herkonfigureerbare monteringstelsel by 

Universiteit Stellenbosch. Die hardeware behels „n skeier-eenheid (singulation 

unit) met „n masjienvisie kamera, onderdeelmagasyne en „n ses-vryheidsgraad 

gearktikuleerde optel-en-plaas robot. 

Die struktuur van die beheerstrategiëe is gebaseer op die ADACOR holoniese 

verwysingsargitektuur. Die afbeelding van die sub-stelsel holons na die struktuur 

van die beheerstrategiëe word verduidelik. Die ontwikkeling en implementering 

van die beheerstrategiëe, asook die gepaardgaande laer-vlak programmatuur, word 

in detail beskryf. 

Die stelsel se herkonfigureerbaarheid was geassesseer en die resultate daarvan 

word bespreek. Die assessering was op twee vlakke gedoen – die hoër-vlak beheer 

(waar die beheerstrategiëe geimplementeer was) en die lae-vlak beheer en 

hardeware. Die assessering was gedoen deur middel van vier herkonfigurasie 

eksperimente. Die hoër-vlak beheer was geëvalueer deur beide kwalitatiewe en 

kwantitatiewe metings. Die implikasies van die herkonfigurasie, betrokke by die 

onderskeie eksperimente, op die lae-vlak beheer en hardeware word beskryf. 

Die eksperimentele resultate wys dat agent-baseerde beheer meer 

herkonfigureerbaarheid tot die voerder sub-stelsel toevoeg as IEC 61499 funksie-

blok beheer. Dit is geïdentifiseer dat agente meer voordele inhou ten opsigte van 

aanpasbaarheid, skakelbaarheid en skaalbaarheid as IEC funksie-blokke. Agent-

baseerde beheer laat ook toe dat herkonfigurasieveranderinge tydens sub-stelsel 

werking geïmplimenteer kan word – dus is dit meer geskik vir aanwending in die 

gevallestudie. 
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1. Introduction 

1.1 Background 
The modern assembly and manufacturing environment is characterized by 

dynamic change and aggressive global competition. This dynamic environment is 

subject to rapid change in economical, technological and customer trends (Leitao 

and Restivo, 2006). A new set of requirements is thus applied to the modern 

manufacturing paradigm. Bi et al. (2008) describe some critical requirements for 

modern manufacturing systems: 

 Short lead times for the introduction of new products into the system. This 

involves the rapid adjustment of existing functions and processes, as well 

as the integration of new ones. 

 The ability to produce more product variants. This involves the addition of 

versatility and customization to production to satisfy customer demands. 

 The ability to handle low and fluctuating production volumes in order to 

be competitive in unpredictable markets. 

 Low product prices to compete in global markets. 

The manufacturing and assembly environment in South Africa (SA) is no 

different to that described above. However, some additional challenges exist for 

South African companies. The first of which is the dependency on manual labour. 

The cost of manual labour in SA is higher than that of other global competitors 

(World Minimum Wages, [S.a.]). This additional cost, as well as the 

unpredictability of a manual workforce (strikes, occupational safety risks, etc.), is 

making it difficult for SA to be competitive in the global market. The second 

challenge deals with the automation of processes in SA industries. There are many 

small to medium sized factories in SA producing a large variety of products. This 

variety in production means that automation cannot be achieved by Dedicated 

Manufacturing Systems (DMSs), as is described in section 2.1. The expected 

revenue of these companies does not allow them to automate their processes by 

Flexible Manufacturing Systems (FMSs) (described in section 2.1). 

The economic constraints faced by factories in SA limit the extent to which 

automation can be introduced to production activities. It is then only possible to 

automate certain production processes – an approach referred to as selective 

automation. The selection of which processes should be automated is based on 

several factors. These factors include the ease of which a process can be 

automated, in terms of the technical knowledge and equipment required, and the 

value that automation adds to the production. This value can be measured in 

different ways, e.g. a decrease in production cost, an increase in throughput or an 

elimination of safety risks. This selective automation, incorporating the 

implementation of reconfigurable systems, can potentially solve some of the 

problems involved in local production environments. 
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The concept of reconfigurable manufacturing and assembly systems is a 

promising solution to the modern challenges. The selective implementation of 

such systems can solve the problems faced by SA companies. This 

implementation will decrease production costs and increase production reliability 

and product quality.  

The research presented in this thesis forms part of a collective research effort into 

reconfigurable systems at Stellenbosch University. The research builds on 

previous studies which focussed on the conceptualization, design and control of 

an experimental Reconfigurable Assembly System (RAS). The RAS is based on 

the requirements of many factories in SA, especially those of CBI Electric – a 

global supplier of a high variety of quality trip switches. The products and 

processes of CBI Electric were used as case study for the experimental RAS.  

Sequeira (2008) identified the spot-welding process, involved in the production of 

CBI Electric, as a suitable process for automation by means of a reconfigurable 

system. The process entails the welding of individual trip switch parts to create a 

variety of sub-assemblies. It was identified that automating this process would 

reduce the dependence on skilled manual labour and the necessary training 

programmes. The conceptual design of the RAS included subsystems for the 

following functions: storage, transport, feeding, welding and inspection and 

removal. At this stage all the subsystems, except the inspection and removal 

subsystem, have been developed. 

Recent research at Stellenbosch University has placed emphasis on the control 

and coordination of the subsystems of the RAS. Parts of the presented research 

can be viewed as an advancement of the research performed by Sequeira (2008) 

and Adams (2010). The presented thesis places emphasis on the implementation 

and evaluation of proposed strategies for control of RASs. The feeder subsystem 

of an experimental RAS at Stellenbosch University was used as case study for the 

control implementation. This research was done in parallel with two other studies 

- Le Roux (2013) evaluated and implemented the control for the transport and 

storage subsystem and Mulubika (2013) designed and controlled the welding 

subsystem and developed a Cell Controller for the RAS. 

1.2 Motivation 
The feeder subsystem of the RAS had to incorporate mechanisms for part feeding, 

part manipulating and part fixturing. The feeding of parts involves the need for 

singulation actions – individual parts have to be singulated from bulk containers. 

This is followed by moving and manipulating the parts by a pick-„n-place robot, 

and then placing the parts in a fixture, which holds them in fixed positions for the 

welding process. Conventional systems for the feeding of parts are specifically 

designed for a specific set of parts - the variety of parts involved in the production 

of CBI Electric requires the feeder subsystem to be reconfigurable in the 

mentioned actions. The feeder subsystem then has to be a reconfigurable system 

itself. 
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The research presented in this thesis focuses on the control of the feeder 

subsystem of the experimental RAS. The thesis evaluates suitable control 

strategies for implementation in the feeders of RASs. The thesis aims to give an 

indication regarding the best means of control for reconfigurable feeders, thus 

contributing towards the implementation of RASs in industry. 

1.3 Objective 
The objective of this research was to evaluate the IEC 61499 standard function 

block and agent-based control technologies as possible methods for implementing 

holonic control in feeder subsystems of Reconfigurable Assembly Systems 

(RASs). 

The control strategies were implemented on a feeder subsystem of an automated 

welding RAS. The evaluation of the control strategies were based on the results of 

different experiments. These experiments provided performance measurements of 

the two control strategies according to the characteristics of RASs (described in 

section 2.2). 
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2. Literature review 
This section starts with a discussion of classic manufacturing paradigms and 

conventional control strategies of manufacturing systems. The motivation for 

reconfigurable manufacturing systems, along with its inherent concepts and 

characteristics, is discussed. The holonic approach to system control, which is 

often associated with reconfigurable systems, is described, with specific reference 

to the existing architectures for holonic control. The concepts of agent-based and 

IEC 61499 function block control, as strategies for implementing holonic control, 

are discussed in depth. 

2.1 Classic manufacturing paradigms 
The manufacturing and assembly environment is evolving continuously. This 

evolution is driven by changes in technology and economic trends. The major 

paradigms in manufacturing and assembly, as presented by Mehrabi et al. (2000), 

are discussed in the following paragraphs. 

The Machining System paradigm entailed the installation of one or more metal 

removing machine tools. These machine tools were accompanied by auxiliary 

equipment for material handling, control and communications. The operation of 

the machines was then coordinated to produce a fixed amount of parts. This 

paradigm pursued mass production as a strategy to reduce product cost. 

The need for higher part quality and reduction in production costs brought about 

the Dedicated Machining System (DMS) paradigm. With DMSs, machining 

systems with fixed tooling and functions were designed for specific parts. The 

DMS paradigm was driven by the lean production ideology, where production 

costs were reduced by eliminating production waste. 

A market demand for increased product variety led to the Flexible Manufacturing 

System (FMS) paradigm. FMSs were based on automation configurations of fixed 

hardware with programmable software. Flexibility refers to the ability of the 

system to switch to new families of components by changing the manufacturing or 

assembly processes and functions (Martinsen et al., 2007). These systems were 

thus capable of handling changes in work orders and production schedules, and 

producing several types of parts with short changeover times. ElMaraghy (2006) 

identified several types of flexibility: 

 Machine flexibility – the execution of various operations without changing 

the machine set-up. 

 Material handling flexibility – the existence of various paths for the 

transfer of materials between machines. 

 Operation flexibility – the availability of different operation plans for part 

processing. 

 Process flexibility – the ability to produce different sets of part types 

without major set-up changes. 

 Product flexibility – the agility to handle the introduction of new products. 
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 Routing flexibility – the existence of several feasible routes for the various 

product types. 

 Volume flexibility – the ability to vary production volumes profitably 

within the current system capacity. 

 Expansion flexibility – the ease in which system capability and capacity 

can be added to the system through physical changes. 

 Control program flexibility – the ability of the control system to run 

virtually uninterrupted during production or system changes. 

 Production flexibility – the ability to produce a number of product types 

without adding major capital equipment. 

There have been several investigations into the shortcomings of FMSs with regard 

to implementation in industry. Raj et al. (2007) identified high costs, the difficulty 

of design and the lack of inherent product flexibility (relative to volume 

flexibility) in FMSs as barriers to industrial implementation. Mehrabi et al. (2002) 

adds to this list a lack of software reliability, the need for highly skilled personnel, 

high support costs and a lack of support from machine tool manufacturers. They 

also mention that FMSs tend to be designed with excess features and capacity, 

which remain unutilized in many cases. 

2.2 Reconfigurable manufacturing systems 
The concept of reconfigurable manufacturing systems (RMSs) is a solution to the 

requirements of modern systems discussed in section 1.1. RASs are the specific 

application of RMSs in assembly processes. 

It is important to discuss the exact meaning of reconfigurability in this context. 

Martinsen et al. (2007) describes reconfigurability as the ability of a 

manufacturing or assembly system to switch, with minimal delay and effort, 

between a particular family of parts by adding or removing functional elements. 

These functional elements can form part of the system hardware or software 

(Vyatkin, 2007). 

RMSs and FMSs are often confused because of their similarity – each system can 

be adapted and is capable of handling production variety. It is important to 

consider the differences between the abilities of RMSs and FMSs. Mehrabi et al. 

(2000) mention that the key difference between RMSs and FMSs is that the 

capacity and functionality of RMSs are not fixed – RMSs are designed for rapid 

adjustment, through rearrangement or change of their components, in response to 

production demands. Wiendahl (2007) identified two more differences: 

1. The diversity of the workpieces that can be handled by the system. RMSs 

can be switched to accommodate different families of products, while 

FMS can only handle similar products. 

2. The extent to which the system is changed. With RMSs, the changes can 

be made through the addition or removal of components. FMSs are 

designed to only allow for changes in the production processes and the 

flow of material. 
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Mehrabi et al. (2000) identified five key characteristics of RASs. A sixth 

characteristic was identified by ElMaraghy (2006). The characteristics are then as 

follows: 

1. Modularity of the hardware and software system components. 

2. Integratability of the system and the system components for both ready 

integration of existing technology and the introduction of new technology 

in the future. 

3. Convertibility for the fast changeover between existing products and fast 

adaptability of the system for future products. 

4. Diagnosibility for fast identification of the sources of quality and 

reliability errors in the system. 

5. Customization of the system capability and flexibility to match specific 

applications. 

6. Scalability of the system capacity. 

RMSs satisfy all the requirements of modern assembly mentioned in section 1.1. 

Mehrabi et al. (2000) explain that RMSs permit reduction in lead times and quick 

integration of new technology and/or functionality. Bi et al. (2008) recognised 

that RMSs have the ability to reconfigure hardware and control resources, at all 

functional levels, to rapidly adjust the production capacity and functionality in 

response to sudden changes. Bi et al. (2007) is in agreement with this statement, 

identifying that with RMSs “the system and its components have adjustable 

structure that enables system scalability in response to market demands and 

system adaptability to new products”. 

Rooker et al. (2007) explain that there are two different types of reconfiguration 

which can occur in RMSs: basic and dynamic reconfiguration. Basic 

reconfiguration requires the system to be stopped. The system is then restarted 

after the necessary software and hardware changes have been implemented. With 

dynamic reconfiguration, the changes can be made while the system is still in 

operation. 

There exist several issues which have hampered the development and 

implementation of RMSs. Bi et al. (2007a) explain the key issues regarding RMS 

development: 

 The separation of RMS design from product design. Most RMSs are 

developed separate from the product design, which complicates the 

optimization of the system. 

 RMSs are perceived as a premature technology. Developers are still 

dealing with unresolved issues, which prohibit full automation through 

RMSs. 

 Indifferent attitudes toward RMSs. Many companies are uncertain of the 

advantages that reconfigurable automation holds for their production. 

 The use of RMSs as a wrong solution. RMSs should be implemented in 

production scenarios where the necessary production requirements exist 

Stellenbosch University  http://scholar.sun.ac.za



 

7 

 

and a sufficient level of technical competence is available. The RMS 

concept is not a suitable solution for all production scenarios. 

2.3 Control of manufacturing systems 
This section describes some of the commonly used classifications and approaches 

for the control of manufacturing systems. 

2.3.1 Types of control architectures 

Three different types of control architectures are discussed by Meng et al. (2006): 

centralized, hierarchical and heterarchical. The organizational structures of the 

control architectures are depicted in Figure 1. The architectures are described in 

the following paragraphs. 

Centralized Hierarchical Heterarchical

Controller Machine component
 

Figure 1: Types of control architectures (adapted from Meng et al. (2006)). 

The centralized control architecture achieves system control by means of one 

central controller. This controller is then responsible for the execution of all the 

automated processes in the system. The architecture is typically implemented in 

conventional control systems (discussed in section 2.3.2). 

The hierarchical control architecture implements the hierarchical arrangement of 

multiple controllers in a system. Different levels of control exist within the 

system. This implementation sees the passing of instructions in a downward 

direction and feedback in an upward direction. The hierarchical architecture is 

typically implemented in conventional control systems, while mixed architectures 

(combinations of hierarchical and heterarchical architectures) are often 

implemented in distributed control systems like holonic control (discussed in 

section 2.3.3).  

Heterarchical control architectures apply no hierarchical levels of control. The 

control of the system is achieved by several independent controllers. These 

controllers each have their own goals and specific functionality. Communication 

and coordination between these independent controllers enable complex system 

functionalities and the pursuing of the system goals. Mixed or strict heterarchical 

control architectures are typically implemented in holonic control systems. 
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2.3.2 Conventional control 

The control of manufacturing systems is conventionally done through centralized 

control systems or Petri nets, for the control of distributed processes. 

2.3.2.1 Centralized control 

Conventional manufacturing control systems are typically large, centralized 

applications which are developed and adapted on a case-by-case basis (Leitao and 

Restivo, 2008). These control systems implement centralized or strict hierarchical 

architectures (as was described in section 2.3.1). These control systems exist 

within the concept of Computer Integrated Manufacturing (CIM), which utilises 

large central databases to support the system information (Scholz-Reiter and 

Freitag, 2007). Conventional control hardware and programming techniques 

greatly rely on Programmable Logic Controllers (PLCs) (Black and Vyatkin, 

2009). 

Leitao and Restivo (2008) explain that conventional control systems do not 

efficiently satisfy the requirements of modern manufacturing and assembly (such 

as those specified in section 1.1). These control systems require expensive and 

time-consuming efforts to implement, maintain or reconfigure the control 

application. Scholz-Reiter and Freitag (2007) noticed that “the complexity of the 

control system grows rapidly with the size of the underlying manufacturing 

system”. Meng et al. (2006) explains that conventional control is not 

reconfigurable-friendly due to shortcomings such as structural rigidity, lack of 

flexibility and convertibility and inability to tolerate faults or disturbances. The 

monolithic nature of general PLC software increases the difficulty of system 

modification and maintenance, and reduces the scalability of the system. This 

centralized approach also cannot be appropriately applied to applications of wide 

physical dispersion of hardware (Black and Vyatkin, 2009).  

2.3.2.2 Petri nets 

Petri nets are a graphical and mathematical tool for describing system processes. 

This approach is very advantageous when the processes are distributed, 

asynchronous and/or nondeterministic (Murata, 1989). Since being introduced in 

the late 1970s, Petri nets have seen numerous implementations in all types of 

manufacturing systems. 

Murata (1989) explains that Petri nets are a particular kind of directed graph, 

which consists of two types of nodes: places and transitions. These nodes relate to 

that of events and conditions used in system modeling. Arcs are used to connect 

places to transitions or vice versa. A transition (an event) has a certain number of 

input and output places – these places represent the pre- and post-conditions for 

the event. The state of the conditions is represented in Petri nets as a token which 

is assigned to a place. This assignment is then representative of a “true” condition 

for the place. The firing of system transitions can then be controlled by 

implementing certain rules concerning the presence of tokens in the relative input 

and output places. 
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The popularity of Petri net implementation in manufacturing systems is based on 

the ease of which it can be converted into computer control mechanisms (Zhou et 

al., 1992). Petri nets can “concisely represent the activities, resources and 

constraints of a system in a single coherent formulation” (Lee and DiCesare, 

1994). The graphical representation inherent in the Petri net approach also aids the 

understanding and formulating of system problems. 

2.3.3 Holonic control 

The term holon was first introduced by Koestler in 1967 (Paolucci and Sacile, 

2005). The term comes from the Greek words “holos” (meaning “the whole”) and 

“on” (meaning “the particle”). Holons are then “any component of a complex 

system that, even when contributing to the function of the system as a whole, 

demonstrates autonomous, stable and self-contained behaviour or function” 

(Paolucci and Sacile, 2005). When this concept is applied to manufacturing or 

assembly systems, a holon is an autonomous and cooperative building block for 

transforming, transporting, storing or validating information of physical objects. A 

Holonic Manufacturing System (HMS) is then “a holarchy (a system of holons 

which can cooperate to achieve a goal or objective) which integrates the entire 

range of manufacturing activities” (Paolucci and Sacile, 2005). 

The distributed holonic model represents an alternative to the traditional 

centralization of functions (Paolucci and Sacile, 2005). Holonic control usually 

combines the best features from both hierarchical and heterarchical control 

architectures (Kotak et al., 2003). Kotak et al. (2003) explain that individual 

holons have at least two basic parts: a functional component and a communication 

and cooperation component. The functional component can be represented purely 

by a software entity or it could be a hardware interface represented by a software 

entity. The communication and cooperation component of a holon is implemented 

by software. 

The implementation of holonic control in assembly systems holds many 

advantages. Holonic systems are attractive because they are resilient to 

disturbance and adaptable in response to faults (Black and Vyatkin, 2009). 

Holonic systems have the ability to organise production activities in a way that 

they meet the requirements of scalability, being robust and being fault-tolerant 

(Kotak et al., 2003). Scholz-Reiter and Freitag (2007) describe advantages of 

holonic control systems due to the incorporation of heterarchical control. These 

advantages are: 

 Reduced system complexity due to the localization of information and 

control. 

 Reduced software development costs by the elimination of supervisory 

control levels. 

 Higher maintainability and modifiability due to system self-configurability 

abilities and system modularity. 

 Improved reliability due to a fault-tolerant approach as opposed to a fault-

free approach. 
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The two reference architectures for holonic control that are most often 

encountered in the literature are PROSA and ADACOR. These two architectures 

are discussed in the remainder of the section. 

The first proposed holonic control architecture is PROSA (Product-Resource-

Order-Staff Architecture), which is comprehensively described by van Brussel et 

al. (1998). PROSA defines four classes of holons: product, resource, order and 

staff.   

The first three classes of holons can be classified as basic holons. This is because 

their existence is based on that of three independent manufacturing concerns: 

i. Product related technological aspects, such as the management of process 

sequence and the product life cycle. Product holons hold the product and 

process information required for the production of system products. These 

holons contain the various “product models” and can provide the other 

holons in the system with product information. 

ii. Resource aspects, such as optimizing the performance of machines and the 

maximizing of machine capacity. Resource holons contain the physical 

hardware, accompanied by the control software, for production line 

components. These holons then offer their functionality and capacity to the 

other holons in the system.  

iii. Logistical aspects, such as those concerning customer demands and 

production deadlines. The order holons can be represented as tasks within 

the manufacturing system. These holons manage the logistical information 

related to the product being produced. Order holons contain the “product 

state model” and can thus provide production information to the other 

holons in the system. 

The basic holons can interact with each other by means of knowledge exchange, 

as is shown in Figure 2. The process knowledge, which is exchanged between the 

product and resource holons, is the information and methods describing how a 

certain process can be achieved through a certain resource. The production 

knowledge is the information concerning the production of a certain product by 

using certain resources – this knowledge is exchanged between the order and 

product holons. The order and resource holons exchange process execution 

knowledge, which is the information regarding the progress of executing 

processes on resources.  

Staff holons are considered to be special holons. This is because staff holons are 

added to the holarchy to operate in an advisory role to basic holons. The addition 

of staff holons aim to reduce work load and decision complexity for basic holons, 

by providing them with expert knowledge. The staff holons consider some aspects 

of the problems faced by the basic holons, and provide sufficient information such 

that the correct decision can be made to solve the problem. 
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Figure 2:  Structure of PROSA architecture (adapted from van Brussel et al. 

(1998)). 

The holonic characteristics of PROSA contribute to the different aspects of 

reconfigurability. The ability to decouple the control algorithm from the system 

structure and the logistical aspects from the technical aspects adds integratability 

and modularity. Modularity is also added by the similarity that is shared by holons 

of the same type, since this allows holons to be interchanged easily. 

Another proposed control architecture for holonic systems is that of ADACOR 

(ADAptive holonic COntrol aRchitecture for distributed manufacturing systems). 

Within ADACOR, each holon represents a physical resource or logic entity. 

ADACOR defines four holon classes according to their roles and functionalities: 

product holons (PH), task holons (TH), operational holons (OH) and supervisor 

holons (SH). The structure of the ADACOR architecture is shown in Figure 3. 

The product, task and operational holons are similar to the product, order and 

resource holons of the PROSA architecture. The product holons represent the 

products available for production – these holons have access to all the relevant 

product information. The task holons represent the processes, along with the 

necessary resources, required to satisfy the production orders. The operational 

holons represent the physical shop floor resources. The supervisor holon is quite 

different to the staff holon.  Supervisor holons are capable coordinating groups of 

holons and optimizing their collective actions. The supervisor holons thus 

introduce some hierarchy into the decentralized system. 

The ADACOR holons comprise a Logical Control Device (LCD) and a physical 

resource (if it exists for the specific holon). The LCD has three functional 

components: a communication component for inter-holon communication, a 

decision component for regulating holon behaviour and an interface component 

for integrating with the physical resources. 
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Figure 3: Structure of ADACOR architecture (adapted from Leitao and 

Restivo (2006)). 

