

CONTROL OF THE FEEDER FOR A

RECONFIGURABLE ASSEMBLY SYSTEM

by

Karel Kruger

Thesis presented in partial fulfilment of the requirements for the degree of Master

of Science in the Faculty of Engineering at Stellenbosch University

Supervisor: Prof. Anton Basson

March 2013

ii

Declaration

By submitting this thesis electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save

to the extent explicitly otherwise stated), that reproduction and publication thereof

by Stellenbosch University will not infringe any third party rights and that I have

not previously in its entirety or in part submitted it for obtaining any qualification.

Date: 2013/02/25

Copyright © 2013 Stellenbosch University

All rights reserved.

Stellenbosch University http://scholar.sun.ac.za

iii

Abstract

Control of the feeder for a reconfigurable assembly system

K. Kruger

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Thesis: MSc.Eng (Mechatronics)

March 2013

This thesis documents the research conducted into the control of the feeder

subsystem of a Reconfigurable Assembly System (RAS). The research was

motivated by a new set of modern manufacturing requirements associated with an

aggressive and dynamic global market. The motivation can be more specifically

attributed to the need for selective automation, through the installation of

reconfigurable systems, in the South African manufacturing industry.

The objective of the research was to implement and evaluate Multi-Agent

Systems (MASs) and IEC 61499 function block systems as potential control

strategies for reconfigurable systems. The control strategies were implemented for

the control of the feeder subsystem of an experimental RAS at Stellenbosch

University. The subsystem‟s hardware consisted of a singulation unit with a

machine vision camera, part magazines and a six DOF pick-„n-place robot.

The structure of the control strategies is based on the ADACOR holonic reference

architecture. The mapping of the subsystem holons to the structures of the control

strategies is explained. The development and implementation of the control

strategies, along with the accompanying lower level software, is described in

detail.

A system reconfigurability assessment was performed and the results are

discussed. The assessment was performed at two levels – the Higher Level

Control (HLC) (where the control strategies were implemented) and the low level

control and hardware. The assessment was done through four reconfiguration

experiments. The evaluation of the HLC was done through both quantitative and

qualitative performance measures. The implications of the reconfiguration,

involved in each of the respective experiments, on the low level software and

hardware are discussed.

The experimental results show that agent-based control adds more

reconfigurability to the feeder subsystem than IEC 61499 function block control,

and that agents have more advantages regarding customizability, convertibility

and scalability than IEC 61499 function blocks. Also, the ability of agent-based

control to implement reconfiguration changes during subsystem operation makes

it more suitable to the case study application.

Stellenbosch University http://scholar.sun.ac.za

iv

Uittreksel

Beheer van die voerder vir ‘n herkonfigureerbare monteringstelsel

K. Kruger

Departement van Meganiese en Megatroniese Ingenieurswese

Universiteit Stellenbosch

Private Sak X1, 7602 Matieland, Suid-Afrika

Tesis: MSc.Ing (Megatronies)

Maart 2013

Hierdie tesis dokumenteer die navorsing gedoen in die beheer van die voerder

sub-stelsel vir „n herkonfigureerbare monteringstelsel. Die navorsing was

gemotiveer deur „n nuwe stel vereistes vir moderne vervaardiging wat met „n

aggresiewe en dinamiese globale mark geassosieer word. Die motivering kan

meer spesifiek toegeskryf word aan die behoefte tot selektiewe outomatisasie,

deur middel van die implimentering van herkonfigureerbare stelsels, in the Suid-

Afrikaanse vervaardigingsnywerheid.

Die doel van die navorsing is om multi-agent stelsels en IEC 61499 funksie-blok

stelsels, as potensiële beheerstrategiëe vir herkonfigureerbare stelsels, te

implementer en evalueer. Die beheerstrategiëe was geïmplementeer vir die

voerder sub-stelsel van „n eksperimentele herkonfigureerbare monteringstelsel by

Universiteit Stellenbosch. Die hardeware behels „n skeier-eenheid (singulation

unit) met „n masjienvisie kamera, onderdeelmagasyne en „n ses-vryheidsgraad

gearktikuleerde optel-en-plaas robot.

Die struktuur van die beheerstrategiëe is gebaseer op die ADACOR holoniese

verwysingsargitektuur. Die afbeelding van die sub-stelsel holons na die struktuur

van die beheerstrategiëe word verduidelik. Die ontwikkeling en implementering

van die beheerstrategiëe, asook die gepaardgaande laer-vlak programmatuur, word

in detail beskryf.

Die stelsel se herkonfigureerbaarheid was geassesseer en die resultate daarvan

word bespreek. Die assessering was op twee vlakke gedoen – die hoër-vlak beheer

(waar die beheerstrategiëe geimplementeer was) en die lae-vlak beheer en

hardeware. Die assessering was gedoen deur middel van vier herkonfigurasie

eksperimente. Die hoër-vlak beheer was geëvalueer deur beide kwalitatiewe en

kwantitatiewe metings. Die implikasies van die herkonfigurasie, betrokke by die

onderskeie eksperimente, op die lae-vlak beheer en hardeware word beskryf.

Die eksperimentele resultate wys dat agent-baseerde beheer meer

herkonfigureerbaarheid tot die voerder sub-stelsel toevoeg as IEC 61499 funksie-

blok beheer. Dit is geïdentifiseer dat agente meer voordele inhou ten opsigte van

aanpasbaarheid, skakelbaarheid en skaalbaarheid as IEC funksie-blokke. Agent-

baseerde beheer laat ook toe dat herkonfigurasieveranderinge tydens sub-stelsel

werking geïmplimenteer kan word – dus is dit meer geskik vir aanwending in die

gevallestudie.

Stellenbosch University http://scholar.sun.ac.za

v

Aan my familie,

vir al jul liefde, ondersteuning en inspirasie.

“en op die dag sien ek die nag

daar anderkant gaan oop

met ’n bars wat van my beitel af

dwarsdeur die sterre loop.”

 – N.P. van Wyk Louw

Stellenbosch University http://scholar.sun.ac.za

vi

Acknowledgements

I would like to thank everyone who contributed, in any way, to this thesis. Special

mention must be made of the contributions of the following people:

 Prof. Basson, for your willingness to share your vast knowledge and

experience with me. Your continual guidance has been invaluable and

your passion for research has truly been contagious.

 My fellow members of the reconfigurable automation research group.

Anro le Roux and Chibaye Mulubika, for your opinions, advice and

enthusiasm. Reynaldo Rodriguez, for aiding me with your technical

expertise.

 Mr. Ferdi Zietsman and the workshop staff, for all your patience and hard

work.

 All of my friends, for all the support and inspiration you provided me.

Even in the hardest of times, I never felt alone.

 My family, for always believing in me – even when I myself am doubtful.

Your love and support continues to carry me through every day. I cannot

express my gratitude for all that you have given me.

Above all, I thank our heavenly Father – without whom nothing would be

possible.

Stellenbosch University http://scholar.sun.ac.za

vii

Table of contents
List of tables .. xi

List of figures .. xii

List of abbreviations .. xv

1. Introduction .. 1

1.1 Background .. 1

1.2 Motivation .. 2

1.3 Objective .. 3

2. Literature review .. 4

2.1 Classic manufacturing paradigms .. 4

2.2 Reconfigurable manufacturing systems ... 5

2.3 Control of manufacturing systems ... 7

2.3.1 Types of control architectures ... 7

2.3.2 Conventional control ... 8

2.3.3 Holonic control ... 9

2.4 Agent-based control ... 12

2.4.1 Definition of agents and agent systems .. 12

2.4.2 Design methodologies for MASs .. 13

2.4.3 Standards and platforms for MASs ... 14

2.4.4 Agent communication ... 15

2.4.5 Advantages of MASs .. 16

2.4.6 Implementations of MASs .. 17

2.5 IEC 61499 Function Block control .. 17

2.5.1 The IEC 61499 standard ... 17

2.5.2 Advantages of function block control ... 19

2.5.3 Platforms for function block control ... 19

2.5.4 Implementations of IEC 61499 function block control 19

3. Case study description ... 21

3.1 Product description .. 21

3.2 System overview .. 21

3.3 Feeder subsystem ... 22

Stellenbosch University http://scholar.sun.ac.za

viii

3.3.1 Singulation units ... 23

3.3.2 Part magazines .. 24

3.3.3 Camera .. 25

3.3.4 Robot ... 26

3.3.5 Fixture ... 28

3.4 Development and testing of the singulation unit ... 29

4. Holonic control architecture .. 31

5. Lower Level Control and interfacing ... 33

5.1 DAQ LLC .. 33

5.2 Camera LLC .. 36

5.2.1 Inspection control ... 36

5.2.2 PC control ... 42

5.3 Robot LLC ... 44

5.3.1 KRL program control .. 44

5.3.2 PC control ... 45

6. Higher Level Control ... 48

6.1 Communication between HLC programs and the Cell Controller 48

6.2 Agent-based control ... 48

6.2.1 Control system overview .. 48

6.2.2 Agent communication and coordination ... 49

6.2.3 Agent behaviours .. 52

6.2.4 Supervisor agent ... 54

6.2.5 Product agents ... 56

6.2.6 Task agents ... 56

6.2.7 Operational agents .. 58

6.3 IEC 61499 function block control ... 63

6.3.1 Control system overview .. 63

6.3.2 Function block communication and coordination 64

6.3.3 FB_SUPERVISOR device .. 65

6.3.4 COMMAND_EXECUTION device ... 66

6.3.5 SINGULATION_UNIT device .. 66

Stellenbosch University http://scholar.sun.ac.za

ix

6.3.6 DAQ device .. 67

6.3.7 CAMERA device .. 67

6.3.8 ROBOT device ... 68

7. System reconfigurability assessment ... 69

7.1 Experiment 1: Change in the task sequence .. 69

7.1.1 MAS reconfiguration .. 69

7.1.2 Function block reconfiguration ... 69

7.2 Experiment 2: Addition of a new task ... 70

7.2.1 MAS reconfiguration .. 70

7.2.2 Function block reconfiguration ... 71

7.2.3 Low level software and hardware reconfiguration 71

7.3 Experiment 3: Addition of a new product ... 72

7.3.1 MAS reconfiguration .. 72

7.3.2 Function block reconfiguration ... 73

7.3.3 Low level software and hardware reconfiguration 74

7.4 Experiment 4: Addition of new hardware .. 74

7.4.1 MAS reconfiguration .. 74

7.4.2 Function block reconfiguration ... 75

7.4.3 Low level reconfiguration ... 75

7.5 Discussion of experimental results and observations 76

7.5.1 Quantitative measurements ... 76

7.5.2 Qualitative measurements ... 78

8. Conclusion and recommendations ... 81

9. References .. 84

Appendix A: Singulation unit throughput and reconfigurability investigation 89

Appendix B: Gripper design .. 93

B.1 Design requirements .. 93

B.2 Design specifications .. 93

B.3 Static and fatigue analysis ... 93

B.4 Gripper pickup actions .. 98

Appendix C: Fixture design ... 99

Stellenbosch University http://scholar.sun.ac.za

x

C.1 Design requirements .. 99

C.2 Design specifications .. 99

C.3 Gripper place actions in the fixture ... 100

Appendix D: DVT Intellect script programs ... 101

D.1 Background script program ... 101

D.2 Foreground script program ... 102

Appendix E: KUKA robot functionality .. 106

E.1 Calibration functions ... 106

E.2 KUKA KRL programs .. 107

E.2.1 MAIN() ... 107

E.2.2 PICKUP_PART() .. 110

E.2.3 PLACE_PART() ... 111

Appendix F: JADE agent program example .. 113

Appendix G: IEC 61499 function block networks .. 120

Stellenbosch University http://scholar.sun.ac.za

xi

List of tables

Table 1: The DAQ LLC methods and the respective DAQ control functions. 34

Table 2: Concepts included in the MAS ontology. .. 51

Table 3: Actions included in the MAS ontology. .. 51

Table A 1: Recorded data for the optimal singulation speed experiment. 89

Table A 2: The calculated data for Figure 14. ... 91

Table A 3: Success rates for different numbers of parts in the input bin. 91

Stellenbosch University http://scholar.sun.ac.za

xii

List of figures
Figure 1: Types of control architectures (adapted from Meng et al. (2006)). 7

Figure 2: Structure of PROSA architecture (adapted from van Brussel et al.

(1998)). .. 11

Figure 3: Structure of ADACOR architecture (adapted from Leitao and Restivo

(2006)). .. 12

Figure 4: The case study sub-assembly with the spot weld points indicated. 21

Figure 5: Schematic layout of the experimented RAS. ... 22

Figure 6: Schematic layout of the feeder subsystem. .. 22

Figure 7: Hardware of the feeder subsystem. .. 23

Figure 8: Stepped-conveyor singulation unit. .. 24

Figure 9: Part magazines for the (a) moving contact, (b) handle frame assembly,

(c) load terminal and (d) long and short pigtail parts. ... 25

Figure 10: The camera mounted on the singulation unit. 26

Figure 11: Robot with axis movement indicated (KUKA Robot Group, 2007). ... 27

Figure 12: The gripper as it is mounted on the robot. .. 27

Figure 13: The fixture mounted on a pallet. .. 29

Figure 14: Singulation probability vs. time experimental results for the stepped-

conveyor singulation unit. .. 30

Figure 15: Schematic representation of a holon consisting of both software and

hardware entities. ... 32

Figure 16: Flow diagram of the DAQ LLC functionality. 35

Figure 17: Flow diagrams of the (a) background and (b) foreground script

programs. ... 38

Figure 18: The setup of the inspection product for detecting parts on the

presentation platform. .. 39

Figure 19: The implementation of the blob detection softsensor. 40

Figure 20: The obscurity of part features with angular rotation: (a) 0°, (b) 45°, (c)

90°, (d) 135° and (e) 180°. ... 41

Figure 21: The coil parts in the two possible orientations. 41

Figure 22: Variation in inspection results between having the camera at an angle

(a) and having the camera directly above (b). ... 41

Figure 23: Flow diagram of the camera LLC program. ... 43

Figure 24: Flow diagram of the KRL programs functionality. 45

Figure 25: Flow diagram of the robot LLC program. .. 46

Figure 26: The structure of the Multi-Agent System. .. 49

Figure 27: Storage of product information in the MAS. .. 52

Figure 28: Flow diagrams of the (a) requestReceiver() and (b) actionPerformer()

behaviours. ... 53

Figure 29: Flow diagram of the requestAction() behaviour. 54

Stellenbosch University http://scholar.sun.ac.za

file:///G:/Masters/Research/Deliverables/Thesis%20draft.docx%23_Toc349299511

xiii

Figure 30: Flow diagram of the Supervisor agent functionality. 55

Figure 31: Flow diagram of (a) Product and (b) Task agent functionality. 57

Figure 32: Flow diagram of (a) Singulation unit and (b) DAQ agent functionality.

 ... 60

Figure 33: Flow diagram of Robot agent functionality. .. 62

Figure 34: Structure of the IEC 61499 function block control system. 63

Figure 35: (a) PUBLISH and (b) SUBSCRIBE function blocks. 64

Figure 36: Function block network segment for XML communication. 65

Figure 37: Recorded development times for the control strategies for the four

experiments. ... 77

Figure 38: Recorded reconfiguration times for the control strategies for the four

experiments. ... 77

Figure 39: Total implementation times for the control strategies for the four

experiments. ... 78

Figure A 1: Average singulation time for different singulation speeds. 90

Figure A 2: Average success rates for different singulation speeds. 90

Figure B 1: Gripper pickup actions of the various parts – (a) coil, (b) long and

short pigtails, (c) handle frame assembly, (d) load terminal and (e) moving

contact. ... 98

Figure C 1: The placement of parts in the fixture by the gripper – (a) load

terminal, (b) short pigtail, (c) handle frame assembly, (d) long pigtail, (e) coil and

(f) moving contact. ... 100

Figure E 1: The sequence of steps required for the calibration of a new tool

(KUKA Robot Group, 2007). .. 106

Figure E 2: Sequence of steps required for the calibration of a workspace (KUKA

Robot Group, 2007). .. 107

Figure G 1: Function block network of the FB_SUPERVISOR device. 120

Figure G 2: Function block network of FB_SPVR_CONTROL composite

function block. ... 121

Figure G 3: Function block network of the COMMAND_SELECT resource. ... 122

Figure G 4: Function block network of the LOAD_1 resource. 123

Figure G 5: Function block network of SINGULATION_UNIT device. 124

Figure G 6: Function block network of DAQ device. ... 125

Stellenbosch University http://scholar.sun.ac.za

xiv

Figure G 7: Function block network of DAQ_CONTROL composite function

block. .. 126

Figure G 8: Function block network of CAMERA device. 127

Figure G 9: Function block network of CAM_CONTROL composite function

block. .. 128

Figure G 10: Function block network of the ROBOT device. 129

Figure G 11: Function block network of the ROBOT_CONTROL composite

function block. ... 130

Stellenbosch University http://scholar.sun.ac.za

xv

List of abbreviations

ACL - Agent Communication Language

CC - Cell Controller

DAQ - Data Acquisition

FBDK - Function Block Development Kit

HLC - Higher Level Control

JADE - Java Agent Development framework

LLC - Lower Level Control

MAS - Multi-Agent System

PC - Personal Computer

PLC - Programmable Logic Controller

RAS - Reconfigurable Assembly Systems

RMS - Reconfigurable Manufacturing Systems

SU - Singulation Unit

XML - eXtensible Markup Language

Stellenbosch University http://scholar.sun.ac.za

1

1. Introduction

1.1 Background
The modern assembly and manufacturing environment is characterized by

dynamic change and aggressive global competition. This dynamic environment is

subject to rapid change in economical, technological and customer trends (Leitao

and Restivo, 2006). A new set of requirements is thus applied to the modern

manufacturing paradigm. Bi et al. (2008) describe some critical requirements for

modern manufacturing systems:

 Short lead times for the introduction of new products into the system. This

involves the rapid adjustment of existing functions and processes, as well

as the integration of new ones.

 The ability to produce more product variants. This involves the addition of

versatility and customization to production to satisfy customer demands.

 The ability to handle low and fluctuating production volumes in order to

be competitive in unpredictable markets.

 Low product prices to compete in global markets.

The manufacturing and assembly environment in South Africa (SA) is no

different to that described above. However, some additional challenges exist for

South African companies. The first of which is the dependency on manual labour.

The cost of manual labour in SA is higher than that of other global competitors

(World Minimum Wages, [S.a.]). This additional cost, as well as the

unpredictability of a manual workforce (strikes, occupational safety risks, etc.), is

making it difficult for SA to be competitive in the global market. The second

challenge deals with the automation of processes in SA industries. There are many

small to medium sized factories in SA producing a large variety of products. This

variety in production means that automation cannot be achieved by Dedicated

Manufacturing Systems (DMSs), as is described in section 2.1. The expected

revenue of these companies does not allow them to automate their processes by

Flexible Manufacturing Systems (FMSs) (described in section 2.1).

The economic constraints faced by factories in SA limit the extent to which

automation can be introduced to production activities. It is then only possible to

automate certain production processes – an approach referred to as selective

automation. The selection of which processes should be automated is based on

several factors. These factors include the ease of which a process can be

automated, in terms of the technical knowledge and equipment required, and the

value that automation adds to the production. This value can be measured in

different ways, e.g. a decrease in production cost, an increase in throughput or an

elimination of safety risks. This selective automation, incorporating the

implementation of reconfigurable systems, can potentially solve some of the

problems involved in local production environments.

Stellenbosch University http://scholar.sun.ac.za

2

The concept of reconfigurable manufacturing and assembly systems is a

promising solution to the modern challenges. The selective implementation of

such systems can solve the problems faced by SA companies. This

implementation will decrease production costs and increase production reliability

and product quality.

The research presented in this thesis forms part of a collective research effort into

reconfigurable systems at Stellenbosch University. The research builds on

previous studies which focussed on the conceptualization, design and control of

an experimental Reconfigurable Assembly System (RAS). The RAS is based on

the requirements of many factories in SA, especially those of CBI Electric – a

global supplier of a high variety of quality trip switches. The products and

processes of CBI Electric were used as case study for the experimental RAS.

Sequeira (2008) identified the spot-welding process, involved in the production of

CBI Electric, as a suitable process for automation by means of a reconfigurable

system. The process entails the welding of individual trip switch parts to create a

variety of sub-assemblies. It was identified that automating this process would

reduce the dependence on skilled manual labour and the necessary training

programmes. The conceptual design of the RAS included subsystems for the

following functions: storage, transport, feeding, welding and inspection and

removal. At this stage all the subsystems, except the inspection and removal

subsystem, have been developed.

Recent research at Stellenbosch University has placed emphasis on the control

and coordination of the subsystems of the RAS. Parts of the presented research

can be viewed as an advancement of the research performed by Sequeira (2008)

and Adams (2010). The presented thesis places emphasis on the implementation

and evaluation of proposed strategies for control of RASs. The feeder subsystem

of an experimental RAS at Stellenbosch University was used as case study for the

control implementation. This research was done in parallel with two other studies

- Le Roux (2013) evaluated and implemented the control for the transport and

storage subsystem and Mulubika (2013) designed and controlled the welding

subsystem and developed a Cell Controller for the RAS.

1.2 Motivation
The feeder subsystem of the RAS had to incorporate mechanisms for part feeding,

part manipulating and part fixturing. The feeding of parts involves the need for

singulation actions – individual parts have to be singulated from bulk containers.

This is followed by moving and manipulating the parts by a pick-„n-place robot,

and then placing the parts in a fixture, which holds them in fixed positions for the

welding process. Conventional systems for the feeding of parts are specifically

designed for a specific set of parts - the variety of parts involved in the production

of CBI Electric requires the feeder subsystem to be reconfigurable in the

mentioned actions. The feeder subsystem then has to be a reconfigurable system

itself.

Stellenbosch University http://scholar.sun.ac.za

3

The research presented in this thesis focuses on the control of the feeder

subsystem of the experimental RAS. The thesis evaluates suitable control

strategies for implementation in the feeders of RASs. The thesis aims to give an

indication regarding the best means of control for reconfigurable feeders, thus

contributing towards the implementation of RASs in industry.

1.3 Objective
The objective of this research was to evaluate the IEC 61499 standard function

block and agent-based control technologies as possible methods for implementing

holonic control in feeder subsystems of Reconfigurable Assembly Systems

(RASs).

The control strategies were implemented on a feeder subsystem of an automated

welding RAS. The evaluation of the control strategies were based on the results of

different experiments. These experiments provided performance measurements of

the two control strategies according to the characteristics of RASs (described in

section 2.2).

Stellenbosch University http://scholar.sun.ac.za

4

2. Literature review
This section starts with a discussion of classic manufacturing paradigms and

conventional control strategies of manufacturing systems. The motivation for

reconfigurable manufacturing systems, along with its inherent concepts and

characteristics, is discussed. The holonic approach to system control, which is

often associated with reconfigurable systems, is described, with specific reference

to the existing architectures for holonic control. The concepts of agent-based and

IEC 61499 function block control, as strategies for implementing holonic control,

are discussed in depth.

2.1 Classic manufacturing paradigms
The manufacturing and assembly environment is evolving continuously. This

evolution is driven by changes in technology and economic trends. The major

paradigms in manufacturing and assembly, as presented by Mehrabi et al. (2000),

are discussed in the following paragraphs.

The Machining System paradigm entailed the installation of one or more metal

removing machine tools. These machine tools were accompanied by auxiliary

equipment for material handling, control and communications. The operation of

the machines was then coordinated to produce a fixed amount of parts. This

paradigm pursued mass production as a strategy to reduce product cost.

The need for higher part quality and reduction in production costs brought about

the Dedicated Machining System (DMS) paradigm. With DMSs, machining

systems with fixed tooling and functions were designed for specific parts. The

DMS paradigm was driven by the lean production ideology, where production

costs were reduced by eliminating production waste.

A market demand for increased product variety led to the Flexible Manufacturing

System (FMS) paradigm. FMSs were based on automation configurations of fixed

hardware with programmable software. Flexibility refers to the ability of the

system to switch to new families of components by changing the manufacturing or

assembly processes and functions (Martinsen et al., 2007). These systems were

thus capable of handling changes in work orders and production schedules, and

producing several types of parts with short changeover times. ElMaraghy (2006)

identified several types of flexibility:

 Machine flexibility – the execution of various operations without changing

the machine set-up.

 Material handling flexibility – the existence of various paths for the

transfer of materials between machines.

 Operation flexibility – the availability of different operation plans for part

processing.

 Process flexibility – the ability to produce different sets of part types

without major set-up changes.

 Product flexibility – the agility to handle the introduction of new products.

Stellenbosch University http://scholar.sun.ac.za

5

 Routing flexibility – the existence of several feasible routes for the various

product types.

 Volume flexibility – the ability to vary production volumes profitably

within the current system capacity.

 Expansion flexibility – the ease in which system capability and capacity

can be added to the system through physical changes.

 Control program flexibility – the ability of the control system to run

virtually uninterrupted during production or system changes.

 Production flexibility – the ability to produce a number of product types

without adding major capital equipment.

There have been several investigations into the shortcomings of FMSs with regard

to implementation in industry. Raj et al. (2007) identified high costs, the difficulty

of design and the lack of inherent product flexibility (relative to volume

flexibility) in FMSs as barriers to industrial implementation. Mehrabi et al. (2002)

adds to this list a lack of software reliability, the need for highly skilled personnel,

high support costs and a lack of support from machine tool manufacturers. They

also mention that FMSs tend to be designed with excess features and capacity,

which remain unutilized in many cases.

2.2 Reconfigurable manufacturing systems
The concept of reconfigurable manufacturing systems (RMSs) is a solution to the

requirements of modern systems discussed in section 1.1. RASs are the specific

application of RMSs in assembly processes.

It is important to discuss the exact meaning of reconfigurability in this context.

Martinsen et al. (2007) describes reconfigurability as the ability of a

manufacturing or assembly system to switch, with minimal delay and effort,

between a particular family of parts by adding or removing functional elements.

These functional elements can form part of the system hardware or software

(Vyatkin, 2007).

RMSs and FMSs are often confused because of their similarity – each system can

be adapted and is capable of handling production variety. It is important to

consider the differences between the abilities of RMSs and FMSs. Mehrabi et al.

(2000) mention that the key difference between RMSs and FMSs is that the

capacity and functionality of RMSs are not fixed – RMSs are designed for rapid

adjustment, through rearrangement or change of their components, in response to

production demands. Wiendahl (2007) identified two more differences:

1. The diversity of the workpieces that can be handled by the system. RMSs

can be switched to accommodate different families of products, while

FMS can only handle similar products.

2. The extent to which the system is changed. With RMSs, the changes can

be made through the addition or removal of components. FMSs are

designed to only allow for changes in the production processes and the

flow of material.

Stellenbosch University http://scholar.sun.ac.za

6

Mehrabi et al. (2000) identified five key characteristics of RASs. A sixth

characteristic was identified by ElMaraghy (2006). The characteristics are then as

follows:

1. Modularity of the hardware and software system components.

2. Integratability of the system and the system components for both ready

integration of existing technology and the introduction of new technology

in the future.

3. Convertibility for the fast changeover between existing products and fast

adaptability of the system for future products.

4. Diagnosibility for fast identification of the sources of quality and

reliability errors in the system.

5. Customization of the system capability and flexibility to match specific

applications.

6. Scalability of the system capacity.

RMSs satisfy all the requirements of modern assembly mentioned in section 1.1.

Mehrabi et al. (2000) explain that RMSs permit reduction in lead times and quick

integration of new technology and/or functionality. Bi et al. (2008) recognised

that RMSs have the ability to reconfigure hardware and control resources, at all

functional levels, to rapidly adjust the production capacity and functionality in

response to sudden changes. Bi et al. (2007) is in agreement with this statement,

identifying that with RMSs “the system and its components have adjustable

structure that enables system scalability in response to market demands and

system adaptability to new products”.

Rooker et al. (2007) explain that there are two different types of reconfiguration

which can occur in RMSs: basic and dynamic reconfiguration. Basic

reconfiguration requires the system to be stopped. The system is then restarted

after the necessary software and hardware changes have been implemented. With

dynamic reconfiguration, the changes can be made while the system is still in

operation.

There exist several issues which have hampered the development and

implementation of RMSs. Bi et al. (2007a) explain the key issues regarding RMS

development:

 The separation of RMS design from product design. Most RMSs are

developed separate from the product design, which complicates the

optimization of the system.

 RMSs are perceived as a premature technology. Developers are still

dealing with unresolved issues, which prohibit full automation through

RMSs.

 Indifferent attitudes toward RMSs. Many companies are uncertain of the

advantages that reconfigurable automation holds for their production.

 The use of RMSs as a wrong solution. RMSs should be implemented in

production scenarios where the necessary production requirements exist

Stellenbosch University http://scholar.sun.ac.za

7

and a sufficient level of technical competence is available. The RMS

concept is not a suitable solution for all production scenarios.

2.3 Control of manufacturing systems
This section describes some of the commonly used classifications and approaches

for the control of manufacturing systems.

2.3.1 Types of control architectures

Three different types of control architectures are discussed by Meng et al. (2006):

centralized, hierarchical and heterarchical. The organizational structures of the

control architectures are depicted in Figure 1. The architectures are described in

the following paragraphs.

Centralized Hierarchical Heterarchical

Controller Machine component

Figure 1: Types of control architectures (adapted from Meng et al. (2006)).

The centralized control architecture achieves system control by means of one

central controller. This controller is then responsible for the execution of all the

automated processes in the system. The architecture is typically implemented in

conventional control systems (discussed in section 2.3.2).

The hierarchical control architecture implements the hierarchical arrangement of

multiple controllers in a system. Different levels of control exist within the

system. This implementation sees the passing of instructions in a downward

direction and feedback in an upward direction. The hierarchical architecture is

typically implemented in conventional control systems, while mixed architectures

(combinations of hierarchical and heterarchical architectures) are often

implemented in distributed control systems like holonic control (discussed in

section 2.3.3).

Heterarchical control architectures apply no hierarchical levels of control. The

control of the system is achieved by several independent controllers. These

controllers each have their own goals and specific functionality. Communication

and coordination between these independent controllers enable complex system

functionalities and the pursuing of the system goals. Mixed or strict heterarchical

control architectures are typically implemented in holonic control systems.

Stellenbosch University http://scholar.sun.ac.za

8

2.3.2 Conventional control

The control of manufacturing systems is conventionally done through centralized

control systems or Petri nets, for the control of distributed processes.

2.3.2.1 Centralized control

Conventional manufacturing control systems are typically large, centralized

applications which are developed and adapted on a case-by-case basis (Leitao and

Restivo, 2008). These control systems implement centralized or strict hierarchical

architectures (as was described in section 2.3.1). These control systems exist

within the concept of Computer Integrated Manufacturing (CIM), which utilises

large central databases to support the system information (Scholz-Reiter and

Freitag, 2007). Conventional control hardware and programming techniques

greatly rely on Programmable Logic Controllers (PLCs) (Black and Vyatkin,

2009).

Leitao and Restivo (2008) explain that conventional control systems do not

efficiently satisfy the requirements of modern manufacturing and assembly (such

as those specified in section 1.1). These control systems require expensive and

time-consuming efforts to implement, maintain or reconfigure the control

application. Scholz-Reiter and Freitag (2007) noticed that “the complexity of the

control system grows rapidly with the size of the underlying manufacturing

system”. Meng et al. (2006) explains that conventional control is not

reconfigurable-friendly due to shortcomings such as structural rigidity, lack of

flexibility and convertibility and inability to tolerate faults or disturbances. The

monolithic nature of general PLC software increases the difficulty of system

modification and maintenance, and reduces the scalability of the system. This

centralized approach also cannot be appropriately applied to applications of wide

physical dispersion of hardware (Black and Vyatkin, 2009).

2.3.2.2 Petri nets

Petri nets are a graphical and mathematical tool for describing system processes.

This approach is very advantageous when the processes are distributed,

asynchronous and/or nondeterministic (Murata, 1989). Since being introduced in

the late 1970s, Petri nets have seen numerous implementations in all types of

manufacturing systems.

Murata (1989) explains that Petri nets are a particular kind of directed graph,

which consists of two types of nodes: places and transitions. These nodes relate to

that of events and conditions used in system modeling. Arcs are used to connect

places to transitions or vice versa. A transition (an event) has a certain number of

input and output places – these places represent the pre- and post-conditions for

the event. The state of the conditions is represented in Petri nets as a token which

is assigned to a place. This assignment is then representative of a “true” condition

for the place. The firing of system transitions can then be controlled by

implementing certain rules concerning the presence of tokens in the relative input

and output places.

Stellenbosch University http://scholar.sun.ac.za

9

The popularity of Petri net implementation in manufacturing systems is based on

the ease of which it can be converted into computer control mechanisms (Zhou et

al., 1992). Petri nets can “concisely represent the activities, resources and

constraints of a system in a single coherent formulation” (Lee and DiCesare,

1994). The graphical representation inherent in the Petri net approach also aids the

understanding and formulating of system problems.

2.3.3 Holonic control

The term holon was first introduced by Koestler in 1967 (Paolucci and Sacile,

2005). The term comes from the Greek words “holos” (meaning “the whole”) and

“on” (meaning “the particle”). Holons are then “any component of a complex

system that, even when contributing to the function of the system as a whole,

demonstrates autonomous, stable and self-contained behaviour or function”

(Paolucci and Sacile, 2005). When this concept is applied to manufacturing or

assembly systems, a holon is an autonomous and cooperative building block for

transforming, transporting, storing or validating information of physical objects. A

Holonic Manufacturing System (HMS) is then “a holarchy (a system of holons

which can cooperate to achieve a goal or objective) which integrates the entire

range of manufacturing activities” (Paolucci and Sacile, 2005).

The distributed holonic model represents an alternative to the traditional

centralization of functions (Paolucci and Sacile, 2005). Holonic control usually

combines the best features from both hierarchical and heterarchical control

architectures (Kotak et al., 2003). Kotak et al. (2003) explain that individual

holons have at least two basic parts: a functional component and a communication

and cooperation component. The functional component can be represented purely

by a software entity or it could be a hardware interface represented by a software

entity. The communication and cooperation component of a holon is implemented

by software.

The implementation of holonic control in assembly systems holds many

advantages. Holonic systems are attractive because they are resilient to

disturbance and adaptable in response to faults (Black and Vyatkin, 2009).

Holonic systems have the ability to organise production activities in a way that

they meet the requirements of scalability, being robust and being fault-tolerant

(Kotak et al., 2003). Scholz-Reiter and Freitag (2007) describe advantages of

holonic control systems due to the incorporation of heterarchical control. These

advantages are:

 Reduced system complexity due to the localization of information and

control.

 Reduced software development costs by the elimination of supervisory

control levels.

 Higher maintainability and modifiability due to system self-configurability

abilities and system modularity.

 Improved reliability due to a fault-tolerant approach as opposed to a fault-

free approach.

Stellenbosch University http://scholar.sun.ac.za

10

The two reference architectures for holonic control that are most often

encountered in the literature are PROSA and ADACOR. These two architectures

are discussed in the remainder of the section.

The first proposed holonic control architecture is PROSA (Product-Resource-

Order-Staff Architecture), which is comprehensively described by van Brussel et

al. (1998). PROSA defines four classes of holons: product, resource, order and

staff.

The first three classes of holons can be classified as basic holons. This is because

their existence is based on that of three independent manufacturing concerns:

i. Product related technological aspects, such as the management of process

sequence and the product life cycle. Product holons hold the product and

process information required for the production of system products. These

holons contain the various “product models” and can provide the other

holons in the system with product information.

ii. Resource aspects, such as optimizing the performance of machines and the

maximizing of machine capacity. Resource holons contain the physical

hardware, accompanied by the control software, for production line

components. These holons then offer their functionality and capacity to the

other holons in the system.

iii. Logistical aspects, such as those concerning customer demands and

production deadlines. The order holons can be represented as tasks within

the manufacturing system. These holons manage the logistical information

related to the product being produced. Order holons contain the “product

state model” and can thus provide production information to the other

holons in the system.

The basic holons can interact with each other by means of knowledge exchange,

as is shown in Figure 2. The process knowledge, which is exchanged between the

product and resource holons, is the information and methods describing how a

certain process can be achieved through a certain resource. The production

knowledge is the information concerning the production of a certain product by

using certain resources – this knowledge is exchanged between the order and

product holons. The order and resource holons exchange process execution

knowledge, which is the information regarding the progress of executing

processes on resources.

Staff holons are considered to be special holons. This is because staff holons are

added to the holarchy to operate in an advisory role to basic holons. The addition

of staff holons aim to reduce work load and decision complexity for basic holons,

by providing them with expert knowledge. The staff holons consider some aspects

of the problems faced by the basic holons, and provide sufficient information such

that the correct decision can be made to solve the problem.

Stellenbosch University http://scholar.sun.ac.za

11

Figure 2: Structure of PROSA architecture (adapted from van Brussel et al.

(1998)).

The holonic characteristics of PROSA contribute to the different aspects of

reconfigurability. The ability to decouple the control algorithm from the system

structure and the logistical aspects from the technical aspects adds integratability

and modularity. Modularity is also added by the similarity that is shared by holons

of the same type, since this allows holons to be interchanged easily.

Another proposed control architecture for holonic systems is that of ADACOR

(ADAptive holonic COntrol aRchitecture for distributed manufacturing systems).

Within ADACOR, each holon represents a physical resource or logic entity.

ADACOR defines four holon classes according to their roles and functionalities:

product holons (PH), task holons (TH), operational holons (OH) and supervisor

holons (SH). The structure of the ADACOR architecture is shown in Figure 3.

The product, task and operational holons are similar to the product, order and

resource holons of the PROSA architecture. The product holons represent the

products available for production – these holons have access to all the relevant

product information. The task holons represent the processes, along with the

necessary resources, required to satisfy the production orders. The operational

holons represent the physical shop floor resources. The supervisor holon is quite

different to the staff holon. Supervisor holons are capable coordinating groups of

holons and optimizing their collective actions. The supervisor holons thus

introduce some hierarchy into the decentralized system.

The ADACOR holons comprise a Logical Control Device (LCD) and a physical

resource (if it exists for the specific holon). The LCD has three functional

components: a communication component for inter-holon communication, a

decision component for regulating holon behaviour and an interface component

for integrating with the physical resources.

Stellenbosch University http://scholar.sun.ac.za

12

PH PH PH

TH TH TH

SH

OH

OH

OH

Figure 3: Structure of ADACOR architecture (adapted from Leitao and

Restivo (2006)).

According to Leitao and Restivo (2008), ADACOR addresses the improvement of

flexibility and response to change of manufacturing control systems operating in

volatile environments. ADACOR is suited to dealing with control problems in a

distributed manner by being “as centralized as possible and as decentralized as

necessary”. An ADACOR control system can be formally specified and modelled

using Petri nets. ADACOR is “built upon a community of autonomous and

cooperative entities, designated by holons, to support the distribution of skills and

knowledge, and to improve the capability of adaption to changing environments”.

Two possible strategies for implementing holonic control are agent-based control

and IEC 61499 function block control, discussed in sections 2.4 and 2.5.

2.4 Agent-based control

The use of agent-based software to control manufacturing systems, i.e. agent-

based control, has received much attention in the research community –

particularly in combination with holonic and reconfigurable systems.

2.4.1 Definition of agents and agent systems

An agent can be defined as a computational system with goals, sensors and

effectors, which can autonomously decide which actions to take, in a given

situation, to maximize its progress towards its goals (Paolucci and Sacile, 2005).

With reference to a multi-agent system, Xie et al. (2007) define an agent as “a

software system that communicates and cooperates with other software systems to

solve a complex problem beyond their individual capabilities”.

Paolucci and Sacile (2005) explain that an agent is different to a holon in the

sense that a holon can consist of other holons, while an agent cannot include other

agents. With this said, agents can practically be equivalent to holons in some

cases. This is usually the case with agents which directly control a physical

Stellenbosch University http://scholar.sun.ac.za

13

device. Here the agent then represents the software component of the holon

introduced to decentralize the control system at the lowest level.

According to Paolucci and Sacile (2005) three different classes of agents can be

identified:

 Agents that execute tasks based on predetermined rules and assumptions.

 Agents that execute well-defined tasks at the request of a user.

 Agents that volunteer information or services to a user whenever it is

deemed appropriate.

The main characteristics of these agents are then as follows:

 Autonomy. Agents should be able to perform most of their tasks without

user intervention.

 Social ability. Agents should be able to interact with other agents and

users.

 Responsiveness. Agents should be able to respond to changes in their

environment.

 Proactiveness. Agents should exhibit opportunistic and goal-orientated

behaviour.

 Adaptability. Agents should be able to modify their behaviour in response

to changes in their environment.

 Mobility. Agents should possess the ability to change physical location to

improve their performance.

 Veracity. Agents should communicate reliable information.

 Rationality. Agents should act in a manner as to achieve their goals.

Agents of different classes, performing different roles and functions, can

cooperate and communicate within a Multi-Agent System (MAS) to achieve their

individual goals and the goals of the system. MASs can be understood as societies

of autonomous entities that, by their own convenient interaction and coordination,

attempt to achieve local and global goals. MASs can then be summarized as

“flexible networks of problem solvers that tackle problems that cannot be solved

using the capabilities and knowledge of the individual solver” (Paolucci and

Sacile, 2005).

2.4.2 Design methodologies for MASs

Paolucci and Sacile (2005) discuss three design methodologies for the design of

MASs: problem-oriented, architecture-oriented and process-oriented MAS design.

The problem-oriented MAS design process is guided by the identification of the

reasons for which the MAS is needed. This usually involves obtaining an MAS

solution to an existing problem or enhancing certain aspects of a system. The

types of problems are then identified and transformed into tasks, which can be

performed by agents. Two promising approaches to problem-oriented MAS

Stellenbosch University http://scholar.sun.ac.za

14

design are the GAIA approach and the Multi-agent Systems Engineering (MaSE)

approach.

The architecture-oriented MAS design process is oriented by the requirements and

implications of the design on the system architecture. The architecture determines

the capabilities of the agent system. The Synthetic-Ecosystems approach is

proposed for architecture-oriented MAS design.

Process-oriented MAS design is guided by the definition of time constraints

imposed by the different processes in the manufacturing system. The real-time

behaviour is an important aspect of MASs as they have to deal with internal and

external asynchronous signals, along with the necessary time constraints. A

proposed approach to process-oriented MAS design involves a four-layer, real-

time holonic control architecture.

2.4.3 Standards and platforms for MASs

The establishment of methodologies and techniques for MAS design and

operation are required to increase the amount of practical applications of MASs in

industry. “The Foundation for Intelligent Physical Agents (FIPA) is an IEEE

Computer Society standards organization that promotes agent-based technology

and the interoperability of its standards with other technologies” (FIPA, 2010).

FIPA was founded in 1996 and became an official IEEE standards organization in

2005. FIPA has thus begun to establish standards for the development and

communication of agent-based systems. The most significant of the FIPA

standards is the agent communication standard (FIPA, 2010). Paolucci and Sacile

(2005) explain that the standard formalizes the conversations between agents with

two concepts: the communicative act and the Agent Interaction Protocol (AIP).

The communicative act associates a predefined semantic to the content of

messages to allow messages to be univocally understood by all agents. The AIP

defines which communicative acts must be used in a conversation and also the

sequence of messages to allow meaningful communication between agents. Other

FIPA standards deal with issues surrounding the specification of the agent

communication language and the mandatory components for agent platform

architectures.

The FIPA standards mainly focus on specifications regarding agent

interoperability. FIPA thus only describes an abstract architecture with little detail

regarding aspects of the implementation platforms (Paolucci and Sacile, 2005).

Despite the lack of detailed standards, several agent implementation platforms

have been developed. The most widely used platforms are FIPA-OS, JADE and

ZEUS. JADE (Java Agent DEvelopment framework) was developed by Telecom

Italia Lab, in collaboration with the University of Parma, Italy. JADE was fully

developed in Java language and runs in the Java run-time environment. JADE is

also fully FIPA compliant.

Several platforms have also been developed for the simulation of MASs, of which

the most renowned are Swarm, RePAST and MAST. The Swarm project was

Stellenbosch University http://scholar.sun.ac.za

15

started to create a standard support tool for the management of swarms of objects

– a concept necessary for handling MASs. Swarm is based on an object-oriented

framework for the definition of agent behaviour and interaction. RePAST

(Recursive Porous Agent Simulation Toolkit) was initially viewed as a set of

libraries intended to simplify the use of Swarm, but was later redesigned as a

completely new framework. RePAST provides a library of classes to create,

perform, view and collect data from agent simulations (Paolucci and Sacile,

2005). Research by Vrba (2003) brought about a simulation tool for agent-based

systems in the form of MAST (Manufacturing Agent Simulation Tool). MAST is

entirely devoted to the simulation of manufacturing processes. It has been

implemented to simulate the material-handling activities of a manufacturing

system. MAST is also based on the JADE platform and is also fully FIPA

compliant.

2.4.4 Agent communication

The cooperation of agents in an MAS is dependent on effective agent

communication. The agent platform must thus provide structures to ensure that

agents can communicate easily and reliably. The Agent Content Language (ACL)

is one such structure specified by FIPA.

Agent communication is based on ACL messaging. The ACL encapsulates and

describes the message content by setting several message parameters. Paolucci

and Sacile (2005) list the following parameters:

 Performative – description of the communicative action involved in the

message.

 Sender and Receiver – the identification of the respective communicating

agents.

 Language – the specific encoding of the message content.

 Ontology – the vocabulary to be used to understand the message.

 Protocol – the set of rules on which the communication is based.

MASs often employ ontologies to ensure that communicating agents fully

understand the content of messages. An ontology is a vocabulary used to describe

the terms and relationships entities in a specific domain (Paolucci and Sacile,

2005). This description can be viewed as an explicit specification of

conceptualizations. Ontologies provide a useful means to facilitate the access and

re-use of knowledge – especially in multi-actor environments (Gruber, 1991). The

use of an ontology allows agents to have a shared understanding of certain

concepts inherent in the MAS, and specifies which type of manipulation and

reasoning can be performed on them (Paolucci and Sacile, 2005).

Nikraz et al. (2006) explain that the interaction between agents, sharing a

common ontology, depends on three interpretations: Concepts, Predicates and

Actions. Concepts are structured templates for the exchange of complex

information regarding entities in the agent environment. These templates then

have slots to specify the necessary information needed for the interaction. The

Stellenbosch University http://scholar.sun.ac.za

16

example of an address as a Concept, with the required slots, can be shown as

follows:

Address:

 City (String)

 Street (String)

 Number (Int)

Entities within an environment are typically connected by means of relations.