According to Leitao and Restivo (2008), ADACOR addresses the improvement of 

flexibility and response to change of manufacturing control systems operating in 

volatile environments. ADACOR is suited to dealing with control problems in a 

distributed manner by being “as centralized as possible and as decentralized as 

necessary”. An ADACOR control system can be formally specified and modelled 

using Petri nets. ADACOR is “built upon a community of autonomous and 

cooperative entities, designated by holons, to support the distribution of skills and 

knowledge, and to improve the capability of adaption to changing environments”.  

Two possible strategies for implementing holonic control are agent-based control 

and IEC 61499 function block control, discussed in sections 2.4 and 2.5. 

2.4 Agent-based control 

The use of agent-based software to control manufacturing systems, i.e. agent-

based control, has received much attention in the research community – 

particularly in combination with holonic and reconfigurable systems. 

2.4.1 Definition of agents and agent systems 

An agent can be defined as a computational system with goals, sensors and 

effectors, which can autonomously decide which actions to take, in a given 

situation, to maximize its progress towards its goals (Paolucci and Sacile, 2005). 

With reference to a multi-agent system, Xie et al. (2007) define an agent as “a 

software system that communicates and cooperates with other software systems to 

solve a complex problem beyond their individual capabilities”.  

Paolucci and Sacile (2005) explain that an agent is different to a holon in the 

sense that a holon can consist of other holons, while an agent cannot include other 

agents. With this said, agents can practically be equivalent to holons in some 

cases. This is usually the case with agents which directly control a physical 
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device. Here the agent then represents the software component of the holon 

introduced to decentralize the control system at the lowest level.  

According to Paolucci and Sacile (2005) three different classes of agents can be 

identified: 

 Agents that execute tasks based on predetermined rules and assumptions. 

 Agents that execute well-defined tasks at the request of a user. 

 Agents that volunteer information or services to a user whenever it is 

deemed appropriate. 

The main characteristics of these agents are then as follows: 

 Autonomy. Agents should be able to perform most of their tasks without 

user intervention. 

 Social ability. Agents should be able to interact with other agents and 

users. 

 Responsiveness. Agents should be able to respond to changes in their 

environment. 

 Proactiveness. Agents should exhibit opportunistic and goal-orientated 

behaviour. 

 Adaptability. Agents should be able to modify their behaviour in response 

to changes in their environment. 

 Mobility. Agents should possess the ability to change physical location to 

improve their performance. 

 Veracity. Agents should communicate reliable information. 

 Rationality. Agents should act in a manner as to achieve their goals. 

Agents of different classes, performing different roles and functions, can 

cooperate and communicate within a Multi-Agent System (MAS) to achieve their 

individual goals and the goals of the system. MASs can be understood as societies 

of autonomous entities that, by their own convenient interaction and coordination, 

attempt to achieve local and global goals. MASs can then be summarized as 

“flexible networks of problem solvers that tackle problems that cannot be solved 

using the capabilities and knowledge of the individual solver” (Paolucci and 

Sacile, 2005). 

2.4.2 Design methodologies for MASs 

Paolucci and Sacile (2005) discuss three design methodologies for the design of 

MASs: problem-oriented, architecture-oriented and process-oriented MAS design. 

The problem-oriented MAS design process is guided by the identification of the 

reasons for which the MAS is needed. This usually involves obtaining an MAS 

solution to an existing problem or enhancing certain aspects of a system. The 

types of problems are then identified and transformed into tasks, which can be 

performed by agents. Two promising approaches to problem-oriented MAS 
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design are the GAIA approach and the Multi-agent Systems Engineering (MaSE) 

approach.  

The architecture-oriented MAS design process is oriented by the requirements and 

implications of the design on the system architecture. The architecture determines 

the capabilities of the agent system. The Synthetic-Ecosystems approach is 

proposed for architecture-oriented MAS design.  

Process-oriented MAS design is guided by the definition of time constraints 

imposed by the different processes in the manufacturing system. The real-time 

behaviour is an important aspect of MASs as they have to deal with internal and 

external asynchronous signals, along with the necessary time constraints. A 

proposed approach to process-oriented MAS design involves a four-layer, real-

time holonic control architecture. 

2.4.3 Standards and platforms for MASs 

The establishment of methodologies and techniques for MAS design and 

operation are required to increase the amount of practical applications of MASs in 

industry. “The Foundation for Intelligent Physical Agents (FIPA) is an IEEE 

Computer Society standards organization that promotes agent-based technology 

and the interoperability of its standards with other technologies” (FIPA, 2010). 

FIPA was founded in 1996 and became an official IEEE standards organization in 

2005. FIPA has thus begun to establish standards for the development and 

communication of agent-based systems. The most significant of the FIPA 

standards is the agent communication standard (FIPA, 2010). Paolucci and Sacile 

(2005) explain that the standard formalizes the conversations between agents with 

two concepts: the communicative act and the Agent Interaction Protocol (AIP). 

The communicative act associates a predefined semantic to the content of 

messages to allow messages to be univocally understood by all agents. The AIP 

defines which communicative acts must be used in a conversation and also the 

sequence of messages to allow meaningful communication between agents. Other 

FIPA standards deal with issues surrounding the specification of the agent 

communication language and the mandatory components for agent platform 

architectures. 

The FIPA standards mainly focus on specifications regarding agent 

interoperability. FIPA thus only describes an abstract architecture with little detail 

regarding aspects of the implementation platforms (Paolucci and Sacile, 2005). 

Despite the lack of detailed standards, several agent implementation platforms 

have been developed. The most widely used platforms are FIPA-OS, JADE and 

ZEUS. JADE (Java Agent DEvelopment framework) was developed by Telecom 

Italia Lab, in collaboration with the University of Parma, Italy. JADE was fully 

developed in Java language and runs in the Java run-time environment. JADE is 

also fully FIPA compliant. 

Several platforms have also been developed for the simulation of MASs, of which 

the most renowned are Swarm, RePAST and MAST.  The Swarm project was 
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started to create a standard support tool for the management of swarms of objects 

– a concept necessary for handling MASs. Swarm is based on an object-oriented 

framework for the definition of agent behaviour and interaction. RePAST 

(Recursive Porous Agent Simulation Toolkit) was initially viewed as a set of 

libraries intended to simplify the use of Swarm, but was later redesigned as a 

completely new framework. RePAST provides a library of classes to create, 

perform, view and collect data from agent simulations (Paolucci and Sacile, 

2005). Research by Vrba (2003) brought about a simulation tool for agent-based 

systems in the form of MAST (Manufacturing Agent Simulation Tool). MAST is 

entirely devoted to the simulation of manufacturing processes. It has been 

implemented to simulate the material-handling activities of a manufacturing 

system. MAST is also based on the JADE platform and is also fully FIPA 

compliant. 

2.4.4 Agent communication 

The cooperation of agents in an MAS is dependent on effective agent 

communication. The agent platform must thus provide structures to ensure that 

agents can communicate easily and reliably. The Agent Content Language (ACL) 

is one such structure specified by FIPA. 

Agent communication is based on ACL messaging. The ACL encapsulates and 

describes the message content by setting several message parameters. Paolucci 

and Sacile (2005) list the following parameters: 

 Performative – description of the communicative action involved in the 

message.  

 Sender and Receiver – the identification of the respective communicating 

agents. 

 Language – the specific encoding of the message content. 

 Ontology – the vocabulary to be used to understand the message. 

  Protocol – the set of rules on which the communication is based.  

MASs often employ ontologies to ensure that communicating agents fully 

understand the content of messages. An ontology is a vocabulary used to describe 

the terms and relationships entities in a specific domain (Paolucci and Sacile, 

2005). This description can be viewed as an explicit specification of 

conceptualizations. Ontologies provide a useful means to facilitate the access and 

re-use of knowledge – especially in multi-actor environments (Gruber, 1991). The 

use of an ontology allows agents to have a shared understanding of certain 

concepts inherent in the MAS, and specifies which type of manipulation and 

reasoning can be performed on them (Paolucci and Sacile, 2005). 

Nikraz et al. (2006) explain that the interaction between agents, sharing a 

common ontology, depends on three interpretations: Concepts, Predicates and 

Actions. Concepts are structured templates for the exchange of complex 

information regarding entities in the agent environment. These templates then 

have slots to specify the necessary information needed for the interaction. The 
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example of an address as a Concept, with the required slots, can be shown as 

follows: 

Address: 

 City (String) 

 Street (String) 

 Number (Int) 

Entities within an environment are typically connected by means of relations. 

These relations can then also be complex structures which are defined by 

templates. These templates, which specify the relations between entities, are 

called Predicates. The Predicates contain slots to specify the entities that are 

related. An example of a Predicate, as implemented in the scheduling of an 

appointment, is as follows: 

IsScheduled: 

 What (Meeting) 

 Where (Address) 

 When (Scheduled Time) 

Lastly, the actions that agents can perform must be represented by complex 

descriptions. These descriptions are contained in structured templates called 

Actions. As with the other templates, Actions also contain slots for specifying the 

information involved in performing the action. The Action template is shown 

below, where an agent must contact the attendee of a meeting: 

ContactAttendee: 

 Number (Int) 

 Email (String) 

2.4.5 Advantages of MASs 

MASs hold several advantages for implementation in RASs. MASs have high 

modularity and reconfigurability. The addition or modification of resources can be 

achieved by simply inserting a new agent into the system or modifying the 

behaviour of an existing agent (Paolucci and Sacile, 2005). Vrba et al. (2009) 

recognised that due to its modular and decentralized characteristics, MASs are a 

way to reduce complexity and increase flexibility in a system. MASs can allow 

the simultaneous production of different products and improve the integration of 

legacy equipment (Candido and Barata, 2007). Xie et al. (2007) also recognised 

that MASs can respond quickly to dynamic changes in the manufacturing or 

assembly environment. Furthermore, agent-based technologies are capable of 

dealing with autonomy, distribution, scalability and disturbance (Bi et al., 2008). 

The distributed and redundant nature of agent-based control systems minimizes 

the effect of local failure on the overall functionality of the system (Vrba and 

Marik, 2009). This is also confirmed by simulations performed by Lepuschitz et 

al. (2009), showing that agent-based control is “extremely robust against 

disturbances of machines, as well as failure of control units”. 
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2.4.6 Implementations of MASs 

There have been several practical implementations of agent-based control. The 

ADACOR architecture (described in section 2.3.3) was implemented on a test 

production system, using multi-agent technology, by Leitao and Restivo (2008). 

The production system consisted of a manufacturing cell, an assembly cell, a 

storage and transportation cell and a maintenance and setup cell. The control 

system was then integrated with PLCs and PCs (running different software 

platforms), various robots and vision sensors and an Automatic Guided Vehicle 

(AGV). Candido and Barata (2007) implemented a multi-agent control system for 

the NovaFlex shop floor assembly case study. The NovaFlex system is composed 

of two assembly robots, an automatic warehouse and a transport system 

connecting all the modules. DaimlerChrysler‟s Production 2000+ project 

implemented an agent-based control system for a flexible cylinder head 

production system. This production system is composed of modules, each 

consisting of a CNC machine, three conveyors, two switches and a shifting table 

(Marik et al., 2010). Marik et al. (2010) also reported an agent-based control 

solution which added flexibility to a steel rod bar mill for BHP Billiton. A multi-

agent control system was also implemented in the holonic packing cell of the 

Centre for Distributed Automation and Control (CDAC) at the University of 

Cambridge. 

Even though there have been several test cases and some industrial 

implementations, the manufacturing and assembly industry is still hesitant to 

apply agent-based technologies. Candido and Barata (2007) give four reasons for 

this hesitation and a fifth is mentioned by Marik et al. (2010): 

 A paradigm misunderstanding still exists due to a lack of practical test 

cases. 

 Members of the industry are still unaware about the changes in modern 

manufacturing and assembly requirements. 

 There is a lack of experience in agent-based technology by actual system 

integrators. 

 There is a pioneering risk involved in investing in an unproven 

technology. 

 The unpredictability of emergent behaviour in agent-based systems 

complicates the quantitative comparison to other technologies. 

2.5 IEC 61499 Function Block control 
The IEC 61499 standard specifies a framework for distributed and embedded 

control using function blocks. The ability to control distributed systems, makes 

this approach a candidate for use in reconfigurable systems. 

2.5.1 The IEC 61499 standard 

The IEC 61499 standard is a successor to the IEC 1131 standard, which later 

became IEC 61131.  The IEC 1131 standard is aimed at control applications in 

PLCs. The standard provides specifications ranging from PLC programming to 

the fieldbus communication of applications in PLCs.  The standard is divided into 
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several parts dealing with the various aspects concerning PLCs. The IEC 61131-3 

part of the standard deals with the programming of PLCs. According to 

Lewis (1998), this part of the standard aims to improve the following aspects of 

PLC programming: 

 Capability of a system to perform its intended design functions. 

 Availability of a system during its life cycle when it is available for its 

intended design functions. 

 Usability, which indicates the ease with which a specified set of users can 

acquire and exercise the ability to interact with the system in order to 

perform its intended design functions. 

 Adaptability, which refers to the ease with which a system may be 

changed in various ways from its initial intended design functions.   

The IEC 61131 standard has had implied limitations when dealing with complex 

computations, knowledge processing, advanced network messaging and service 

orientation (Vrba and Marik, 2009). The IEC 61499 standard addresses these 

limitations and extends the IEC 61131 standard by adding event-driven execution. 

The IEC 61499 standard was also developed, according to Rooker et al. (2007), to 

address the following shortcomings of its IEC 61131 predecessor: 

 Non-deterministic switching points – this is due to the cyclic execution 

policy which is implemented by the IEC 61131 standard. 

 Lack of task level granularity
1
 complicates communication and re-

initialization. 

 Jittering effects – a change in one system task influences the other tasks in 

the system.  

 The possibility of entering inconsistent states during system 

reconfiguration, which may lead to deadlocks.  

The IEC 61499 standard is then a developed set of specifications for distributed 

processes and control systems (Wang et al., 2007). Black and Vyatkin (2009) 

mention that the IEC 61499 standard “provides an architectural framework for the 

design of distributed and embedded control systems” and has “undoubted 

advantages concerning distributed automation” (Vrba et al., 2009). The IEC 

61499 standard defines a component-based modelling approach using function 

blocks. The standard enables the development of new technologies which aim to 

reduce design efforts and enhance reconfiguration. The goal of the IEC 61499 

standard is “to offer an encapsulation concept that allows the efficient 

combination of legacy representation forms (such as ladder logic) with the new 

object and component-orientation realities” (Vyatkin, 2007). The IEC 61499 

standard uses a bottom-up approach in implementing decentralized control. This 

approach then starts at the shop floor level, where it effectively prepares for the 

distributed placement of holons (Paolucci and Sacile, 2005). The requirements for 

                                                 
1
 Presumably the extent to which control programs can be subdivided into smaller modules. 
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holonic control are thus inherent in the IEC 61499 specification (Black and 

Vyatkin, 2009). 

The function block of the IEC 61499 standard can be understood as an abstraction 

that represents a component. This component can be implemented and controlled 

by the function block software (Vyatkin, 2007). The function block concept is 

applicable to the data encapsulation and adaptive process plan execution involved 

in the assembly or manufacturing processes. The event-driven model of the 

function blocks then adds intelligence and autonomy to the resources of the 

system, increasing its decision-making ability (Wang et al., 2007). 

2.5.2 Advantages of function block control 

Function blocks provide an advance from established ladder logic and structured 

text programming languages, but its application extends past the simple 

replacement of these systems. This is due to the inherent support for distributed 

applications and the ability to provide a modelling and simulation platform with 

well-defined interfaces (Black and Vyatkin, 2009). Rooker et al. (2007) mention 

that the distributive properties of IEC 61499 function blocks hold several 

advantages. The programmed function block networks are directly mapped to the 

real system controllers and devices, where the execution takes place. This 

facilitates the movement of functionality amongst controllers and devices. This 

support of distribution then also facilitates the implementation of component-

based information. Another benefit of using the IEC 61499 function blocks is that, 

as a modeling language, it is directly executable and is thus ready for simulation. 

This allows the testing of the control system prior to deployment. This simulation 

model can then be seamlessly substituted by the hardware interface to real sensors 

and actuators. The use of function blocks also greatly increases the modularity of 

the system and enables the reusability of software components in the system 

(Black and Vyatkin, 2009). Function blocks also have a robust character which 

makes it appropriate for implementation in the broader embedded systems domain 

(Vyatkin, 2007). 

2.5.3 Platforms for function block control 

There exists a few platforms and tools for the design of function block control 

systems. The Function Block Development Kit (FBDK) is the most widely-used 

design platform (Black and Vyatkin, 2009). The model-view-control design 

pattern for function blocks is also applied in FBDK. This platform also includes 

the Function Block Run-Time (FBRT) environment. The entire platform is based 

on Java programming structures. Another commercial support tool is that of the 

ISaGRAF industrial control design software, which can also support the IEC 

61499 function blocks (Black and Vyatkin, 2009). 

2.5.4 Implementations of IEC 61499 function block control 

Due to the predominant presence of the IEC 1131-3 standard in industry and 

relatively recent development of the IEC 61499, it has seen very few practical 

implementations. IEC 61499 function block control was implemented in the 

automation of a baggage handling system by Black and Vyatkin (2009). Vyatkin 
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(2007) describes the first factory installation of an IEC 61499 function block 

control system by Tait Control Systems in New Zealand.  
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3. Case study description 
This thesis uses, as a case study, the control system of the feeder subsystem 

hardware of the experimental RAS at the Department of Mechanical and 

Mechatronic Engineering at Stellenbosch University. The RAS is an automated 

implementation of the spot-welding process involved in the production activities 

of CBI Electric. 

3.1 Product description 
A complete trip switch assembly, as produced by CBI Electric, consists of several 

sub-assemblies. The experimental RAS of this research was set up to produce one 

of these sub-assemblies, which consists of six parts that are attached through a 

spot-welding process. The sub-assembly is shown in Figure 4. The sub-assembly 

consists of six parts: the moving contact, the coil, the load terminal, the handle 

frame assembly and the long and short pigtails. The five spot-weld points are 

encircled. 

 

 

 

Figure 4: The case study sub-assembly with the spot weld points indicated.  

3.2 System overview 
The case study used in this research contributes to the development of an RAS for 

an automated spot-welding process. The experimental RAS consists of four 

subsystems: the transport subsystem, the storage subsystem, the feeder subsystem 

and the welding subsystem.  

The transport subsystem uses a modular conveyor system to move pallets to 

designated stations. These pallets are stored in the storage subsystem. The storage 

subsystem utilizes a large pallet magazine which can store, dispense and retrieve 

pallets. Different fixtures, for the various system products, are mounted on these 

pallets. The pallet magazine can store three different pallet types (according to the 

mounted fixtures) separately. The pallet magazine can then dispense or retrieve a 

specified pallet to or from the appropriate storage area.  

The welding subsystem uses a three-axis Cartesian robot fitted with a simulated 

welding head. This robot manipulates the welding head to simulate the spot-

welding process required to produce the sub-assembly of this case study.  
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The removal station shares the services of the pick-„n-place robot of the feeder 

subsystem. The robot removes the completed sub-assemblies from the fixtures 

and places them in an output bin. In the case of defective sub-assemblies, the 

robot removes the parts individually and places them in a recycling bin. 

The feeder subsystem is described in detail in section 3.3. The layout of the 

experimental RAS is shown in Figure 5. 

Storage station Welding station

Feeding station Removal station

CONVEYOR

 

Figure 5: Schematic layout of the experimented RAS. 

3.3 Feeder subsystem 
The feeder subsystem is responsible for the loading of individual parts, which 

make up the sub-assembly, onto the transport subsystem. The parts are placed in 

fixtures which are mounted on the pallets of the conveyor system. The feeder 

subsystem consists of several singulation units (SUs) or part magazines and a 

pick-„n-place robot. The layout of the feeder subsystem is shown in Figure 6 and 

Figure 7. 
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Figure 6: Schematic layout of the feeder subsystem. 
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Figure 7: Hardware of the feeder subsystem. 

3.3.1 Singulation units 

The function of the singulation units (or sometimes referred to as feeders) is to 

present a single part – to be picked up by the pick-„n-place robot – from bulk 

container. The parts must be presented in a collectable pose, i.e. the parts must be 

in an orientation in which the robot can pick them up and place them in the 

fixture. This process can be described as singulation. 

The singulation unit used in this case study is based on the “stepped-conveyor” 

concept – it is shown in Figure 8. The singulation unit has a conveyor belt, fitted 

with scoops, which pick up individual parts from its input bin. At the top of the 

conveyor cycle, the individual parts fall through a gateway mechanism which 

channels the parts to either the presentation platform or the rejection shoot. The 

singulation unit is fitted with a camera for the detection and inspection of 

presented parts. When in operation, the camera continuously checks the 

presentation platform for the presence of a part. When a part is presented, the 

camera sends feedback to the subsystem controller to change the direction of the 

gateway mechanism (so that parts are channelled to the rejection shoot). After a 

part is detected, the camera performs an inspection to determine whether the part 

is in a collectable pose. If the part cannot be picked up by the robot, or multiple 

parts are present, the platform is lowered and the part(s) are rejected back to the 

bin. In the case of a collectable part, the camera responds to the control program 

with the pickup coordinates. The presentation platform is then lifted to a level 

above that of the camera – this is to ensure that there will be no interference 

during the pickup action of the robot. 
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Figure 8: Stepped-conveyor singulation unit.  

The conveyor of the singulation unit is driven by an AC motor. The torque is 

transmitted through a timing belt to the conveyor pulleys. The gateway 

mechanism uses a pneumatic swivel unit – this actuator causes the rotation of a 

deflector plate. The motion of the presentation platform is provided by a guided 

linear pneumatic cylinder. The position of the platform is monitored by using two 

proximity switches – one for the home position (the position of the platform when 

awaiting parts from the conveyor) and one for the rejection position (the position 

of the platform when a part is rejected). The rejection action of the presentation 

platform is done by tilting the platform as it is lowered. The platform is attached 

to the cylinder through a pivot support. A tilt pin is mounted beneath the platform 

to force tilting as the platform is lowered. 

The actuators of the singulation unit are controlled via the digital outputs of an 

Eagle µDAQ-lite device. The 5V digital outputs of this device are used to switch 

the relays of an Eagle relay board, to which the actuator inputs are connected. The 

digital outputs of the DAQ device control the motor, the direction of the gateway 

mechanism and the motion of the guided cylinder. The digital inputs of the DAQ 

device are used to read the status of the proximity switches, thus monitoring the 

position of the guided cylinder. 

3.3.2 Part magazines 

Since the singulation units were still under development, several part magazines 

were designed and manufactured to allow for the complete production simulation 

of the feeder subsystem. These part magazines present parts for pickup at 

predefined coordinates. The parts are placed into the magazines manually.  
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Part magazines were designed and manufactured for the load terminal, short and 

long pigtail, handle frame assembly and moving contact parts (shown in Figure 9). 

The part magazines are specific to their respective parts. The parts are held in 

position by several supports, which constrain the parts in all the degrees of 

freedom. The moving contact, handle frame assembly and load terminal parts are 

held in position by dowel pins. The long and short pigtails are placed in the 

manufactured grooves on the part magazine. 