These relations can then also be complex structures which are defined by

templates. These templates, which specify the relations between entities, are

called Predicates. The Predicates contain slots to specify the entities that are

related. An example of a Predicate, as implemented in the scheduling of an

appointment, is as follows:

IsScheduled:

 What (Meeting)

 Where (Address)

 When (Scheduled Time)

Lastly, the actions that agents can perform must be represented by complex

descriptions. These descriptions are contained in structured templates called

Actions. As with the other templates, Actions also contain slots for specifying the

information involved in performing the action. The Action template is shown

below, where an agent must contact the attendee of a meeting:

ContactAttendee:

 Number (Int)

 Email (String)

2.4.5 Advantages of MASs

MASs hold several advantages for implementation in RASs. MASs have high

modularity and reconfigurability. The addition or modification of resources can be

achieved by simply inserting a new agent into the system or modifying the

behaviour of an existing agent (Paolucci and Sacile, 2005). Vrba et al. (2009)

recognised that due to its modular and decentralized characteristics, MASs are a

way to reduce complexity and increase flexibility in a system. MASs can allow

the simultaneous production of different products and improve the integration of

legacy equipment (Candido and Barata, 2007). Xie et al. (2007) also recognised

that MASs can respond quickly to dynamic changes in the manufacturing or

assembly environment. Furthermore, agent-based technologies are capable of

dealing with autonomy, distribution, scalability and disturbance (Bi et al., 2008).

The distributed and redundant nature of agent-based control systems minimizes

the effect of local failure on the overall functionality of the system (Vrba and

Marik, 2009). This is also confirmed by simulations performed by Lepuschitz et

al. (2009), showing that agent-based control is “extremely robust against

disturbances of machines, as well as failure of control units”.

Stellenbosch University http://scholar.sun.ac.za

17

2.4.6 Implementations of MASs

There have been several practical implementations of agent-based control. The

ADACOR architecture (described in section 2.3.3) was implemented on a test

production system, using multi-agent technology, by Leitao and Restivo (2008).

The production system consisted of a manufacturing cell, an assembly cell, a

storage and transportation cell and a maintenance and setup cell. The control

system was then integrated with PLCs and PCs (running different software

platforms), various robots and vision sensors and an Automatic Guided Vehicle

(AGV). Candido and Barata (2007) implemented a multi-agent control system for

the NovaFlex shop floor assembly case study. The NovaFlex system is composed

of two assembly robots, an automatic warehouse and a transport system

connecting all the modules. DaimlerChrysler‟s Production 2000+ project

implemented an agent-based control system for a flexible cylinder head

production system. This production system is composed of modules, each

consisting of a CNC machine, three conveyors, two switches and a shifting table

(Marik et al., 2010). Marik et al. (2010) also reported an agent-based control

solution which added flexibility to a steel rod bar mill for BHP Billiton. A multi-

agent control system was also implemented in the holonic packing cell of the

Centre for Distributed Automation and Control (CDAC) at the University of

Cambridge.

Even though there have been several test cases and some industrial

implementations, the manufacturing and assembly industry is still hesitant to

apply agent-based technologies. Candido and Barata (2007) give four reasons for

this hesitation and a fifth is mentioned by Marik et al. (2010):

 A paradigm misunderstanding still exists due to a lack of practical test

cases.

 Members of the industry are still unaware about the changes in modern

manufacturing and assembly requirements.

 There is a lack of experience in agent-based technology by actual system

integrators.

 There is a pioneering risk involved in investing in an unproven

technology.

 The unpredictability of emergent behaviour in agent-based systems

complicates the quantitative comparison to other technologies.

2.5 IEC 61499 Function Block control
The IEC 61499 standard specifies a framework for distributed and embedded

control using function blocks. The ability to control distributed systems, makes

this approach a candidate for use in reconfigurable systems.

2.5.1 The IEC 61499 standard

The IEC 61499 standard is a successor to the IEC 1131 standard, which later

became IEC 61131. The IEC 1131 standard is aimed at control applications in

PLCs. The standard provides specifications ranging from PLC programming to

the fieldbus communication of applications in PLCs. The standard is divided into

Stellenbosch University http://scholar.sun.ac.za

18

several parts dealing with the various aspects concerning PLCs. The IEC 61131-3

part of the standard deals with the programming of PLCs. According to

Lewis (1998), this part of the standard aims to improve the following aspects of

PLC programming:

 Capability of a system to perform its intended design functions.

 Availability of a system during its life cycle when it is available for its

intended design functions.

 Usability, which indicates the ease with which a specified set of users can

acquire and exercise the ability to interact with the system in order to

perform its intended design functions.

 Adaptability, which refers to the ease with which a system may be

changed in various ways from its initial intended design functions.

The IEC 61131 standard has had implied limitations when dealing with complex

computations, knowledge processing, advanced network messaging and service

orientation (Vrba and Marik, 2009). The IEC 61499 standard addresses these

limitations and extends the IEC 61131 standard by adding event-driven execution.

The IEC 61499 standard was also developed, according to Rooker et al. (2007), to

address the following shortcomings of its IEC 61131 predecessor:

 Non-deterministic switching points – this is due to the cyclic execution

policy which is implemented by the IEC 61131 standard.

 Lack of task level granularity
1
 complicates communication and re-

initialization.

 Jittering effects – a change in one system task influences the other tasks in

the system.

 The possibility of entering inconsistent states during system

reconfiguration, which may lead to deadlocks.

The IEC 61499 standard is then a developed set of specifications for distributed

processes and control systems (Wang et al., 2007). Black and Vyatkin (2009)

mention that the IEC 61499 standard “provides an architectural framework for the

design of distributed and embedded control systems” and has “undoubted

advantages concerning distributed automation” (Vrba et al., 2009). The IEC

61499 standard defines a component-based modelling approach using function

blocks. The standard enables the development of new technologies which aim to

reduce design efforts and enhance reconfiguration. The goal of the IEC 61499

standard is “to offer an encapsulation concept that allows the efficient

combination of legacy representation forms (such as ladder logic) with the new

object and component-orientation realities” (Vyatkin, 2007). The IEC 61499

standard uses a bottom-up approach in implementing decentralized control. This

approach then starts at the shop floor level, where it effectively prepares for the

distributed placement of holons (Paolucci and Sacile, 2005). The requirements for

1
 Presumably the extent to which control programs can be subdivided into smaller modules.

Stellenbosch University http://scholar.sun.ac.za

19

holonic control are thus inherent in the IEC 61499 specification (Black and

Vyatkin, 2009).

The function block of the IEC 61499 standard can be understood as an abstraction

that represents a component. This component can be implemented and controlled

by the function block software (Vyatkin, 2007). The function block concept is

applicable to the data encapsulation and adaptive process plan execution involved

in the assembly or manufacturing processes. The event-driven model of the

function blocks then adds intelligence and autonomy to the resources of the

system, increasing its decision-making ability (Wang et al., 2007).

2.5.2 Advantages of function block control

Function blocks provide an advance from established ladder logic and structured

text programming languages, but its application extends past the simple

replacement of these systems. This is due to the inherent support for distributed

applications and the ability to provide a modelling and simulation platform with

well-defined interfaces (Black and Vyatkin, 2009). Rooker et al. (2007) mention

that the distributive properties of IEC 61499 function blocks hold several

advantages. The programmed function block networks are directly mapped to the

real system controllers and devices, where the execution takes place. This

facilitates the movement of functionality amongst controllers and devices. This

support of distribution then also facilitates the implementation of component-

based information. Another benefit of using the IEC 61499 function blocks is that,

as a modeling language, it is directly executable and is thus ready for simulation.

This allows the testing of the control system prior to deployment. This simulation

model can then be seamlessly substituted by the hardware interface to real sensors

and actuators. The use of function blocks also greatly increases the modularity of

the system and enables the reusability of software components in the system

(Black and Vyatkin, 2009). Function blocks also have a robust character which

makes it appropriate for implementation in the broader embedded systems domain

(Vyatkin, 2007).

2.5.3 Platforms for function block control

There exists a few platforms and tools for the design of function block control

systems. The Function Block Development Kit (FBDK) is the most widely-used

design platform (Black and Vyatkin, 2009). The model-view-control design

pattern for function blocks is also applied in FBDK. This platform also includes

the Function Block Run-Time (FBRT) environment. The entire platform is based

on Java programming structures. Another commercial support tool is that of the

ISaGRAF industrial control design software, which can also support the IEC

61499 function blocks (Black and Vyatkin, 2009).

2.5.4 Implementations of IEC 61499 function block control

Due to the predominant presence of the IEC 1131-3 standard in industry and

relatively recent development of the IEC 61499, it has seen very few practical

implementations. IEC 61499 function block control was implemented in the

automation of a baggage handling system by Black and Vyatkin (2009). Vyatkin

Stellenbosch University http://scholar.sun.ac.za

20

(2007) describes the first factory installation of an IEC 61499 function block

control system by Tait Control Systems in New Zealand.

Stellenbosch University http://scholar.sun.ac.za

21

3. Case study description
This thesis uses, as a case study, the control system of the feeder subsystem

hardware of the experimental RAS at the Department of Mechanical and

Mechatronic Engineering at Stellenbosch University. The RAS is an automated

implementation of the spot-welding process involved in the production activities

of CBI Electric.

3.1 Product description
A complete trip switch assembly, as produced by CBI Electric, consists of several

sub-assemblies. The experimental RAS of this research was set up to produce one

of these sub-assemblies, which consists of six parts that are attached through a

spot-welding process. The sub-assembly is shown in Figure 4. The sub-assembly

consists of six parts: the moving contact, the coil, the load terminal, the handle

frame assembly and the long and short pigtails. The five spot-weld points are

encircled.

Figure 4: The case study sub-assembly with the spot weld points indicated.

3.2 System overview
The case study used in this research contributes to the development of an RAS for

an automated spot-welding process. The experimental RAS consists of four

subsystems: the transport subsystem, the storage subsystem, the feeder subsystem

and the welding subsystem.

The transport subsystem uses a modular conveyor system to move pallets to

designated stations. These pallets are stored in the storage subsystem. The storage

subsystem utilizes a large pallet magazine which can store, dispense and retrieve

pallets. Different fixtures, for the various system products, are mounted on these

pallets. The pallet magazine can store three different pallet types (according to the

mounted fixtures) separately. The pallet magazine can then dispense or retrieve a

specified pallet to or from the appropriate storage area.

The welding subsystem uses a three-axis Cartesian robot fitted with a simulated

welding head. This robot manipulates the welding head to simulate the spot-

welding process required to produce the sub-assembly of this case study.

LOAD

TERMINAL

SHORT

PIGTAIL

COIL

MOVING

CONTACT

HANDLEFRAME

ASSEMBLY

LONG

PIGTAIL

Stellenbosch University http://scholar.sun.ac.za

22

The removal station shares the services of the pick-„n-place robot of the feeder

subsystem. The robot removes the completed sub-assemblies from the fixtures

and places them in an output bin. In the case of defective sub-assemblies, the

robot removes the parts individually and places them in a recycling bin.

The feeder subsystem is described in detail in section 3.3. The layout of the

experimental RAS is shown in Figure 5.

Storage station Welding station

Feeding station Removal station

CONVEYOR

Figure 5: Schematic layout of the experimented RAS.

3.3 Feeder subsystem
The feeder subsystem is responsible for the loading of individual parts, which

make up the sub-assembly, onto the transport subsystem. The parts are placed in

fixtures which are mounted on the pallets of the conveyor system. The feeder

subsystem consists of several singulation units (SUs) or part magazines and a

pick-„n-place robot. The layout of the feeder subsystem is shown in Figure 6 and

Figure 7.

ROBOT

CONVEYOR

SU

SU

SU

SU

Figure 6: Schematic layout of the feeder subsystem.

Stellenbosch University http://scholar.sun.ac.za

23

Figure 7: Hardware of the feeder subsystem.

3.3.1 Singulation units

The function of the singulation units (or sometimes referred to as feeders) is to

present a single part – to be picked up by the pick-„n-place robot – from bulk

container. The parts must be presented in a collectable pose, i.e. the parts must be

in an orientation in which the robot can pick them up and place them in the

fixture. This process can be described as singulation.

The singulation unit used in this case study is based on the “stepped-conveyor”

concept – it is shown in Figure 8. The singulation unit has a conveyor belt, fitted

with scoops, which pick up individual parts from its input bin. At the top of the

conveyor cycle, the individual parts fall through a gateway mechanism which

channels the parts to either the presentation platform or the rejection shoot. The

singulation unit is fitted with a camera for the detection and inspection of

presented parts. When in operation, the camera continuously checks the

presentation platform for the presence of a part. When a part is presented, the

camera sends feedback to the subsystem controller to change the direction of the

gateway mechanism (so that parts are channelled to the rejection shoot). After a

part is detected, the camera performs an inspection to determine whether the part

is in a collectable pose. If the part cannot be picked up by the robot, or multiple

parts are present, the platform is lowered and the part(s) are rejected back to the

bin. In the case of a collectable part, the camera responds to the control program

with the pickup coordinates. The presentation platform is then lifted to a level

above that of the camera – this is to ensure that there will be no interference

during the pickup action of the robot.

Robot

SU

Conveyor

Stellenbosch University http://scholar.sun.ac.za

24

Figure 8: Stepped-conveyor singulation unit.

The conveyor of the singulation unit is driven by an AC motor. The torque is

transmitted through a timing belt to the conveyor pulleys. The gateway

mechanism uses a pneumatic swivel unit – this actuator causes the rotation of a

deflector plate. The motion of the presentation platform is provided by a guided

linear pneumatic cylinder. The position of the platform is monitored by using two

proximity switches – one for the home position (the position of the platform when

awaiting parts from the conveyor) and one for the rejection position (the position

of the platform when a part is rejected). The rejection action of the presentation

platform is done by tilting the platform as it is lowered. The platform is attached

to the cylinder through a pivot support. A tilt pin is mounted beneath the platform

to force tilting as the platform is lowered.

The actuators of the singulation unit are controlled via the digital outputs of an

Eagle µDAQ-lite device. The 5V digital outputs of this device are used to switch

the relays of an Eagle relay board, to which the actuator inputs are connected. The

digital outputs of the DAQ device control the motor, the direction of the gateway

mechanism and the motion of the guided cylinder. The digital inputs of the DAQ

device are used to read the status of the proximity switches, thus monitoring the

position of the guided cylinder.

3.3.2 Part magazines

Since the singulation units were still under development, several part magazines

were designed and manufactured to allow for the complete production simulation

of the feeder subsystem. These part magazines present parts for pickup at

predefined coordinates. The parts are placed into the magazines manually.

Motor

DAQ

Relay

board

Motor

controller

Belt

scoop

Camera

Presentation

platform

Guided

cylinder

Input

bin

Gateway

mechanism

Stellenbosch University http://scholar.sun.ac.za

25

Part magazines were designed and manufactured for the load terminal, short and

long pigtail, handle frame assembly and moving contact parts (shown in Figure 9).

The part magazines are specific to their respective parts. The parts are held in

position by several supports, which constrain the parts in all the degrees of

freedom. The moving contact, handle frame assembly and load terminal parts are

held in position by dowel pins. The long and short pigtails are placed in the

manufactured grooves on the part magazine.

(a) (b)

(c) (d)

Figure 9: Part magazines for the (a) moving contact, (b) handle frame

assembly, (c) load terminal and (d) long and short pigtail parts.

3.3.3 Camera

The feeder subsystem requires the installation of a camera to obtain the

coordinates of parts presented by the singulation units. The position of the camera

is shown in Figure 10. The camera performs inspections which return the

coordinates of the part pickup position. These coordinates are used by the robot to

pick up the parts and place them in the fixtures. A DVT Legend 530 series camera

was mounted on the singulation unit.

The camera is accompanied by DVT Intellect software which is installed on a PC.

The connection between the camera and the PC is done over an Ethernet

connection. This software is used to set up the machine vision inspection, using

built-in functions and customized script programs, and loading the setup into the

flash memory of the camera. The use of the DVT Intellect software is described in

section 5.2.

Stellenbosch University http://scholar.sun.ac.za

26

Figure 10: The camera mounted on the singulation unit.

3.3.4 Robot

The pick-„n-place robot of the feeder subsystem is used to pick up parts from the

singulation units and part magazines, and place them in their appropriate fixture

positions. The robot is fitted with a pneumatic gripper equipped with customized

gripper fingers. The pickup coordinates of the parts presented by the singulation

units are passed on to the robot from the camera inspection.

The feeder subsystem is equipped with a six degree of freedom, articulated

KUKA KR16 robot (shown in Figure 11) for all pick-„n-place actions. The robot

is accompanied by a controller, which uses an industrial PC with a Windows XP

operating system. The robot motion can be controlled either through a control

pendant or by customized programs developed in the KUKA Robot Language

(KRL) software platform. The latter was predominantly used in the motion

programming of the robot. The KRL control software has several built-in

functions to accommodate and simplify the calibration and motion programming

of the robot. The controller is also equipped with a serial communication port,

with built-in functions to send and receive information. The robot is not equipped

with any analogue outputs, which means that the gripper tool must be controlled

by an external source.

Two useful functions included in the KUKA control are that of tool calibration

and workspace definition. These functions contribute greatly to the

reconfigurability of the feeder subsystem, as they ease the change of gripper

components and the positional recalibration after the relocation of subsystem

hardware components. The steps involved with performing these functions are

presented in Appendix E.

Stellenbosch University http://scholar.sun.ac.za

27

Figure 11: Robot with axis movement indicated (KUKA Robot Group, 2007).

A gripper is required to pick up and place the parts in the operation of the feeder

subsystem. A plate, on which a pneumatic gripper is mounted, is attached to the

tool interface of the robot. The gripper, as it is mounted on the robot, is shown in

Figure 12. The control valve of the gripper is also mounted on the attachment

plate.

Figure 12: The gripper as it is mounted on the robot.

The gripper is equipped with two custom-designed fingers for the effective

picking and placing of the sub-assembly parts. The fingers are designed to be

large enough to ensure a sufficient gripping area, but small enough to allow for

gripping inside some of the parts. The design allows for parts to be picked and

placed in different orientations. The fingers are also designed to minimize the

potential interference of the gripper with the parts, part magazines and the

fixtures. The gripper fingers are machined from stainless steel, which allows the

Stellenbosch University http://scholar.sun.ac.za

28

fingers to withstand the fatigue demand of the gripping actions. The detail design

of the gripper is presented in Appendix B.

3.3.5 Fixture

A fixture was designed to keep the parts in their specified positions during the

welding and transport activities. The fixtures were mounted on the pallets of the

transport system, as shown in Figure 13.

The fixture was designed to be modular. The support of the individual parts is

done by interchangeable support components, which are attached to a base plate.

The base plate is then mounted onto the conveyor pallet. The base plates were

used to add fixture modularity and to minimize the number of holes to be made in

the conveyor pallet. The standard interface between the base plate and the pallet

allows for the interchanging of base plates, and thus fixtures. The fact that the

support components can be removed from the base plate means that base plate

fixtures can be adjusted to allow for other types of sub-assemblies, and that the

components can be re-used on other base plates in the construction of new

fixtures. A change in the type of sub-assembly can thus be accommodated by

installing the appropriate supports on the appropriate base plate.

The fixture was designed to be used without the aid of a clamping mechanism

(which secures the parts during the welding process). This was achieved by

changing the orientation of the welding process from the vertical plane to

horizontal plane, i.e. instead of having the welding electrodes weld from above

and below, they weld from the sides of the fixture. The sub-assembly is then fixed

in the upright position, allowing the individual parts to be located by the supports

against any movement in the horizontal plane. This independence of a clamping

mechanism improves the reconfigurability of the fixtures, since a change in the

fixture supports does not entail the changing of a clamping mechanism as well.

The supports were designed to simplify the feeding and welding processes by

allowing easy entrance for both the gripper fingers and the welding electrodes.

The supports for the pigtail parts are designed with slots for the gripper fingers –

this allows the pigtails to be placed securely into the supports. The supports are

spaced from one another where clearance was needed for the welding electrodes.

The placement and welding of the individual parts are depicted in Appendix C.

To allow for the stacking of pallets on top of each other in the pallet magazine, the

fixture design included four columns at the base plate corners. These columns

press against the bottom of the stacked pallet on top, giving enough clearance to

provide for the fixture supports and the pallet RFID tag. The columns are

chamfered at the top to allow for the easy alignment during the stacking process.

Stellenbosch University http://scholar.sun.ac.za

29

Figure 13: The fixture mounted on a pallet.

3.4 Development and testing of the singulation unit

The stepped-conveyor singulation unit (mentioned in section 3.3.1) is the

Stellenbosch research group‟s second research concept for reconfigurable feeders.

The initial design of the singulation unit was done by Poletti (2011), but further

refinement was required to get the machine to a working state. These refinements

are as follows:

 The input bin was redesigned to allow for the effective scooping of parts.

The design had to maximize the potential singulations by the scoops – the

number of parts in the bin, along with their position and movement, were

the main design considerations.

 The design of the scoops (steps) which are attached to the conveyor belt

was refined to increase the effectiveness of the scooping of parts.

Experimentation was done concerning the size and shape of the scoops,

which affect the frequency of successful singulations from the bin.

 The presentation platform was enclosed in the “home” position (the level

of the platform when awaiting parts from the scoops). Without the

enclosure parts would often slide or bounce off the platform. The

enclosure was designed to ensure parts would remain on the platform,

whilst not impeding the motion of the platform or the inspection of the

camera.

 The PC control of the actuators and sensors was added.

A series of experiments were performed to evaluate the singulation unit in terms

of throughput and reconfigurability – the results are given in Appendix A. The

results of the throughput analysis are summarised in Figure 14. The probability of

achieving a successful singulation is plotted against time, for different speeds of

the conveyor motor (measured in steps per minute, spm). The results show that

the singulation unit performs best at a speed of 63 spm, at which speed there

exists a 90% probability of achieving a successful singulation within 3 seconds.

The graph is a plot of discrete events (as indicated by the markers) and the

Pallet

Column

Base plate

Modular

support

Sub-assembly

part

Stellenbosch University http://scholar.sun.ac.za

30

information is not continuous – the lines connecting the symbols are only shown

to aid the interpretation of the results.

Figure 14: Singulation probability vs. time experimental results for the

stepped-conveyor singulation unit.

A subjective evaluation was also conducted to determine the reconfigurability and

reliability of the concept. The following remarks can be made:

 The scoops of the singulation unit are specific in terms of part size, i.e. the

scoops are able to pick up parts from the bin which are of similar

dimensions to the coils used for most of the experiments. This means that

the scoops will be able to singulate a family of coil parts. For other types

of parts (differing in size and shape), the belt can be replaced with one

having appropriate scoops. Since this is the only part/size specific element

of the design, the singulation unit retains good reconfigurability

characteristics.

 The unpredictability of the pickup action from the input bin reduces the

consistency, and thus the throughput rate, of the singulation unit. A great

deal of refinement to the input bin and the scoops was required to make

the singulation unit work effectively.

 The pickup action of the scoops moving through the input bin causes the

occasional deformation of delicate parts. This may be a prohibitive

problem if the parts in question are subjected to tight tolerances.

 The location of the camera in the current configuration does not allow an

optimal inspection setup. The design requires the camera to be at an angle

to the presentation platform (as opposed to being perpendicular). This adds

complexity to the reliable identification and location of parts, and it

requires longer calibration times during reconfiguration. Reliable machine

vision inspection also requires consistent lighting – this is usually achieved

by housing the camera inside a box. To address these two concerns would

require the addition of further actuators or mechanisms to the singulation

unit.