  
(a)    (b) 

  
(c)    (d) 

Figure 9: Part magazines for the (a) moving contact, (b) handle frame 

assembly, (c) load terminal and (d) long and short pigtail parts. 

3.3.3 Camera 

The feeder subsystem requires the installation of a camera to obtain the 

coordinates of parts presented by the singulation units. The position of the camera 

is shown in Figure 10. The camera performs inspections which return the 

coordinates of the part pickup position. These coordinates are used by the robot to 

pick up the parts and place them in the fixtures. A DVT Legend 530 series camera 

was mounted on the singulation unit.  

The camera is accompanied by DVT Intellect software which is installed on a PC. 

The connection between the camera and the PC is done over an Ethernet 

connection. This software is used to set up the machine vision inspection, using 

built-in functions and customized script programs, and loading the setup into the 

flash memory of the camera. The use of the DVT Intellect software is described in 

section 5.2. 
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Figure 10: The camera mounted on the singulation unit. 

3.3.4 Robot 

The pick-„n-place robot of the feeder subsystem is used to pick up parts from the 

singulation units and part magazines, and place them in their appropriate fixture 

positions. The robot is fitted with a pneumatic gripper equipped with customized 

gripper fingers. The pickup coordinates of the parts presented by the singulation 

units are passed on to the robot from the camera inspection. 

The feeder subsystem is equipped with a six degree of freedom, articulated 

KUKA KR16 robot (shown in Figure 11) for all pick-„n-place actions. The robot 

is accompanied by a controller, which uses an industrial PC with a Windows XP 

operating system. The robot motion can be controlled either through a control 

pendant or by customized programs developed in the KUKA Robot Language 

(KRL) software platform. The latter was predominantly used in the motion 

programming of the robot. The KRL control software has several built-in 

functions to accommodate and simplify the calibration and motion programming 

of the robot. The controller is also equipped with a serial communication port, 

with built-in functions to send and receive information. The robot is not equipped 

with any analogue outputs, which means that the gripper tool must be controlled 

by an external source. 

Two useful functions included in the KUKA control are that of tool calibration 

and workspace definition. These functions contribute greatly to the 

reconfigurability of the feeder subsystem, as they ease the change of gripper 

components and the positional recalibration after the relocation of subsystem 

hardware components. The steps involved with performing these functions are 

presented in Appendix E. 
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Figure 11: Robot with axis movement indicated (KUKA Robot Group, 2007). 

A gripper is required to pick up and place the parts in the operation of the feeder 

subsystem. A plate, on which a pneumatic gripper is mounted, is attached to the 

tool interface of the robot. The gripper, as it is mounted on the robot, is shown in 

Figure 12. The control valve of the gripper is also mounted on the attachment 

plate. 

 

Figure 12: The gripper as it is mounted on the robot. 

The gripper is equipped with two custom-designed fingers for the effective 

picking and placing of the sub-assembly parts. The fingers are designed to be 

large enough to ensure a sufficient gripping area, but small enough to allow for 

gripping inside some of the parts. The design allows for parts to be picked and 

placed in different orientations. The fingers are also designed to minimize the 

potential interference of the gripper with the parts, part magazines and the 

fixtures. The gripper fingers are machined from stainless steel, which allows the 
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fingers to withstand the fatigue demand of the gripping actions. The detail design 

of the gripper is presented in Appendix B. 

3.3.5 Fixture 

A fixture was designed to keep the parts in their specified positions during the 

welding and transport activities. The fixtures were mounted on the pallets of the 

transport system, as shown in Figure 13. 

The fixture was designed to be modular. The support of the individual parts is 

done by interchangeable support components, which are attached to a base plate. 

The base plate is then mounted onto the conveyor pallet. The base plates were 

used to add fixture modularity and to minimize the number of holes to be made in 

the conveyor pallet. The standard interface between the base plate and the pallet 

allows for the interchanging of base plates, and thus fixtures. The fact that the 

support components can be removed from the base plate means that base plate 

fixtures can be adjusted to allow for other types of sub-assemblies, and that the 

components can be re-used on other base plates in the construction of new 

fixtures. A change in the type of sub-assembly can thus be accommodated by 

installing the appropriate supports on the appropriate base plate. 

The fixture was designed to be used without the aid of a clamping mechanism 

(which secures the parts during the welding process). This was achieved by 

changing the orientation of the welding process from the vertical plane to 

horizontal plane, i.e. instead of having the welding electrodes weld from above 

and below, they weld from the sides of the fixture. The sub-assembly is then fixed 

in the upright position, allowing the individual parts to be located by the supports 

against any movement in the horizontal plane. This independence of a clamping 

mechanism improves the reconfigurability of the fixtures, since a change in the 

fixture supports does not entail the changing of a clamping mechanism as well. 

The supports were designed to simplify the feeding and welding processes by 

allowing easy entrance for both the gripper fingers and the welding electrodes. 

The supports for the pigtail parts are designed with slots for the gripper fingers – 

this allows the pigtails to be placed securely into the supports. The supports are 

spaced from one another where clearance was needed for the welding electrodes. 

The placement and welding of the individual parts are depicted in Appendix C. 

To allow for the stacking of pallets on top of each other in the pallet magazine, the 

fixture design included four columns at the base plate corners. These columns 

press against the bottom of the stacked pallet on top, giving enough clearance to 

provide for the fixture supports and the pallet RFID tag. The columns are 

chamfered at the top to allow for the easy alignment during the stacking process. 
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Figure 13: The fixture mounted on a pallet.  

3.4 Development and testing of the singulation unit 

The stepped-conveyor singulation unit (mentioned in section 3.3.1) is the 

Stellenbosch research group‟s second research concept for reconfigurable feeders. 

The initial design of the singulation unit was done by Poletti (2011), but further 

refinement was required to get the machine to a working state. These refinements 

are as follows: 

 The input bin was redesigned to allow for the effective scooping of parts. 

The design had to maximize the potential singulations by the scoops – the 

number of parts in the bin, along with their position and movement, were 

the main design considerations. 

 The design of the scoops (steps) which are attached to the conveyor belt 

was refined to increase the effectiveness of the scooping of parts. 

Experimentation was done concerning the size and shape of the scoops, 

which affect the frequency of successful singulations from the bin. 

 The presentation platform was enclosed in the “home” position (the level 

of the platform when awaiting parts from the scoops). Without the 

enclosure parts would often slide or bounce off the platform. The 

enclosure was designed to ensure parts would remain on the platform, 

whilst not impeding the motion of the platform or the inspection of the 

camera. 

 The PC control of the actuators and sensors was added. 

A series of experiments were performed to evaluate the singulation unit in terms 

of throughput and reconfigurability – the results are given in Appendix A. The 

results of the throughput analysis are summarised in Figure 14. The probability of 

achieving a successful singulation is plotted against time, for different speeds of 

the conveyor motor (measured in steps per minute, spm). The results show that 

the singulation unit performs best at a speed of 63 spm, at which speed there 

exists a 90% probability of achieving a successful singulation within 3 seconds. 

The graph is a plot of discrete events (as indicated by the markers) and the 

Pallet 

Column 

Base plate 

Modular 

support 

Sub-assembly 

part 

Stellenbosch University  http://scholar.sun.ac.za



 

30 

 

information is not continuous – the lines connecting the symbols are only shown 

to aid the interpretation of the results. 

 

Figure 14: Singulation probability vs. time experimental results for the 

stepped-conveyor singulation unit. 

A subjective evaluation was also conducted to determine the reconfigurability and 

reliability of the concept. The following remarks can be made: 

 The scoops of the singulation unit are specific in terms of part size, i.e. the 

scoops are able to pick up parts from the bin which are of similar 

dimensions to the coils used for most of the experiments. This means that 

the scoops will be able to singulate a family of coil parts. For other types 

of parts (differing in size and shape), the belt can be replaced with one 

having appropriate scoops. Since this is the only part/size specific element 

of the design, the singulation unit retains good reconfigurability 

characteristics. 

 The unpredictability of the pickup action from the input bin reduces the 

consistency, and thus the throughput rate, of the singulation unit. A great 

deal of refinement to the input bin and the scoops was required to make 

the singulation unit work effectively. 

 The pickup action of the scoops moving through the input bin causes the 

occasional deformation of delicate parts. This may be a prohibitive 

problem if the parts in question are subjected to tight tolerances. 

 The location of the camera in the current configuration does not allow an 

optimal inspection setup. The design requires the camera to be at an angle 

to the presentation platform (as opposed to being perpendicular). This adds 

complexity to the reliable identification and location of parts, and it 

requires longer calibration times during reconfiguration. Reliable machine 

vision inspection also requires consistent lighting – this is usually achieved 

by housing the camera inside a box. To address these two concerns would 

require the addition of further actuators or mechanisms to the singulation 

unit. 
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4. Holonic control architecture 
The holonic control approach involves the mapping of the subsystem hardware 

and software components to holons. A holon may consist of only a software 

component or of both software and hardware components. The mapping of holons 

was done according to an adaptation of the ADACOR reference architecture 

(described in section 2.3.3). The ADACOR reference architecture was chosen 

over PROSA because of two reasons: 

1. The ADACOR reference architecture meets the requirements for modern 

manufacturing systems and specifically addresses challenges not met by 

PROSA. These challenges include the formal specification of the dynamic 

behaviour and the achievement of global optimization of holonic systems. 

2. A successful and comprehensive implementation was done by Leitao and 

Restivo (2008) using ADACOR in a similar experimental RMS. 

The ADACOR reference architecture had to be adapted for implementation in the 

feeder subsystem. This adaptation was required due to the level of architecture 

implementation. The entire feeder subsystem would be mapped to one 

Operational holon (OH) according to Figure 3, since ADACOR is conventionally 

implemented at system level. The greatest adaptation is noticeable in the Product 

holon – the Product holon of the feeder subsystem merely accesses received 

product information, as opposed to being the primary structure for the storage of 

system product information. 

The implementation of the ADACOR reference architecture was done to increase 

the reconfigurability of the feeder subsystem control. The decision is motivated by 

the inherent advantages of ADACOR regarding modularity and the reduction of 

system complexity. 

In accordance with the ADACOR reference architecture, the parts of the feeder 

subsystem were mapped to a Supervisor holon, Product and Task holons and 

Operational holons. These holons are described in the remainder of this section. 

The subsystem contains the following Operational holons: Singulation unit, 

Camera, DAQ and Robot. Except for the Singulation unit holon, all the 

Operational holons comprise hardware and software components. This means that 

the holons consist of the physical hardware entity, as well as the accompanying 

software control entities. As an example, the structure of the robot holon is 

depicted in Figure 15. The structure shows the division of the software entity into 

Higher Level Control (HLC) and Lower Level Control (LLC) – these control 

levels are discussed in sections 5 and 6. The Singulation unit holon, on the other 

hand, consists of only a software entity, since it only coordinates the actions of the 

other Operational holons. 
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Figure 15: Schematic representation of a holon consisting of both software 

and hardware entities. 

The information of every product to be produced by the subsystem is sent by the 

Cell Controller (CC) to the feeder subsystem, where it is stored locally. The 

retrieval and interpretation of this information is mapped to a Product holon 

specific to the product. The Product holon has access to the information regarding 

the coordination of subsystem tasks, along with the necessary coordinate and part 

data to be used in performing them. The creation of a Product holon for each 

product was done due to initial considerations of containing all the product 

information within the subsystem. When the product information is contained 

only in the CC, the information regarding all the products could be handled by 

one generic Product holon. 

Each task that the subsystem can perform is mapped to a Task holon. The Task 

holons possess the necessary information and decision-making functionality to 

coordinate the actions of the Operational holons to perform a specified task. For 

example, a Task holon is created for the control of picking up a specific part from 

the singulation unit and placing it into the appropriate fixture position – it thus has 

to control the functions of the singulation unit, camera, DAQ and robot holons. 

Finally, the ADACOR reference architecture requires the addition of a Supervisor 

holon. This holon consists of only a software entity, which has the information 

and capability required to coordinate the other holons in the subsystem to perform 

a desired sequence of actions. The Supervisor holon also interfaces with the 

control of the other subsystems. 
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5. Lower Level Control and interfacing 
As shown in Figure 15, holons contain a Lower Level Control (LLC) layer for 

interfacing and controlling their hardware component. LLC programs were 

developed to control the subsystem hardware, or interface with the hardware-

specific control programs. The LLC programs also have a communication 

interface with the Higher Level Control (HLC) programs. This intermediate layer 

was included to reduce the complexity of the HLC programs by separating it from 

the hardware interfaces.  

The LLC programs communicate with the HLC programs through TCP/IP sockets 

in XML (eXtensible Markup Language) format. The LLC programs act as the 

servers to the sockets and the HLC programs then connect as clients. Both control 

levels are equipped with XML building functions, to construct messages, and 

XML parsing functions, to extract message information. The LLC programs 

receive commands from the HLC programs, perform the desired hardware actions 

and then respond with completion messages. 

The LLC programs were developed in the Microsoft Visual Studio C# platform. 

The C# platform was chosen because of its robustness and ease of use – 

specifically in accommodating communication through TCP/IP and serial RS232. 

C# was chosen as opposed to Java (in which the HLC programs are programmed) 

because of two reasons: 

1. The Java library for supporting serial communication (such as RS232) has 

not been updated since 2006 and has been criticised by software 

developers for its unreliability. On the other hand, C# is renowned for its 

reliability – especially due to its use of the .NET framework. 

2. Since C# is commonly used for lower level PC-based control, drivers for 

hardware devices are more easily available. This was the case for the 

Eagle DAQ device. 

The XML standard was chosen due to the following advantages (as mentioned by 

Exforsys Inc. (2007)): 

 XML is a text-based language. This means that the messages are readable 

by humans, which allows for easy understanding and debugging by the 

software developer. 

 XML is extendable. The specification allows for the unrestricted creation 

of customized message tags. 

 XML is platform, system and vendor independent – this is very beneficial 

when used in distributed applications. 

5.1 DAQ LLC 
The DAQ LLC program directly controls the functions of the Eagle µDAQ-lite 

device (using the device driver) via the USB interface. The actions of the 

singulation unit components (guided pneumatic cylinder, pneumatic swivel unit, 

AC motor and proximity switches), as well as the robot gripper, are controlled by 
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setting the digital outputs and reading the digital inputs of the DAQ device. The 

functionality of the DAQ LLC program is illustrated in Figure 16. 

The DAQ LLC program starts by initializing the required variables and then 

creating a TCP/IP socket. The DAQ LLC program acts as server to the socket, 

while the HLC program connects as a client. Upon connection, the DAQ LLC 

program receives a command from the HLC program in the format of an XML 

string. This string is then parsed to extract the command information, which will 

be used to trigger the appropriate DAQ function. After the desired function is 

performed, a confirmation message is compiled in the form of a XML string. This 

message is sent to the HLC program through the TCP/IP socket. The socket 

connection is then closed and the next connection of the HLC program is awaited. 

The command received by the DAQ LLC program entails an integer number to 

which a predefined DAQ function is allocated. The number is extracted and, by 

means of a switch function, the desired function is triggered. The functions are 

implemented in the form of methods. The methods which directly access the 

digital outputs and inputs are summarized in Table 1. 

Table 1: The DAQ LLC methods and the respective DAQ control functions. 

Method DAQ function Control action 

startMotor( ) Starts the conveyor motor. Write to digital outputs. 

stopMotor( ) Stops the conveyor motor. Write to digital outputs. 

liftPlatform( ) Switches the valve port to 

initiate upward motion of the 

guided cylinder. 

Write to digital outputs. 

lowerPlatform( ) Switches the valve port to 

initiate downward motion of 

the guided cylinder. 

Write to digital outputs. 

stopPlatform( ) Switches both valve ports on to 

stop the motion guided 

cylinder. 

Write to digital outputs. 

openGripper( ) Switches the valve port to open 

the gripper fingers. 

Write to digital outputs. 

closeGripper( ) Switches the valve port to 

close the gripper fingers. 

Write to digital outputs. 

readSensor( ) Monitors the switching of the 

proximity sensors. 

Read digital inputs. 
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Figure 16: Flow diagram of the DAQ LLC functionality. 

These methods are combined to accomplish more complex functions. The method 

homePlatform( ) returns the presentation platform to the “home” position (the 

level at which the presentation platform can receive parts from the conveyor). The 

current position of the presentation platform is stored in a local variable. This 

variable is checked to determine whether the platform should move upwards or 

downwards. The motion is initiated by calling either the lowerPlatform( ) or 
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liftPlatform( ) methods. The digital inputs, indicating the status of the proximity 

sensors, are then continuously monitored using the readSensor( ) method. When a 

change in the digital input is received (indicating that the platform is at the 

“home” level), the stopPlatform( ) method is called to stop the actuator motion. 

The method rejectPlatform( ) causes the presentation platform to be lowered to 

the “reject” position (the position where the platform is tilted and the parts slide 

down the rejection shoot), stop and return to the “home” position. This action is 

accomplished by calling the lowerPlatform( ) method to initiate downward 

movement. The digital input, connected to the proximity sensor which indicates 

the “reject” position, is continuously monitoring by calling the readSensor( ) 

method in a loop. Upon reaching the “reject” position, the cylinder is stopped by 

calling the stopPlatform( ) method. The homePlatform( ) method is then 

immediately called to return the platform to the “home” position. 

Functions such as switching the motor on or off, opening or closing the gripper 

and changing the direction of the gateway actuator are purely controlled through 

the digital outputs of the DAQ device. 

5.2 Camera LLC 
The camera LLC has two parts: the PC-based C# LLC program and the DVT 

Intellect inspection control. The LLC program handles communication between 

the HLC and the camera, while the DVT Intellect inspection control controls the 

camera actions. 

5.2.1 Inspection control 

A machine vision inspection was set up for the camera using DVT Intellect 

software. A background script program, which runs continuously, handles the 

communication with the C# LLC program. This background script program also 

coordinates the camera inspections. A unique inspection was set up for every part 

to be singulated – this set-up is referred to as an inspection product. These 

products implement several built-in image processing software sensors and 

custom foreground script programs to determine the inspection result and to 

extract the necessary inspection information. 

A background script program was created to monitor and execute certain 

functions continuously, without disrupting any triggered inspections – the flow 

diagram is shown in Figure 17 (a). The background script program connects as a 

client to the TCP/IP socket created by the C# LLC program. The command and 

part ID is passed on to the background script program in the form of a byte array. 

The elements of the array are then checked to determine that the command is 

indeed to inspect a part, and the appropriate inspection product is selected. The 

part ID is used to select the inspection product – this is done using the 

prod.Select( ) function. The background script program then triggers the 

acquisition of an image and the succeeding inspection by the specified inspection 

product – this is done by using the function SetInputs( ) to set the trigger bit in the 

registers of the camera. With the inspection triggered, the background script 
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program waits for the softsensors and the foreground script program of the 

selected inspection product to finish the inspection. The foreground script 

program indicates the inspection completion by setting a bit in a specified register 

– this bit is checked by the background script program through the 

RegisterReadByte( ) function. The foreground script program stores the inspection 

result string in a specified register - the background script program then reads the 

string from the register and replies to the LLC program via the TCP/IP socket. 

Unless the inspections are manually stopped, the program awaits the arrival of the 

next command from the LLC program. 

A foreground script program was included in the inspection product to generate an 

inspection result from the softsensor data. The program is triggered with each 

inspection, after all the softsensors have completed their analysis – the flow 

diagram is presented in Figure 17 (b). The foreground script program first 

declares and initiates all the variables to be used for the temporary storage of data. 

The first step is to determine if only one part is present on the presentation 

platform. This is done by evaluating the number of blobs detected by the blob 

identification softsensor. If more than one part is detected, a FAIL message is 

constructed and stored to the result register. With only one part present, the 

program now checks if the part was sufficiently identified by the feature detection 

softsensors. This entails the storage of the softsensor results to variables in an 

array and then evaluating the results in a loop. If none of the softsensors could 

sufficiently identify the part, a FAIL message is generated. Otherwise, the best 

identification must be determined by comparing the matching scores (relative to 

the learned models) of the softsensors. The coordinate results from the softsensor 

with the best identification are now transformed to the physical coordinates of the 

platform. This coordinate set is included in the generated PASS result, which is 

stored in the result register. The foreground script then indicates the completion of 

the inspection by setting a specified bit in a register using RegisterWriteByte( ). 

The foreground scripts evaluate the data which is gathered by several softsensors 

in order to determine the inspection result. Each inspection product implements a 

different set of softsensors, according to the part that is being inspected.  The 

inspections make use of edge detection, blob identification and feature location 

softsensors. The implementation of each softsensor is described in the following 

paragraphs. 

The inspection product which is responsible for detecting the presence of a part on 

the platform implements “along a line” edge detection softsensors. These 

softsensors use differences in pixel intensity to detect edges, along a defined 

straight line through the image. The difference in contrast between the white 

background of the presentation platform and presented parts allows these 

softsensors to detect a part (by detecting an edge in the image). The inspection 

implements six of these line softsensors, so as to detect a part in every position on 

the presentation platform – the inspection setup is shown in Figure 18. This 

approach was selected because of the speed and robustness of the edge-detecting 

line sensors. The speed of the softsensor is an especially important measure, as the 
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feedback from the inspection has to be quick enough to stop the singulation unit 

conveyor before multiple parts are delivered to the platform. The accumulated 

processing time required by all six line softsensors is less than implementing an 

alternative blob detection softsensor over the platform area. The edge detecting 

softsensors are also more robust against changes in light intensity than the blob-

detecting alternative. 
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      (a)           (b) 

Figure 17: Flow diagrams of the (a) background and (b) foreground script 

programs. 
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Figure 18: The setup of the inspection product for detecting parts on the 

presentation platform. 

The inspection product for locating a coil part on the platform implements several 

types of softsensors. These softsensors have to gather information regarding: 

 The number of parts present on the presentation platform. 

 The identification of the part. 

 The coordinates of the pickup position of the part. 

The number of parts present on the platform is evaluated by a blob detection 

softsensor over the platform area. Blob detection involves the grouping of pixels 

of similar intensity into so-called “blobs”. The intensity, size and shape of these 

blobs can then be analysed. Parts on the platform will thus appear as blobs, of 

which the number is counted. The blob detection softsensor was selected above 

the feature locating softsensor for two reasons. Firstly, the blob detection 

softsensor requires less processing time and, secondly, there is no need to extract 

details such as the part shape or position at this stage. The implementation of the 

blob detection softsensor is illustrated in Figure 19.  

The part on the platform is identified by an object location softsensor. This 

softsensor searches for a learned model (a predefined pattern) in the image. 

During the setup of the inspection, an image of the part is used to calibrate the 

softsensor – the outline (perimeter) of the part is extracted and taught to the 

softsensor. The softsensor then scans the pixels in the image in search of this 

outline pattern. The perimeter of the part on the platform is compared to this 

model and the degree of similarity is calculated as a “match score”. A higher 

match score indicates greater pattern similarity. The object locating softsensor 

was chosen over its blob detection counterpart because it extracts more detail and 

is more robust to changes in light intensity. 
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Figure 19: The implementation of the blob detection softsensor. 