20

30

40

50

60

70

80

90

100

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

P
ro

b
ab

ili
ty

 o
f

a
su

cc
es

sf
u

l
si

n
gu

la
ti

o
n

 (
%

)

Time (s)

14 spm

21 spm

28 spm

35 spm

42 spm

49 spm

56 spm

63 spm

Stellenbosch University http://scholar.sun.ac.za

31

4. Holonic control architecture
The holonic control approach involves the mapping of the subsystem hardware

and software components to holons. A holon may consist of only a software

component or of both software and hardware components. The mapping of holons

was done according to an adaptation of the ADACOR reference architecture

(described in section 2.3.3). The ADACOR reference architecture was chosen

over PROSA because of two reasons:

1. The ADACOR reference architecture meets the requirements for modern

manufacturing systems and specifically addresses challenges not met by

PROSA. These challenges include the formal specification of the dynamic

behaviour and the achievement of global optimization of holonic systems.

2. A successful and comprehensive implementation was done by Leitao and

Restivo (2008) using ADACOR in a similar experimental RMS.

The ADACOR reference architecture had to be adapted for implementation in the

feeder subsystem. This adaptation was required due to the level of architecture

implementation. The entire feeder subsystem would be mapped to one

Operational holon (OH) according to Figure 3, since ADACOR is conventionally

implemented at system level. The greatest adaptation is noticeable in the Product

holon – the Product holon of the feeder subsystem merely accesses received

product information, as opposed to being the primary structure for the storage of

system product information.

The implementation of the ADACOR reference architecture was done to increase

the reconfigurability of the feeder subsystem control. The decision is motivated by

the inherent advantages of ADACOR regarding modularity and the reduction of

system complexity.

In accordance with the ADACOR reference architecture, the parts of the feeder

subsystem were mapped to a Supervisor holon, Product and Task holons and

Operational holons. These holons are described in the remainder of this section.

The subsystem contains the following Operational holons: Singulation unit,

Camera, DAQ and Robot. Except for the Singulation unit holon, all the

Operational holons comprise hardware and software components. This means that

the holons consist of the physical hardware entity, as well as the accompanying

software control entities. As an example, the structure of the robot holon is

depicted in Figure 15. The structure shows the division of the software entity into

Higher Level Control (HLC) and Lower Level Control (LLC) – these control

levels are discussed in sections 5 and 6. The Singulation unit holon, on the other

hand, consists of only a software entity, since it only coordinates the actions of the

other Operational holons.

Stellenbosch University http://scholar.sun.ac.za

32

Figure 15: Schematic representation of a holon consisting of both software

and hardware entities.

The information of every product to be produced by the subsystem is sent by the

Cell Controller (CC) to the feeder subsystem, where it is stored locally. The

retrieval and interpretation of this information is mapped to a Product holon

specific to the product. The Product holon has access to the information regarding

the coordination of subsystem tasks, along with the necessary coordinate and part

data to be used in performing them. The creation of a Product holon for each

product was done due to initial considerations of containing all the product

information within the subsystem. When the product information is contained

only in the CC, the information regarding all the products could be handled by

one generic Product holon.

Each task that the subsystem can perform is mapped to a Task holon. The Task

holons possess the necessary information and decision-making functionality to

coordinate the actions of the Operational holons to perform a specified task. For

example, a Task holon is created for the control of picking up a specific part from

the singulation unit and placing it into the appropriate fixture position – it thus has

to control the functions of the singulation unit, camera, DAQ and robot holons.

Finally, the ADACOR reference architecture requires the addition of a Supervisor

holon. This holon consists of only a software entity, which has the information

and capability required to coordinate the other holons in the subsystem to perform

a desired sequence of actions. The Supervisor holon also interfaces with the

control of the other subsystems.

Stellenbosch University http://scholar.sun.ac.za

33

5. Lower Level Control and interfacing
As shown in Figure 15, holons contain a Lower Level Control (LLC) layer for

interfacing and controlling their hardware component. LLC programs were

developed to control the subsystem hardware, or interface with the hardware-

specific control programs. The LLC programs also have a communication

interface with the Higher Level Control (HLC) programs. This intermediate layer

was included to reduce the complexity of the HLC programs by separating it from

the hardware interfaces.

The LLC programs communicate with the HLC programs through TCP/IP sockets

in XML (eXtensible Markup Language) format. The LLC programs act as the

servers to the sockets and the HLC programs then connect as clients. Both control

levels are equipped with XML building functions, to construct messages, and

XML parsing functions, to extract message information. The LLC programs

receive commands from the HLC programs, perform the desired hardware actions

and then respond with completion messages.

The LLC programs were developed in the Microsoft Visual Studio C# platform.

The C# platform was chosen because of its robustness and ease of use –

specifically in accommodating communication through TCP/IP and serial RS232.

C# was chosen as opposed to Java (in which the HLC programs are programmed)

because of two reasons:

1. The Java library for supporting serial communication (such as RS232) has

not been updated since 2006 and has been criticised by software

developers for its unreliability. On the other hand, C# is renowned for its

reliability – especially due to its use of the .NET framework.

2. Since C# is commonly used for lower level PC-based control, drivers for

hardware devices are more easily available. This was the case for the

Eagle DAQ device.

The XML standard was chosen due to the following advantages (as mentioned by

Exforsys Inc. (2007)):

 XML is a text-based language. This means that the messages are readable

by humans, which allows for easy understanding and debugging by the

software developer.

 XML is extendable. The specification allows for the unrestricted creation

of customized message tags.

 XML is platform, system and vendor independent – this is very beneficial

when used in distributed applications.

5.1 DAQ LLC
The DAQ LLC program directly controls the functions of the Eagle µDAQ-lite

device (using the device driver) via the USB interface. The actions of the

singulation unit components (guided pneumatic cylinder, pneumatic swivel unit,

AC motor and proximity switches), as well as the robot gripper, are controlled by

Stellenbosch University http://scholar.sun.ac.za

34

setting the digital outputs and reading the digital inputs of the DAQ device. The

functionality of the DAQ LLC program is illustrated in Figure 16.

The DAQ LLC program starts by initializing the required variables and then

creating a TCP/IP socket. The DAQ LLC program acts as server to the socket,

while the HLC program connects as a client. Upon connection, the DAQ LLC

program receives a command from the HLC program in the format of an XML

string. This string is then parsed to extract the command information, which will

be used to trigger the appropriate DAQ function. After the desired function is

performed, a confirmation message is compiled in the form of a XML string. This

message is sent to the HLC program through the TCP/IP socket. The socket

connection is then closed and the next connection of the HLC program is awaited.

The command received by the DAQ LLC program entails an integer number to

which a predefined DAQ function is allocated. The number is extracted and, by

means of a switch function, the desired function is triggered. The functions are

implemented in the form of methods. The methods which directly access the

digital outputs and inputs are summarized in Table 1.

Table 1: The DAQ LLC methods and the respective DAQ control functions.

Method DAQ function Control action

startMotor() Starts the conveyor motor. Write to digital outputs.

stopMotor() Stops the conveyor motor. Write to digital outputs.

liftPlatform() Switches the valve port to

initiate upward motion of the

guided cylinder.

Write to digital outputs.

lowerPlatform() Switches the valve port to

initiate downward motion of

the guided cylinder.

Write to digital outputs.

stopPlatform() Switches both valve ports on to

stop the motion guided

cylinder.

Write to digital outputs.

openGripper() Switches the valve port to open

the gripper fingers.

Write to digital outputs.

closeGripper() Switches the valve port to

close the gripper fingers.

Write to digital outputs.

readSensor() Monitors the switching of the

proximity sensors.

Read digital inputs.

Stellenbosch University http://scholar.sun.ac.za

35

Begin

Declare and initiate
variables

Create TCP/IP
socket as server

Connection from
HLC client?

Receive data string
from HLC program

Parse string for
required

information

Select and perform
appropriate DAQ

action

Continue
operation?

End

Send response to
HLC program

Close TCP/IP socket

NO

NO

YES

YES

Figure 16: Flow diagram of the DAQ LLC functionality.

These methods are combined to accomplish more complex functions. The method

homePlatform() returns the presentation platform to the “home” position (the

level at which the presentation platform can receive parts from the conveyor). The

current position of the presentation platform is stored in a local variable. This

variable is checked to determine whether the platform should move upwards or

downwards. The motion is initiated by calling either the lowerPlatform() or

Stellenbosch University http://scholar.sun.ac.za

36

liftPlatform() methods. The digital inputs, indicating the status of the proximity

sensors, are then continuously monitored using the readSensor() method. When a

change in the digital input is received (indicating that the platform is at the

“home” level), the stopPlatform() method is called to stop the actuator motion.

The method rejectPlatform() causes the presentation platform to be lowered to

the “reject” position (the position where the platform is tilted and the parts slide

down the rejection shoot), stop and return to the “home” position. This action is

accomplished by calling the lowerPlatform() method to initiate downward

movement. The digital input, connected to the proximity sensor which indicates

the “reject” position, is continuously monitoring by calling the readSensor()

method in a loop. Upon reaching the “reject” position, the cylinder is stopped by

calling the stopPlatform() method. The homePlatform() method is then

immediately called to return the platform to the “home” position.

Functions such as switching the motor on or off, opening or closing the gripper

and changing the direction of the gateway actuator are purely controlled through

the digital outputs of the DAQ device.

5.2 Camera LLC
The camera LLC has two parts: the PC-based C# LLC program and the DVT

Intellect inspection control. The LLC program handles communication between

the HLC and the camera, while the DVT Intellect inspection control controls the

camera actions.

5.2.1 Inspection control

A machine vision inspection was set up for the camera using DVT Intellect

software. A background script program, which runs continuously, handles the

communication with the C# LLC program. This background script program also

coordinates the camera inspections. A unique inspection was set up for every part

to be singulated – this set-up is referred to as an inspection product. These

products implement several built-in image processing software sensors and

custom foreground script programs to determine the inspection result and to

extract the necessary inspection information.

A background script program was created to monitor and execute certain

functions continuously, without disrupting any triggered inspections – the flow

diagram is shown in Figure 17 (a). The background script program connects as a

client to the TCP/IP socket created by the C# LLC program. The command and

part ID is passed on to the background script program in the form of a byte array.

The elements of the array are then checked to determine that the command is

indeed to inspect a part, and the appropriate inspection product is selected. The

part ID is used to select the inspection product – this is done using the

prod.Select() function. The background script program then triggers the

acquisition of an image and the succeeding inspection by the specified inspection

product – this is done by using the function SetInputs() to set the trigger bit in the

registers of the camera. With the inspection triggered, the background script

Stellenbosch University http://scholar.sun.ac.za

37

program waits for the softsensors and the foreground script program of the

selected inspection product to finish the inspection. The foreground script

program indicates the inspection completion by setting a bit in a specified register

– this bit is checked by the background script program through the

RegisterReadByte() function. The foreground script program stores the inspection

result string in a specified register - the background script program then reads the

string from the register and replies to the LLC program via the TCP/IP socket.

Unless the inspections are manually stopped, the program awaits the arrival of the

next command from the LLC program.

A foreground script program was included in the inspection product to generate an

inspection result from the softsensor data. The program is triggered with each

inspection, after all the softsensors have completed their analysis – the flow

diagram is presented in Figure 17 (b). The foreground script program first

declares and initiates all the variables to be used for the temporary storage of data.

The first step is to determine if only one part is present on the presentation

platform. This is done by evaluating the number of blobs detected by the blob

identification softsensor. If more than one part is detected, a FAIL message is

constructed and stored to the result register. With only one part present, the

program now checks if the part was sufficiently identified by the feature detection

softsensors. This entails the storage of the softsensor results to variables in an

array and then evaluating the results in a loop. If none of the softsensors could

sufficiently identify the part, a FAIL message is generated. Otherwise, the best

identification must be determined by comparing the matching scores (relative to

the learned models) of the softsensors. The coordinate results from the softsensor

with the best identification are now transformed to the physical coordinates of the

platform. This coordinate set is included in the generated PASS result, which is

stored in the result register. The foreground script then indicates the completion of

the inspection by setting a specified bit in a register using RegisterWriteByte().

The foreground scripts evaluate the data which is gathered by several softsensors

in order to determine the inspection result. Each inspection product implements a

different set of softsensors, according to the part that is being inspected. The

inspections make use of edge detection, blob identification and feature location

softsensors. The implementation of each softsensor is described in the following

paragraphs.

The inspection product which is responsible for detecting the presence of a part on

the platform implements “along a line” edge detection softsensors. These

softsensors use differences in pixel intensity to detect edges, along a defined

straight line through the image. The difference in contrast between the white

background of the presentation platform and presented parts allows these

softsensors to detect a part (by detecting an edge in the image). The inspection

implements six of these line softsensors, so as to detect a part in every position on

the presentation platform – the inspection setup is shown in Figure 18. This

approach was selected because of the speed and robustness of the edge-detecting

line sensors. The speed of the softsensor is an especially important measure, as the

Stellenbosch University http://scholar.sun.ac.za

38

feedback from the inspection has to be quick enough to stop the singulation unit

conveyor before multiple parts are delivered to the platform. The accumulated

processing time required by all six line softsensors is less than implementing an

alternative blob detection softsensor over the platform area. The edge detecting

softsensors are also more robust against changes in light intensity than the blob-

detecting alternative.

Begin

Set trigger
mode to

“internal”

Connect to
TCP/IP socket

Connected to
socket?

Receive data
string from LLC

program

Select
inspection

product

Trigger image
acquisition and

inspection

Inspection
complete?

Retrieve
inspection

results

Send inspection
results to LLC

program

Continue
inspections?

End

YES

NO

YES

YES

NO

NO

Begin

Only one part present
on platform?

Store softsensor
results

Was part
successfully
identified?

Select softsensor
data with the best

match score

Transform data to
platform

coordinates

Construct
inspection PASS

string

Write result string
to register

Indicate inspection
completion

End

Construct
inspection FAIL

string

NO

NO

YES

YES

 (a) (b)

Figure 17: Flow diagrams of the (a) background and (b) foreground script

programs.

Stellenbosch University http://scholar.sun.ac.za

39

Figure 18: The setup of the inspection product for detecting parts on the

presentation platform.

The inspection product for locating a coil part on the platform implements several

types of softsensors. These softsensors have to gather information regarding:

 The number of parts present on the presentation platform.

 The identification of the part.

 The coordinates of the pickup position of the part.

The number of parts present on the platform is evaluated by a blob detection

softsensor over the platform area. Blob detection involves the grouping of pixels

of similar intensity into so-called “blobs”. The intensity, size and shape of these

blobs can then be analysed. Parts on the platform will thus appear as blobs, of

which the number is counted. The blob detection softsensor was selected above

the feature locating softsensor for two reasons. Firstly, the blob detection

softsensor requires less processing time and, secondly, there is no need to extract

details such as the part shape or position at this stage. The implementation of the

blob detection softsensor is illustrated in Figure 19.

The part on the platform is identified by an object location softsensor. This

softsensor searches for a learned model (a predefined pattern) in the image.

During the setup of the inspection, an image of the part is used to calibrate the

softsensor – the outline (perimeter) of the part is extracted and taught to the

softsensor. The softsensor then scans the pixels in the image in search of this

outline pattern. The perimeter of the part on the platform is compared to this

model and the degree of similarity is calculated as a “match score”. A higher

match score indicates greater pattern similarity. The object locating softsensor

was chosen over its blob detection counterpart because it extracts more detail and

is more robust to changes in light intensity.

Stellenbosch University http://scholar.sun.ac.za

40

Figure 19: The implementation of the blob detection softsensor.

This inspection product requires the implementation of eight different object

locating softsensors. This is due to the fact that the camera is positioned at an

angle to the platform (as opposed to directly above). The angle causes the

obscurity of part detail in the image with angular rotation of the part, as shown in

Figure 20. This means that the shape of the part will be different to that of the

learned model, causing the softsensors to not identify the part. The angular

rotation of the part also causes a change of part shape (in terms of length and

width) in the image – this is also noticeable in Figure 20. Multiple softsensors,

each with a different learned model, is thus necessary to identify the part in any

rotational position. Four softsensors were implemented, each with a learned model

of the part at 0°, 90°,180° and 270° respectively. The coils could also have two

possible orientations – the normal orientation or the flipped-over orientation

(shown in Figure 21). Another set of four softsensors were implemented to

identify the part when it is in the flipped-over orientation. It is thus clear that

having the camera at an angle to the platform quadruples the number of object

locating softsensors and the accompanying processing time required for

identifying the coil parts. This situation is compared to one where the camera is

positioned above the platform in Figure 22.

Stellenbosch University http://scholar.sun.ac.za

41

 (a) (b) (c)

 (d) (e)

Figure 20: The obscurity of part features with angular rotation: (a) 0°,

(b) 45°, (c) 90°, (d) 135° and (e) 180°.

Figure 21: The coil parts in the two possible orientations.

 (a) (b)

Figure 22: Variation in inspection results between having the camera at an

angle (a) and having the camera directly above (b).

Stellenbosch University http://scholar.sun.ac.za

42

The object location softsensors also return the coordinates of the part pickup

position. The desired pickup position is calibrated along with teaching the part

model. The softsensor automatically locates the centroid of the model – the

pickup position is calibrated by means of an offset to the centroid. Along with this

coordinate offset, the pickup angle can also be specified – the softsensor can thus

return the X-, Y- and Z-axis pickup coordinates, along with the pickup angle.

Initially, the coordinates are returned relative to the origin of the image, and not

the origin of the platform in the real world coordinate system. This problem was

solved by using two edge detection softsensors which locate the origin of the

platform in the image. The edge detection softsensors were implemented instead

of pre-programming the origin coordinates – this was done to ease the

recalibration of the inspection after a reconfiguration and to continuously monitor

the position of the presentation platform during operation. The position of the

platform origin is then used in the foreground script program to give the pickup

coordinates as an offset from the platform origin.

The coordinates must be transformed to the real world coordinate system, so that

the robot can accurately pick up the part. The coordinate transform was done

using a standard DVT calibration grid (an asymmetric matrix of dots with equal

spacing) and the built-in “coordinate system calibration” tool. The grid was placed

on the presentation platform and an image was acquired. The calibration tool

evaluated the grid to determine the correct transformation and scaling ratios to

relate the pixel coordinates in the image to millimetres in the real world. The

transformation and scaling ratios are then applied to the inspection product,

allowing softsensors to return real world coordinates.

5.2.2 PC control

The camera LLC program handles all communication between the HLC camera

programs and the DVT Intellect script program. When the camera LLC program

receives commands (in XML format) from the camera HLC program, these

commands are parsed and sent to the Intellect script through a TCP/IP socket.

These inspection results are received and compiled into an XML string and passed

on to the HLC program. The functionality of the camera LLC program is

explained in Figure 23.

The camera LLC program declares and initializes the necessary variables at start-

up. This is followed by the creation of a TCP/IP socket for communication with

the camera HLC program. The HLC program connects to the socket as a client.

When the LLC program receives a message from the HLC program, the relevant

information is extracted by parsing the XML string.

The camera LLC program then creates another TCP/IP socket, to which the

camera background script program connects as client. The message information is

now stored as bytes in the command byte array – this array is sent to the camera

background script program. The LLC program awaits the response from the

background script program containing the result of the inspection. This inspection

result is included in an XML string, which is sent to the camera HLC program.

Stellenbosch University http://scholar.sun.ac.za

43

Begin

Declare and
initialise variables

Create TCP/IP
socket to which HLC

program will
connect

Received message
from HLC program?

Parse XML string to
extract information

Create TCP/IP
socket to

communicate with
camera

Construct
command and send

to camera

Received
response from

camera?

Construct XML
string from camera

response

Send XML string to
HLC program

YES

NO

NO

YES

Figure 23: Flow diagram of the camera LLC program.

Stellenbosch University http://scholar.sun.ac.za

44

5.3 Robot LLC
The LLC of the robot consists of two parts: a PC-based C# LLC program and the

KUKA Robot Language (KRL) programs which reside on the KUKA controller.

The roles of these control programs are described in this section.

5.3.1 KRL program control

Several KRL programs were constructed for the low level control of the robot

actions – the code of some programs are included in Appendix E. These programs

are run on the robot controller. The controller has a communication interface with

the controlling PC through a RS232 connection. The KRL programs receive

commands from the PC and perform the appropriate robot actions. The KRL

platform allows for modular programming – programs can call other programs as

subroutines. The functionality of the KRL programs is shown in Figure 24.

Upon start-up of the feeder subsystem, the MAIN() program is run on the robot

controller. The necessary variables are declared and initialised at start-up. The

program then waits for the arrival of a command message (in the form of an

ASCII string) from the robot LLC program. When a message is received, the

command, part and coordinate information are extracted. The appropriate

subroutine is then called according to the part that is to be handled. The

subroutines are part-specific, since the nature of the part, part magazine or

singulation unit affects the motion path and the approach position required for the

operation.

A specific PICKUP_PART() subroutine exists for every part that the robot must

pick up. The subroutine is passed the pickup coordinates, as received from the

LLC program. The subroutine uses this coordinate information to determine the

correct approach position for the robot, i.e. the appropriate position and angle of

the gripper to allow for a successful pickup operation. From this position, the

robot can be moved to the pickup position. When the pickup position is reached,

the subroutine sends a “close gripper” message to the LLC program – this is sent

through the same communication channel as used before. After the HLC

coordinates the DAQ action to close the gripper, the LLC sends a “continue”

message to the controller. The robot is then moved to an intermediate position and

the subroutine returns to the MAIN() program.

The MAIN() continues the operation by calling the PLACE_PART() subroutine.

The appropriate approach position is again determined for the placement

operation. The robot is then moved to the place position, at which point an “open

gripper” message is sent to the LLC. With the opening of the gripper, the part is

placed and the robot is moved back to the home position. The MAIN() then sends

a “done” message to the LLC program and awaits the arrival of a new command

message.

Stellenbosch University http://scholar.sun.ac.za

45

Begin MAIN()

Received
command

string?

Extract message
information

Call PICKUP_PART()
subroutine

Call PLACE_PART()
subroutine

Send “done”
message to LLC

program

Begin

Calculate and move
robot to approach

position

Move robot to
pickup position

Send “close
gripper” message

to LLC program

Move robot to
intermediate

position

End

Begin

Calculate and move
robot to approach

position

Move robot to
place position

Send “open
gripper” message

to LLC program

Move robot to
home position

End

NO

YES

Figure 24: Flow diagram of the KRL programs functionality.

5.3.2 PC control

All communication between the HLC robot program and the robot controller is

handled by the robot LLC program. XML strings are received from the HLC

program – these strings include the command, part type and relevant coordinates.

The command information is compiled into an ASCII string and is sent to the

robot controller via RS232. The working of the robot LLC program is shown in

the flow diagram of Figure 25.

The robot LLC program starts by declaring and initialising the necessary program

variables. The program creates a TCP/IP socket as a server, to which the robot

HLC program will connect as client. With the socket created and a connection

established, the LLC program awaits the arrival of a message from the HLC

Stellenbosch University http://scholar.sun.ac.za

46

program. This received message is in XML format – the built-in C# functions are

used to parse the message for the relevant information.

YES

Begin

Create TCP/IP
socket to which HLC

program will
connect

Received message
from HLC program?

Parse XML string to
extract information

Part to be picked
from SU?

Send part and
coordinate

information to KRL
program

Obtain update
coordinates

according to PM
position

Received response
from KRL program?

Send KRL program
status to HLC

program

Is message task
command?

Send “continue”
message to KRL

program

YES

NO

YES

YES

NO

NO

NO

Figure 25: Flow diagram of the robot LLC program.