This inspection product requires the implementation of eight different object 

locating softsensors. This is due to the fact that the camera is positioned at an 

angle to the platform (as opposed to directly above). The angle causes the 

obscurity of part detail in the image with angular rotation of the part, as shown in 

Figure 20. This means that the shape of the part will be different to that of the 

learned model, causing the softsensors to not identify the part. The angular 

rotation of the part also causes a change of part shape (in terms of length and 

width) in the image – this is also noticeable in Figure 20. Multiple softsensors, 

each with a different learned model, is thus necessary to identify the part in any 

rotational position. Four softsensors were implemented, each with a learned model 

of the part at 0°, 90°,180° and 270° respectively. The coils could also have two 

possible orientations – the normal orientation or the flipped-over orientation 

(shown in Figure 21). Another set of four softsensors were implemented to 

identify the part when it is in the flipped-over orientation. It is thus clear that 

having the camera at an angle to the platform quadruples the number of object 

locating softsensors and the accompanying processing time required for 

identifying the coil parts. This situation is compared to one where the camera is 

positioned above the platform in Figure 22. 
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     (a)   (b)   (c)  

    
    (d)           (e) 

Figure 20: The obscurity of part features with angular rotation: (a) 0°, 

(b) 45°, (c) 90°, (d) 135° and (e) 180°. 

  

Figure 21: The coil parts in the two possible orientations. 

      
          (a)     (b) 

Figure 22: Variation in inspection results between having the camera at an 

angle (a) and having the camera directly above (b). 
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The object location softsensors also return the coordinates of the part pickup 

position. The desired pickup position is calibrated along with teaching the part 

model. The softsensor automatically locates the centroid of the model – the 

pickup position is calibrated by means of an offset to the centroid. Along with this 

coordinate offset, the pickup angle can also be specified – the softsensor can thus 

return the X-, Y- and Z-axis pickup coordinates, along with the pickup angle. 

Initially, the coordinates are returned relative to the origin of the image, and not 

the origin of the platform in the real world coordinate system. This problem was 

solved by using two edge detection softsensors which locate the origin of the 

platform in the image. The edge detection softsensors were implemented instead 

of pre-programming the origin coordinates – this was done to ease the 

recalibration of the inspection after a reconfiguration and to continuously monitor 

the position of the presentation platform during operation. The position of the 

platform origin is then used in the foreground script program to give the pickup 

coordinates as an offset from the platform origin. 

The coordinates must be transformed to the real world coordinate system, so that 

the robot can accurately pick up the part. The coordinate transform was done 

using a standard DVT calibration grid (an asymmetric matrix of dots with equal 

spacing) and the built-in “coordinate system calibration” tool. The grid was placed 

on the presentation platform and an image was acquired. The calibration tool 

evaluated the grid to determine the correct transformation and scaling ratios to 

relate the pixel coordinates in the image to millimetres in the real world.  The 

transformation and scaling ratios are then applied to the inspection product, 

allowing softsensors to return real world coordinates. 

5.2.2 PC control 

The camera LLC program handles all communication between the HLC camera 

programs and the DVT Intellect script program. When the camera LLC program 

receives commands (in XML format) from the camera HLC program, these 

commands are parsed and sent to the Intellect script through a TCP/IP socket. 

These inspection results are received and compiled into an XML string and passed 

on to the HLC program. The functionality of the camera LLC program is 

explained in Figure 23. 

The camera LLC program declares and initializes the necessary variables at start-

up. This is followed by the creation of a TCP/IP socket for communication with 

the camera HLC program. The HLC program connects to the socket as a client. 

When the LLC program receives a message from the HLC program, the relevant 

information is extracted by parsing the XML string. 

The camera LLC program then creates another TCP/IP socket, to which the 

camera background script program connects as client. The message information is 

now stored as bytes in the command byte array – this array is sent to the camera 

background script program. The LLC program awaits the response from the 

background script program containing the result of the inspection. This inspection 

result is included in an XML string, which is sent to the camera HLC program. 
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Figure 23: Flow diagram of the camera LLC program. 
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5.3 Robot LLC 
The LLC of the robot consists of two parts: a PC-based C# LLC program and the 

KUKA Robot Language (KRL) programs which reside on the KUKA controller. 

The roles of these control programs are described in this section. 

5.3.1 KRL program control 

Several KRL programs were constructed for the low level control of the robot 

actions – the code of some programs are included in Appendix E. These programs 

are run on the robot controller. The controller has a communication interface with 

the controlling PC through a RS232 connection. The KRL programs receive 

commands from the PC and perform the appropriate robot actions. The KRL 

platform allows for modular programming – programs can call other programs as 

subroutines. The functionality of the KRL programs is shown in Figure 24. 

Upon start-up of the feeder subsystem, the MAIN( ) program is run on the robot 

controller. The necessary variables are declared and initialised at start-up. The 

program then waits for the arrival of a command message (in the form of an 

ASCII string) from the robot LLC program. When a message is received, the 

command, part and coordinate information are extracted. The appropriate 

subroutine is then called according to the part that is to be handled. The 

subroutines are part-specific, since the nature of the part, part magazine or 

singulation unit affects the motion path and the approach position required for the 

operation. 

A specific PICKUP_PART( ) subroutine exists for every part that the robot must 

pick up. The subroutine is passed the pickup coordinates, as received from the 

LLC program. The subroutine uses this coordinate information to determine the 

correct approach position for the robot, i.e. the appropriate position and angle of 

the gripper to allow for a successful pickup operation.  From this position, the 

robot can be moved to the pickup position. When the pickup position is reached, 

the subroutine sends a “close gripper” message to the LLC program – this is sent 

through the same communication channel as used before. After the HLC 

coordinates the DAQ action to close the gripper, the LLC sends a “continue” 

message to the controller. The robot is then moved to an intermediate position and 

the subroutine returns to the MAIN( ) program. 

The MAIN( ) continues the operation by calling the PLACE_PART( ) subroutine. 

The appropriate approach position is again determined for the placement 

operation. The robot is then moved to the place position, at which point an “open 

gripper” message is sent to the LLC. With the opening of the gripper, the part is 

placed and the robot is moved back to the home position. The MAIN( ) then sends 

a “done” message to the LLC program and awaits the arrival of a new command 

message. 
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Figure 24: Flow diagram of the KRL programs functionality. 

5.3.2 PC control 

All communication between the HLC robot program and the robot controller is 

handled by the robot LLC program. XML strings are received from the HLC 

program – these strings include the command, part type and relevant coordinates. 

The command information is compiled into an ASCII string and is sent to the 

robot controller via RS232. The working of the robot LLC program is shown in 

the flow diagram of Figure 25. 

The robot LLC program starts by declaring and initialising the necessary program 

variables. The program creates a TCP/IP socket as a server, to which the robot 

HLC program will connect as client. With the socket created and a connection 

established, the LLC program awaits the arrival of a message from the HLC 
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program. This received message is in XML format – the built-in C# functions are 

used to parse the message for the relevant information. 
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Figure 25: Flow diagram of the robot LLC program. 
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The robot LLC program can receive two types of messages – a “task” message 

and a “continue” message. The “task” message represents a HLC command for 

the robot to perform a task, while the “continue” message indicates that the robot 

can continue with the current task. This is required due to the fact that the DAQ 

controls the gripper actuation (since the robot does not have on-board digital or 

analogue outputs). When the robot reaches a point where the gripper requires 

actuation, the LLC program sends a message to the HLC program. When the 

desired gripper action was coordinated by the HLC, a “continue” message is sent 

to the LLC program. 

In the case of a “task” message being received, the robot LLC determines if the 

part is to be picked up from a singulation unit (SU) or a part magazine (PM). If 

the part is present at a singulation unit, the message coordinates are used. For 

parts available from part magazines, the message only specifies the coordinates of 

the first part in the magazine. As a part is picked up, the LLC program calculates 

an offset. This offset is stored and used to obtain the coordinates of the next part 

in the part magazine. 

The part and coordinate information is then compiled into an ASCII string, with 

the “#” character used as separation token. This ASCII string is then sent via 

RS232 to the KRL programs on the robot controller. The LLC program then waits 

for a response from the KRL control program. This response if then forwarded to 

the HLC program in the form of an XML string. 
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6. Higher Level Control 
The Higher Level Control (HLC) is implemented by both an agent-based 

controller and IEC 61499 function blocks. This control level is responsible for 

decision-making and coordination of the subsystem functions, and has 

communication interfaces with both the Cell Controller (CC) and the LLC 

programs.  

6.1 Communication between HLC programs and the Cell Controller 
In order to promote the reconfigurability, it was decided that most product 

information will reside with the CC. This centralization of product information 

simplifies the process of adding or altering a product – if the information was 

distributed, changes would have to be made in each subsystem. 

The product information is communicated in the feeder subsystem via the 

Supervisor holon. The Supervisor holon indicates that the subsystem is ready by 

sending the status information to the CC, through a TCP/IP socket. When the CC 

requires action from the feeder subsystem, it sends an XML string containing the 

command and product information. The XML string is structured as follows (the 

variable tag information is shown in red): 

<CELLCONTROLLER><FEEDER><COMMAND>LOAD</COMMAND><PRODUCT>1 

</PRODUCT><NUMOFTASKS>6</NUMOFTASKS><TASK1>1</TASK1><X1>105.6</X1> 

<Y1>150.3</Y1><Z1>27.8</Z1><A1>0.0</A1><TASK2>…</A6></FEEDER><CELL-

CONTROLLER> 

The string is structured so that all the command and product information is 

contained within the sender (“CELLCONTROLLER”) and receiver (“FEEDER”) 

tags. These tags are used to check if a received message is indeed at its intended 

destination. The command to be performed by the feeder subsystem is contained 

in the “COMMAND” tag, with the accompanying product information presented 

in the next tags. The product number is specified and the number of tasks which 

are involved in it (in the “NUMOFTASKS” tag). The part and coordinate 

information is presented in the order of which the tasks must be performed, i.e. 

the first task to be performed (“TASK1”) is the loading of part X onto the fixture. 

The coordinates of this part, as it is to be placed in the fixture, is given in the X1, 

Y1, Z1 and A1 (referring to the rotation angle) tags. 

6.2 Agent-based control 
A Multi-Agent System (MAS) HLC was developed using the JADE (Java Agent 

DEvelopment framework) platform. The functionality, cooperation and 

communication of the various agents are described in this section. 

6.2.1 Control system overview 

The MAS is based on the ADACOR holonic architecture, as described in 

section 4. The holons of the system are embodied by the following agent types: 

Supervisor, Product, Task and Operational. The MAS implements one Supervisor 

agent and multiple Product, Task and Operational agents. The Supervisor agent 
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handles all external communication, with the Cell Controller (CC) program, and 

coordinates the subsystem functions by launching the appropriate Product and 

Task agents. The Product agent holds all the information required to accomplish 

the product order, such as the required task sequence and relevant coordinates. 

The subsystem hardware actions are then coordinated by the Task agents, through 

communication with the respective Operational agents. The Operational agents 

interface with the hardware of the subsystem and are thus responsible for the 

execution of hardware actions. This MAS has an Operational agent for each of the 

hardware devices, i.e. a Singulation Unit (SU) agent, a Camera agent, a DAQ 

agent and a Robot agent. The structure of the MAS is depicted in Figure 26. 

 

Figure 26: The structure of the Multi-Agent System. 

6.2.2 Agent communication and coordination 

The cooperation of the agents in the MAS is facilitated by several tools and 

functions. These tools and functions are explained in this section. 

6.2.2.1 The Agent Management System 

The FIPA standards require the existence of an Agent Management System 

(AMS) in an agent platform architecture. The AMS is responsible for the 

management of the agent platform, of which the main functions are the creation, 

deletion and life-cycle management of agents. The AMS maintains a physical 

identifier, referred to as Agent Identification (AID), for each agent residing in the 

MAS. The AID allows the unequivocal identification of every agent in the system 

(Paolucci and Sacile, 2005). 

6.2.2.2 The Directory Facilitator 

All the agents in the system register their services (i.e. the activities which they 

are able to perform) and address (AID) with the Directory Facilitator (DF). 

Agents query the DF for agents which provide a specific desired service. The DF 

then supplies the searching agent with a vector of addresses for the appropriate 
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agents in the system. The searching agent can then initiate communication with 

the relevant agents in an attempt to contract their services – thus the Directory 

Facilitator can be related to a “Yellow Pages” service (Paolucci and Sacile, 2005). 

6.2.2.3 Contract Net Protocol 

The planning and scheduling, inherent in the cooperation the MAS agents, is 

achieved through an auction process. Auction processes are based on two features 

– decomposition and negotiation. The decomposition feature refers to the 

distribution of decision-making ability among all the agents. The negotiation 

which is involved in the process refers to the decisions which are made following 

the agent interaction. This auction process is implemented by the Contract Net 

Protocol (CNP) (Paolucci and Sacile, 2005). 

The CNP entails that the subcontracting of agent services commence with a call 

for proposals (CFP). This CFP specifies the service which is required. Agents 

which are capable of providing the service reply with proposals to the CFP. These 

proposals are then handled in the same way as bids during an auction. The 

proposals are evaluated according to a specific parameter which is relevant to the 

service, such as completion time. The best proposal can thus be selected and the 

appropriate agent can be contracted.  

6.2.2.4 Ontology 

An ontology was used to simplify the intra-agent communication. This MAS 

implements an adaptation of the ontology developed by Adams (2010).  The 

ontology defined several concepts, actions and predicates to allow for the 

common understanding between agents. For use in this MAS, some parts of the 

ontology were omitted as they were not used. The ontology uses several concepts 

and actions, but no specific need was found for the defined predicates. 

The concepts defined for the MAS are presented in Table 2. The PART concept 

refers to the part involved in a certain task – only the name of the part is required. 

The POSITION concept refers to the coordinates of a part as given by the camera 

inspection. PLACE_POSITION refers to the pickup or placement coordinates of a 

specific part in the fixture. Both concepts require the coordinate slots to be filled 

with information. The DURATION concept is an indication of the time it will 

take for an agent to provide a service or perform an action – this time must be 

presented in the SECONDS slot.  

The actions of the system which are represented in the ontology are shown in 

Table 3. The INSPECT action refers to the inspection of parts by the camera – the 

PART information is required for the selection of the inspection product. The 

LOAD and REJECT actions refer to the functions of the singulation unit. The 

robot receives commands in the form of PICKNPLACE actions – these actions 

require the PART information and two slots for the coordinate information. 

DURATION is used throughout as a measure of time involved in performing the 

actions. 

 

Stellenbosch University  http://scholar.sun.ac.za



 

51 

 

Table 2: Concepts included in the MAS ontology. 

CONCEPT INFORMATION SLOTS 

PART NAME 

POSITION ANGLE 

X-POS 

Y-POS 

Z-POS 

PLACE_POSITION PLACE_ANGLE 

PLACE_X 

PLACE_Y 

PLACE_Z 

DURATION SECONDS 

 

Table 3: Actions included in the MAS ontology. 

ACTION INFORMATION SLOTS 

INSPECT PART 

DURATION 

LOAD PART 

DURATION 

REJECT DURATION 

PICKNPLACE PART 

DURATION 

POSITION 

PLACE_POSITION 

 

6.2.2.5 Communication between MAS and Cell Controller 

The communication between the MAS and the CC is handled by the Supervisor 

agent. The agent sends status updates of the subsystem in XML strings, and 

receives the command and product information from the CC also in XML strings, 

as discussed in section 6.1. 

The Supervisor agent uses the built-in Java XML parsing functions to extract the 

necessary data. The command information is stored to a local variable, as it is 

only used to select the appropriate Product agent. The product information must 

be accessed by the Product agents, thus it is stored in a public array. The storage 

of the product information is shown in Figure 27.  

The tag information is extracted from the XML string and stored in specific array 

positions. The task information is stored in the order in which they will be 

performed, i.e. the first row of the array holds the information for the first task. 

This information consists of the part type involved in the task (stored in the first 

column) and the accompanying coordinates (stored in the succeeding columns). 

The coordinates include the X-position, Y-position, Z-position and a rotation 

angle (indicated as An in Figure 27). The Product agent can then access the 

product information to select which task should be performed (according to the 

part type) and then pass the coordinate information on to the appropriate Task 

agent. 
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1 X1 Y1 Z1 A1 

2 X2 Y2 Z2 A2 

: : : : : 

n Xn Yn Zn An 

 

6.2.3 Agent behaviours 

The functionality of JADE agents is constructed in special JADE classes called 

behaviours. This section describes the methods and behaviours which are 

implemented in several agents in the MAS. 

A Setup( ) method is performed upon the instantiation of an agent. This method 

starts by instantiating the ontology and language that will be used in the MAS. 

This is done by creating an instance of the MAS ontology, and then registering the 

ontology and the language with the Content Manager of the AMS. The next step 

is to register the services that the particular agent can provide with the Directory 

Facilitator. This registration requires the agent ID and agent name, along with the 

type of service the agent can provide. The final step of the method is to instantiate 

the behaviours of the agent which are required for its initial, basic operation. 

To enable the utilization of the Contract Net Protocol, agents in the MAS must 

include the following behaviours: requestReceiver( ), actionPerformer( ) and 

requestAction( ). The first two behaviours are used in agents providing a service – 

their flow diagrams are shown in Figure 28. The requestAction( ) behaviour 

allows agents to acquire a desired service – the flow diagram is shown in Figure 

29. 

The cooperation characteristic of the MAS means that agents may require services 

of other agents in the system. In such a case, the CNP requires agents to send 

“Call for Proposal” (CFP) messages to all the agents in the MAS which provide 

the desired service (this list of agents is obtained from the Directory Facilitator). 

The requestReceiver( ) behaviour is thus implemented, by agents which provide a 

service, to receive these CFP messages. This behaviour first sets the message 

template to that of CFPs and then awaits the arrival of messages. The received 

messages will be compared to the CFP template to ensure that they are correct and 

applicable. If the messages do not match the CFP template, they are discarded. 

The behaviour is then blocked until a new message arrives. If the message is 

indeed a CFP, a proposal is constructed. The proposal may contain a certain 

parameter on which the proposal will be judged - a predicted completion time or a 

convenience indicator (indicating how easy it would be for the agent to provide 

the service) are examples of a proposal parameter. The proposal is then sent to the 

contracting agent for evaluation. 

Coordinate information Part number 

Top-down order 

indicates the 

task sequence 

Figure 27: Storage of product information in the MAS. 
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Begin

Set CFP template 
for incoming 

messages

Initiate receiving of 
ACL messages

Has a CFP message been 
received ?

Create and set 
content of proposal  

message

Reply to agent with 
proposal message

Block the 
requestReceiver() 

behaviour

NO

YES

Begin

Set accept proposal 
template for 

incoming messages

Initiate receiving of 
accept proposal 

messages

Has an accept proposal 
message been received?

Initiate desired 
agent behaviour

Block the action 
Performer() 
behaviour

NO

YES

 

   (a)     (b) 

Figure 28: Flow diagrams of the (a) requestReceiver( ) and (b) 

actionPerformer( ) behaviours. 

If the proposal is selected by the contracting agent, the CNP requires confirmation 

with the sending of an “accept proposal” message. This message is then received 

by the actionPerformer( ) behaviour of the contracted agent. This behaviour again 

sets the message template to that of “accept proposal”, which is compared to the 

received messages. If an “accept proposal” message is received, the appropriate 

behaviour of the contracted agent is initiated. In this case, and if the received 

message does not match the template, the actionPerformer( ) behaviour is blocked 

until the arrival of a new message. 

Figure 29 shows the behaviour which is exhibited by agents to acquire the 

services of another agent in the system, according to the CNP. The 

requestAction( ) behaviour starts by declaring and initialising the required local 

variables. The next step involves the sending of CFPS to all the agents in the 

system which provides the desired service (the list is obtained from the Directory 

Facilitator). The behaviour is blocked while no proposals (or messages with an 

incorrect format) have been received. Upon the arrival of the proposal messages, 

the proposal parameters are evaluated to determine which proposal is the best 
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option. An “accept proposal” message is then sent to the agent which issued the 

best proposal. The behaviour is then blocked until a reply message from the 

contracted agent arrives. If the reply is an “inform” message, it indicates that the 

service was successfully performed and the behaviour ends. If the reply is not an 

“inform” message, it means that the process was unsuccessful – the behaviour 

then repeats the CNP steps. 

YES

Begin

Declare and initiate 
local variables

Send CFPs to all 
agents providing 

the desired service

Have proposals been 
received from all agents?

Evaluate proposals 
and select the best 

agent

Send accept 
proposal message 
to the best agent

Have a reply 
message been 

received?

Is the reply an 
inform message?

End

Block the 
requestAction() 

behaviour

NO

YES

YES

NO

NO

 

Figure 29: Flow diagram of the requestAction( ) behaviour. 

6.2.4 Supervisor agent 

The CC would typically receive a production order from a defined production 

schedule and then coordinate the subsystems to accomplish the specified order. 

The Supervisor agent receives a command from the CC when actions are required 
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from the feeder subsystem, and replies with a confirmation message upon 

completion. The behaviours of the Supervisor agent are depicted in Figure 30. 

Begin

Setup( )

Manually launch 
another agent?

Receive agent 
information from 

user input

Request agent 
creation from AMS

Select appropriate 
Product agent 
based on CC 
command

requestAction( ) 
from Product agent

Continue 
operation?

End

YES

NO

YES

NO

Begin

Connect and send 
READY status to CC

Command 
received from 

CC?

Extract command 
information

Send BUSY status to 
CC

Select appropriate 
agent to perform 

command

Store product 
information

End

YES

NO

 

Figure 30: Flow diagram of the Supervisor agent functionality. 

The Supervisor agent starts by performing the Setup( ) method to initialise and 

register the agent services. The agent then implements the createAgent( ) 

behaviour. This behaviour allows the creation of agents, in the agent container, by 

means of user input. This was done to ease the MAS control when a hardware 

reconfiguration has taken place. If a new hardware component is added, its HLC 

agent can be launched by the user (otherwise changes would have to be made to 

the Main( ) class of the HLC). The creation of an agent is achieved through 

sending a request message to the AMS. The Supervisor agent then enter its 

operational state as it implements the selectProduct( ) behaviour. This behaviour 

receives commands from the Cell Controller and selects the appropriate Product 

agent to perform the desired tasks. This selection is followed by implementing the 

requestAction( ) behaviour to acquire the service of the selected Product agent. 
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The selectProduct( ) behaviour is also shown in more detail in Figure 30. In the 

first step of this behaviour, the Supervisor agent connects to the CC via a TCP/IP 

socket. To indicate the readiness of the MAS, the Supervisor agent sends a 

READY status to the CC – the feeder subsystem is thus ready to receive 

commands. When a message is received from the CC (in the format of an XML 

string), it is parsed to extract the relevant information. The XML string will 

contain the command to be executed, the product type involved with the 

command and the necessary task sequence and coordinate information. The 

command and product type is then used to select the appropriate Product agent, 

while the task and coordinate information is stored for access at a later stage. The 

Supervisor agent then immediately responds to the CC with a BUSY status – this 

indicates to the CC that the feeder subsystem will not be able to perform any 

commands until the READY status is sent again upon completion. 

6.2.5 Product agents 

When the Supervisor agent receives a command from the CC (e.g. to load the 

parts of a specific product onto the fixture), it launches the appropriate Product 

agent. The Product agent then accesses the relevant information concerning the 

tasks to be performed – such as the task sequence and part and coordinate data. 