Stellenbosch University http://scholar.sun.ac.za

47

The robot LLC program can receive two types of messages – a “task” message

and a “continue” message. The “task” message represents a HLC command for

the robot to perform a task, while the “continue” message indicates that the robot

can continue with the current task. This is required due to the fact that the DAQ

controls the gripper actuation (since the robot does not have on-board digital or

analogue outputs). When the robot reaches a point where the gripper requires

actuation, the LLC program sends a message to the HLC program. When the

desired gripper action was coordinated by the HLC, a “continue” message is sent

to the LLC program.

In the case of a “task” message being received, the robot LLC determines if the

part is to be picked up from a singulation unit (SU) or a part magazine (PM). If

the part is present at a singulation unit, the message coordinates are used. For

parts available from part magazines, the message only specifies the coordinates of

the first part in the magazine. As a part is picked up, the LLC program calculates

an offset. This offset is stored and used to obtain the coordinates of the next part

in the part magazine.

The part and coordinate information is then compiled into an ASCII string, with

the “#” character used as separation token. This ASCII string is then sent via

RS232 to the KRL programs on the robot controller. The LLC program then waits

for a response from the KRL control program. This response if then forwarded to

the HLC program in the form of an XML string.

Stellenbosch University http://scholar.sun.ac.za

48

6. Higher Level Control
The Higher Level Control (HLC) is implemented by both an agent-based

controller and IEC 61499 function blocks. This control level is responsible for

decision-making and coordination of the subsystem functions, and has

communication interfaces with both the Cell Controller (CC) and the LLC

programs.

6.1 Communication between HLC programs and the Cell Controller
In order to promote the reconfigurability, it was decided that most product

information will reside with the CC. This centralization of product information

simplifies the process of adding or altering a product – if the information was

distributed, changes would have to be made in each subsystem.

The product information is communicated in the feeder subsystem via the

Supervisor holon. The Supervisor holon indicates that the subsystem is ready by

sending the status information to the CC, through a TCP/IP socket. When the CC

requires action from the feeder subsystem, it sends an XML string containing the

command and product information. The XML string is structured as follows (the

variable tag information is shown in red):

<CELLCONTROLLER><FEEDER><COMMAND>LOAD</COMMAND><PRODUCT>1

</PRODUCT><NUMOFTASKS>6</NUMOFTASKS><TASK1>1</TASK1><X1>105.6</X1>

<Y1>150.3</Y1><Z1>27.8</Z1><A1>0.0</A1><TASK2>…</A6></FEEDER><CELL-

CONTROLLER>

The string is structured so that all the command and product information is

contained within the sender (“CELLCONTROLLER”) and receiver (“FEEDER”)

tags. These tags are used to check if a received message is indeed at its intended

destination. The command to be performed by the feeder subsystem is contained

in the “COMMAND” tag, with the accompanying product information presented

in the next tags. The product number is specified and the number of tasks which

are involved in it (in the “NUMOFTASKS” tag). The part and coordinate

information is presented in the order of which the tasks must be performed, i.e.

the first task to be performed (“TASK1”) is the loading of part X onto the fixture.

The coordinates of this part, as it is to be placed in the fixture, is given in the X1,

Y1, Z1 and A1 (referring to the rotation angle) tags.

6.2 Agent-based control
A Multi-Agent System (MAS) HLC was developed using the JADE (Java Agent

DEvelopment framework) platform. The functionality, cooperation and

communication of the various agents are described in this section.

6.2.1 Control system overview

The MAS is based on the ADACOR holonic architecture, as described in

section 4. The holons of the system are embodied by the following agent types:

Supervisor, Product, Task and Operational. The MAS implements one Supervisor

agent and multiple Product, Task and Operational agents. The Supervisor agent

Stellenbosch University http://scholar.sun.ac.za

49

handles all external communication, with the Cell Controller (CC) program, and

coordinates the subsystem functions by launching the appropriate Product and

Task agents. The Product agent holds all the information required to accomplish

the product order, such as the required task sequence and relevant coordinates.

The subsystem hardware actions are then coordinated by the Task agents, through

communication with the respective Operational agents. The Operational agents

interface with the hardware of the subsystem and are thus responsible for the

execution of hardware actions. This MAS has an Operational agent for each of the

hardware devices, i.e. a Singulation Unit (SU) agent, a Camera agent, a DAQ

agent and a Robot agent. The structure of the MAS is depicted in Figure 26.

Figure 26: The structure of the Multi-Agent System.

6.2.2 Agent communication and coordination

The cooperation of the agents in the MAS is facilitated by several tools and

functions. These tools and functions are explained in this section.

6.2.2.1 The Agent Management System

The FIPA standards require the existence of an Agent Management System

(AMS) in an agent platform architecture. The AMS is responsible for the

management of the agent platform, of which the main functions are the creation,

deletion and life-cycle management of agents. The AMS maintains a physical

identifier, referred to as Agent Identification (AID), for each agent residing in the

MAS. The AID allows the unequivocal identification of every agent in the system

(Paolucci and Sacile, 2005).

6.2.2.2 The Directory Facilitator

All the agents in the system register their services (i.e. the activities which they

are able to perform) and address (AID) with the Directory Facilitator (DF).

Agents query the DF for agents which provide a specific desired service. The DF

then supplies the searching agent with a vector of addresses for the appropriate

Stellenbosch University http://scholar.sun.ac.za

50

agents in the system. The searching agent can then initiate communication with

the relevant agents in an attempt to contract their services – thus the Directory

Facilitator can be related to a “Yellow Pages” service (Paolucci and Sacile, 2005).

6.2.2.3 Contract Net Protocol

The planning and scheduling, inherent in the cooperation the MAS agents, is

achieved through an auction process. Auction processes are based on two features

– decomposition and negotiation. The decomposition feature refers to the

distribution of decision-making ability among all the agents. The negotiation

which is involved in the process refers to the decisions which are made following

the agent interaction. This auction process is implemented by the Contract Net

Protocol (CNP) (Paolucci and Sacile, 2005).

The CNP entails that the subcontracting of agent services commence with a call

for proposals (CFP). This CFP specifies the service which is required. Agents

which are capable of providing the service reply with proposals to the CFP. These

proposals are then handled in the same way as bids during an auction. The

proposals are evaluated according to a specific parameter which is relevant to the

service, such as completion time. The best proposal can thus be selected and the

appropriate agent can be contracted.

6.2.2.4 Ontology

An ontology was used to simplify the intra-agent communication. This MAS

implements an adaptation of the ontology developed by Adams (2010). The

ontology defined several concepts, actions and predicates to allow for the

common understanding between agents. For use in this MAS, some parts of the

ontology were omitted as they were not used. The ontology uses several concepts

and actions, but no specific need was found for the defined predicates.

The concepts defined for the MAS are presented in Table 2. The PART concept

refers to the part involved in a certain task – only the name of the part is required.

The POSITION concept refers to the coordinates of a part as given by the camera

inspection. PLACE_POSITION refers to the pickup or placement coordinates of a

specific part in the fixture. Both concepts require the coordinate slots to be filled

with information. The DURATION concept is an indication of the time it will

take for an agent to provide a service or perform an action – this time must be

presented in the SECONDS slot.

The actions of the system which are represented in the ontology are shown in

Table 3. The INSPECT action refers to the inspection of parts by the camera – the

PART information is required for the selection of the inspection product. The

LOAD and REJECT actions refer to the functions of the singulation unit. The

robot receives commands in the form of PICKNPLACE actions – these actions

require the PART information and two slots for the coordinate information.

DURATION is used throughout as a measure of time involved in performing the

actions.

Stellenbosch University http://scholar.sun.ac.za

51

Table 2: Concepts included in the MAS ontology.

CONCEPT INFORMATION SLOTS

PART NAME

POSITION ANGLE

X-POS

Y-POS

Z-POS

PLACE_POSITION PLACE_ANGLE

PLACE_X

PLACE_Y

PLACE_Z

DURATION SECONDS

Table 3: Actions included in the MAS ontology.

ACTION INFORMATION SLOTS

INSPECT PART

DURATION

LOAD PART

DURATION

REJECT DURATION

PICKNPLACE PART

DURATION

POSITION

PLACE_POSITION

6.2.2.5 Communication between MAS and Cell Controller

The communication between the MAS and the CC is handled by the Supervisor

agent. The agent sends status updates of the subsystem in XML strings, and

receives the command and product information from the CC also in XML strings,

as discussed in section 6.1.

The Supervisor agent uses the built-in Java XML parsing functions to extract the

necessary data. The command information is stored to a local variable, as it is

only used to select the appropriate Product agent. The product information must

be accessed by the Product agents, thus it is stored in a public array. The storage

of the product information is shown in Figure 27.

The tag information is extracted from the XML string and stored in specific array

positions. The task information is stored in the order in which they will be

performed, i.e. the first row of the array holds the information for the first task.

This information consists of the part type involved in the task (stored in the first

column) and the accompanying coordinates (stored in the succeeding columns).

The coordinates include the X-position, Y-position, Z-position and a rotation

angle (indicated as An in Figure 27). The Product agent can then access the

product information to select which task should be performed (according to the

part type) and then pass the coordinate information on to the appropriate Task

agent.

Stellenbosch University http://scholar.sun.ac.za

52

1 X1 Y1 Z1 A1

2 X2 Y2 Z2 A2

: : : : :

n Xn Yn Zn An

6.2.3 Agent behaviours

The functionality of JADE agents is constructed in special JADE classes called

behaviours. This section describes the methods and behaviours which are

implemented in several agents in the MAS.

A Setup() method is performed upon the instantiation of an agent. This method

starts by instantiating the ontology and language that will be used in the MAS.

This is done by creating an instance of the MAS ontology, and then registering the

ontology and the language with the Content Manager of the AMS. The next step

is to register the services that the particular agent can provide with the Directory

Facilitator. This registration requires the agent ID and agent name, along with the

type of service the agent can provide. The final step of the method is to instantiate

the behaviours of the agent which are required for its initial, basic operation.

To enable the utilization of the Contract Net Protocol, agents in the MAS must

include the following behaviours: requestReceiver(), actionPerformer() and

requestAction(). The first two behaviours are used in agents providing a service –

their flow diagrams are shown in Figure 28. The requestAction() behaviour

allows agents to acquire a desired service – the flow diagram is shown in Figure

29.

The cooperation characteristic of the MAS means that agents may require services

of other agents in the system. In such a case, the CNP requires agents to send

“Call for Proposal” (CFP) messages to all the agents in the MAS which provide

the desired service (this list of agents is obtained from the Directory Facilitator).

The requestReceiver() behaviour is thus implemented, by agents which provide a

service, to receive these CFP messages. This behaviour first sets the message

template to that of CFPs and then awaits the arrival of messages. The received

messages will be compared to the CFP template to ensure that they are correct and

applicable. If the messages do not match the CFP template, they are discarded.

The behaviour is then blocked until a new message arrives. If the message is

indeed a CFP, a proposal is constructed. The proposal may contain a certain

parameter on which the proposal will be judged - a predicted completion time or a

convenience indicator (indicating how easy it would be for the agent to provide

the service) are examples of a proposal parameter. The proposal is then sent to the

contracting agent for evaluation.

Coordinate information Part number

Top-down order

indicates the

task sequence

Figure 27: Storage of product information in the MAS.

Stellenbosch University http://scholar.sun.ac.za

53

Begin

Set CFP template
for incoming

messages

Initiate receiving of
ACL messages

Has a CFP message been
received ?

Create and set
content of proposal

message

Reply to agent with
proposal message

Block the
requestReceiver()

behaviour

NO

YES

Begin

Set accept proposal
template for

incoming messages

Initiate receiving of
accept proposal

messages

Has an accept proposal
message been received?

Initiate desired
agent behaviour

Block the action
Performer()
behaviour

NO

YES

 (a) (b)

Figure 28: Flow diagrams of the (a) requestReceiver() and (b)

actionPerformer() behaviours.

If the proposal is selected by the contracting agent, the CNP requires confirmation

with the sending of an “accept proposal” message. This message is then received

by the actionPerformer() behaviour of the contracted agent. This behaviour again

sets the message template to that of “accept proposal”, which is compared to the

received messages. If an “accept proposal” message is received, the appropriate

behaviour of the contracted agent is initiated. In this case, and if the received

message does not match the template, the actionPerformer() behaviour is blocked

until the arrival of a new message.

Figure 29 shows the behaviour which is exhibited by agents to acquire the

services of another agent in the system, according to the CNP. The

requestAction() behaviour starts by declaring and initialising the required local

variables. The next step involves the sending of CFPS to all the agents in the

system which provides the desired service (the list is obtained from the Directory

Facilitator). The behaviour is blocked while no proposals (or messages with an

incorrect format) have been received. Upon the arrival of the proposal messages,

the proposal parameters are evaluated to determine which proposal is the best

Stellenbosch University http://scholar.sun.ac.za

54

option. An “accept proposal” message is then sent to the agent which issued the

best proposal. The behaviour is then blocked until a reply message from the

contracted agent arrives. If the reply is an “inform” message, it indicates that the

service was successfully performed and the behaviour ends. If the reply is not an

“inform” message, it means that the process was unsuccessful – the behaviour

then repeats the CNP steps.

YES

Begin

Declare and initiate
local variables

Send CFPs to all
agents providing

the desired service

Have proposals been
received from all agents?

Evaluate proposals
and select the best

agent

Send accept
proposal message
to the best agent

Have a reply
message been

received?

Is the reply an
inform message?

End

Block the
requestAction()

behaviour

NO

YES

YES

NO

NO

Figure 29: Flow diagram of the requestAction() behaviour.

6.2.4 Supervisor agent

The CC would typically receive a production order from a defined production

schedule and then coordinate the subsystems to accomplish the specified order.

The Supervisor agent receives a command from the CC when actions are required

Stellenbosch University http://scholar.sun.ac.za

55

from the feeder subsystem, and replies with a confirmation message upon

completion. The behaviours of the Supervisor agent are depicted in Figure 30.

Begin

Setup()

Manually launch
another agent?

Receive agent
information from

user input

Request agent
creation from AMS

Select appropriate
Product agent
based on CC
command

requestAction()
from Product agent

Continue
operation?

End

YES

NO

YES

NO

Begin

Connect and send
READY status to CC

Command
received from

CC?

Extract command
information

Send BUSY status to
CC

Select appropriate
agent to perform

command

Store product
information

End

YES

NO

Figure 30: Flow diagram of the Supervisor agent functionality.

The Supervisor agent starts by performing the Setup() method to initialise and

register the agent services. The agent then implements the createAgent()

behaviour. This behaviour allows the creation of agents, in the agent container, by

means of user input. This was done to ease the MAS control when a hardware

reconfiguration has taken place. If a new hardware component is added, its HLC

agent can be launched by the user (otherwise changes would have to be made to

the Main() class of the HLC). The creation of an agent is achieved through

sending a request message to the AMS. The Supervisor agent then enter its

operational state as it implements the selectProduct() behaviour. This behaviour

receives commands from the Cell Controller and selects the appropriate Product

agent to perform the desired tasks. This selection is followed by implementing the

requestAction() behaviour to acquire the service of the selected Product agent.

Stellenbosch University http://scholar.sun.ac.za

56

The selectProduct() behaviour is also shown in more detail in Figure 30. In the

first step of this behaviour, the Supervisor agent connects to the CC via a TCP/IP

socket. To indicate the readiness of the MAS, the Supervisor agent sends a

READY status to the CC – the feeder subsystem is thus ready to receive

commands. When a message is received from the CC (in the format of an XML

string), it is parsed to extract the relevant information. The XML string will

contain the command to be executed, the product type involved with the

command and the necessary task sequence and coordinate information. The

command and product type is then used to select the appropriate Product agent,

while the task and coordinate information is stored for access at a later stage. The

Supervisor agent then immediately responds to the CC with a BUSY status – this

indicates to the CC that the feeder subsystem will not be able to perform any

commands until the READY status is sent again upon completion.

6.2.5 Product agents

When the Supervisor agent receives a command from the CC (e.g. to load the

parts of a specific product onto the fixture), it launches the appropriate Product

agent. The Product agent then accesses the relevant information concerning the

tasks to be performed – such as the task sequence and part and coordinate data.

One Product agent could handle all the products of the system (when the product

information resides within the CC), but the holonic architecture was designed so

that a Product agent can be created for each product type to allow for situations

where the product information can reside in the feeder subsystem (e.g. if the

future introduction of new products need not be provided for). The functionality

of the Product agents is depicted in Figure 31 (a).

The ontology and language used by the Product agents, as well as the initial

behaviours, are instantiated in the Setup() method. The two behaviours are that of

requestReceiver() and actionPerformer(), which await the arrival of respectively

CFP and “accept proposal” messages from the Supervisor agent. Upon receiving

the “accept proposal” message, the Product agent then requests the launching of

the necessary Task agents (according to the tasks involved in completing the

product) from the AMS. The Product agent then retrieves the task sequence and

the relative part and coordinate information. The sequence of tasks is then

initiated. The tasks are performed one at a time by acquiring the services of the

appropriate Task agents through the requestAction() behaviour. When a task is

successfully completed, the Product agent moves on to the next one. A “inform”

message is sent to the Supervisor agent when all the tasks of the product have

been performed.

6.2.6 Task agents

The necessary Task agents are launched according to the information of the

Product agent. The Task agents then drive the required hardware actions. A Task

agent exists for every function inherent in the system, e.g. a specific Task agent is

responsible for the loading of one of the required parts onto the fixture. A flow

diagram of the workings of Task agents is presented in Figure 31 (b).

Stellenbosch University http://scholar.sun.ac.za

57

Begin

Setup()

Create necessary
Task agents

Receive CFP
message from

Supervisor agent
and send proposal

Receive “accept
proposal” from

Supervisor agent

Extract information
from “accept

proposal” message

Initiate product
task sequence

Select task to be
performed

Request desired
service from

appropriate Task
agent

All tasks
completed?

Send “inform”
message to

Supervisor agent

NO

YES

Begin

Setup()

Receive CFP from
Product agent and

send proposal

Receive “accept
proposal” from
Product agent

Extract information
from “accept

proposal” message

Initiate task action
sequence

Select action to be
performed by
Operational

agent(s)

Request desired
action from
appropriate
Operational

agent(s)

All actions
completed?

Send “inform”
message to Product

agent

NO

YES

(a) (b)

Figure 31: Flow diagram of (a) Product and (b) Task agent functionality.

Stellenbosch University http://scholar.sun.ac.za

58

The Task agent starts by running the Setup() method. The ontology and initial

behaviours are thus instantiated and the agent services are registered. Next the

agent performs the requestReceiver() behaviour, which awaits the arrival of a

CFP from a Product agent. With the proposal sent, the agent awaits the arrival of

the succeeding “accept proposal” message in the actionPerformer() behaviour.

The coordinate information which accompanies the message is extracted.

According to the “accept proposal” message, the Task agent starts to perform the

necessary subsystem action sequence. The first required action to be performed is

achieved by acquiring the service of the appropriate Operational agent, through

the requestAction() behaviour. Upon the completion of this action, the next action

is selected – this process continues until all the actions concerning the desired task

are completed. The agent then returns to the idle state, where it awaits the next

CFP message from a Product agent.

6.2.7 Operational agents

The Task agents coordinate the Operational agents to perform the desired

hardware functions. The Operational agents send the necessary command, part

type and coordinate information to the respective LLC programs. The Operational

agents also interact with one another where cooperation is needed to perform a

certain hardware function. The Operational agents in the MAS are described in

this section.

6.2.7.1 Singulation unit agent

The Singulation unit (SU) agent is responsible for the control of the singulation

unit actions. This agent represents an Operational holon which only consists of a

software entity. This is because the actuators of the singulation unit are physically

controlled by the DAQ device, which is represented by its own HLC and LLC

control. The SU agent thus controls the actions of the singulation unit by

coordinating the actions of the DAQ and Camera agents. The functionality of the

Singulation unit agent is shown in Figure 32.

The agent initializes by performing the Setup() method. With the agent services

now registered in the DF, it awaits the arrival of a CFP message from a Task

agent. The agent responds with a proposal. If the agent receives the “accept

proposal” message, its services is contracted. The agent extracts the necessary

command information from the “accept proposal” message and then initiates the

required task sequence. The actions to be performed are selected and requested

from the appropriate Operational agents by the requestAction() behaviour. These

actions are the control of the singulation unit actuators by the DAQ agent or the

trigger of inspections by the Camera agent. These actions are then performed in

the specified sequence until the operation is completed – at which point an

“inform” message is replied to the Task agent.

6.2.7.2 DAQ agent

The DAQ agent controls the actions of the DAQ device by sending commands to

the DAQ LLC program. The services of the DAQ agent are acquired by other

Operational agents which require the DAQ to perform an action, such as:

Stellenbosch University http://scholar.sun.ac.za

59

 The SU agent requires the actuation of the singulation unit components.

 The Robot agent requires the DAQ to actuate the gripper during picking

and placing of parts. The Robot agent also commands the DAQ agent to

lower the presentation platform after the part has been picked up.

The DAQ agent functionality is presented in Figure 32. The agent again starts

with the initializing Setup() method and awaits a CFP message from one of the

Operational agents. The agent sends a proposal and, if the proposal is selected,

receives an “accept proposal” message. The content of the “accept proposal”

message is extracted to determine which action should be performed by the DAQ.

The command is then constructed in the form of an XML string. This string is sent

to the LLC program through a TCP/IP socket. The agent then awaits the

completion message from the LLC program, which is also in the XML format.

This string is parsed to extract the result of the operation. If the action was

successful, an “inform” message is sent to the respective Operational agent. If not,

a “failure” message is replied.

6.2.7.3 Camera agent

The Camera agent is responsible for controlling the inspections of the camera

mounted on the singulation unit. The agent sends the command information to the

camera LLC program in XML string format. The LLC program returns the

inspection result, along with the coordinate information, in an XML string.

The functionality of the Camera agent is similar to that of the DAQ agent, as is

presented in Figure 32. The Camera agent provides the inspection service, which

is required by the Task agent. The Task agents thus send CFP messages to the

Camera agent. The “accept proposal” message, which is sent by the Task agent,

contains an ontological reference. The INSPECT action (explained in section

6.2.2.4), along with its information, is included in the message content. This

INSPECT information is extracted from the content. The part type information is

then included in the XML command string which is sent to the camera LLC

program. The reply message, from the LLC program, contains the camera

inspection result. In the case of a successful inspection, the pickup coordinates of

the presented part is also included in the message. The coordinate information is

extracted by parsing the incoming XML string, and is then stored to the slots of

the POSITION concept of the ontology. This POSITION concept is then set as the

content for the “inform” message which is sent to the Task agent. When the

inspection is unsuccessful, a „failure” message is sent to the Task agent.

Stellenbosch University http://scholar.sun.ac.za

60

Begin

Setup()

Receive CFP
message from Task

agent and send
proposal

Receive “accept
proposal” message

from Task agent

Extract information
from “accept

proposal” message

Initiate operation
action sequence

Request desired
action from
appropriate

Operational agent

All actions
completed?

Send “inform”
message to Task

agent

Select action to be
performed by

Operational agent

NO

YES

Begin

Setup()

Receive CFP
message from

Operational agent
and send proposal

Receive “accept
proposal” message
from Operational

agent

Extract information
from “accept

proposal” message

Construct XML
command string

Send XML string to
LLI program

Received reply?

Send “inform”
message to

Operational agent

Connect to LLI
program via a TCP/

IP socket

NO

YES

Parse the received
XML reply for

relevant
information

Was action
successful?