One Product agent could handle all the products of the system (when the product 

information resides within the CC), but the holonic architecture was designed so 

that a Product agent can be created for each product type to allow for situations 

where the product information can reside in the feeder subsystem (e.g. if the 

future introduction of new products need not be provided for). The functionality 

of the Product agents is depicted in Figure 31 (a).  

The ontology and language used by the Product agents, as well as the initial 

behaviours, are instantiated in the Setup( ) method. The two behaviours are that of 

requestReceiver( ) and actionPerformer( ), which await the arrival of respectively 

CFP and “accept proposal” messages from the Supervisor agent. Upon receiving 

the “accept proposal” message, the Product agent then requests the launching of 

the necessary Task agents (according to the tasks involved in completing the 

product) from the AMS. The Product agent then retrieves the task sequence and 

the relative part and coordinate information. The sequence of tasks is then 

initiated. The tasks are performed one at a time by acquiring the services of the 

appropriate Task agents through the requestAction( ) behaviour. When a task is 

successfully completed, the Product agent moves on to the next one. A “inform” 

message is sent to the Supervisor agent when all the tasks of the product have 

been performed. 

6.2.6 Task agents 

The necessary Task agents are launched according to the information of the 

Product agent. The Task agents then drive the required hardware actions. A Task 

agent exists for every function inherent in the system, e.g. a specific Task agent is 

responsible for the loading of one of the required parts onto the fixture. A flow 

diagram of the workings of Task agents is presented in Figure 31 (b). 
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Begin

Setup( )

Create necessary 
Task agents

Receive CFP 
message from 

Supervisor agent 
and send proposal

Receive “accept 
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Supervisor agent

Extract information 
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proposal” message

Initiate product 
task sequence

Select task to be 
performed

Request desired 
service from 

appropriate Task 
agent

All tasks 
completed?

Send “inform” 
message to 

Supervisor agent

NO

YES

Begin

Setup( )

Receive CFP from 
Product agent and 
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Receive “accept 
proposal” from 
Product agent

Extract information 
from “accept 

proposal” message

Initiate task action 
sequence

Select action to be 
performed by 
Operational 

agent(s)

Request desired 
action from 
appropriate 
Operational 

agent(s)

All actions 
completed?
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message to Product 

agent

NO

YES

 

(a)     (b) 

Figure 31: Flow diagram of (a) Product and (b) Task agent functionality. 
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The Task agent starts by running the Setup( ) method. The ontology and initial 

behaviours are thus instantiated and the agent services are registered. Next the 

agent performs the requestReceiver( ) behaviour, which awaits the arrival of a 

CFP from a Product agent. With the proposal sent, the agent awaits the arrival of 

the succeeding “accept proposal” message in the actionPerformer( ) behaviour. 

The coordinate information which accompanies the message is extracted. 

According to the “accept proposal” message, the Task agent starts to perform the 

necessary subsystem action sequence. The first required action to be performed is 

achieved by acquiring the service of the appropriate Operational agent, through 

the requestAction( ) behaviour. Upon the completion of this action, the next action 

is selected – this process continues until all the actions concerning the desired task 

are completed. The agent then returns to the idle state, where it awaits the next 

CFP message from a Product agent. 

6.2.7 Operational agents 

The Task agents coordinate the Operational agents to perform the desired 

hardware functions. The Operational agents send the necessary command, part 

type and coordinate information to the respective LLC programs. The Operational 

agents also interact with one another where cooperation is needed to perform a 

certain hardware function. The Operational agents in the MAS are described in 

this section. 

6.2.7.1 Singulation unit agent 

The Singulation unit (SU) agent is responsible for the control of the singulation 

unit actions. This agent represents an Operational holon which only consists of a 

software entity. This is because the actuators of the singulation unit are physically 

controlled by the DAQ device, which is represented by its own HLC and LLC 

control. The SU agent thus controls the actions of the singulation unit by 

coordinating the actions of the DAQ and Camera agents. The functionality of the 

Singulation unit agent is shown in Figure 32. 

The agent initializes by performing the Setup( ) method. With the agent services 

now registered in the DF, it awaits the arrival of a CFP message from a Task 

agent. The agent responds with a proposal. If the agent receives the “accept 

proposal” message, its services is contracted. The agent extracts the necessary 

command information from the “accept proposal” message and then initiates the 

required task sequence. The actions to be performed are selected and requested 

from the appropriate Operational agents by the requestAction( ) behaviour. These 

actions are the control of the singulation unit actuators by the DAQ agent or the 

trigger of inspections by the Camera agent. These actions are then performed in 

the specified sequence until the operation is completed – at which point an 

“inform” message is replied to the Task agent. 

6.2.7.2 DAQ agent 

The DAQ agent controls the actions of the DAQ device by sending commands to 

the DAQ LLC program. The services of the DAQ agent are acquired by other 

Operational agents which require the DAQ to perform an action, such as: 
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 The SU agent requires the actuation of the singulation unit components. 

 The Robot agent requires the DAQ to actuate the gripper during picking 

and placing of parts. The Robot agent also commands the DAQ agent to 

lower the presentation platform after the part has been picked up. 

The DAQ agent functionality is presented in Figure 32. The agent again starts 

with the initializing Setup( ) method and awaits a CFP message from one of the 

Operational agents. The agent sends a proposal and, if the proposal is selected, 

receives an “accept proposal” message. The content of the “accept proposal” 

message is extracted to determine which action should be performed by the DAQ. 

The command is then constructed in the form of an XML string. This string is sent 

to the LLC program through a TCP/IP socket. The agent then awaits the 

completion message from the LLC program, which is also in the XML format. 

This string is parsed to extract the result of the operation. If the action was 

successful, an “inform” message is sent to the respective Operational agent. If not, 

a “failure” message is replied. 

6.2.7.3 Camera agent 

The Camera agent is responsible for controlling the inspections of the camera 

mounted on the singulation unit. The agent sends the command information to the 

camera LLC program in XML string format. The LLC program returns the 

inspection result, along with the coordinate information, in an XML string. 

The functionality of the Camera agent is similar to that of the DAQ agent, as is 

presented in Figure 32. The Camera agent provides the inspection service, which 

is required by the Task agent. The Task agents thus send CFP messages to the 

Camera agent. The “accept proposal” message, which is sent by the Task agent, 

contains an ontological reference. The INSPECT action (explained in section 

6.2.2.4), along with its information, is included in the message content. This 

INSPECT information is extracted from the content. The part type information is 

then included in the XML command string which is sent to the camera LLC 

program. The reply message, from the LLC program, contains the camera 

inspection result. In the case of a successful inspection, the pickup coordinates of 

the presented part is also included in the message. The coordinate information is 

extracted by parsing the incoming XML string, and is then stored to the slots of 

the POSITION concept of the ontology. This POSITION concept is then set as the 

content for the “inform” message which is sent to the Task agent. When the 

inspection is unsuccessful, a „failure” message is sent to the Task agent. 
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      (a)      (b) 

Figure 32: Flow diagram of (a) Singulation unit and (b) DAQ agent 

functionality. 
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6.2.7.4 Robot agent 

The Robot agent is implemented as the HLC for the robot holon of the subsystem. 

The agent controls the actions of the robot based on communication with the other 

agents in the MAS. The commands are constructed into XML strings and passed 

on to the robot LLC program, which communicates with the robot controller 

through RS232 serial communication. 

The functionality of the Robot agent is depicted in Figure 33. The initial working 

of the Robot agent is similar to that of the DAQ and Camera agents. The 

initialization is done by the Setup( ) method, and the receiveRequest( ) and 

actionPerformer( ) methods are added to handle the arrival of CFP and “accept 

proposal” messages. The “accept proposal” message contains the ontological 

action PICKNPLACE (described in section 6.2.2.4). This action contains the 

critical information regarding the part to be picked up and placed, as well as the 

coordinates involved with both operations. This information is extracted and 

included in the XML command string which is sent to the robot LLC program. 

Since the robot itself does not control the actions of the gripper, the Robot agent 

must acquire the services of the DAQ agent during the pick-„n-place operations. 

When the robot reaches a point in the operation where the gripper must close 

(when picking up) or open (when placing), the controller program sends a 

message via RS232 to the LLC program, which passes it on to the Robot agent. 

The XML string which is received from the LLC program is parsed to determine 

if the robot action is complete or if a DAQ action is required. When a DAQ action 

is required, the Robot agent requests the services through the requestAction( ) 

behaviour. The DAQ agent replies with a confirmation message once the DAQ 

action has been performed. The Robot agent then sends a “continue” message to 

the LLC program. When the pick-„n-place task is completed, the Robot agent 

sends an “inform” message to the Task agent. 
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Figure 33: Flow diagram of Robot agent functionality. 

Stellenbosch University  http://scholar.sun.ac.za



 

63 

 

6.3 IEC 61499 function block control 
The function block control was implemented on the FBDK (Function Block 

Development Kit) platform. FBDK is a prototype engineering software tool for 

IEC 61499 software development.  FBDK provides an integrated development 

environment that supports the development of function blocks and systems, and 

their translation to Java classes. The Java classes are then executed using a Java 

Virtual Machine on the PC (Vyatkin, 2007). 

6.3.1 Control system overview 

The structure of the function block control is based on a distributed holonic 

approach. In FBDK, the holons of the subsystem are mapped to devices. A device 

can be understood as an abstract model that captures the information-processing 

properties of control devices. These devices are then hosts to resources, which 

contain the function block networks. FBDK also facilitates composite function 

blocks – these are function blocks which contain their own function block 

networks (Vyatkin, 2007). 

The function block networks are where the control system is implemented. The 

subsystem devices are then as follows: FB_SUPERVISOR, 

COMMAND_EXECUTION, SINGULATION_UNIT, DAQ, CAMERA and 

ROBOT. The FB_SUPERVISOR, SINGULATION_UNIT, DAQ, CAMERA and 

ROBOT devices all contain one resource, which is given the same name as the 

device. The COMMAND_EXECUTE device, representing the Product holon, 

contains several resources: COMMAND_SELECT and a resource for each system 

product. The Task holon is not explicitly defined by a device or resource, as it is 

represented by the various function block network event and data connections, 

along with the intra-device communication function blocks. The structure of the 

control system is depicted in Figure 34. The respective device function block 

networks are given in Appendix G. 

 

Figure 34: Structure of the IEC 61499 function block control system. 
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6.3.2 Function block communication and coordination 

6.3.2.1 System communication 

The communication between function blocks (and function block networks) 

comprises of two parts: the transfer of an event and the transfer of the 

accompanying event data. This communication, for function blocks residing in the 

same network, is done by event and data connections. The output event and data 

variables are connected to input variables by visual lines in the FBDK graphic 

user interface (GUI). The event connections are always connected to the top part 

of the function block shape and is indicated as green lines in the GUI. The data 

variable connections are connected to the bottom half of the function block shape 

and are indicated as blue lines. The data variables can be of various types – FBDK 

facilitates the standard types (STRING, WSTRING, INT, BOOL, etc.), as well as 

arrays and customized data structures. 

When the communication occurs between the function blocks of different 

networks (contained in different resources or devices), PUBLISH and 

SUBSCRIBE function blocks are used (shown in Figure 35). The information that 

is to be sent is connected to a PUBLISH function block. When the input event of 

the function block is triggered, it sends the event and data to a specified 

SUBSCRIBE function block. The location to where the information must be sent 

is specified by using function block IDs. A unique ID is given to a SUBSCRIBE 

function block – this ID is then used by the PUBLISH function block. This use of 

IDs enables one PUBLISH function block to send information to different 

SUBSCRIBE function blocks, as the ID can be sent to the PUBLISH function 

block as a variable. 

 

     (a)            (b) 

Figure 35: (a) PUBLISH and (b) SUBSCRIBE function blocks. 

6.3.2.2 Communication with CC and LLC 

The communication between the HLC and the CC and LLC is based on XML 

strings, sent through TCP/IP sockets. The function block control system thus 

requires function blocks for the building and parsing of XML string. A network 

segment showing the XML_BUILDER, COMMUNICATOR and XML_PARSER 
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function blocks are shown in Figure 36. These function blocks use the Java 

functions (residing in imported packages) for building and parsing XML strings 

and communicating over TCP/IP sockets. The XML_BUILDER function block 

receives the command information through data connections. The functions of the 

algorithm then construct an XML string, which is passed on through an output 

data connection to the COMMUNICATOR function block. The 

COMMUNICATOR function block algorithm sends the received XML string to 

the LLC program through the TCP/IP socket. The predefined port number used 

for the communication is supplied to the function block as a constant. The 

algorithm then continuously monitors the socket for the arrival of a message from 

the LLC program. The LLC program replies with an XML string – this string is 

simply passed on to the XML_PARSER function block. The XML_PARSER 

function block algorithm parses the XML string for the relevant information. This 

information is stored to the respective output variables, which is emitted to the 

succeeding function blocks through data connections. 

 

Figure 36: Function block network segment for XML communication. 

6.3.3 FB_SUPERVISOR device 

The FB_SUPERVISOR device contains a function block network which handles 

communication with the CC. The network of function blocks send the subsystem 

status to the CC and receive the command and product information. The received 

information is passed on to the COMMAND_EXECUTION device. The function 

block network is shown in Figure G 1.  

The function block network instantiates a FB_SPVR_CONTROL composite 

function block, which contains the functionality of the device – the function block 

network is presented in Figure G 2. This composite function block is interfaced 

with the COMMAND_EXECUTION device by a PUBLISH function block, 

through which all the command and product information is communicated. 

The FB_SPVR_CONTROL composite function block network implements the 

XML communication function blocks of section 6.3.2.2. These function blocks 

allow for communication with the CC program. When a XML command string (as 

explained in section 6.1) is received, the information must be extracted to data 

variables. The coordinate information must be stored in arrays, which is passed on 

the rest of the system. The STORE_TO_ARRAY function block stores the 

information to the arrays one element at a time. The output event variable of this 
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function block is connected to the XML_PARSER function block input event 

variable. This causes the iteration of the parsing function block until all the data is 

stored in the arrays. These variables are then passed to the other devices when the 

output event is triggered. 

6.3.4 COMMAND_EXECUTION device 

The COMMAND_EXECUTION device receives the data from the 

FB_SUPERVISOR function block. The device holds a resource for each system 

product and a resource for selecting the specified PRODUCT resource.  The 

function block networks of the COMMAND_SELECT and LOAD_1 resources 

are given in Figure G 3 and Figure G 4. 

The command and product information is received from the FB_SUPERVISOR 

device. The information is received in the COMMAND_SELECT resource, which 

triggers the production of the desired product through an output event trigger to 

the appropriate PRODUCT resource (such as the LOAD_1 resource). The 

appropriate resource to be triggered is determined through an if statement in the 

algorithm of the COMMAND_SELECT function block. The algorithm compares 

the value of the product input data variable to predefined conditions. If the 

variable matches the condition, the respective resource is triggered. The product 

information is sent to the triggered PRODUCT resource via the INTERFACE 

function block. The INTERFACE function block merely passes the input 

information on as output information – this is needed because the output variables 

of a SUBSCRIBE function block cannot be directly connected to the input 

variables of a PUBLISH function block. 

The functionality of the PRODUCT resource resides in the 

PRODUCT_CONTROL (labelled LOAD1_CONTROL in Figure G 4) function 

block. The function block triggers the required devices, according to the product 

information task sequence, by means of a switch statement in its algorithm. The 

switch statement compares the PART information to predefined conditions, which 

determine the device which must be triggered. The elements of the PART input 

array are used one at a time to trigger the desired product events. When all the 

tasks have been performed, a “completion” event is published to the 

COMMAND_SELECT resource. 

6.3.5 SINGULATION_UNIT device 

The SINGULATION_UNIT device contains the function block network for 

coordinating the actions of the singulation unit. The function block network is 

shown in Figure G 5. 

The functionality of the device is contained in the SU_CONTROL function block. 

This function block controls the actions of the DAQ and CAMERA devices in the 

desired sequence by triggering the relevant output events.  The decision making 

logic is contained in two function block algorithms – one for each of the input 

events. The algorithms trigger the output event variables. 
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The SINGULATION_UNIT device receives the input event indicating that a part 

is to be loaded. The SU_CONTROL function block starts the loading process by 

triggering an output event to the DAQ device. The DAQ device replies through 

the SUBSCRIBE function block. The output event is then triggered to start the 

camera detection. When a part is detected by the camera, the CAMERA device 

triggers an output event directed at the SU_CONTROL function block. The 

function block then activates the DAQ device to stop the conveyor motor and the 

CAMERA device to perform an inspection. 

6.3.6 DAQ device 

The DAQ device function block network controls the actions of the physical DAQ 

device. The network is shown in Figure G 6. 

The functionality of the DAQ device resides in the DAQ_CONTROL composite 

function block, of which the network is shown in Figure G 7. The function block 

network of the DAQ_CONTROL function block contains the XML 

communication function blocks to communicate with the DAQ LLC program. 

The DAQ_CONTROL_IN and DAQ_CONTROL_OUT function blocks are 

responsible for the triggering of the correct output event variable. 

The DAQ device receives commands through the input event variables from the 

connected devices. The DAQ_CONTROL function block compiles the received 

data into an XML string, sends it to the DAQ LLC program and awaits a reply. 

The reply from the DAQ LLC program, indicating completion, is relayed to the 

relevant system devices. 

6.3.7 CAMERA device 

The CAMERA device controls the functions of the Camera holon. The function 

block network of the device is shown in Figure G 8. 

The communication function blocks of the CAMERA device are connected to a 

CAM_CONTROL composite function block, shown in Figure G 9. This 

composite function block contains the XML communication function blocks to 

achieve communication with the Camera LLC program. A 

CAM_CONTROL_OUT function block is also contained in the network. This 

function block is responsible for triggering the appropriate output event and data 

variables, according to the inspection tasks that the camera performed. 

The CAMERA device is only activated through a command (event) from the 

SINGULATION_UNIT device. This event is accompanied by two data input 

variables – one indicating the inspection product to be triggered and the other 

specifying whether the camera should inspect or detect the parts. This information 

is compiled into an XML string and sent to the Camera LLC program. The 

inspection result string is received and parsed, and the coordinate information is 

stored to the various data output variables. The coordinates for the pick-„n-place 

operation is sent to the ROBOT device. 
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6.3.8 ROBOT device 

The ROBOT device embodies the HLC of the pick-„n-place robot. Figure G 10 

shows the function block network embedded in the device. 

The functionality of the device is held within the ROBOT_CONTROL composite 

function block. The network residing in the ROBOT_CONTROL function block 

(shown in Figure G 11) employs the XML communication function blocks, for 

communication with the Robot LLC program, and also a 

ROBOT_CONTROL_OUT function block. The ROBOT_CONTROL_OUT 

function block triggers the appropriate event and data variables, according to the 

tasks performed by the robot. 

The ROBOT device receives command events from the CAMERA device (if the 

part is to be picked up from the singulation unit) or the 

COMMAND_EXECUTION (if the part is to be picked up from a part magazine). 

These command events are accompanied by data input variables, which contain 

the coordinate information relevant to the task. The ROBOT_CONTROL function 

block compiles the XML string and sends it to the Robot LLC program. The LLC 

program replies with “open gripper” or “close gripper” messages during the 

operation. These messages cause the trigger of outputs events, which is published 

to the DAQ device. The DAQ device indicates the completion of the action by 

sending an event to the SUBSCRIBE function block of the ROBOT device. These 

events indicate that the pick-„n-place activity can continue. When the operation is 

complete, the ROBOT device publishes the event to the COMMAND_EXECUTE 

device. 
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7. System reconfigurability assessment 
This section evaluates the reconfigurability of the feeder subsystem at two levels – 

the reconfigurability of the HLC system and that of the low level subsystem 

software and hardware. The reconfigurability assessment is done by means of four 

reconfiguration experiments. The implications of the reconfiguration on both HLC 

strategies, as well as on the low level software and hardware, are described. The 

reconfigurability of the control strategies is compared by means of quantitative 

and qualitative measurements. 

7.1 Experiment 1: Change in the task sequence 
The first experiment involved the changing of the sequence in which tasks are 

performed to load a specified product onto a fixture. The sequence of tasks was 

changed in the CC program and was included in the product information sent to 

the HLC programs (as described in section 6.1). This experiment entails no 

changes to the low level software and hardware of the feeder subsystem. 

7.1.1 MAS reconfiguration 

The MAS receives the command and product information, sent from the CC 

program, via the Supervisor agent. The agent parses the XML string and stores the 

extracted product information in the element of a static array. This array is 

globally visible and accessible, granting all of the agents of the MAS access to the 

information.  

The task information is stored in the sequence that they are to be performed. The 

Product agent then launches the required Task agents, and contracts their services, 

according to the sequence of the product information array. The coordinate 

information is also obtained from the array and stored to the PLACE_POSITION 

ontology concept. This concept is passed on to the Operational agents when their 

services are acquired.  

The MAS HLC programs are thus not influenced by a change in product 

information – the changes can be made to the CC program without having to stop 

or restart the feeder subsystem. 

7.1.2 Function block reconfiguration 

The command XML string from the CC program is received by the 

SUPERVISOR device of the IEC 61499 function block control system. The string 

is parsed and the information is stored to data array variables. These arrays are 

sent to the COMMAND_EXECUTE device. The product information is sent to 

the selected PRODUCT resource. 

 The PRODUCT_CONTROL function block receives the product information 

arrays as input data variables. The array containing the parts to be loaded, in the 

correct sequence, is then used to determine which tasks should be performed. The 

tasks are then performed through the triggering of the PRODUCT_CONTROL 

function block output event variables. For each task, the respective coordinate 

information is extracted from the arrays and stored to individual coordinate data 

variable – these are passed on to the Operational devices. 
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The function block control system is thus also uninfluenced by any changes in the 

product information – the changes can also be implemented with the feeder 

subsystem remaining online. 

7.2 Experiment 2: Addition of a new task 
This reconfiguration experiment involved the addition of a Task holon to the 

feeder subsystem. The situation required an additional task to be performed in the 

loading of the sub-assembly. The added task is included in the product 

information contained in the CC program, which is passed on to the HLC 

programs. This new task did not entail the addition of new subsystem hardware. 

In the event of reconfiguring the subsystem for an entirely new product, the 

addition of tasks for the new parts will be required. For this experiment, the 

additional task was the placement of a new part, the moving contact (which was 

previously not included), on the fixture. The moving contact parts were placed in 

a part magazine, from where the robot had to pick up the parts and place them in 

the fixture. 

7.2.1 MAS reconfiguration 

This reconfiguration entailed the addition of a new Task agent to the MAS. The 

Task agent contained the information for the necessary actions to perform the 

task, such as communicating with the relevant Operational agents and Product 

agents, and handling the part and coordinate information. 

The new Task agent was created offline, using the same template as that of the 

other MAS Task agents. The sequence of Operational agent actions was defined 

in the behaviours of the Task agent. The use of the ontology (and potential 

additions to it) was also considered in the development of the Task agent. 

The addition of a Task agent had to be recognised and utilized by the involved 

Product agents. The Product agents launch the Task agents which perform the 

desired services. The services are then acquired by searching the Directory 

Facilitator (DF). The Task agents are named according to their involved parts 

(such as “feedTask_1 Agent”), so they can be launched directly from the software 

package by the Product agent. The Product agent extracts the part information 

from the product information array and uses it to construct the names of the Task 

agents, as follows: 

CreateAgent ca = new CreateAgent(); 

ca.setAgentName("feedTask_"+ part +"_Agent"); 

ca.setClassName("feedTask_"+ part +"_Agent"); 

The part information is then contained in the “part” string variable. This 

constructed name is then used to launch the Task agent by sending a request to the 

AMS. When the Task agents are launched, their services are acquired in a similar 

way through the DF. 
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The Task agent can thus be added to the MAS without having to stop or restart the 

system. The agent is created offline and then added to the JADE agent package – 

it is then launched and utilized by the Product agent automatically. 

7.2.2 Function block reconfiguration 

The addition of a Task holon means that the IEC 61499 function block control 

system requires the alteration of the COMMAND_EXECUTION device. The 

reconfiguration affects the relevant PRODUCT resource, since the Task holon is 

not explicitly embodied in the control system. The PRODUCT resource extracts 

the task information from the data array input variables and launches the 

execution of the tasks through output event variables. 

The reconfiguration required the alteration of the algorithm of the 

PRODUCT_CONTROL function block, which resides in the PRODUCT 

resources of the COMMAND_EXECUTION device. The if statement of the 

algorithm was extended to facilitate the added task. When the task is to be 

performed, the appropriate SUBSCRIBE function block address is sent, along 

with the event trigger, to the PUBLISH function block. The event trigger is then 

sent to the desired device. 

The alteration to the algorithm could not be done online. The feeder subsystem 

was stopped to perform the alteration and then restarted. 

7.2.3 Low level software and hardware reconfiguration 

The loading of new sub-assembly parts requires reconfiguration of the subsystem 

software and hardware. The necessary changes for each subsystem component are 

discussed in the following paragraphs. 

The new parts may be placed in part magazines manually and presented to the 

robot, in which case a new part-specific part magazine must be designed and 

manufactured. Alternatively, it may be desired that the new part be singulated by 

an existing singulation unit – this singulation unit may then require some changes 

to enable effective part singulation. For the case of the stepped-conveyor 

singulation unit, the following changes may be necessary: 

 Changing of the singulation unit‟s conveyor belt. The scoops which are 

attached to the belt are designed to be part-size specific. A belt with 

appropriate scoops must be installed – this may require the design and 

manufacture of new scoops, which must be attached to a new belt. 

 Adjusting the pulley positions. This may be required to ensure that the 

scoops perform effective singulation during their motion through the input 

bin. 

 Adjusting the speed of the conveyor motor. The dropping of the parts from 

the scoops, through the gateway actuator, is also dependent on the 

properties of the part (mass, size and shape). The motor speed may require 

some tuning to ensure that the parts drop into the gateway actuator. 
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A new part to be singulated requires the setup of a new camera inspection 

product. The inspection product must be able to identify the part and return its 

pickup coordinates. This can be done by taking images of the part on the platform 

with the camera and using an emulator to set up the inspection product offline. 

The images can be used to generate models which must be taught to the object 

locating softsensors. These models are also specific with regards to the relative 

pickup position of the located shape. The new inspection product must then be 

added to the flash memory of the camera. 

If the part is presented in a new part magazine, the new workspace must be 

calibrated by the robot – the base calibration procedure is explained in Appendix 

E. The correct pickup coordinate of the part from the magazine must then be 

entered into the robot LLC program. The robot may also be required to pick up 

the part from the singulation unit and place the new part in the fixture. This new 

pick-„n-place activity requires the development of new KRL programs, which 

entail the following: 

 Setting up appropriate motion paths to allow for effective picking and 

placing. 

 Calculating the correct approach position and motion for both the picking 

and placing actions. 

 Using the received coordinate data in performing the actions. 

The size or shape of the part might also require the installation of a new gripper 

and/or gripper fingers – this addition of hardware is discussed in section 7.4. 

7.3 Experiment 3: Addition of a new product 

The addition of a Product holon to the HLC systems was required with this 

experiment. This holon represents a new product to be loaded by the feeder 

subsystem. Due to restrictions in time and hardware, a completely new product 

(with new parts) could not be implemented – instead, a new combination of the 

case study parts was used to simulate a new product sub-assembly. 

The new product consisted of four of the case study parts - the load terminal, 

handle frame assembly and the long and short pigtails. The parts were to be 

picked up from the part magazines and placed in the fixture. The order of the parts 

was also specified in the product information sent by the CC. 

7.3.1 MAS reconfiguration 

A new Product agent was added to the MAS for this experiment. The Product 

agent had to be added to the JADE agent container and be able to provide the 

service to the Supervisor agent. This Product agent had to be responsible for the 

loading of the individual parts of the new product onto the fixture. The agent had 

to create the necessary Task agents and acquire their service to accomplish the 

loading of the product. The creation of the Task agents, along with their 

respective coordinate information, had to be done using the product information 

array. 
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The Product agent was developed offline, using a similar template to that of the 

existing Product agents. The necessary functionality for Product agent was 

implemented in the agent behaviours – such as the registration with the DF, the 

extraction of product information from the global array and the sequential 

execution of the product tasks. The agent accesses the product information array 

for the task information. This information is used to create the necessary Task 

agents which are involved in the loading of the product. The Task agents are 

created and their services are contracted, through the DF, in the sequence 

specified in the product information array. 

The Product agent can be launched to the agent platform manually while the 

system remains online. This is done by using the “start new agent” function of the 

JADE GUI. The user provides the name of the Product agent (such as 

“Product_2_Agent”) for which the function then searches in the agent package. 

The agent is then launched to the JADE agent container when found. The addition 

of a Product holon to the MAS can thus be achieved without disturbing the 

operation of the control system. 

7.3.2 Function block reconfiguration 

A new product resource had to be added to the COMMAND_EXECUTION 

device of the function block control system. The function block network of this 

resource had to also retrieve the relevant part and coordinate information from the 

data table and incorporate all the necessary communication channels to 

accomplish the loading of the product.  This added resource had to contain the 

necessary functionality to initiate the tasks in the right sequence, by triggering the 

appropriate function block networks. 

The development of the new PRODUCT resource was done offline. The resource 

function block network contains SUBSCRIBE and PUBLISH function blocks, 

and one PRODUCT_CONTROL function block. The resource subscribes to 

“command” information from the COMMAND_SELECT resource and 

“completion” information from the ROBOT device. The PRODUCT resource 

publishes event and data information to the ROBOT device (to trigger the task 

execution) and to the COMMAND_SELECT resource (to indicate product 

completion). The PRODUCT_CONTROL function block has the functionality to 

extract the part and coordinate information, along with the task sequence, from the 

input array data variables. This function block is also responsible for the 

execution of the tasks by setting the respective output events. 

The functionality of the new PRODUCT_CONTROL function block can be tested 

individually (without being added to the control system) through the built-in 

FBDK testing interface. The output of the function block can be checked by 

manually triggering the respective input event variables with defined input data 

variables. This testing gives some assurance of the function block functionality 

before it is added to the system. 

The new resource could not be added to the control system while it is operational. 

The control system was stopped while the resource was manually added to the 
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COMMAND_EXECUTION device. Some changes were also made to the 

COMMAND_SELECT device. The changes were made to the algorithm of the 

COMM_SEL function block. The algorithm is responsible for triggering the 

output event to the correct PRODUCT resource according to the product 

information received from the FB_SUPERVISOR device. The correct resource is 

triggered by publishing the event to the correct SUBSCRIBE function block. The 

algorithm implements a switch function to determine which WSTRING address 

(i.e. the ID of the SUBSCRIBE function block) must be sent to the PUBLISH 

function block. The address of the SUBSCRIBE function block, of the new 

resource, must thus be entered into the switch function of the COMM_SEL 

algorithm. 

7.3.3 Low level software and hardware reconfiguration 

When a new product is introduced, the procedures discussed in section 7.2.3 must 

be performed for each new part to be loaded by the feeder subsystem. No further 

low level software and hardware reconfiguration is otherwise needed for the 

introduction of a new product. 

7.4 Experiment 4: Addition of new hardware 
In this experiment an Operational holon is added to the feeder subsystem. This 

addition was achieved by adding a simulated singulation unit to the subsystem. 

The experiment could only be performed through simulation due to a shortage of 

functional singulation units. The singulation unit was simulated using a LLC 

program – the program created a user interface allowing the user to simulate the 

actions of the singulation unit. The added singulation unit must be controlled and 

utilised by the HLC programs.  

The added singulation unit was chosen to be different, regarding its hardware 

control, to that of the existing stepped-conveyor singulation unit. The simulated 

singulation unit would be equipped with a local controller (such as a PLC), which 

controls all the actuators and the installed camera. This approach was chosen to 

allow for the addition of only one Operational holon, as opposed to the several 

Operational holons involved with the stepped-conveyor singulation unit concept. 

7.4.1 MAS reconfiguration 

The addition of a holon to the subsystem means that a new agent must be added to 

the MAS. The new Singulation unit agent had to exhibit the functionality of 

registering its services with the DF, receiving requests from Task agents and 

communicating with the LLC program. 

The new agent was developed offline. The template of the existing Singulation 

unit agent was used, though the functionality concerning the coordination of the 

other Operational agents was not required. The required functionality was 

embedded in the behaviours of the agent. The agent sends command strings to the 

LLC to singulate a part. The LLC sends a reply to the agent when the part is 

successfully singulated. 
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The agent was once again added to the JADE agent platform while the feeder 

subsystem was online. If the new singulation unit is located in a new position, the 

position of the presentation platform must be calibrated by the robot. When the 

platform of the singulation unit is located in a previously calibrated position (as 

was the case for this experiment), the singulation unit can be added to the 

subsystem without disturbing the operation. The functionality of the singulation 

unit can then be seamlessly added to the production activities. 

7.4.2 Function block reconfiguration 

A new SINGULATION_UNIT device was added to the IEC 61499 function block 

control system. The device had to contain a function block network with the 

appropriate communication (PUBLISH and SUBSCRIBE function blocks and 

XML function blocks) and decision-making (embedded algorithms) functionality. 

The function block network of the device was developed offline. The network 

subscribes to command information from the relevant PRODUCT resource of the 

COMMAND_EXECUTION device – the completion message after a successful 

singulation is then published to the same network. The SU_CONTROL function 

block, to which the SUBSCRIBE and PUBLISH function blocks are connected, 

contains the functionality to communicate with the LLC program (as described in 

section 6.3.2.2). 

The SU_CONTROL function block was again tested individually to ensure that 

communication with the LLC program could be successfully achieved. The new 

device could again not be included to the control system while the subsystem was 

operational. A new device had to be created in the system when offline, to which 

the constructed network was imported. A change to the PRODUCT_CONTROL 

function block of the PRODUCT resource was also required – the address of the 

new SUBSCRIBE function block had to be added to the algorithm. The control 

system could then be restarted. 

7.4.3 Low level reconfiguration 

Additional or new hardware components may be installed in the feeder subsystem 

if a change in system capability is required. Apart from the reconfiguration 

implications to the HLC system, some low level reconfiguration actions also have 

to be performed. 

The introduction of any new hardware component to the feeder subsystem will 

require the development of a LLC program to interface the hardware with the 

HLC programs and control the hardware‟s actions. 

When a new singulation unit or part magazine is added to the system, the position 

of the presentation platform or the magazine must be calibrated for the robot. This 

is done through the base calibration procedure explained in Appendix E. With this 

base calibrated, the robot is enabled to pick up parts from the added hardware. 

The addition of a new gripper for the pick-„n-place robot also requires calibration 

for the robot. The gripper tool calibration is done through the tool calibration 
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procedure described in Appendix E. This calibration allows the robot to monitor 

its position according to the Tool Centre Point (TCP) of the gripper. 

Any addition or relocation of hardware within the working envelope of the robot 

requires some recalibration of the robot operation. The calibration of software 

boundaries must be performed around each of the hardware components located 

within the reach of the robot. The software boundaries ensure that the robot TCP 

will never enter the specified space – this provides protection for the robot and the 

subsystem hardware. 

7.5 Discussion of experimental results and observations 

The performance of the control strategies during the reconfiguration experiments 

was compared for all of the reconfiguration experiments. The comparison was 

done through both quantitative and qualitative measurements. 

7.5.1 Quantitative measurements 

The quantitative measurements comprise of two sets of recorded times – that of 

development time and reconfiguration time. The development time refers to the 

time it took to develop the individual software for each experiment. The 

reconfiguration time then indicates the offline time (time for which operation was 

halted) required to introduce the software to the control system. The recorded 

times for each experiment are shown in Figure 37 and Figure 38. For the purpose 

of comparison, the respective reconfiguration and development times are added to 

give the total implementation time, which is presented in Figure 39. 

The times shown in Figure 37 indicate the times required for the offline software 

development needed for each experiment. The figure shows that the development 

time increases with increasing software complexity. Both control strategies allow 

for the effective re-use of software components – this greatly shortens the required 

development time. For the MAS, it is evident that the added Task agent was more 

complex than the added Product agent. The complexity is due to the various 

actions and communications that have to be facilitated with the involved 

Operational agents. The development of the new Singulation unit agent took the 

most time, as it required some behaviour which was not included in the existing 

Singulation unit. The setup of the communication with the LLC program was also 

quite time consuming. As for the function block system, the increasing 

complexity resided with the creation of composite function blocks, which contain 

their own function block networks. The correct connection of event and data 

variables also takes up some development time. 

The reconfiguration times, for the respective control strategies, for each 

experiment are shown in Figure 38. The fact that all the reconfigurations for the 

MAS could be implemented with the system online means that no reconfiguration 

time is required. For the function blocks, the feeder subsystem had to be stopped 

to implement the changes involved from experiment 2 onwards. The increasing 

complexity of the implementation of the changes is evident from the increasing 

reconfiguration times. This is because apart from the addition of the new software 
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entity, changes to other devices are required to incorporate the new entity into the 

system. 

It is evident from Figure 39 that, except for adding a task to the control system, 

the MAS requires less time to achieve reconfiguration. This result is a 

confirmation to the advantages that MAS exhibit towards reconfiguration. 

 

Figure 37: Recorded development times for the control strategies for the four 

experiments. 

 

Figure 38: Recorded reconfiguration times for the control strategies for the 

four experiments. 
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Figure 39: Total implementation times for the control strategies for the four 

experiments. 

7.5.2 Qualitative measurements 

The qualitative measurements were done according to the requirements set out in 

section 2.2, namely modularity, integratability, convertibility, diagnosibility, 

customizability and scalability. Subjective evaluations, according to the 

mentioned requirements, were constructed following the implementation of the 

control strategies during the experiments. 

The first reconfigurability experiment, involving the change in the task sequence 

for a part, indicates the customizability of the control system. The control 

programs have to be customized to meet the desired production needs. The fact 

that both control strategies can facilitate the extraction of data from the XML 

strings and the storage of the information in accessible structures, make them 

equally customizable. In both cases the task sequence change is handled 

automatically and during runtime. 

Experiment 2 presented an evaluation of the control strategy convertibility and 

customizability. The introduction of a new part (and so a new task) requires the 

adaptation of the control system to produce a new product – the ease of this 

adaptation indicates convertibility. Some control system customizations are then 

naturally included to meet the production needs. The online addition of the Task 

agent, which could automatically be used by the Product agent and coordinate the 

Operational agents is proof of the convertibility and customizability of the MAS. 

The function block system only requires an alteration to the algorithm of one 

function block, but it has to be done manually and offline. This hinders the 

performance of the function block control system concerning these 

reconfiguration requirements. 
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Convertibility and customizability are again measured through the reconfiguration 

of experiment 3. The ability of the MAS to add agents during runtime again gives 

it a clear advantage over function blocks, with regards to convertibility and 

customizability. The functionality of the DF within the MAS allows additional 

agents, which were not part of the initial MAS framework, to automatically be 

utilized by MAS agents and then use agents themselves. Not only does the 

addition of the new device to the function block system require the subsystem 

operation to be stopped, but additional programming to the 

COMMAND_SELECT resource is also required. 

The ease of adding hardware, as is done in experiment 4, reflects the modularity, 

scalability and integratability of the control strategies. Modularity (i.e. the ability 

to have interchangeable system components with “plug and play” capabilities) is 

inherent in the architectural design of both control strategies. Both strategies 

employ architectural structures to distribute the system functionality in 

accordance with the holonic control approach. It also appears that both strategies 

are equally integratable, especially when used in collaboration with LLC 

programs (as is the case in this research). The function block control system can 

also employ service interface function blocks to interface with added new 

technology, though this was not required in this implementation. The scalability 

of the system is reflected in the capacity increase with a hardware addition, i.e. 

how easily, quickly and effectively a new hardware resource can be included in 

the production activities. This is more easily achieved with the MAS than the 

function block control. This is due to the functionality of the Directory Facilitator 

– it allows for the seamless introduction of agents to the system. The new agent 

can be utilized, to its full potential, by the control system components without any 

additional programming or alterations. On the other hand, the introduction of a 

new device to the function block control system requires some alteration to the 

function block of the PRODUCT resources.  

The issue of diagnosibility was considered throughout all the experiments. It was 

found that the ease by which system error can be identified and diagnosed is 

largely dependent on the software platform. Then, in comparing the diagnostic 

functions of JADE (implemented in Eclipse) and FBDK, the MAS was found to 

be more diagnosable. This is due to the numerous built-in tools of the JADE and 

Eclipse platforms. The JADE GUI provides functions for monitoring the agent 

actions. The most significant of these functions is the JADE Sniffer function – this 

function graphically shows the communication between the agents of the MAS. 

All of the message information is then accessible to the software developer. This 

sort of functionality is lacking with the FBDK platform. The most significant 

shortcoming of the FBDK platform is that it has no inherent function for the 

monitoring of the function block system execution. This becomes especially 

noticeable when a network of function blocks does not behave as it is supposed to 

– it is hard to determine if the problem lies in the function blocks or the event/data 

that connect them. 
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It is also important to shed some light on the level of expertise required for 

developing a control system with each of the control strategies. For MAS based 

on JADE, a strong background in programming (with JADE, specifically Java) is 

required. A good understanding on the working of the MAS, with the JADE and 

FIPA specification, is also necessary. For the FBDK function blocks, simple 

applications can be developed without any expertise in programming – only a 

simple understanding of the FBDK platform is required. When dealing with more 

complex applications however, the level of expertise required increases 

dramatically. A good understanding of Java programming is necessary to 

implement algorithms in function blocks. In some cases, the Java files created by 

FBDK must be modified to allow for certain functionality – this then requires a 

high level of expertise. 

  

Stellenbosch University  http://scholar.sun.ac.za



 

81 

 

8. Conclusion and recommendations 
This thesis documents the research conducted into the control of the feeder 

subsystem of a Reconfigurable Assembly System (RAS). The research focused on 

the evaluation of an agent-based and an IEC 61499 function block control system, 

as possible control strategies for RASs. The objective of the research was to 

evaluate and compare the two strategies with regards to control system 

reconfigurability. 

As a case study, the control strategies were implemented on the hardware of the 

feeder subsystem of an experimental RAS at Stellenbosch University. The 

experimental RAS simulates an automated spot-welding process for the 

production of trip-switch sub-assemblies. The RAS consisted of a singulation unit 

(which uses a machine vision camera), different part magazines and a six DOF 

articulated pick-„n-place robot (fitted with a pneumatic gripper). The feeder 

subsystem interfaces with the rest of the system in loading individual sub-

assembly parts onto a fixture, which is transported by the transport subsystem. 

The fixture was designed to be modular in an effort to increase the 

reconfigurability of the system. 

The control strategies were implemented according to the ADACOR holonic 

control architecture. The ADACOR architecture specifies the mapping the 

subsystem entities to the following holons: Supervisor, Product, Task and 

Operational. These holons were embodied in the structure of both the control 

strategies. 

For the agent-based control system, a Multi-Agent System (MAS) was developed 

to implement an agent for each of the subsystem holons. The Supervisor agent 

interfaces with the overall Cell Controller (CC) program and initiates the loading 

of the sub-assemblies. The Product agents access the product information and 

coordinate the various tasks involved in the loading of the parts. The Tasks agents 

are initiated by the Product agents and are responsible for coordinating the actions 

of the various Operational agents for the completion of the task. The Operational 

agents were created for each hardware entity of the feeder subsystem – these 

agents then control the actions of the hardware entities. 

The IEC 61499 function block control system implements the subsystem holons 

as function block devices. The devices contain networks of function blocks in 

which the functionality is embedded. The FB_SUPERVISOR and PRODUCT 

devices have the same responsibilities as their agent counterparts. The Task holon 

is not explicitly embodied by a device, but is rather embedded in the various event 

and data connections between the function block networks. A device was 

developed for each Operational holon, each responsible for the actions of their 

respective hardware entities. 

The Operational holons consist of two layers of control – the Higher Level 

Control (HLC) and Lower Level Control (LLC). The HLC is implemented 

through the MAS and function block control strategies. The LLC layers are 
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implemented by C# programs and hardware-specific control programs (DVT 

Intellect programs for the camera and KRL programs for the robot). The C# 

programs acts as interface between the HLC programs and the hardware. The 

hardware-specific programs control the low level hardware actions of the 

hardware components. 

The reconfigurability of the feeder subsystem was assessed in this thesis. The 

influence of the control strategies on the reconfigurability of the HLC were 

evaluated by means of four reconfiguration experiments. The evaluation was done 

through both quantitative and qualitative measurements. The quantitative 

measurements comprised of the recordings of the development and 

reconfiguration time required, for each control strategy, for each experiment. The 

qualitative evaluation was done according to the requirements of modern 

manufacturing system (identified by Bi et al. (2007)) – modularity, integratability, 

convertibility, customizability, diagnosibility and scalability. The results show 

that reconfiguration with the MAS can be implemented with the system remaining 

online. However, the function block control system requires the subsystem to be 

halted in order to implement the reconfiguration changes. This time increased 

with increasing complexity of the reconfigurations. In terms of development time 

(the time required for offline reconfiguration), the MAS reconfiguration required 

less time in all but one of the experiments. 

The reconfiguration experiments provided the grounds for the qualitative 

evaluation of the control strategies. It was concluded that the MAS exhibits 

important advantages over the function block control regarding convertibility and 

customizability. These advantages are due to the ability of the MAS to introduce 

new control system components seamlessly at runtime and to automatically utilize 

the capabilities and capacity of the added component. This is the reason for the 

scalability advantages of the MAS over the function block system as well. It was 

noticed that the diagnosibility of the control strategy is dependent on the software 

platform. It was found that the JADE platform of the MAS provided more 

functions for the identification and solution of system problems than the FBDK 

platform of the function block system. The two control strategies have the same 

capabilities regarding modularity and integratability. 

The following list of research recommendations were identified in the research 

performed for this thesis: 

 Software platforms and tools for the simulation and testing of individual 

agent programs could be investigated. 

 The implementation of the IEC 61499 function blocks in other software 

platforms should be assessed. 

 It appears that neither the MAS nor function block control strategies have 

performed optimally in this research. The control level at which the 

strategies have been implemented does not allow either strategy to exhibit 

its full capability. The inherent characteristics of the MAS, such as 

autonomy and cooperation, make it more suitable for implementation at a 
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higher level. On the other hand, the IEC 61499 function block control 

strategy is possibly better suited to a lower level of control 

implementation. The implementation of Object-Oriented C# or Erlang 

control systems could be investigated. 

 Research could be conducted into the use of OPC (OLE for Process 

Control) in the feeder subsystem. 