Send “failure”
message to

Operational agent

YES

NO

 (a) (b)

Figure 32: Flow diagram of (a) Singulation unit and (b) DAQ agent

functionality.

Stellenbosch University http://scholar.sun.ac.za

61

6.2.7.4 Robot agent

The Robot agent is implemented as the HLC for the robot holon of the subsystem.

The agent controls the actions of the robot based on communication with the other

agents in the MAS. The commands are constructed into XML strings and passed

on to the robot LLC program, which communicates with the robot controller

through RS232 serial communication.

The functionality of the Robot agent is depicted in Figure 33. The initial working

of the Robot agent is similar to that of the DAQ and Camera agents. The

initialization is done by the Setup() method, and the receiveRequest() and

actionPerformer() methods are added to handle the arrival of CFP and “accept

proposal” messages. The “accept proposal” message contains the ontological

action PICKNPLACE (described in section 6.2.2.4). This action contains the

critical information regarding the part to be picked up and placed, as well as the

coordinates involved with both operations. This information is extracted and

included in the XML command string which is sent to the robot LLC program.

Since the robot itself does not control the actions of the gripper, the Robot agent

must acquire the services of the DAQ agent during the pick-„n-place operations.

When the robot reaches a point in the operation where the gripper must close

(when picking up) or open (when placing), the controller program sends a

message via RS232 to the LLC program, which passes it on to the Robot agent.

The XML string which is received from the LLC program is parsed to determine

if the robot action is complete or if a DAQ action is required. When a DAQ action

is required, the Robot agent requests the services through the requestAction()

behaviour. The DAQ agent replies with a confirmation message once the DAQ

action has been performed. The Robot agent then sends a “continue” message to

the LLC program. When the pick-„n-place task is completed, the Robot agent

sends an “inform” message to the Task agent.

Stellenbosch University http://scholar.sun.ac.za

62

YES

Begin

Setup()

Receive CFP
message from Task

agent and send
proposal

Receive “accept
proposal” message

from Task agent

Extract information
from “accept

proposal” message

Construct XML
command string

Send XML string to
LLI program

Received reply?

Send “inform”
message to Task

agent

Connect to LLI
program via a TCP/

IP socket

NO

YES

Parse the received
XML reply for

relevant
information

Pick-‘n-place action
completed?

NORequest action
from DAQ agent

Received
“inform”
message?

Construct
“continue” message

NO

YES

Figure 33: Flow diagram of Robot agent functionality.

Stellenbosch University http://scholar.sun.ac.za

63

6.3 IEC 61499 function block control
The function block control was implemented on the FBDK (Function Block

Development Kit) platform. FBDK is a prototype engineering software tool for

IEC 61499 software development. FBDK provides an integrated development

environment that supports the development of function blocks and systems, and

their translation to Java classes. The Java classes are then executed using a Java

Virtual Machine on the PC (Vyatkin, 2007).

6.3.1 Control system overview

The structure of the function block control is based on a distributed holonic

approach. In FBDK, the holons of the subsystem are mapped to devices. A device

can be understood as an abstract model that captures the information-processing

properties of control devices. These devices are then hosts to resources, which

contain the function block networks. FBDK also facilitates composite function

blocks – these are function blocks which contain their own function block

networks (Vyatkin, 2007).

The function block networks are where the control system is implemented. The

subsystem devices are then as follows: FB_SUPERVISOR,

COMMAND_EXECUTION, SINGULATION_UNIT, DAQ, CAMERA and

ROBOT. The FB_SUPERVISOR, SINGULATION_UNIT, DAQ, CAMERA and

ROBOT devices all contain one resource, which is given the same name as the

device. The COMMAND_EXECUTE device, representing the Product holon,

contains several resources: COMMAND_SELECT and a resource for each system

product. The Task holon is not explicitly defined by a device or resource, as it is

represented by the various function block network event and data connections,

along with the intra-device communication function blocks. The structure of the

control system is depicted in Figure 34. The respective device function block

networks are given in Appendix G.

Figure 34: Structure of the IEC 61499 function block control system.

Stellenbosch University http://scholar.sun.ac.za

64

6.3.2 Function block communication and coordination

6.3.2.1 System communication

The communication between function blocks (and function block networks)

comprises of two parts: the transfer of an event and the transfer of the

accompanying event data. This communication, for function blocks residing in the

same network, is done by event and data connections. The output event and data

variables are connected to input variables by visual lines in the FBDK graphic

user interface (GUI). The event connections are always connected to the top part

of the function block shape and is indicated as green lines in the GUI. The data

variable connections are connected to the bottom half of the function block shape

and are indicated as blue lines. The data variables can be of various types – FBDK

facilitates the standard types (STRING, WSTRING, INT, BOOL, etc.), as well as

arrays and customized data structures.

When the communication occurs between the function blocks of different

networks (contained in different resources or devices), PUBLISH and

SUBSCRIBE function blocks are used (shown in Figure 35). The information that

is to be sent is connected to a PUBLISH function block. When the input event of

the function block is triggered, it sends the event and data to a specified

SUBSCRIBE function block. The location to where the information must be sent

is specified by using function block IDs. A unique ID is given to a SUBSCRIBE

function block – this ID is then used by the PUBLISH function block. This use of

IDs enables one PUBLISH function block to send information to different

SUBSCRIBE function blocks, as the ID can be sent to the PUBLISH function

block as a variable.

 (a) (b)

Figure 35: (a) PUBLISH and (b) SUBSCRIBE function blocks.

6.3.2.2 Communication with CC and LLC

The communication between the HLC and the CC and LLC is based on XML

strings, sent through TCP/IP sockets. The function block control system thus

requires function blocks for the building and parsing of XML string. A network

segment showing the XML_BUILDER, COMMUNICATOR and XML_PARSER

Stellenbosch University http://scholar.sun.ac.za

65

function blocks are shown in Figure 36. These function blocks use the Java

functions (residing in imported packages) for building and parsing XML strings

and communicating over TCP/IP sockets. The XML_BUILDER function block

receives the command information through data connections. The functions of the

algorithm then construct an XML string, which is passed on through an output

data connection to the COMMUNICATOR function block. The

COMMUNICATOR function block algorithm sends the received XML string to

the LLC program through the TCP/IP socket. The predefined port number used

for the communication is supplied to the function block as a constant. The

algorithm then continuously monitors the socket for the arrival of a message from

the LLC program. The LLC program replies with an XML string – this string is

simply passed on to the XML_PARSER function block. The XML_PARSER

function block algorithm parses the XML string for the relevant information. This

information is stored to the respective output variables, which is emitted to the

succeeding function blocks through data connections.

Figure 36: Function block network segment for XML communication.

6.3.3 FB_SUPERVISOR device

The FB_SUPERVISOR device contains a function block network which handles

communication with the CC. The network of function blocks send the subsystem

status to the CC and receive the command and product information. The received

information is passed on to the COMMAND_EXECUTION device. The function

block network is shown in Figure G 1.

The function block network instantiates a FB_SPVR_CONTROL composite

function block, which contains the functionality of the device – the function block

network is presented in Figure G 2. This composite function block is interfaced

with the COMMAND_EXECUTION device by a PUBLISH function block,

through which all the command and product information is communicated.

The FB_SPVR_CONTROL composite function block network implements the

XML communication function blocks of section 6.3.2.2. These function blocks

allow for communication with the CC program. When a XML command string (as

explained in section 6.1) is received, the information must be extracted to data

variables. The coordinate information must be stored in arrays, which is passed on

the rest of the system. The STORE_TO_ARRAY function block stores the

information to the arrays one element at a time. The output event variable of this

Stellenbosch University http://scholar.sun.ac.za

66

function block is connected to the XML_PARSER function block input event

variable. This causes the iteration of the parsing function block until all the data is

stored in the arrays. These variables are then passed to the other devices when the

output event is triggered.

6.3.4 COMMAND_EXECUTION device

The COMMAND_EXECUTION device receives the data from the

FB_SUPERVISOR function block. The device holds a resource for each system

product and a resource for selecting the specified PRODUCT resource. The

function block networks of the COMMAND_SELECT and LOAD_1 resources

are given in Figure G 3 and Figure G 4.

The command and product information is received from the FB_SUPERVISOR

device. The information is received in the COMMAND_SELECT resource, which

triggers the production of the desired product through an output event trigger to

the appropriate PRODUCT resource (such as the LOAD_1 resource). The

appropriate resource to be triggered is determined through an if statement in the

algorithm of the COMMAND_SELECT function block. The algorithm compares

the value of the product input data variable to predefined conditions. If the

variable matches the condition, the respective resource is triggered. The product

information is sent to the triggered PRODUCT resource via the INTERFACE

function block. The INTERFACE function block merely passes the input

information on as output information – this is needed because the output variables

of a SUBSCRIBE function block cannot be directly connected to the input

variables of a PUBLISH function block.

The functionality of the PRODUCT resource resides in the

PRODUCT_CONTROL (labelled LOAD1_CONTROL in Figure G 4) function

block. The function block triggers the required devices, according to the product

information task sequence, by means of a switch statement in its algorithm. The

switch statement compares the PART information to predefined conditions, which

determine the device which must be triggered. The elements of the PART input

array are used one at a time to trigger the desired product events. When all the

tasks have been performed, a “completion” event is published to the

COMMAND_SELECT resource.

6.3.5 SINGULATION_UNIT device

The SINGULATION_UNIT device contains the function block network for

coordinating the actions of the singulation unit. The function block network is

shown in Figure G 5.

The functionality of the device is contained in the SU_CONTROL function block.

This function block controls the actions of the DAQ and CAMERA devices in the

desired sequence by triggering the relevant output events. The decision making

logic is contained in two function block algorithms – one for each of the input

events. The algorithms trigger the output event variables.

Stellenbosch University http://scholar.sun.ac.za

67

The SINGULATION_UNIT device receives the input event indicating that a part

is to be loaded. The SU_CONTROL function block starts the loading process by

triggering an output event to the DAQ device. The DAQ device replies through

the SUBSCRIBE function block. The output event is then triggered to start the

camera detection. When a part is detected by the camera, the CAMERA device

triggers an output event directed at the SU_CONTROL function block. The

function block then activates the DAQ device to stop the conveyor motor and the

CAMERA device to perform an inspection.

6.3.6 DAQ device

The DAQ device function block network controls the actions of the physical DAQ

device. The network is shown in Figure G 6.

The functionality of the DAQ device resides in the DAQ_CONTROL composite

function block, of which the network is shown in Figure G 7. The function block

network of the DAQ_CONTROL function block contains the XML

communication function blocks to communicate with the DAQ LLC program.

The DAQ_CONTROL_IN and DAQ_CONTROL_OUT function blocks are

responsible for the triggering of the correct output event variable.

The DAQ device receives commands through the input event variables from the

connected devices. The DAQ_CONTROL function block compiles the received

data into an XML string, sends it to the DAQ LLC program and awaits a reply.

The reply from the DAQ LLC program, indicating completion, is relayed to the

relevant system devices.

6.3.7 CAMERA device

The CAMERA device controls the functions of the Camera holon. The function

block network of the device is shown in Figure G 8.

The communication function blocks of the CAMERA device are connected to a

CAM_CONTROL composite function block, shown in Figure G 9. This

composite function block contains the XML communication function blocks to

achieve communication with the Camera LLC program. A

CAM_CONTROL_OUT function block is also contained in the network. This

function block is responsible for triggering the appropriate output event and data

variables, according to the inspection tasks that the camera performed.

The CAMERA device is only activated through a command (event) from the

SINGULATION_UNIT device. This event is accompanied by two data input

variables – one indicating the inspection product to be triggered and the other

specifying whether the camera should inspect or detect the parts. This information

is compiled into an XML string and sent to the Camera LLC program. The

inspection result string is received and parsed, and the coordinate information is

stored to the various data output variables. The coordinates for the pick-„n-place

operation is sent to the ROBOT device.

Stellenbosch University http://scholar.sun.ac.za

68

6.3.8 ROBOT device

The ROBOT device embodies the HLC of the pick-„n-place robot. Figure G 10

shows the function block network embedded in the device.

The functionality of the device is held within the ROBOT_CONTROL composite

function block. The network residing in the ROBOT_CONTROL function block

(shown in Figure G 11) employs the XML communication function blocks, for

communication with the Robot LLC program, and also a

ROBOT_CONTROL_OUT function block. The ROBOT_CONTROL_OUT

function block triggers the appropriate event and data variables, according to the

tasks performed by the robot.

The ROBOT device receives command events from the CAMERA device (if the

part is to be picked up from the singulation unit) or the

COMMAND_EXECUTION (if the part is to be picked up from a part magazine).

These command events are accompanied by data input variables, which contain

the coordinate information relevant to the task. The ROBOT_CONTROL function

block compiles the XML string and sends it to the Robot LLC program. The LLC

program replies with “open gripper” or “close gripper” messages during the

operation. These messages cause the trigger of outputs events, which is published

to the DAQ device. The DAQ device indicates the completion of the action by

sending an event to the SUBSCRIBE function block of the ROBOT device. These

events indicate that the pick-„n-place activity can continue. When the operation is

complete, the ROBOT device publishes the event to the COMMAND_EXECUTE

device.

Stellenbosch University http://scholar.sun.ac.za

69

7. System reconfigurability assessment
This section evaluates the reconfigurability of the feeder subsystem at two levels –

the reconfigurability of the HLC system and that of the low level subsystem

software and hardware. The reconfigurability assessment is done by means of four

reconfiguration experiments. The implications of the reconfiguration on both HLC

strategies, as well as on the low level software and hardware, are described. The

reconfigurability of the control strategies is compared by means of quantitative

and qualitative measurements.

7.1 Experiment 1: Change in the task sequence
The first experiment involved the changing of the sequence in which tasks are

performed to load a specified product onto a fixture. The sequence of tasks was

changed in the CC program and was included in the product information sent to

the HLC programs (as described in section 6.1). This experiment entails no

changes to the low level software and hardware of the feeder subsystem.

7.1.1 MAS reconfiguration

The MAS receives the command and product information, sent from the CC

program, via the Supervisor agent. The agent parses the XML string and stores the

extracted product information in the element of a static array. This array is

globally visible and accessible, granting all of the agents of the MAS access to the

information.

The task information is stored in the sequence that they are to be performed. The

Product agent then launches the required Task agents, and contracts their services,

according to the sequence of the product information array. The coordinate

information is also obtained from the array and stored to the PLACE_POSITION

ontology concept. This concept is passed on to the Operational agents when their

services are acquired.

The MAS HLC programs are thus not influenced by a change in product

information – the changes can be made to the CC program without having to stop

or restart the feeder subsystem.

7.1.2 Function block reconfiguration

The command XML string from the CC program is received by the

SUPERVISOR device of the IEC 61499 function block control system. The string

is parsed and the information is stored to data array variables. These arrays are

sent to the COMMAND_EXECUTE device. The product information is sent to

the selected PRODUCT resource.

 The PRODUCT_CONTROL function block receives the product information

arrays as input data variables. The array containing the parts to be loaded, in the

correct sequence, is then used to determine which tasks should be performed. The

tasks are then performed through the triggering of the PRODUCT_CONTROL

function block output event variables. For each task, the respective coordinate

information is extracted from the arrays and stored to individual coordinate data

variable – these are passed on to the Operational devices.

Stellenbosch University http://scholar.sun.ac.za

70

The function block control system is thus also uninfluenced by any changes in the

product information – the changes can also be implemented with the feeder

subsystem remaining online.

7.2 Experiment 2: Addition of a new task
This reconfiguration experiment involved the addition of a Task holon to the

feeder subsystem. The situation required an additional task to be performed in the

loading of the sub-assembly. The added task is included in the product

information contained in the CC program, which is passed on to the HLC

programs. This new task did not entail the addition of new subsystem hardware.

In the event of reconfiguring the subsystem for an entirely new product, the

addition of tasks for the new parts will be required. For this experiment, the

additional task was the placement of a new part, the moving contact (which was

previously not included), on the fixture. The moving contact parts were placed in

a part magazine, from where the robot had to pick up the parts and place them in

the fixture.

7.2.1 MAS reconfiguration

This reconfiguration entailed the addition of a new Task agent to the MAS. The

Task agent contained the information for the necessary actions to perform the

task, such as communicating with the relevant Operational agents and Product

agents, and handling the part and coordinate information.

The new Task agent was created offline, using the same template as that of the

other MAS Task agents. The sequence of Operational agent actions was defined

in the behaviours of the Task agent. The use of the ontology (and potential

additions to it) was also considered in the development of the Task agent.

The addition of a Task agent had to be recognised and utilized by the involved

Product agents. The Product agents launch the Task agents which perform the

desired services. The services are then acquired by searching the Directory

Facilitator (DF). The Task agents are named according to their involved parts

(such as “feedTask_1 Agent”), so they can be launched directly from the software

package by the Product agent. The Product agent extracts the part information

from the product information array and uses it to construct the names of the Task

agents, as follows:

CreateAgent ca = new CreateAgent();

ca.setAgentName("feedTask_"+ part +"_Agent");

ca.setClassName("feedTask_"+ part +"_Agent");

The part information is then contained in the “part” string variable. This

constructed name is then used to launch the Task agent by sending a request to the

AMS. When the Task agents are launched, their services are acquired in a similar

way through the DF.

Stellenbosch University http://scholar.sun.ac.za

71

The Task agent can thus be added to the MAS without having to stop or restart the

system. The agent is created offline and then added to the JADE agent package –

it is then launched and utilized by the Product agent automatically.

7.2.2 Function block reconfiguration

The addition of a Task holon means that the IEC 61499 function block control

system requires the alteration of the COMMAND_EXECUTION device. The

reconfiguration affects the relevant PRODUCT resource, since the Task holon is

not explicitly embodied in the control system. The PRODUCT resource extracts

the task information from the data array input variables and launches the

execution of the tasks through output event variables.

The reconfiguration required the alteration of the algorithm of the

PRODUCT_CONTROL function block, which resides in the PRODUCT

resources of the COMMAND_EXECUTION device. The if statement of the

algorithm was extended to facilitate the added task. When the task is to be

performed, the appropriate SUBSCRIBE function block address is sent, along

with the event trigger, to the PUBLISH function block. The event trigger is then

sent to the desired device.

The alteration to the algorithm could not be done online. The feeder subsystem

was stopped to perform the alteration and then restarted.

7.2.3 Low level software and hardware reconfiguration

The loading of new sub-assembly parts requires reconfiguration of the subsystem

software and hardware. The necessary changes for each subsystem component are

discussed in the following paragraphs.

The new parts may be placed in part magazines manually and presented to the

robot, in which case a new part-specific part magazine must be designed and

manufactured. Alternatively, it may be desired that the new part be singulated by

an existing singulation unit – this singulation unit may then require some changes

to enable effective part singulation. For the case of the stepped-conveyor

singulation unit, the following changes may be necessary:

 Changing of the singulation unit‟s conveyor belt. The scoops which are

attached to the belt are designed to be part-size specific. A belt with

appropriate scoops must be installed – this may require the design and

manufacture of new scoops, which must be attached to a new belt.

 Adjusting the pulley positions. This may be required to ensure that the

scoops perform effective singulation during their motion through the input

bin.

 Adjusting the speed of the conveyor motor. The dropping of the parts from

the scoops, through the gateway actuator, is also dependent on the

properties of the part (mass, size and shape). The motor speed may require

some tuning to ensure that the parts drop into the gateway actuator.

Stellenbosch University http://scholar.sun.ac.za

72

A new part to be singulated requires the setup of a new camera inspection

product. The inspection product must be able to identify the part and return its

pickup coordinates. This can be done by taking images of the part on the platform

with the camera and using an emulator to set up the inspection product offline.

The images can be used to generate models which must be taught to the object

locating softsensors. These models are also specific with regards to the relative

pickup position of the located shape. The new inspection product must then be

added to the flash memory of the camera.

If the part is presented in a new part magazine, the new workspace must be

calibrated by the robot – the base calibration procedure is explained in Appendix

E. The correct pickup coordinate of the part from the magazine must then be

entered into the robot LLC program. The robot may also be required to pick up

the part from the singulation unit and place the new part in the fixture. This new

pick-„n-place activity requires the development of new KRL programs, which

entail the following:

 Setting up appropriate motion paths to allow for effective picking and

placing.

 Calculating the correct approach position and motion for both the picking

and placing actions.

 Using the received coordinate data in performing the actions.

The size or shape of the part might also require the installation of a new gripper

and/or gripper fingers – this addition of hardware is discussed in section 7.4.

7.3 Experiment 3: Addition of a new product

The addition of a Product holon to the HLC systems was required with this

experiment. This holon represents a new product to be loaded by the feeder

subsystem. Due to restrictions in time and hardware, a completely new product

(with new parts) could not be implemented – instead, a new combination of the

case study parts was used to simulate a new product sub-assembly.

The new product consisted of four of the case study parts - the load terminal,

handle frame assembly and the long and short pigtails. The parts were to be

picked up from the part magazines and placed in the fixture. The order of the parts

was also specified in the product information sent by the CC.

7.3.1 MAS reconfiguration

A new Product agent was added to the MAS for this experiment. The Product

agent had to be added to the JADE agent container and be able to provide the

service to the Supervisor agent. This Product agent had to be responsible for the

loading of the individual parts of the new product onto the fixture. The agent had

to create the necessary Task agents and acquire their service to accomplish the

loading of the product. The creation of the Task agents, along with their

respective coordinate information, had to be done using the product information

array.

Stellenbosch University http://scholar.sun.ac.za

73

The Product agent was developed offline, using a similar template to that of the

existing Product agents. The necessary functionality for Product agent was

implemented in the agent behaviours – such as the registration with the DF, the

extraction of product information from the global array and the sequential

execution of the product tasks. The agent accesses the product information array

for the task information. This information is used to create the necessary Task

agents which are involved in the loading of the product. The Task agents are

created and their services are contracted, through the DF, in the sequence

specified in the product information array.

The Product agent can be launched to the agent platform manually while the

system remains online. This is done by using the “start new agent” function of the

JADE GUI. The user provides the name of the Product agent (such as

“Product_2_Agent”) for which the function then searches in the agent package.

The agent is then launched to the JADE agent container when found. The addition

of a Product holon to the MAS can thus be achieved without disturbing the

operation of the control system.

7.3.2 Function block reconfiguration

A new product resource had to be added to the COMMAND_EXECUTION

device of the function block control system. The function block network of this

resource had to also retrieve the relevant part and coordinate information from the

data table and incorporate all the necessary communication channels to

accomplish the loading of the product. This added resource had to contain the

necessary functionality to initiate the tasks in the right sequence, by triggering the

appropriate function block networks.

The development of the new PRODUCT resource was done offline. The resource

function block network contains SUBSCRIBE and PUBLISH function blocks,

and one PRODUCT_CONTROL function block. The resource subscribes to

“command” information from the COMMAND_SELECT resource and

“completion” information from the ROBOT device. The PRODUCT resource

publishes event and data information to the ROBOT device (to trigger the task

execution) and to the COMMAND_SELECT resource (to indicate product

completion). The PRODUCT_CONTROL function block has the functionality to

extract the part and coordinate information, along with the task sequence, from the

input array data variables. This function block is also responsible for the

execution of the tasks by setting the respective output events.

The functionality of the new PRODUCT_CONTROL function block can be tested

individually (without being added to the control system) through the built-in

FBDK testing interface. The output of the function block can be checked by

manually triggering the respective input event variables with defined input data

variables. This testing gives some assurance of the function block functionality

before it is added to the system.