 The addition of greater redundancy in the feeder subsystem will allow 

more comprehensive experimentation and comparison of the control 

strategies. This would be especially valuable for evaluating the 

performance of the MAS using CNP in agent cooperation. 

 Different cell configurations can be implemented in the feeder subsystem 

to optimize production. 

 Research should be conducted into ways to automatically calibrate the 

robot. The process should handle an initial recalibration after a subsystem 

reconfiguration, as well as continuous monitoring by the robot to ensure 

the system remains calibrated during operation. 

 Experimentation can be performed with the camera mounted on the robot, 

as opposed to the installation of cameras on every singulation unit. 

This thesis documents the implementation of holonic control, through both an 

agent-based and IEC 61499 function block control strategy, in the feeder 

subsystem of an experimental RAS. The reconfigurability of these control 

strategies were assessed by means of four reconfiguration experiments. The 

assessment showed that agent-based control is better suited for implementation in 

this case study. The presented results can however not be taken as a general 

indication – the selection of the appropriate control strategy will depend on the 

requirements and nature of the application. 
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Appendix A: Singulation unit throughput and reconfigurability 

investigation 
The throughput of the stepped-conveyor singulation unit was investigated in two 

experiments – one to determine the optimal singulation speed and the other to 

determine the optimal number of parts to be present in the input bin. The 

reconfigurability experiment was used to determine the effectiveness of 

singulating a new part, without any hardware modifications. 

The first experiment of the throughput analysis aimed to determine the optimal 

singulation speed for maximum throughput. The experiment had to consider two 

factors – the number of singulations within a time period and the success rate of 

those singulations. The time and number of singulations needed for ten successful 

singulations was recorded for eight singulation speeds – the recorded data is 

shown in Table A 1. The data is plotted in Figure A 1 and Figure A 2. The 

average singulation time indicates how long it took to achieve ten successful 

singulation, while the success rate refers to how many singulations were required 

to achieve ten successful ones. The results show a decrease of average singulation 

time with increasing singulation speed. While most of the speeds resulted in a 

singulation success rate of around 50%, the highest percentage (62%) was 

observed with the highest speed. For this experiment, the input bin was filled with 

one hundred coil parts for each speed setting. 

The recorded data was used to calculate the probability of successful singulations, 

for specific time intervals, for each of the speed settings. This calculated data is 

shown in Table A 2 and is plotted in Figure 14. 

Table A 1: Recorded data for  the optimal singulation speed experiment. 

 

The second throughput experiment was done to determine the optimal number of 

parts in the input bin which would maximise the singulation success rate. A 

similar procedure was followed as in the first experiment, except that it was done 

at one speed and with different numbers of parts in the bin. The recorded data is 

shown in  

Table A 3. The results show that the optimal number of parts in the input bin is 

eighty. The constant speed setting was chosen to be 400 rpm. 

100 150 200 250 300 350 400 450

2 3 4 5 6 7 8 9

14 21 28 35 42 49 56 63

Average singulation time (s) 10 8.7 4 2.5 2.1 2.2 1.8 1.2

Singulation success rate (%) 45.5 30.3 52.6 50.0 50.0 43.5 50.0 62.5

Number of potential singulations per minute

Conveyor motor speed (rpm)

Belt speed (rpm)
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Figure A 1: Average singulation time for different singulation speeds. 

 

 

Figure A 2: Average success rates for different singulation speeds. 
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Table A 2: The calculated data for Figure 14. 

 

 

Table A 3: Success rates for different numbers of parts in the input bin. 

 

The reconfigurability investigation required a similar throughput experiment, but 

with a new part to be singulated. The results could then be compared to determine 

how part or part-size specific the singulation process is. The input bin was thus 

filled with one hundred moving contact parts. The moving contacts part was 

1 2 3 4 5 6 7 8

Success rate 45.5

Probability of 

successful 

singulation

45.5 70.3 83.8 91.2 95.2 97.4 98.6 99.2

Minimum singulation time 4.3 Time intervals 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3

Success rate 30.3

Probability of 

successful 

singulation

30.3 51.4 73.5 85.6 92.1 95.7 97.7 98.7

Minimum singulation time 2.9 Time intervals 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9

Success rate 52.6

Probability of 

successful 

singulation

52.6 77.5 87.8 93.3 96.4 98.0 98.9 99.4

Minimum singulation time 2.1 Time intervals 2.1 4.3 6.4 8.6 10.7 12.9 15.0 17.1

Success rate 50

Probability of 

successful 

singulation

50 75.0 86.4 92.6 96.0 97.8 98.8 99.3

Minimum singulation time 1.7 Time intervals 1.7 3.4 5.1 6.9 8.6 10.3 12.0 13.7

Success rate 50

Probability of 

successful 

singulation

50 75.0 86.4 92.6 96.0 97.8 98.8 99.3

Minimum singulation time 1.4 Time intervals 1.4 2.9 4.3 5.7 7.1 8.6 10.0 11.4

Success rate 43.5

Probability of 

successful 

singulation

43.5 68.1 82.6 90.5 94.8 97.2 98.5 99.2

Minimum singulation time 1.2 Time intervals 1.2 2.4 3.7 4.9 6.1 7.3 8.6 9.8

Success rate 50

Probability of 

successful 

singulation

50 75.0 86.4 92.6 96.0 97.8 98.8 99.3

Minimum singulation time 1.1 Time intervals 1.1 2.1 3.2 4.3 5.4 6.4 7.5 8.6

Success rate 62.5

Probability of 

successful 

singulation

62.5 85.9 92.3 95.8 97.7 98.8 99.3 99.6

Minimum singulation time 1.0 Time intervals 1.0 1.9 2.9 3.8 4.8 5.7 6.7 7.6

42 spm

49 spm

56 spm

63 spm

Singulations

14 spm

21 spm

28 spm

35 spm

40 60 80 100 120

Singulation success rate (%) 45 45 52 50 48

Number of parts in the input bin
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chosen as it is almost the same size as the coils. The experiment revealed that the 

singulation of the moving contact part had a success rate 10% lower than for the 

coil parts. This result shows that the design of the scoops is more part specific 

than part-size specific – this indicates that further refinement must be done to the 

scoop design. 
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Appendix B: Gripper design 

B.1 Design requirements 
The following requirements were considered in the gripper selection and finger 

design: 

1. The gripper must be attached to the tool interface of the KUKA robot. 

2. The stroke of the gripper jaws must be large enough to grip the outside of 

some parts, but small enough to allow the accurate calibration of gripper 

finger position. 

3. The force induced by the gripper jaws must be large enough to firmly hold 

the parts, but must not cause any damage to the parts. 

4. The gripper must be equipped with removable fingers. 

5. The gripper fingers must be able to withstand the force of the gripping 

action for infinite life cycles. 

6. The gripper fingers must be small enough to allow entrance to the inside 

of some parts. 

7. The gripper fingers must allow the picking up of parts in different 

orientations. 

B.2 Design specifications 
This list of requirements of section B.1 was considered in the formulation of the 

following set of design specifications: 

i. The gripper, along with the accompanying attachments, must weigh less 

than 16kg. 

ii. The stroke of the individual gripper jaws must be greater than 1.5mm and 

less than 6mm. 

iii. The force that the gripper exerts must be greater than 10N and less than 

50N. 

iv. The gripper fingers must be small enough to comfortably enter a 3mm 

diameter hole. 

B.3 Static and fatigue analysis 
Finger dimensions: 

   

   

   

   

 

 

l1 0.01 m w1 0.024m t1 0.003m

l2 0.055 m w2 w1 t2 t1

l3 0.005 m w3 w1 t3 t1

l4 0.015 m w4 0.003m t4 0.003m

d4_corners t4
2

w4
2







0.5

4.243 10
3

 m
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Cross-sectional properties: 

  

  

  

 

Material Properties: AISI 1040 Cold-drawn steel 

Density: 

 

Elastic modulus: 

 

Maximum allowable tensile stress: 

 

Yield strength: 

 

Mass properties: 

  

  

 

 

Static analysis: 

Force: 

 

A1 w1 t1 7.2 10
5

 m
2

 A2 w2 t2 7.2 10
5

 m
2



A3 w3 t3 7.2 10
5

 m
2

 A4 w4 t4 9 10
6

 m
2



I2

w2 t2
3



12
5.4 10

11
 m

4
 I3

w3 t3
3



12
5.4 10

11
 m

4


I4

w4 t4
3



12
6.75 10

12
 m

4


 7800
kg

m
3



E 207 10
9

 Pa

allow 568 MPa

y 276 MPa

m1 A1 l1  5.616 10
3

 kg m2 A2 l2  0.031kg

m3 A3 l3  2.808 10
3

 kg m4 A4 l4  1.053 10
3

 kg

mfinger m1 m2 m3 m4 0.04kg

wfinger mfinger g 0.396N

Fgrip 25 N
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Moment: 

 

Bending stress: 

 

 

Safety factor: 

 

Shear stress: 

 

Safety factor: 

 

Deflection analysis: 

Tip deflection: 

 

 

 

 

 

MA Fgrip l4 0.375 N m

ymax_A

t4

2
1.5 10

3
 m

max_A

MA ymax_A

I4

8.333 10
7

 Pa

nbend_A

y

max_A

3.312

max_A

3 Fgrip

2 A4
4.167 10

6
 Pa

nshear

y

2 max_A
33.12

d4

Fgrip l4 3

3 E I4
2.013 10

5
 m

d3

Fgrip l4   l3
2



2 E I3
4.194 10

7
 m

2

Fgrip l3 l4   l2

E I2
2.46 10

3


dtip 2 l3 l4  d3 d4 6.975 10
5

 m
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Fatigue analysis: 

Endurance limit: 

 

Endurance limit modification factors: 

Surface factor: (Assumed cold-drawn) 

 

 

 

Size factor: 

 

 

Loading factor: 

 

Temperature factor: 

 

Reliability factor: (99.9% reliability) 

 

Miscellaneous factor: 

 

Modified endurance limit: 

 

Nominal fluctuating stress components: 

 

Se_prime

allow

2
2.84 10

8
 Pa

a 4.51

b 0.265

ka a all
b

 0.84

de 0.808 t4 w4 
0.5

 2.424 10
3

 m

kb 1.24de_mod
0.107

 1.128

kc 1

kd 1

ke 0.753

kf 1

Se ka kb kc kd ke kf Se_prime 202.612MPa

ao

max_A

2
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Stress concentration factors: (3mm radius and 600 MPa ultimate tensile strength) 

 

 

 

Fluctuating stress components: 

 

 

Fatigue factor of safety: 

 

  

mo ao

q 0.82

Kt 1.4

Kf 1 q Kt 1  1.328

a Kf ao 5.533 10
7

 Pa

m Kf mo 5.533 10
7

 Pa

nf
1

a

Se

m

allow



2.699
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B.4 Gripper pickup actions 
The gripper fingers were designed to pick up parts from the singulation unit and 

the part magazines, and place them in the fixture. The pickup actions of the 

gripper are shown in Figure B 1 and the place actions in Figure C 1. 

    

(a)    (b) 

    

(c)    (d) 

 

(e) 

Figure B 1: Gripper pickup actions of the various parts – (a) coil, (b) long 

and short pigtails, (c) handle frame assembly, (d) load terminal and 

(e) moving contact.  
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Appendix C: Fixture design 

C.1 Design requirements 
The fixture was designed according to the following requirements: 

1. The fixture should fit on the conveyor pallets. No part of the fixture may 

extend over the edges of the pallet. 

2. The fixture must allow for the stacking of several pallets on each other 

inside the pallet magazine. 

3. The fixture must accommodate the entire range of trip switch parts, in 

their specified locations. 

4. The fixture must provide access to the gripper fingers of the pick-„n-place 

robot to allow for appropriate part placement. 

5. Access should be allowed for the welding electrodes of the welding robot 

at the spot-weld locations. 

6. The fixture should exhibit some reconfigurability characteristics. 

7. The fixture must secure the parts during the transportation process, as the 

stoppages and direction changes may cause part movement. 

8. The fixture must secure the parts during the welding process, as the 

electrodes may stick to the parts after welding. 

C.2 Design specifications 
In considering the requirements of section C.1, the following specifications were 

formulated: 

i. The maximum fixture dimensions (according to the dimensions of the 

conveyor pallets): 300 mm x 300 mm 

ii. The maximum height of the parts when held in the fixture (according to 

the entrance dimensions of the pallet magazine):  50 mm 

iii. Alignment tolerances:  0.1 mm 

iv. The minimum clearance radius around the spot-weld locations: 5 mm 

v. The maximum fixture weight (according to the specification of the lifting 

pneumatic cylinder of the conveyor and pallet magazine):  20kg 
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C.3 Gripper place actions in the fixture 
The fixture was designed to allow for the placement of parts, into the supports, by 

the gripper. The placement of the parts is shown in Figure C 1. 

    

(a)    (b) 

    

(c)    (d) 

    

(e)    (f) 

Figure C 1: The placement of parts in the fixture by the gripper – (a) load 

terminal, (b) short pigtail, (c) handle frame assembly, (d) long pigtail, (e) coil 

and (f) moving contact. 

Stellenbosch University  http://scholar.sun.ac.za



 

101 

 

Appendix D: DVT Intellect script programs 

D.1 Background script program 
class NewScript 

{ 

    public static void main(String args[]) 

    { 

        while(true) 

        { 

   int len = 2; //length of data to be recieved 

   int port = 3248; //port number for connection 

   int conStatus = -1; //to detect an accepted connection 

   byte data[] = new byte[len]; //array for incoming data   

    //sockets needed for communication 

   Socket mySocket = new Socket(); 

   Socket sock = new Socket(); 

 

   //reset the external trigger mode bit to 0 (internal mode) 

   SetInputs(0L,(1L<<7)); 

   //reset the inspection trigger bit 

   SetInputs(0L,1L); 

 

   int status = mySocket.Bind(port); //returns binding status 

 

   DebugPrint("socket connection status is " + status); 

   if (status==0) 

   { 

  DebugPrint("socket bound to port"); 

 

  status = mySocket.Listen(); 

 

  if (status == 0) 

  { 

   while (conStatus != 0) 

   {  

    //check socket connection 

    conStatus = mySocket.Accept(sock); 

   } 

 

   //receive and store data 

status = sock.Recv(data, 0, len);  

 

   //check system status and wait until it is idle 

   long Bit = 1; 

   //check system busy bit 

while((GetOutputs() & (Bit<<8)) != 0)  

   { 

   } 

   //inspection command 

   if (data[0] == 1) 

   { 

    DebugPrint("inspection product = " + data[1]); 

 

    //background script resets completion indicator bit 

    byte b; 

    b=0; 

    int stat = RegisterWriteByte(110,b);    

    //set to external trigger mode 

    SetInputs((1L<<7),0L); 
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    //get inspection product by ID 

    Product prod = GetProductById((short) data[1]); 

    //sets the inspection product 

prod.Select();   

     

    SetInputs(1L,0L); //trigger inspection 

 

//delay to ensure inspections are complete 

    sleep(1000);   

    byte quick = 0;  //local storage variable 

 

    //wait for foreground script completion 

    while(quick != 1)      

    { 

     quick = RegisterReadByte(110); 

 

     //if part detection is triggered 

     if(data[1] == 10){ 

      SetInputs(0L,1L); //stop inspection 

      sleep(50); 

      SetInputs(1L,0L); //start inspection 

     } 

    } 

    DebugPrint("Part script ended its own job"); 

 

    //reset the trigger bit to 0 to stop the inspection 

    SetInputs(0L,1L); 

 

    //background script resets this bit 

    b=0; 

    stat = RegisterWriteByte(110,b); 

 

    //read the inspection result at register number 25 

    String toSend; 

    toSend = RegisterReadString(25); 

 

    DebugPrint("According to background:"); 

 

    DebugPrint(toSend); 

 

    //extract bytes from string 

    byte sendData[] = toSend.getBytes(); 

//send the extracted bytes 

    status = sock.Send(sendData,0,sendData.length);  

 

    SetInputs(0L,(1L<<7));//reset external trigger mode  

   } 

  } 

 } 

 // Short delay before next iteration 

 sleep(10); 

    } 

  } 

D.2 Foreground script program 
class COIL_LOCATE 

{ 

 public static double transform_X(double PosX) 

 { 

  double PosX_real = 0; //real x-position to return 

   

  PosX_real = PosX - findOrigin_X.EdgePoint.X;   
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  return PosX_real; 

 } 

 

 public static double transform_Y(double PosY) 

 { 

  double PosY_real = 0; //real x-position to return 

   

  PosY_real = PosY - findOrigin_Y.EdgePoint.Y;   

   

  return PosY_real; 

 } 

 

 public void inspect() 

 { 

  String output;   

 

  double posX[]; 

  double posY[]; 

  double ang[]; 

  double score[]; 

 

  posX = new double[9]; 

  posY = new double[9]; 

  ang = new double[9]; 

  score = new double[9]; 

 

  double PosX = 0; 

  double PosY = 0; 

  double PosZ = 0; 

  double Ang = 0; 

 

  //check the number of parts present on the platform 

  DebugPrint("Blobs found: "+ num_of_parts.ObjectCount); 

  if(num_of_parts.ObjectCount != 1){ 

    

   COIL_LOCATE.Result = -1; //set inspection result to FAIL 

 

   //prepare failure result to be returned 

   output = "pass" + "false" + "end"; 

//print failure message 

   DebugPrint("Failure - more than one part on platform.");  

  } 

  else{ 

   //store values from the object locate softsensors 

   if(coil_locate_1.Result == 0){ 

    posX[1] = coil_locate_1.PickPoint.X; 

    posY[1] = coil_locate_1.PickPoint.Y; 

    ang[1] = coil_locate_1.PickPoint.Angle; 

    score[1] = coil_locate_1.MatchScore; 

   } 

   if(coil_locate_2.Result == 0){ 

    posX[2] = coil_locate_2.PickPoint.X; 

    posY[2] = coil_locate_2.PickPoint.Y; 

    ang[2] = coil_locate_2.PickPoint.Angle; 

    score[2] = coil_locate_2.MatchScore; 

   } 

   if(coil_locate_3.Result == 0){ 

    posX[3] = coil_locate_3.PickPoint.X; 

    posY[3] = coil_locate_3.PickPoint.Y; 

    ang[3] = coil_locate_3.PickPoint.Angle; 

    score[3] = coil_locate_3.MatchScore; 

   } 
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   if(coil_locate_4.Result == 0){ 

    posX[4] = coil_locate_4.PickPoint.X; 

    posY[4] = coil_locate_4.PickPoint.Y; 

    ang[4] = coil_locate_4.PickPoint.Angle; 

    score[4] = coil_locate_4.MatchScore; 

   } 

   if(coil_locate_5.Result == 0){ 

    posX[5] = coil_locate_5.PickPoint.X; 

    posY[5] = coil_locate_5.PickPoint.Y; 

    ang[5] = coil_locate_5.PickPoint.Angle; 

    score[5] = coil_locate_5.MatchScore; 

   } 

   //store values from sensor 6 

   if(coil_locate_6.Result == 0){ 

    posX[6] = coil_locate_6.PickPoint.X; 

    posY[6] = coil_locate_6.PickPoint.Y; 

    ang[6] = coil_locate_6.PickPoint.Angle; 

    score[6] = coil_locate_6.MatchScore; 

   } 

   //store values from sensor 7 

   if(coil_locate_7.Result == 0){ 

    posX[7] = coil_locate_7.PickPoint.X; 

     posY[7] = coil_locate_7.PickPoint.Y; 

    ang[7] = coil_locate_7.PickPoint.Angle; 

    score[7] = coil_locate_7.MatchScore; 

   } 

   //store values from sensor 8 

   if(coil_locate_8.Result == 0){ 

    posX[8] = coil_locate_8.PickPoint.X; 

    posY[8] = coil_locate_8.PickPoint.Y; 

    ang[8] = coil_locate_8.PickPoint.Angle; 

    score[8] = coil_locate_8.MatchScore; 

   } 

   //find the best matchScore 

   int best = 1; 

   double bestScore = score[1]; 

for(int count = 2;count < 8;count++){ 

 

    if(score[best] < score[count]){ 

     best = count; 

     bestScore = score[count]; 

    } 

   } 

   DebugPrint("Best Score = "+bestScore+" by coil_locate_"+best); 

 

   if(bestScore >= 70){ 

    //store best coordinates 

    PosX = posX[best]; 

    PosY = posY[best]; 

    Ang = ang[best]; 

 

    PosX = transform_X(PosX); 

    PosY = transform_Y(PosY); 

    PosZ = 6.85; //vertical pick position of the coil 

    Ang = Ang*-1.00; //transform angle 

 

    //prepare successful result to be returned 

    output = "pass" + "true" + "x" + toString(PosX) + "y" + 

toString(PosY) + "z" + toString(PosZ) + "angle" + toString(Ang) + "end"; 

 

    //print result 

    DebugPrint("Pickup Position --> X: "+ PosX + " Y: "+ 

PosY + " Z: " + PosZ + " Angle: "+ Ang); 
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    COIL_LOCATE.Result = 0; //result is a PASS 

 

   } 

   else 

   {   

//case where all sensors failed to locate the part 

//set inspection result to FAIL 

    COIL_LOCATE.Result = -1;  

 

    //prepare failure result to be returned 

    output = "pass" + "false" + "end"; 

//print failure message 

    DebugPrint("Pickup Position not found.");  

   } 

  } 

  RegisterWriteString(25, output); //write result to register 

  //indicate inspection completion 

  byte b = 1; 

  int stat = RegisterWriteByte(110,b); 

 } 

}   
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Appendix E: KUKA robot functionality 

E.1 Calibration functions 
The KUKA robot controller provides built-in functions for the calibration of tools and 

workspaces. These calibration functions are useful for hardware relocations during 

reconfiguration. The use of the functions is described in this section. 

The tool calibration function allows for the easy calibration of the robot motion for a tool 

attached at the tool interface. This entails the definition of the Tool Centre Point (TCP) by 

manually moving the tool to a specified point from different directions, as is shown in Figure 

E 1. The robot position can then be given in terms of the position of the TCP. This calibration 

was done to allow the monitoring of the position of the gripper fingers. This tool also allows 

for the storage of calibration information of different tools. Different gripper configurations 

can then be calibrated in advance, which means that a manual gripper reconfiguration only 

requires the appropriate tool to be selected in the control software. This approach could 

decrease subsystem ramp-up time significantly. 

 

Figure E 1: The sequence of steps required for the calibration of a new tool (KUKA 

Robot Group, 2007). 

The definition of workspaces (referred to as bases) is also very useful in pick-„n-place 

applications. The origin and orientation information of a specified area can be calibrated by 

manually moving the TCP of the robot to certain positions in the area (depicted in Figure E 

2). This allows the specification of a coordinate system to a base - eliminating the 

dependence on global coordinates. This was used to specify pick-„n-place coordinates on the 

presentation platform of the singulation unit, the part magazines and the fixtures mounted on 
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the pallets. The definition of base coordinate systems simplifies subsystem reconfiguration 

involving the relocation of hardware positions, as only the origin coordinates of the hardware 

workspace needs to be updated. 

 

 

Figure E 2: Sequence of steps required for the calibration of a workspace (KUKA Robot 

Group, 2007). 

E.2 KUKA KRL programs 
The KUKA controller allows for the construction of customised control programs in the KRL 

software platform. The code of three constructed programs is presented in this section. 

E.2.1 MAIN( ) 
DEF MAIN( ) 

;------------------------------------------- 

; this program controls the pick and place 

; actions of the robot by obtaining coordinate  

; data through serial communication and then 

; selecting appropriate robot motion sets. 

;------------------------------------------- 

;---initialization--- 

   MW_T=#ASYNC   ;---ASYNC -> does not wait for empty buffer 

   MR_T=#ABS    ;---not sure between ABS or COND 

   TIMEOUT = 30.0 

   REC_DATA[] = "          " 

   POSX[] = "000000" 

   POSY[] = "000000" 
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   POSZ[] = "000000" 

   ANG[] = "000000" 

 

   PLACE_POSX[] = "000000" 

   PLACE_POSY[] = "000000" 

   PLACE_POSZ[] = "000000" 

   PLACE_ANG[] = "000000" 

 

   POS_X = 0.0 

   POS_Y = 0.0 

   POS_Z = 0.0 

   ANG_R = 0.0 

 

   PLACEPOS_X = 0.0 

   PLACEPOS_Y = 0.0 

   PLACEPOS_Z = 0.0 

   PLACE_ANGLE = 0.0 

 

   COMMAND[] = "    " 

 

   LOAD = FALSE 

   REMOVE = FALSE 

   CLEAR = FALSE 

 

   HANDLE = 0 

   TEST = 1 

   DONE[] = "FALSE" 

;-------------------- 

;---main program--- 

;-------------------- 

 

   HANDLE = OPEN_CHNL(3) 

 

   LOOP 

 

   GET_COORDS() 

   POS_X = CONVERT_S2R(POSX[]) 

   POS_Y = CONVERT_S2R(POSY[]) 

   POS_Z = CONVERT_S2R(POSZ[]) 

   ANG_R = CONVERT_S2R(ANG[]) 

 

   PLACEPOS_X = CONVERT_S2R(PLACE_POSX[]) 

   PLACEPOS_Y = CONVERT_S2R(PLACE_POSY[]) 

   PLACEPOS_Z = CONVERT_S2R(PLACE_POSZ[]) 

   PLACE_ANGLE = CONVERT_S2R(PLACE_ANG[]) 

 

   LOAD = STRCOMP(COMMAND[], "LOAD", #CASE_SENS) 

   REMOVE = STRCOMP(COMMAND[], "RMVE", #CASE_SENS) 

 

   IF LOAD == TRUE THEN 

       

      PART_PICKUP(PART_ID,POS_X,POS_Y,POS_Z,ANG_R) 

 

      PART_PLACE(PART_ID,PLACEPOS_X,PLACEPOS_Y,PLACEPOS_Z,PLACE_ANGLE) 

      GOTO NEXT 

   ENDIF 

 

IF REMOVE == TRUE THEN 

 

   PART_REMOVE(PART_ID,POS_X,POS_Y,POS_Z,ANG_R) 

 

   GOTO NEXT 

ENDIF 
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   NEXT: 

 

   IF ($IN_HOME1 == TRUE) OR ($IN_HOME2 == TRUE) OR ($IN_HOME3 == TRUE) THEN 

      DONE[] = "TRUE" 

   ELSE 

      HALT 

   ENDIF 

 

   SERIAL_WRITE(DONE[], HANDLE) 

   CLEAR = STRCLEAR(REC_DATA[]) 

   ;CLEAR = STRCLEAR($DATA_SER3) 

   WAIT FOR $DATA_SER3 == 0 

 

   WAIT SEC 1 

 

   ENDLOOP 

 

   HANDLE = CLOSE_CHNL(3,HANDLE) 

 

END 

 

DEF GET_COORDS() 

   ;---read coordinate string--- 

   OFFSET = 0   ;---read from first character 

   WAIT FOR $DATA_SER3 > 0 

      CREAD(HANDLE, SR_T, MR_T,TIMEOUT, OFFSET, "%S", REC_DATA[]) 

   IF (SR_T.RET1 <> #DATA_END) THEN 

      HALT 

   ENDIF 

   ;-------------------------------- 

   ;---break up coordinate string--- 

   ;-------------------------------- 

 

   ;initialise counters 

   COUNT = 1 

   SPEC = 1 

   OFFSET_1 = 0 

   CMD = 0 

 

   PX = 0 

   PY = 0 

   PZ = 0 

   PA = 0 

 

   PPX = 0 

   PPY = 0 

   PPZ = 0 

   PPA = 0 

 

   WHILE COUNT <= SR_T.LENGTH 

      IF REC_DATA[COUNT] == 'H23' THEN 

         SPEC = SPEC + 1 

         COUNT = COUNT + 1 

         OFFSET_1 = OFFSET_1 + 1 

      ENDIF 

      SWITCH SPEC 

      CASE 1 

         CMD = CMD + 1 

         SREAD(REC_DATA[],STAT,OFFSET_1,"%01s", COMMAND[CMD]) 

      CASE 2 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01d", PART_ID) 
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      CASE 3 

         PX = PX + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", POSX[PX]) 

      CASE 4 

         PY = PY + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", POSY[PY]) 

      CASE 5 

         PZ = PZ + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", POSZ[PZ]) 

      CASE 6 

         PA = PA + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", ANG[PA]) 

      CASE 7 

         PPX = PPX + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_POSX[PPX]) 

      CASE 8 

         PPY = PPY + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_POSY[PPY]) 

      CASE 9 

         PPZ = PPZ + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_POSZ[PPZ]) 

      CASE 10 

         PPA = PPA + 1 

         SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_ANG[PPA]) 

      CASE 11 

         ;reached end of the string 

      DEFAULT 

         HALT 

      ENDSWITCH 

      COUNT = COUNT + 1 

   ENDWHILE 

 

END 

E.2.2 PICKUP_PART( ) 
DEF PICKUP_PART1(POS_X: IN,POS_Y: IN,POS_Z: IN,ANG_R:IN) 

 

;---declaration--- 

REAL POS_X,POS_Y,POS_Z,ANG_R 

REAL S_PREP  ;specified offset distance 

REAL X_PREP, Y_PREP, ANG_PREP 

EXT BAS(BAS_COMMAND :IN, REAL :IN) 

DECL FRAME PICK_POS 

DECL FRAME PREP_POS 

DECL FRAME ORIENT 

;-------------------- 

;---initialization--- 

;-------------------- 

BAS(#INITMOV,0) 

 

PICK_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0} 

PICK_POS.X = POS_X 

PICK_POS.Y = POS_Y 

PICK_POS.Z = POS_Z 

 

S_PREP = 40.0 

ANG_PREP = 90 - ANG_R  ;calculate entry angle 

X_PREP = S_PREP*SIN(ANG_PREP)  ;calculate x offset 

Y_PREP = S_PREP*COS(ANG_PREP)  ;calculate y offset 

 

PREP_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0} 

PREP_POS.X = PICK_POS.X + X_PREP 
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PREP_POS.Y = PICK_POS.Y - Y_PREP 

PREP_POS.Z = PICK_POS.Z 

 

ORIENT = {X 0,Y 0,Z 0,A 0,B 0,C 0} 

ORIENT.A = ANG_PREP 

 

$TOOL = TOOL_DATA[2] 

$ORI_TYPE = #CONSTANT 

DONE[] = "TRUE" 

;---------------------------- 

PTP $AXIS_HOME[1] 

 

PTP {AXIS: A1 -99.5, A2 -74, A3 110,A4 0, A5 -36,A6 0} 

 

LIN BASE_DATA[2]:PREP_POS 

PTP_REL ORIENT 

 

LIN BASE_DATA[2]:PICK_POS 

 

SERIAL_WRITE(DONE[], 3) 

GET_CONFIRM(3) 

 

WAIT SEC 2 

 

LIN BASE_DATA[2]:{X 0,Y 0,Z 100,A 0,B 0,C 0} 

 

PTP $AXIS_HOME[1] 

 

END 

E.2.3 PLACE_PART( ) 
DEF PLACE_PART1(PLACEPOS_X: IN,PLACEPOS_Y: IN, PLACEPOS_Z: IN, PLACE_ANG: IN ) 

 

;---declaration--- 

REAL PLACEPOS_X,PLACEPOS_Y,PLACEPOS_Z,PLACE_ANG 

REAL S_PREP  ;specified offset distance 

REAL X_PREP, Y_PREP, ANG_PREP 

EXT BAS(BAS_COMMAND :IN, REAL :IN) 

DECL FRAME PLACE_POS 

DECL FRAME PREP_POS 

DECL FRAME ORIENT 

;-------------------- 

;---initialization--- 

;-------------------- 

BAS(#INITMOV,0) 

 

PLACE_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0} 

PLACE_POS.X = PLACEPOS_X 

PLACE_POS.Y = PLACEPOS_Y 

PLACE_POS.Z = PLACEPOS_Z 

 

PREP_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0} 

PREP_POS.X = PLACE_POS.X 

PREP_POS.Y = PLACE_POS.Y 

PREP_POS.Z = PLACE_POS.Z + 80 

 

ORIENT = {X 0,Y 0,Z 0,A 0,B 0,C 0} 

ORIENT.A = PLACE_ANG 

$TOOL = TOOL_DATA[2] 

$ORI_TYPE = #CONSTANT 

DONE[] = "TRUE" 

;---------------------------- 

Stellenbosch University  http://scholar.sun.ac.za



 

112 

 

 

PTP_REL ORIENT 

 

LIN BASE_DATA[3]:PREP_POS 

 

LIN BASE_DATA[3]:PLACE_POS 

 

SERIAL_WRITE(DONE[], 3) 

GET_CONFIRM(3) 

 

LIN BASE_DATA[3]:PREP_POS 

 

PTP $AXIS_HOME[2] 

 

END 

 

 

CHAR WRITE_STRING[] 

 

INT HANDLE 

INT COUNT 

;---initialization--- 

MW_T = #ASYNC 

COUNT = 1 

 

;---program--- 

CWRITE(HANDLE,SW_T,MW_T,"%s",WRITE_STRING[]) 

 

IF (SW_T.RET1 <> #CMD_OK) THEN 

   HALT 

ENDIF 

 

END 

 

 

DEF GET_CONFIRM(HANDLE :IN) 

 

   INT HANDLE 

   COUNT = 1 

   MR_T=#ABS    ;---not sure between ABS or COND 

   TIMEOUT = 30.0 

   CONFRM[] = "     " 

   TRUESTRING[] = "TRUE" 

 

   ;---read confirm string--- 

   OFFSET = 0   ;---read from first character 

   WAIT FOR $DATA_SER3 > 0 

      CREAD(HANDLE, SR_T, MR_T,TIMEOUT, OFFSET, "%S", CONFRM[]) 

   IF (SR_T.RET1 <> #DATA_END) THEN 

      HALT 

   ENDIF 

    

   WHILE (COUNT < 5) 

      IF (CONFRM[COUNT] <> TRUESTRING[COUNT]) THEN 

         HALT 

      ENDIF 

      COUNT = COUNT + 1 

   ENDWHILE 

 

END 
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Appendix F: JADE agent program example 
As an example of a JADE agent program, the Java code of the Camera agent program is 

presented in this appendix. 

//==========================// 

//====== Camera Agent ======// 

//==========================// 

 

//Imports 

import java.io.IOException; 

import java.io.StringReader; 

import java.net.InetAddress; 

import java.net.Socket; 

import java.net.UnknownHostException; 

import java.util.logging.Level; 

 

import javax.xml.parsers.DocumentBuilder; 

import javax.xml.parsers.DocumentBuilderFactory; 

import org.w3c.dom.*; 

import org.xml.sax.*; 

import org.apache.ecs.xml.*; 

 

import jade.content.*; 

import jade.content.lang.Codec.CodecException; 

import jade.content.lang.sl.*; 

import jade.content.lang.*; 

import jade.content.lang.xml.*; 

import jade.content.onto.Ontology; 

import jade.content.onto.OntologyException; 

import jade.content.onto.basic.*; 

import jade.core.*; 

import jade.core.behaviours.CyclicBehaviour; 

import jade.core.behaviours.OneShotBehaviour; 

import jade.domain.DFService; 

import jade.domain.FIPAException; 

import jade.domain.FIPAAgentManagement.DFAgentDescription; 

import jade.domain.FIPAAgentManagement.ServiceDescription; 

import jade.lang.acl.ACLMessage; 

import jade.lang.acl.MessageTemplate; 

import jade.util.Logger; 

 

import ontology.impl.*; 

import ontology.FeedingMultiagentOntology; 

 

public class CameraAgent extends Agent { 

  

 // definition of codecs and ontology 

 private Codec slCodec= new SLCodec(); 

     private Codec xmlCodec=new XMLCodec(); 

     private Ontology ontology;  

 // definition of network communication 

 private InetAddress IPaddress = null; 

 private int port = 0; 

 private Socket clientSocket = new Socket(); 

  

 private Duration duration = new Duration(); 

 private Integer time = 10; //dummy time variable 

  

 protected void setup(){ 

   

  System.out.println("New camera agent created."); 
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  // ontology instantiation 

  try{ 

            ontology=FeedingMultiagentOntology.getInstance(); 

        } 

        catch (Exception oe){ 

            oe.printStackTrace(); 

        } 

   

    // register codecs and ontology 

         getContentManager().registerLanguage(slCodec); 

         getContentManager().registerOntology(ontology); 

   

  // register agent services with the Directory Facilitator 

  DFAgentDescription dfd = new DFAgentDescription(); 

  dfd.setName(getAID()); 

  ServiceDescription sd = new ServiceDescription(); 

  sd.setType("Camera"); 

  sd.setName(getLocalName()+"Camera"); 

  dfd.addServices(sd); 

  try{ 

   DFService.register(this, dfd); 

  } 

  catch (FIPAException fe){ 

   fe.printStackTrace(); 

  } 

   

  // get IP address and port number of camera effector 

  try { 

            IPaddress = InetAddress.getLocalHost(); //IP address of Camera LLC 

program 

            port = 7220; //listening port of Camera LLC program 

 

        } catch (UnknownHostException ex) { 

            Logger.getLogger(CameraAgent.class.getName()).log(Level.SEVERE, null, 

ex); 

        } 

   

  //=== Agent Behaviour === 

        addBehaviour(new requestReceiver()); 

        addBehaviour(new actionPerformer()); 

   

 } 

  

 protected void takeDown(){ 

  // Deregister from the yellow pages 

        try { 

            DFService.deregister(this); 

            } 

        catch (FIPAException fe) { 

            fe.printStackTrace(); 

            } 

 

        System.out.println("Camera "+getAID().getName()+" terminating."); 

 } 

  

private class requestReceiver extends CyclicBehaviour{ 

   

  public void action(){ 

    

   MessageTemplate mt = 

MessageTemplate.MatchPerformative(ACLMessage.CFP); 

   ACLMessage msg = myAgent.receive(mt); 
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   if(msg != null){ 

    System.out.println("CFP received."); 

    ACLMessage reply = msg.createReply(); 

     

    if(time != null){ 

     reply.setPerformative(ACLMessage.PROPOSE); 

     reply.setContent(String.valueOf(time.intValue())); 

    } 

    else{ 

     reply.setPerformative(ACLMessage.REFUSE); 

    } 

    myAgent.send(reply); 

    System.out.println("Camera Agent sent Proposal to 

requesting Agent."); 

   } 

   else{ 

    block(); 

   } 

  } 

 } 

  

 private class actionPerformer extends CyclicBehaviour{ 

   

  private String action = ""; 

  private String dataIn = null; 

   

  public void action(){ 

    

   MessageTemplate mt = 

MessageTemplate.MatchPerformative(ACLMessage.ACCEPT_PROPOSAL); 

   ACLMessage msg = myAgent.receive(mt); 

    

   if(msg != null){ 

    System.out.println("Camera received ACCEPT_PROPOSAL from 

requesting Agent."); 

    addBehaviour(new taskInspect(msg)); 

    block(); 

   } 

   else{ 

    block(); 

   } 

  } 

 } 

  

 private class taskInspect extends OneShotBehaviour{ 

   

  private Position pos = new Position(); 

  private PlacePosition placepos = new PlacePosition(); 

  ACLMessage msg = null; 

   

  public taskInspect(ACLMessage inMsg){ 

   super(); 

   msg = inMsg; 

  } 

   

  public void action(){ 

   if (msg == null){ 

    this.done(); 

   } 

    

   try{  //when message is !null 

    ContentElement ce = null; 

    //extract the content of the message 
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    ce = getContentManager().extractContent(msg);  

    Action act = (Action) ce; 

     

    if (act.getAction() instanceof Inspect){ //confirms 

that action is "Inspect" 

      

     if (msg.getPerformative() == 

ACLMessage.ACCEPT_PROPOSAL){ //if the proposal was accepted by the Task Agent 

       

      ACLMessage reply = msg.createReply(); 

       

      Inspect task = (Inspect) act.getAction();

 //instantiation to get required part type 

      Part pa = (Part) task.getPart(); 

       

      if (inspectPart(pa)){ 

      

 reply.setPerformative(ACLMessage.INFORM); 

       //reply.setContentObject( (Position) 

pos); 

       try { 

        PicknPlace result = new 

PicknPlace(); //initialize task with part type and duration 

                       result.setPart(pa); 

                       result.setDuration(duration); 

                       result.setPosition(pos); 

                       result.setPlacePosition(placepos); 

 

                       Action actn = new Action(); 

                       actn.setAction(result); 

                       actn.setActor(myAgent.getAID()); 

                       getContentManager().fillContent(reply, 

actn); 

                } 

                catch (CodecException Ce) { 

                    Ce.printStackTrace(); 

                } 

                catch (OntologyException oe) { 

                    oe.printStackTrace(); 

                } 

       System.out.println("Inspection data 

sent to requesting Agent by Camera Agent..."); 

      } 

      else{ 

      

 reply.setPerformative(ACLMessage.FAILURE); 

       System.out.println("Failure 

notification sent by Camera Agent..."); 

      } 

      send(reply); 

     } 

     else{ //cannot understand message -> wrong type! 

      ACLMessage reply = msg.createReply(); 

//create reply 

                        reply.setPerformative(ACLMessage.NOT_UNDERSTOOD); 

                        send(reply); 

     } 

    } 

    else{ //an error occurred with the extraction of the 

message content 

     System.out.println("No message could be 

extracted!"); 

    } 
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   } 

   catch (Exception ce){ 

    ce.printStackTrace(); 

   } 

  } 

   

  private Boolean inspectPart(Part pa){ 

   String dataIn = null; 

   //an xml message must now be sent to the camera to initiate the 

inspection 

   //composing xml string using Jakarta ECS 

   XML task = new XML("TASK"); 

      task.addElement("INSPECT"); //should be INSPECT 

 

      XML part = new XML("PART_TYPE"); 

      part.addElement(String.valueOf(pa.getName())); 

 

      XML reciever = new XML("CAMERA"); 

      reciever.addElement(task); 

      reciever.addElement(part); 

 

      XML inspect = new XML(getAID().getLocalName()); //creates xml that 

starts with name of agent (based on xml standard in this program) 

      inspect.addElement(reciever); 

 

      XMLDocument doc = new XMLDocument(); 

      doc.addElement(inspect); 

       

    //check whether network socket is still connected 

         try{ 

             System.out.println("IP address: " + IPaddress.toString() +" 

Port: " + port); 

 

             clientSocket = new Socket (IPaddress, port); 

         } 

         catch (Exception e){ 

             e.printStackTrace(); 

         } 

 

         while(!clientSocket.isConnected()){ 

 

         } 

 

         System.out.println("Client socket connected..."); 

          

         //now send the composed message 

         try{ 

          System.out.println("Sending message to camera effector to 

inspect part..."); 

           

          byte[] outByteString = doc.toString().getBytes("UTF-8");

 //set format 

          clientSocket.getOutputStream().write(outByteString, 0, 

outByteString.length); 

          System.out.write(outByteString); //trying to print what is sent 

to camera 

          System.out.println("Message sent to camera effector..."); 

 

             byte[] inByteString = new byte[300] ; 

             int numOfBytes = 

clientSocket.getInputStream().read(inByteString); 

             String inString = new String(inByteString, 0, numOfBytes, "UTF-

8"); 

Stellenbosch University  http://scholar.sun.ac.za



 

118 

 

             dataIn = inString; 

 

             System.out.println("Recieved string of length: " + numOfBytes); 

 

             System.out.println(inString); 

 

             clientSocket.close(); 

         } 

         catch (IOException io){ 

          io.printStackTrace(); 

         } 

          

         String oc = ParseXMLString(dataIn, "DONE"); //parsing of inspection 

result data 

         Boolean inspected = Boolean.parseBoolean(oc); 

          

         if (inspected){ 

          float x = Float.valueOf(ParseXMLString(dataIn, "X")); //parses 

xml string for value of X 

             float y = Float.valueOf(ParseXMLString(dataIn, "Y")); //parses 

xml string for value of Y 

             float z = Float.valueOf(ParseXMLString(dataIn, "Z")); //parses 

xml string for value of Z 

             float angle = Float.valueOf(ParseXMLString(dataIn, "ANGLE")); 

//parses xml string for value of ANGLE 

 

             pos.setXPos(x); 

             pos.setYPos(y); 

             pos.setZPos(z); 

             pos.setAngle(angle);    

         } 

         return inspected; 

  } 

   

  public String ParseXMLString (String xmlRecords, String findText){ 

 

            String xmlStart = "CAMERA"; 

            String stringToReturn = ""; 

 

            try { 

                DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); 

                DocumentBuilder db = dbf.newDocumentBuilder(); 

                InputSource is = new InputSource(); 

                is.setCharacterStream(new StringReader(xmlRecords)); 

                Document doc = db.parse(is); 

                NodeList nodes = doc.getElementsByTagName(xmlStart); 

 

                // iterate the entries 

                for (int i = 0; i < nodes.getLength(); i++) { 

                    Element element = (Element) nodes.item(i); 

                    NodeList name = element.getElementsByTagName(findText); 

                    Element line = (Element) name.item(0); 

                    System.out.println(findText + 

getCharacterDataFromElement(line)); 

 

                    stringToReturn = getCharacterDataFromElement(line).toString(); 

 

                } 

 

            } 

            catch (Exception e) { 

                e.printStackTrace(); 

            } 
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            return stringToReturn; 

        } 

 

        public String getCharacterDataFromElement(Element e) { 

            org.w3c.dom.Node child = e.getFirstChild(); //Node formula classes with 

jade.core.Node 

            if (child instanceof CharacterData) { 

                CharacterData cd = (CharacterData) child; 

                return cd.getData(); 

            } 

            return "?"; 

        }        //method to parse xml strings ends here 

  

 } 

  

} 
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Appendix G: IEC 61499 function block networks 
 

 

Figure G 1: Function block network of the FB_SUPERVISOR device. 
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Figure G 2: Function block network of FB_SPVR_CONTROL composite function block. 
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Figure G 3: Function block network of the COMMAND_SELECT resource. 
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Figure G 4: Function block network of the LOAD_1 resource. 
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Figure G 5: Function block network of SINGULATION_UNIT device. 
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Figure G 6: Function block network of DAQ device. 
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Figure G 7: Function block network of DAQ_CONTROL composite function block. 
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Figure G 8: Function block network of CAMERA device. 
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Figure G 9: Function block network of CAM_CONTROL composite function block. 
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Figure G 10: Function block network of the ROBOT device. 
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Figure G 11: Function block network of the ROBOT_CONTROL composite function block. 
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