The new resource could not be added to the control system while it is operational.

The control system was stopped while the resource was manually added to the

Stellenbosch University http://scholar.sun.ac.za

74

COMMAND_EXECUTION device. Some changes were also made to the

COMMAND_SELECT device. The changes were made to the algorithm of the

COMM_SEL function block. The algorithm is responsible for triggering the

output event to the correct PRODUCT resource according to the product

information received from the FB_SUPERVISOR device. The correct resource is

triggered by publishing the event to the correct SUBSCRIBE function block. The

algorithm implements a switch function to determine which WSTRING address

(i.e. the ID of the SUBSCRIBE function block) must be sent to the PUBLISH

function block. The address of the SUBSCRIBE function block, of the new

resource, must thus be entered into the switch function of the COMM_SEL

algorithm.

7.3.3 Low level software and hardware reconfiguration

When a new product is introduced, the procedures discussed in section 7.2.3 must

be performed for each new part to be loaded by the feeder subsystem. No further

low level software and hardware reconfiguration is otherwise needed for the

introduction of a new product.

7.4 Experiment 4: Addition of new hardware
In this experiment an Operational holon is added to the feeder subsystem. This

addition was achieved by adding a simulated singulation unit to the subsystem.

The experiment could only be performed through simulation due to a shortage of

functional singulation units. The singulation unit was simulated using a LLC

program – the program created a user interface allowing the user to simulate the

actions of the singulation unit. The added singulation unit must be controlled and

utilised by the HLC programs.

The added singulation unit was chosen to be different, regarding its hardware

control, to that of the existing stepped-conveyor singulation unit. The simulated

singulation unit would be equipped with a local controller (such as a PLC), which

controls all the actuators and the installed camera. This approach was chosen to

allow for the addition of only one Operational holon, as opposed to the several

Operational holons involved with the stepped-conveyor singulation unit concept.

7.4.1 MAS reconfiguration

The addition of a holon to the subsystem means that a new agent must be added to

the MAS. The new Singulation unit agent had to exhibit the functionality of

registering its services with the DF, receiving requests from Task agents and

communicating with the LLC program.

The new agent was developed offline. The template of the existing Singulation

unit agent was used, though the functionality concerning the coordination of the

other Operational agents was not required. The required functionality was

embedded in the behaviours of the agent. The agent sends command strings to the

LLC to singulate a part. The LLC sends a reply to the agent when the part is

successfully singulated.

Stellenbosch University http://scholar.sun.ac.za

75

The agent was once again added to the JADE agent platform while the feeder

subsystem was online. If the new singulation unit is located in a new position, the

position of the presentation platform must be calibrated by the robot. When the

platform of the singulation unit is located in a previously calibrated position (as

was the case for this experiment), the singulation unit can be added to the

subsystem without disturbing the operation. The functionality of the singulation

unit can then be seamlessly added to the production activities.

7.4.2 Function block reconfiguration

A new SINGULATION_UNIT device was added to the IEC 61499 function block

control system. The device had to contain a function block network with the

appropriate communication (PUBLISH and SUBSCRIBE function blocks and

XML function blocks) and decision-making (embedded algorithms) functionality.

The function block network of the device was developed offline. The network

subscribes to command information from the relevant PRODUCT resource of the

COMMAND_EXECUTION device – the completion message after a successful

singulation is then published to the same network. The SU_CONTROL function

block, to which the SUBSCRIBE and PUBLISH function blocks are connected,

contains the functionality to communicate with the LLC program (as described in

section 6.3.2.2).

The SU_CONTROL function block was again tested individually to ensure that

communication with the LLC program could be successfully achieved. The new

device could again not be included to the control system while the subsystem was

operational. A new device had to be created in the system when offline, to which

the constructed network was imported. A change to the PRODUCT_CONTROL

function block of the PRODUCT resource was also required – the address of the

new SUBSCRIBE function block had to be added to the algorithm. The control

system could then be restarted.

7.4.3 Low level reconfiguration

Additional or new hardware components may be installed in the feeder subsystem

if a change in system capability is required. Apart from the reconfiguration

implications to the HLC system, some low level reconfiguration actions also have

to be performed.

The introduction of any new hardware component to the feeder subsystem will

require the development of a LLC program to interface the hardware with the

HLC programs and control the hardware‟s actions.

When a new singulation unit or part magazine is added to the system, the position

of the presentation platform or the magazine must be calibrated for the robot. This

is done through the base calibration procedure explained in Appendix E. With this

base calibrated, the robot is enabled to pick up parts from the added hardware.

The addition of a new gripper for the pick-„n-place robot also requires calibration

for the robot. The gripper tool calibration is done through the tool calibration

Stellenbosch University http://scholar.sun.ac.za

76

procedure described in Appendix E. This calibration allows the robot to monitor

its position according to the Tool Centre Point (TCP) of the gripper.

Any addition or relocation of hardware within the working envelope of the robot

requires some recalibration of the robot operation. The calibration of software

boundaries must be performed around each of the hardware components located

within the reach of the robot. The software boundaries ensure that the robot TCP

will never enter the specified space – this provides protection for the robot and the

subsystem hardware.

7.5 Discussion of experimental results and observations

The performance of the control strategies during the reconfiguration experiments

was compared for all of the reconfiguration experiments. The comparison was

done through both quantitative and qualitative measurements.

7.5.1 Quantitative measurements

The quantitative measurements comprise of two sets of recorded times – that of

development time and reconfiguration time. The development time refers to the

time it took to develop the individual software for each experiment. The

reconfiguration time then indicates the offline time (time for which operation was

halted) required to introduce the software to the control system. The recorded

times for each experiment are shown in Figure 37 and Figure 38. For the purpose

of comparison, the respective reconfiguration and development times are added to

give the total implementation time, which is presented in Figure 39.

The times shown in Figure 37 indicate the times required for the offline software

development needed for each experiment. The figure shows that the development

time increases with increasing software complexity. Both control strategies allow

for the effective re-use of software components – this greatly shortens the required

development time. For the MAS, it is evident that the added Task agent was more

complex than the added Product agent. The complexity is due to the various

actions and communications that have to be facilitated with the involved

Operational agents. The development of the new Singulation unit agent took the

most time, as it required some behaviour which was not included in the existing

Singulation unit. The setup of the communication with the LLC program was also

quite time consuming. As for the function block system, the increasing

complexity resided with the creation of composite function blocks, which contain

their own function block networks. The correct connection of event and data

variables also takes up some development time.

The reconfiguration times, for the respective control strategies, for each

experiment are shown in Figure 38. The fact that all the reconfigurations for the

MAS could be implemented with the system online means that no reconfiguration

time is required. For the function blocks, the feeder subsystem had to be stopped

to implement the changes involved from experiment 2 onwards. The increasing

complexity of the implementation of the changes is evident from the increasing

reconfiguration times. This is because apart from the addition of the new software

Stellenbosch University http://scholar.sun.ac.za

77

entity, changes to other devices are required to incorporate the new entity into the

system.

It is evident from Figure 39 that, except for adding a task to the control system,

the MAS requires less time to achieve reconfiguration. This result is a

confirmation to the advantages that MAS exhibit towards reconfiguration.

Figure 37: Recorded development times for the control strategies for the four

experiments.

Figure 38: Recorded reconfiguration times for the control strategies for the

four experiments.

0

20

40

60

80

100

120

140

160

Change in
task

sequence

Addition of
task

Addition of
product

Addition of
hardware

D
e

ve
lo

p
m

e
n

t
ti

m
e

 (
m

in
)

Experiments

MAS

IEC 61499 FBs

0

5

10

15

20

25

30

Change in
task

sequence

Addition of
task

Addition of
product

Addition of
hardware

R
e

co
n

fi
gu

ra
ti

o
n

 t
im

e
 (

m
in

)

Experiments

MAS

IEC 61499 FBs

Stellenbosch University http://scholar.sun.ac.za

78

Figure 39: Total implementation times for the control strategies for the four

experiments.

7.5.2 Qualitative measurements

The qualitative measurements were done according to the requirements set out in

section 2.2, namely modularity, integratability, convertibility, diagnosibility,

customizability and scalability. Subjective evaluations, according to the

mentioned requirements, were constructed following the implementation of the

control strategies during the experiments.

The first reconfigurability experiment, involving the change in the task sequence

for a part, indicates the customizability of the control system. The control

programs have to be customized to meet the desired production needs. The fact

that both control strategies can facilitate the extraction of data from the XML

strings and the storage of the information in accessible structures, make them

equally customizable. In both cases the task sequence change is handled

automatically and during runtime.

Experiment 2 presented an evaluation of the control strategy convertibility and

customizability. The introduction of a new part (and so a new task) requires the

adaptation of the control system to produce a new product – the ease of this

adaptation indicates convertibility. Some control system customizations are then

naturally included to meet the production needs. The online addition of the Task

agent, which could automatically be used by the Product agent and coordinate the

Operational agents is proof of the convertibility and customizability of the MAS.

The function block system only requires an alteration to the algorithm of one

function block, but it has to be done manually and offline. This hinders the

performance of the function block control system concerning these

reconfiguration requirements.

0

20

40

60

80

100

120

140

160

180

Change in
task

sequence

Addition of
task

Addition of
product

Addition of
hardware

To
ta

l i
m

p
le

m
e

n
ta

ti
o

n
 t

im
e

 (
m

in
)

Experiments

MAS

IEC 61499 FBs

Stellenbosch University http://scholar.sun.ac.za

79

Convertibility and customizability are again measured through the reconfiguration

of experiment 3. The ability of the MAS to add agents during runtime again gives

it a clear advantage over function blocks, with regards to convertibility and

customizability. The functionality of the DF within the MAS allows additional

agents, which were not part of the initial MAS framework, to automatically be

utilized by MAS agents and then use agents themselves. Not only does the

addition of the new device to the function block system require the subsystem

operation to be stopped, but additional programming to the

COMMAND_SELECT resource is also required.

The ease of adding hardware, as is done in experiment 4, reflects the modularity,

scalability and integratability of the control strategies. Modularity (i.e. the ability

to have interchangeable system components with “plug and play” capabilities) is

inherent in the architectural design of both control strategies. Both strategies

employ architectural structures to distribute the system functionality in

accordance with the holonic control approach. It also appears that both strategies

are equally integratable, especially when used in collaboration with LLC

programs (as is the case in this research). The function block control system can

also employ service interface function blocks to interface with added new

technology, though this was not required in this implementation. The scalability

of the system is reflected in the capacity increase with a hardware addition, i.e.

how easily, quickly and effectively a new hardware resource can be included in

the production activities. This is more easily achieved with the MAS than the

function block control. This is due to the functionality of the Directory Facilitator

– it allows for the seamless introduction of agents to the system. The new agent

can be utilized, to its full potential, by the control system components without any

additional programming or alterations. On the other hand, the introduction of a

new device to the function block control system requires some alteration to the

function block of the PRODUCT resources.

The issue of diagnosibility was considered throughout all the experiments. It was

found that the ease by which system error can be identified and diagnosed is

largely dependent on the software platform. Then, in comparing the diagnostic

functions of JADE (implemented in Eclipse) and FBDK, the MAS was found to

be more diagnosable. This is due to the numerous built-in tools of the JADE and

Eclipse platforms. The JADE GUI provides functions for monitoring the agent

actions. The most significant of these functions is the JADE Sniffer function – this

function graphically shows the communication between the agents of the MAS.

All of the message information is then accessible to the software developer. This

sort of functionality is lacking with the FBDK platform. The most significant

shortcoming of the FBDK platform is that it has no inherent function for the

monitoring of the function block system execution. This becomes especially

noticeable when a network of function blocks does not behave as it is supposed to

– it is hard to determine if the problem lies in the function blocks or the event/data

that connect them.

Stellenbosch University http://scholar.sun.ac.za

80

It is also important to shed some light on the level of expertise required for

developing a control system with each of the control strategies. For MAS based

on JADE, a strong background in programming (with JADE, specifically Java) is

required. A good understanding on the working of the MAS, with the JADE and

FIPA specification, is also necessary. For the FBDK function blocks, simple

applications can be developed without any expertise in programming – only a

simple understanding of the FBDK platform is required. When dealing with more

complex applications however, the level of expertise required increases

dramatically. A good understanding of Java programming is necessary to

implement algorithms in function blocks. In some cases, the Java files created by

FBDK must be modified to allow for certain functionality – this then requires a

high level of expertise.

Stellenbosch University http://scholar.sun.ac.za

81

8. Conclusion and recommendations
This thesis documents the research conducted into the control of the feeder

subsystem of a Reconfigurable Assembly System (RAS). The research focused on

the evaluation of an agent-based and an IEC 61499 function block control system,

as possible control strategies for RASs. The objective of the research was to

evaluate and compare the two strategies with regards to control system

reconfigurability.

As a case study, the control strategies were implemented on the hardware of the

feeder subsystem of an experimental RAS at Stellenbosch University. The

experimental RAS simulates an automated spot-welding process for the

production of trip-switch sub-assemblies. The RAS consisted of a singulation unit

(which uses a machine vision camera), different part magazines and a six DOF

articulated pick-„n-place robot (fitted with a pneumatic gripper). The feeder

subsystem interfaces with the rest of the system in loading individual sub-

assembly parts onto a fixture, which is transported by the transport subsystem.

The fixture was designed to be modular in an effort to increase the

reconfigurability of the system.

The control strategies were implemented according to the ADACOR holonic

control architecture. The ADACOR architecture specifies the mapping the

subsystem entities to the following holons: Supervisor, Product, Task and

Operational. These holons were embodied in the structure of both the control

strategies.

For the agent-based control system, a Multi-Agent System (MAS) was developed

to implement an agent for each of the subsystem holons. The Supervisor agent

interfaces with the overall Cell Controller (CC) program and initiates the loading

of the sub-assemblies. The Product agents access the product information and

coordinate the various tasks involved in the loading of the parts. The Tasks agents

are initiated by the Product agents and are responsible for coordinating the actions

of the various Operational agents for the completion of the task. The Operational

agents were created for each hardware entity of the feeder subsystem – these

agents then control the actions of the hardware entities.

The IEC 61499 function block control system implements the subsystem holons

as function block devices. The devices contain networks of function blocks in

which the functionality is embedded. The FB_SUPERVISOR and PRODUCT

devices have the same responsibilities as their agent counterparts. The Task holon

is not explicitly embodied by a device, but is rather embedded in the various event

and data connections between the function block networks. A device was

developed for each Operational holon, each responsible for the actions of their

respective hardware entities.

The Operational holons consist of two layers of control – the Higher Level

Control (HLC) and Lower Level Control (LLC). The HLC is implemented

through the MAS and function block control strategies. The LLC layers are

Stellenbosch University http://scholar.sun.ac.za

82

implemented by C# programs and hardware-specific control programs (DVT

Intellect programs for the camera and KRL programs for the robot). The C#

programs acts as interface between the HLC programs and the hardware. The

hardware-specific programs control the low level hardware actions of the

hardware components.

The reconfigurability of the feeder subsystem was assessed in this thesis. The

influence of the control strategies on the reconfigurability of the HLC were

evaluated by means of four reconfiguration experiments. The evaluation was done

through both quantitative and qualitative measurements. The quantitative

measurements comprised of the recordings of the development and

reconfiguration time required, for each control strategy, for each experiment. The

qualitative evaluation was done according to the requirements of modern

manufacturing system (identified by Bi et al. (2007)) – modularity, integratability,

convertibility, customizability, diagnosibility and scalability. The results show

that reconfiguration with the MAS can be implemented with the system remaining

online. However, the function block control system requires the subsystem to be

halted in order to implement the reconfiguration changes. This time increased

with increasing complexity of the reconfigurations. In terms of development time

(the time required for offline reconfiguration), the MAS reconfiguration required

less time in all but one of the experiments.

The reconfiguration experiments provided the grounds for the qualitative

evaluation of the control strategies. It was concluded that the MAS exhibits

important advantages over the function block control regarding convertibility and

customizability. These advantages are due to the ability of the MAS to introduce

new control system components seamlessly at runtime and to automatically utilize

the capabilities and capacity of the added component. This is the reason for the

scalability advantages of the MAS over the function block system as well. It was

noticed that the diagnosibility of the control strategy is dependent on the software

platform. It was found that the JADE platform of the MAS provided more

functions for the identification and solution of system problems than the FBDK

platform of the function block system. The two control strategies have the same

capabilities regarding modularity and integratability.

The following list of research recommendations were identified in the research

performed for this thesis:

 Software platforms and tools for the simulation and testing of individual

agent programs could be investigated.

 The implementation of the IEC 61499 function blocks in other software

platforms should be assessed.

 It appears that neither the MAS nor function block control strategies have

performed optimally in this research. The control level at which the

strategies have been implemented does not allow either strategy to exhibit

its full capability. The inherent characteristics of the MAS, such as

autonomy and cooperation, make it more suitable for implementation at a

Stellenbosch University http://scholar.sun.ac.za

83

higher level. On the other hand, the IEC 61499 function block control

strategy is possibly better suited to a lower level of control

implementation. The implementation of Object-Oriented C# or Erlang

control systems could be investigated.

 Research could be conducted into the use of OPC (OLE for Process

Control) in the feeder subsystem.

 The addition of greater redundancy in the feeder subsystem will allow

more comprehensive experimentation and comparison of the control

strategies. This would be especially valuable for evaluating the

performance of the MAS using CNP in agent cooperation.

 Different cell configurations can be implemented in the feeder subsystem

to optimize production.

 Research should be conducted into ways to automatically calibrate the

robot. The process should handle an initial recalibration after a subsystem

reconfiguration, as well as continuous monitoring by the robot to ensure

the system remains calibrated during operation.

 Experimentation can be performed with the camera mounted on the robot,

as opposed to the installation of cameras on every singulation unit.

This thesis documents the implementation of holonic control, through both an

agent-based and IEC 61499 function block control strategy, in the feeder

subsystem of an experimental RAS. The reconfigurability of these control

strategies were assessed by means of four reconfiguration experiments. The

assessment showed that agent-based control is better suited for implementation in

this case study. The presented results can however not be taken as a general

indication – the selection of the appropriate control strategy will depend on the

requirements and nature of the application.

Stellenbosch University http://scholar.sun.ac.za

84

9. References
Adams, A.O., 2010. Control of a Reconfigurable Assembly System. MSc.Eng.

Thesis. Department of Mechanical and Mechatronic Engineering, Stellenbosch

University

Bi, Z.M., Lang, S.Y.T., Shen, W. and Wang, L., 2008. Reconfigurable

Manufacturing Systems: The State of the Art. International Journal of Production

Research. Vol. 46, No. 4: 967 – 992

Bi, Z.M., Wang, L. and Lang, S.Y.T., 2007. Current Status of Reconfigurable

Assembly Systems. International Journal of Manufacturing Research,

Interscience. Vol. 2, No. 3: 303 – 328

Black, G. and Vyatkin, V., 2009. Intelligent Component-Based Automation of

Baggage Handling Systems with IEC 61499. IEEE Transactions on Automation

Science and Engineering. Vol. 7, No. 2: 337 – 351

Booch, G., 1986. Object-Oriented Development. IEEE Transactions on Software

Engineering. Vol. SE-12, No.2: 211 – 221

Candido, G. and Barata, J., 2007. A Multiagent Control System for Shop Floor

Assembly. Proceedings of the 3rd International Conference on Industrial

Applications of Holonic and Multi-agent Systems, HOLOMAS 2007. Regensburg,

Germany. pp. 293 – 302

ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System

Paradigms. International Journal of Flexible Manufacturing System. Vol. 17:61–

276

Exforsys Inc., 2007. XML Advantages. [Online]. Available:

http://www.exforsys.com/tutorials/xml/xml-advantages.html. [2012, November

10]

FIPA (Foundation for Intelligent Physical Agents). 2010. [Online]. Available:

http://www.fipa.org. [2011, July 20]

Gruber, T.R., 1991. The Role of Common Ontology in Achieving Sharable,

Reusable Knowledge Bases in Allen, J.A., Fikes, R. and Sandewall, E. (eds).

Principles of Knowledge Representation and Reasoning: Proceedings of the

Second International Conference. Cambridge. pp. 601 – 602

Heverhagen, T., Tracht, R. and Hirschfeld, R., 2003. A Profile for Integrating

Function Blocks into the Unified Modeling Language. Proceedings of the

International Workshop on Specification and Validation of UML models for Real

Time and Embedded Systems. San Francisco, USA

Stellenbosch University http://scholar.sun.ac.za

85

Kotak, D., Wu, S., Fleetwood, M. and Tamoto, H., 2003. Agent-Based Holonic

Design and Operations Environment for Distributed Manufacturing. Computers in

Industry. Vol. 52: 95–108

KUKA Robot Group, 2007. KUKA System Software 7.0: Operating and

Programming Instructions for Systems Integrators. Germany: KUKA Roboter

GmbH

Lee, D.Y. and DiCesare, F., 1994. Scheduling Flexible Manufacturing Systems

Using Petri Nets and Heuristic Search. IEEE Transactions on Robotics and

Automation. Vol. 10, No. 2: 123 – 132

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile

and Adaptive Manufacturing Control. Computers for Industry. Vol. 57, No. 2:

121–130

Leitao, P. and Restivo, F.J., 2008. Implementation of a Holonic Control System in

a Flexible Manufacturing System. IEEE Transactions on Systems, Man, and

Cybernetics. Vol. 38, No. 5: 699 – 709

Lepuschitz, W., Vrba, P., Vallee, M., Merdan, M., Kaindl, H., Arnautovic, E.,

2009. An Automation Agent Architecture with a Reflective World Model in

Manufacturing Systems. 2009 IEEE International Conference on Systems, Man

and Cybernetics. pp. 305 – 310

Lewis, R.W., 1998. Programming Industrial Control Systems Using IEC 1131.

London: Institute of Electrical Engineers

Lewis, R.W., 2001. Modeling Control Systems Using IEC 61499 Function Blocks:

Applying Function Blocks to Distributed Systems. London: Institute of Electrical

Engineers.

Le Roux, A., 2013. Control of a Conveyor System for a Reconfigurable

Manufacturing Cell. MSc.Eng. Thesis. Department of Mechanical and

Mechatronic Engineering, Stellenbosch University

Marik, V., Vrba, P., Tichy, P., Hall, K.H., Staron, R.J., Maturana, F.P., Kadera,

P., 2010. Rockwell Automation‟s Holonic and Multi-Agent Control Systems

Compendium. 2010 IEEE Transactions on Systems, Man and Cybernetics, Part

C: Applications and Reviews. Vol. 41, No. 1: 14 – 30

Martinsen, K., Haga, E., Dransfeld, S. and Watterwald, L.E., 2007. Robust,

Flexible and Fast Reconfigurable Assembly System for Automotive Air-brake

Couplings. Intelligent Computation in Manufacturing Engineering. Vol. 6

Stellenbosch University http://scholar.sun.ac.za

86

Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable Manufacturing

Systems: Key to Future Manufacturing. Journal of Intelligent Manufacturing.

Vol. 13: 135 – 146

Mehrabi, M.G., Ulsoy, A.G., Koren, Y. and Heytler, P., 2002. Trends and

Perspectives in Flexible and Reconfigurable Manufacturing Systems. Journal of

Intelligent Manufacturing. Vol. 13: 135 – 146

Meng, F., Tan, D. and Wang, Y., 2006. Development of Agent for Reconfigurable

Assembly System with JADE. Proceedings of the 6th World Congress on

Intelligent Control and Automation. Dalian, China. pp. 7915 – 7919

Mulubika, C., 2013. Evaluation of Control Strategies for Reconfigurable

Manufacturing Systems. MSc.Eng. Thesis. Department of Mechanical and

Mechatronic Engineering, Stellenbosch University

Murata, T., 1989. Petri Nets: Properties, Analysis and Applications. Proceedings

of the IEEE. Vol. 77, No. 4.

Nikraz, M., Caire, G. and Bahri, P.A., 2006. A Methodology for the Development

of Multi-Agent Systems Using the JADE Platform. International Journal of

Computer Systems Science & Engineering. Vol. 21, No. 2: 99-116

Odell, J., 2002. Objects and Agents Compared. Journal of Object Technology.

Vol. 1: 41 – 53

Panjaitan, S. and Frey, G., 2006. Combination of UML Modeling and the IEC

61499 Function Block Concept for the Development of Distributed Automation

Systems. IEEE Conference on Emerging Technologies and Factory Automation.

Vol. 1: 766-773

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control

Systems. London: CRC Press

Poletti, R., 2011. Mechanical Design of a Stepped-Conveyor Singulation Unit.

Internal Design Report. Mechatronics, Automation and Design Research Group,

Department of Mechanical and Mechatronic Engineering, Stellenbosch University

Raj, T., Shankar, R. and Suhaib, M., 2007. A Review of Some Issues and

Identification of Some Barriers in the Implementation of FMS. International

Journal of Flexible Manufacturing System. Vol. 19: 1 – 40

Rooker, M.N., Hummer, O., Sunder, C., Strasser, T. and Kerbleder, G., 2007.

Downtimeless System Evolution: Current State and Future Trends. 5
th

 IEEE

Conference on Industrial Infomatics. Vol. 2: 1077 – 1082.

Stellenbosch University http://scholar.sun.ac.za

87

Scholz-Reiter, B. and Freitag, M., 2007. Autonomous Processes in Assembly

Systems. Annals of the CIRP. Vol. 56: 712 – 730

Sequeira, M.A., 2008. Conceptual Design of a Fixture-Based Reconfigurable Spot

Welding System. MSc.Eng. Thesis. Department of Mechanical and Mechatronic

Engineering, Stellenbosch University

Stefik, M. and Bobrow, D.G., 1985. Object-Oriented Programming: Themes and

Variations. AI Magazine. Vol. 6, No. 4: 40 – 62

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P., 1998.

Reference Architecture For Holonic Manufacturing Systems: PROSA. Computers

in Industry. Vol. 37: 255 – 274

Vrba, P., 2003. MAST: Manufacturing Agent Simulation Tool. Proceedings of the

IEEE Conference on Emergent Technology for Factory Automation. Vol. 1: 282 –

287

Vrba, P., Lepuschitz, W., Vallee, M., Merdan, M., Resch, J., 2009. Integration of

a Heterogeneous Low Level Control in a Multi-Agent System for the

Manufacturing Domain. 2009 IEEE International Conference on Systems, Man

and Cybernetics. pp: 7 – 14

Vrba, P., Marik, V., 2009. Capabilities of Dynamic Reconfiguration of Multi-

Agent Based Industrial Control Systems. 2009 IEEE Transactions on Systems,

Man and Cybernetics, Part A: Systems and Humans. Vol. 40, No. 2: 213 – 223

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and

Automation Society, ISA

Wang, L., Cai, N., Feng, H.Y., 2007. Dynamic Setup Dispatching and Execution

Monitoring using Function Blocks. Proceedings of the 2
nd

 International

Conference on Changeable, Agile, Reconfigurable and Virtual (CARV)

Production. pp. 699 – 708

Wiendahl, H. P., 2007. Changeable Manufacturing: Classification, Design and

Operation. Annals of CIRP. Vol. 56: 783 – 809

World Minimum Wages. [S.a.]. [Online]. Available:

http://www.minimum_wage.org/minwage/international. [2013, February 21]

Xie, H., Shen, W., Neelamkavil, J., Hao, Q., 2007. Simulation and Optimization

of Mixed-Model Assembly Lines Using Software Agents. Proceedings of the 2
nd

International Conference on Changeable, Agile, Reconfigurable and Virtual

(CARV) Production. pp. 340 – 347

Stellenbosch University http://scholar.sun.ac.za

88

Zhou, M., DiCesare, F. and Desrochers, A.A., 1992. A Hybrid Methodology for

Synthesis of Petri Net Models for Manufacturing Systems. IEEE Transactions on

Robotics and Automation. Vol. 8, No. 3: 350 – 361

Stellenbosch University http://scholar.sun.ac.za

89

Appendix A: Singulation unit throughput and reconfigurability

investigation
The throughput of the stepped-conveyor singulation unit was investigated in two

experiments – one to determine the optimal singulation speed and the other to

determine the optimal number of parts to be present in the input bin. The

reconfigurability experiment was used to determine the effectiveness of

singulating a new part, without any hardware modifications.

The first experiment of the throughput analysis aimed to determine the optimal

singulation speed for maximum throughput. The experiment had to consider two

factors – the number of singulations within a time period and the success rate of

those singulations. The time and number of singulations needed for ten successful

singulations was recorded for eight singulation speeds – the recorded data is

shown in Table A 1. The data is plotted in Figure A 1 and Figure A 2. The

average singulation time indicates how long it took to achieve ten successful

singulation, while the success rate refers to how many singulations were required

to achieve ten successful ones. The results show a decrease of average singulation

time with increasing singulation speed. While most of the speeds resulted in a

singulation success rate of around 50%, the highest percentage (62%) was

observed with the highest speed. For this experiment, the input bin was filled with

one hundred coil parts for each speed setting.

The recorded data was used to calculate the probability of successful singulations,

for specific time intervals, for each of the speed settings. This calculated data is

shown in Table A 2 and is plotted in Figure 14.

Table A 1: Recorded data for the optimal singulation speed experiment.

The second throughput experiment was done to determine the optimal number of

parts in the input bin which would maximise the singulation success rate. A

similar procedure was followed as in the first experiment, except that it was done

at one speed and with different numbers of parts in the bin. The recorded data is

shown in

Table A 3. The results show that the optimal number of parts in the input bin is

eighty. The constant speed setting was chosen to be 400 rpm.

100 150 200 250 300 350 400 450

2 3 4 5 6 7 8 9

14 21 28 35 42 49 56 63

Average singulation time (s) 10 8.7 4 2.5 2.1 2.2 1.8 1.2

Singulation success rate (%) 45.5 30.3 52.6 50.0 50.0 43.5 50.0 62.5

Number of potential singulations per minute

Conveyor motor speed (rpm)

Belt speed (rpm)

Stellenbosch University http://scholar.sun.ac.za

90

Figure A 1: Average singulation time for different singulation speeds.

Figure A 2: Average success rates for different singulation speeds.

Stellenbosch University http://scholar.sun.ac.za

91

Table A 2: The calculated data for Figure 14.

Table A 3: Success rates for different numbers of parts in the input bin.

The reconfigurability investigation required a similar throughput experiment, but

with a new part to be singulated. The results could then be compared to determine

how part or part-size specific the singulation process is. The input bin was thus

filled with one hundred moving contact parts. The moving contacts part was

1 2 3 4 5 6 7 8

Success rate 45.5

Probability of

successful

singulation

45.5 70.3 83.8 91.2 95.2 97.4 98.6 99.2

Minimum singulation time 4.3 Time intervals 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3

Success rate 30.3

Probability of

successful

singulation

30.3 51.4 73.5 85.6 92.1 95.7 97.7 98.7

Minimum singulation time 2.9 Time intervals 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9

Success rate 52.6

Probability of

successful

singulation

52.6 77.5 87.8 93.3 96.4 98.0 98.9 99.4

Minimum singulation time 2.1 Time intervals 2.1 4.3 6.4 8.6 10.7 12.9 15.0 17.1

Success rate 50

Probability of

successful

singulation

50 75.0 86.4 92.6 96.0 97.8 98.8 99.3

Minimum singulation time 1.7 Time intervals 1.7 3.4 5.1 6.9 8.6 10.3 12.0 13.7

Success rate 50

Probability of

successful

singulation

50 75.0 86.4 92.6 96.0 97.8 98.8 99.3

Minimum singulation time 1.4 Time intervals 1.4 2.9 4.3 5.7 7.1 8.6 10.0 11.4

Success rate 43.5

Probability of

successful

singulation

43.5 68.1 82.6 90.5 94.8 97.2 98.5 99.2

Minimum singulation time 1.2 Time intervals 1.2 2.4 3.7 4.9 6.1 7.3 8.6 9.8

Success rate 50

Probability of

successful

singulation

50 75.0 86.4 92.6 96.0 97.8 98.8 99.3

Minimum singulation time 1.1 Time intervals 1.1 2.1 3.2 4.3 5.4 6.4 7.5 8.6

Success rate 62.5

Probability of

successful

singulation

62.5 85.9 92.3 95.8 97.7 98.8 99.3 99.6

Minimum singulation time 1.0 Time intervals 1.0 1.9 2.9 3.8 4.8 5.7 6.7 7.6

42 spm

49 spm

56 spm

63 spm

Singulations

14 spm

21 spm

28 spm

35 spm

40 60 80 100 120

Singulation success rate (%) 45 45 52 50 48

Number of parts in the input bin

Stellenbosch University http://scholar.sun.ac.za

92

chosen as it is almost the same size as the coils. The experiment revealed that the

singulation of the moving contact part had a success rate 10% lower than for the

coil parts. This result shows that the design of the scoops is more part specific

than part-size specific – this indicates that further refinement must be done to the

scoop design.

Stellenbosch University http://scholar.sun.ac.za

93

Appendix B: Gripper design

B.1 Design requirements
The following requirements were considered in the gripper selection and finger

design:

1. The gripper must be attached to the tool interface of the KUKA robot.

2. The stroke of the gripper jaws must be large enough to grip the outside of

some parts, but small enough to allow the accurate calibration of gripper

finger position.

3. The force induced by the gripper jaws must be large enough to firmly hold

the parts, but must not cause any damage to the parts.

4. The gripper must be equipped with removable fingers.

5. The gripper fingers must be able to withstand the force of the gripping

action for infinite life cycles.

6. The gripper fingers must be small enough to allow entrance to the inside

of some parts.

7. The gripper fingers must allow the picking up of parts in different

orientations.

B.2 Design specifications
This list of requirements of section B.1 was considered in the formulation of the

following set of design specifications:

i. The gripper, along with the accompanying attachments, must weigh less

than 16kg.

ii. The stroke of the individual gripper jaws must be greater than 1.5mm and

less than 6mm.

iii. The force that the gripper exerts must be greater than 10N and less than

50N.

iv. The gripper fingers must be small enough to comfortably enter a 3mm

diameter hole.

B.3 Static and fatigue analysis
Finger dimensions:

l1 0.01 m w1 0.024m t1 0.003m

l2 0.055 m w2 w1 t2 t1

l3 0.005 m w3 w1 t3 t1

l4 0.015 m w4 0.003m t4 0.003m

d4_corners t4
2

w4
2

0.5

4.243 10
3

 m

Stellenbosch University http://scholar.sun.ac.za

94

Cross-sectional properties:

Material Properties: AISI 1040 Cold-drawn steel

Density:

Elastic modulus:

Maximum allowable tensile stress:

Yield strength:

Mass properties:

Static analysis:

Force:

A1 w1 t1 7.2 10
5

 m
2

 A2 w2 t2 7.2 10
5

 m
2

A3 w3 t3 7.2 10
5

 m
2

 A4 w4 t4 9 10
6

 m
2

I2

w2 t2
3

12
5.4 10

11
 m

4
 I3

w3 t3
3

12
5.4 10

11
 m

4

I4

w4 t4
3

12
6.75 10

12
 m

4

 7800
kg

m
3

E 207 10
9

 Pa

allow 568 MPa

y 276 MPa

m1 A1 l1 5.616 10
3

 kg m2 A2 l2 0.031kg

m3 A3 l3 2.808 10
3

 kg m4 A4 l4 1.053 10
3

 kg

mfinger m1 m2 m3 m4 0.04kg

wfinger mfinger g 0.396N

Fgrip 25 N

Stellenbosch University http://scholar.sun.ac.za

95

Moment:

Bending stress:

Safety factor:

Shear stress:

Safety factor:

Deflection analysis:

Tip deflection:

MA Fgrip l4 0.375 N m

ymax_A

t4

2
1.5 10

3
 m

max_A

MA ymax_A

I4

8.333 10
7

 Pa

nbend_A

y

max_A

3.312

max_A

3 Fgrip

2 A4
4.167 10

6
 Pa

nshear

y

2 max_A
33.12

d4

Fgrip l4 3

3 E I4
2.013 10

5
 m

d3

Fgrip l4 l3
2

2 E I3
4.194 10

7
 m

2

Fgrip l3 l4 l2

E I2
2.46 10

3

dtip 2 l3 l4 d3 d4 6.975 10
5

 m

Stellenbosch University http://scholar.sun.ac.za

96

Fatigue analysis:

Endurance limit:

Endurance limit modification factors:

Surface factor: (Assumed cold-drawn)

Size factor:

Loading factor:

Temperature factor:

Reliability factor: (99.9% reliability)

Miscellaneous factor:

Modified endurance limit:

Nominal fluctuating stress components:

Se_prime

allow

2
2.84 10

8
 Pa

a 4.51

b 0.265

ka a all
b

 0.84

de 0.808 t4 w4
0.5

 2.424 10
3

 m

kb 1.24de_mod
0.107

 1.128

kc 1

kd 1

ke 0.753

kf 1

Se ka kb kc kd ke kf Se_prime 202.612MPa

ao

max_A

2

Stellenbosch University http://scholar.sun.ac.za

97

Stress concentration factors: (3mm radius and 600 MPa ultimate tensile strength)

Fluctuating stress components:

Fatigue factor of safety:

mo ao

q 0.82

Kt 1.4

Kf 1 q Kt 1 1.328

a Kf ao 5.533 10
7

 Pa

m Kf mo 5.533 10
7

 Pa

nf
1

a

Se

m

allow

2.699

Stellenbosch University http://scholar.sun.ac.za

98

B.4 Gripper pickup actions
The gripper fingers were designed to pick up parts from the singulation unit and

the part magazines, and place them in the fixture. The pickup actions of the

gripper are shown in Figure B 1 and the place actions in Figure C 1.

(a) (b)

(c) (d)

(e)

Figure B 1: Gripper pickup actions of the various parts – (a) coil, (b) long

and short pigtails, (c) handle frame assembly, (d) load terminal and

(e) moving contact.

Stellenbosch University http://scholar.sun.ac.za

99

Appendix C: Fixture design

C.1 Design requirements
The fixture was designed according to the following requirements:

1. The fixture should fit on the conveyor pallets. No part of the fixture may

extend over the edges of the pallet.

2. The fixture must allow for the stacking of several pallets on each other

inside the pallet magazine.

3. The fixture must accommodate the entire range of trip switch parts, in

their specified locations.

4. The fixture must provide access to the gripper fingers of the pick-„n-place

robot to allow for appropriate part placement.

5. Access should be allowed for the welding electrodes of the welding robot

at the spot-weld locations.

6. The fixture should exhibit some reconfigurability characteristics.

7. The fixture must secure the parts during the transportation process, as the

stoppages and direction changes may cause part movement.

8. The fixture must secure the parts during the welding process, as the

electrodes may stick to the parts after welding.

C.2 Design specifications
In considering the requirements of section C.1, the following specifications were

formulated:

i. The maximum fixture dimensions (according to the dimensions of the

conveyor pallets): 300 mm x 300 mm

ii. The maximum height of the parts when held in the fixture (according to

the entrance dimensions of the pallet magazine): 50 mm

iii. Alignment tolerances: 0.1 mm

iv. The minimum clearance radius around the spot-weld locations: 5 mm

v. The maximum fixture weight (according to the specification of the lifting

pneumatic cylinder of the conveyor and pallet magazine): 20kg

Stellenbosch University http://scholar.sun.ac.za

100

C.3 Gripper place actions in the fixture
The fixture was designed to allow for the placement of parts, into the supports, by

the gripper. The placement of the parts is shown in Figure C 1.

(a) (b)

(c) (d)

(e) (f)

Figure C 1: The placement of parts in the fixture by the gripper – (a) load

terminal, (b) short pigtail, (c) handle frame assembly, (d) long pigtail, (e) coil

and (f) moving contact.

Stellenbosch University http://scholar.sun.ac.za

101

Appendix D: DVT Intellect script programs

D.1 Background script program
class NewScript

{

 public static void main(String args[])

 {

 while(true)

 {

 int len = 2; //length of data to be recieved

 int port = 3248; //port number for connection

 int conStatus = -1; //to detect an accepted connection

 byte data[] = new byte[len]; //array for incoming data

 //sockets needed for communication

 Socket mySocket = new Socket();

 Socket sock = new Socket();

 //reset the external trigger mode bit to 0 (internal mode)

 SetInputs(0L,(1L<<7));

 //reset the inspection trigger bit

 SetInputs(0L,1L);

 int status = mySocket.Bind(port); //returns binding status

 DebugPrint("socket connection status is " + status);

 if (status==0)

 {

 DebugPrint("socket bound to port");

 status = mySocket.Listen();

 if (status == 0)

 {

 while (conStatus != 0)

 {

 //check socket connection

 conStatus = mySocket.Accept(sock);

 }

 //receive and store data

status = sock.Recv(data, 0, len);

 //check system status and wait until it is idle

 long Bit = 1;

 //check system busy bit

while((GetOutputs() & (Bit<<8)) != 0)

 {

 }

 //inspection command

 if (data[0] == 1)

 {

 DebugPrint("inspection product = " + data[1]);

 //background script resets completion indicator bit

 byte b;

 b=0;

 int stat = RegisterWriteByte(110,b);

 //set to external trigger mode

 SetInputs((1L<<7),0L);

Stellenbosch University http://scholar.sun.ac.za

102

 //get inspection product by ID

 Product prod = GetProductById((short) data[1]);

 //sets the inspection product

prod.Select();

 SetInputs(1L,0L); //trigger inspection

//delay to ensure inspections are complete

 sleep(1000);

 byte quick = 0; //local storage variable

 //wait for foreground script completion

 while(quick != 1)

 {

 quick = RegisterReadByte(110);

 //if part detection is triggered

 if(data[1] == 10){

 SetInputs(0L,1L); //stop inspection

 sleep(50);

 SetInputs(1L,0L); //start inspection

 }

 }

 DebugPrint("Part script ended its own job");

 //reset the trigger bit to 0 to stop the inspection

 SetInputs(0L,1L);

 //background script resets this bit

 b=0;

 stat = RegisterWriteByte(110,b);

 //read the inspection result at register number 25

 String toSend;

 toSend = RegisterReadString(25);

 DebugPrint("According to background:");

 DebugPrint(toSend);

 //extract bytes from string

 byte sendData[] = toSend.getBytes();

//send the extracted bytes

 status = sock.Send(sendData,0,sendData.length);

 SetInputs(0L,(1L<<7));//reset external trigger mode

 }

 }

 }

 // Short delay before next iteration

 sleep(10);

 }

 }

D.2 Foreground script program
class COIL_LOCATE

{

 public static double transform_X(double PosX)

 {

 double PosX_real = 0; //real x-position to return

 PosX_real = PosX - findOrigin_X.EdgePoint.X;

Stellenbosch University http://scholar.sun.ac.za

103

 return PosX_real;

 }

 public static double transform_Y(double PosY)

 {

 double PosY_real = 0; //real x-position to return

 PosY_real = PosY - findOrigin_Y.EdgePoint.Y;

 return PosY_real;

 }

 public void inspect()

 {

 String output;

 double posX[];

 double posY[];

 double ang[];

 double score[];

 posX = new double[9];

 posY = new double[9];

 ang = new double[9];

 score = new double[9];

 double PosX = 0;

 double PosY = 0;

 double PosZ = 0;

 double Ang = 0;

 //check the number of parts present on the platform

 DebugPrint("Blobs found: "+ num_of_parts.ObjectCount);

 if(num_of_parts.ObjectCount != 1){

 COIL_LOCATE.Result = -1; //set inspection result to FAIL

 //prepare failure result to be returned

 output = "pass" + "false" + "end";

//print failure message

 DebugPrint("Failure - more than one part on platform.");

 }

 else{

 //store values from the object locate softsensors

 if(coil_locate_1.Result == 0){

 posX[1] = coil_locate_1.PickPoint.X;

 posY[1] = coil_locate_1.PickPoint.Y;

 ang[1] = coil_locate_1.PickPoint.Angle;

 score[1] = coil_locate_1.MatchScore;

 }

 if(coil_locate_2.Result == 0){

 posX[2] = coil_locate_2.PickPoint.X;

 posY[2] = coil_locate_2.PickPoint.Y;

 ang[2] = coil_locate_2.PickPoint.Angle;

 score[2] = coil_locate_2.MatchScore;

 }

 if(coil_locate_3.Result == 0){

 posX[3] = coil_locate_3.PickPoint.X;

 posY[3] = coil_locate_3.PickPoint.Y;

 ang[3] = coil_locate_3.PickPoint.Angle;

 score[3] = coil_locate_3.MatchScore;

 }

Stellenbosch University http://scholar.sun.ac.za

104

 if(coil_locate_4.Result == 0){

 posX[4] = coil_locate_4.PickPoint.X;

 posY[4] = coil_locate_4.PickPoint.Y;

 ang[4] = coil_locate_4.PickPoint.Angle;

 score[4] = coil_locate_4.MatchScore;

 }

 if(coil_locate_5.Result == 0){

 posX[5] = coil_locate_5.PickPoint.X;

 posY[5] = coil_locate_5.PickPoint.Y;

 ang[5] = coil_locate_5.PickPoint.Angle;

 score[5] = coil_locate_5.MatchScore;

 }

 //store values from sensor 6

 if(coil_locate_6.Result == 0){

 posX[6] = coil_locate_6.PickPoint.X;

 posY[6] = coil_locate_6.PickPoint.Y;

 ang[6] = coil_locate_6.PickPoint.Angle;

 score[6] = coil_locate_6.MatchScore;

 }

 //store values from sensor 7

 if(coil_locate_7.Result == 0){

 posX[7] = coil_locate_7.PickPoint.X;

 posY[7] = coil_locate_7.PickPoint.Y;

 ang[7] = coil_locate_7.PickPoint.Angle;

 score[7] = coil_locate_7.MatchScore;

 }

 //store values from sensor 8

 if(coil_locate_8.Result == 0){

 posX[8] = coil_locate_8.PickPoint.X;

 posY[8] = coil_locate_8.PickPoint.Y;

 ang[8] = coil_locate_8.PickPoint.Angle;

 score[8] = coil_locate_8.MatchScore;

 }

 //find the best matchScore

 int best = 1;

 double bestScore = score[1];

for(int count = 2;count < 8;count++){

 if(score[best] < score[count]){

 best = count;

 bestScore = score[count];

 }

 }

 DebugPrint("Best Score = "+bestScore+" by coil_locate_"+best);

 if(bestScore >= 70){

 //store best coordinates

 PosX = posX[best];

 PosY = posY[best];

 Ang = ang[best];

 PosX = transform_X(PosX);

 PosY = transform_Y(PosY);

 PosZ = 6.85; //vertical pick position of the coil

 Ang = Ang*-1.00; //transform angle

 //prepare successful result to be returned

 output = "pass" + "true" + "x" + toString(PosX) + "y" +

toString(PosY) + "z" + toString(PosZ) + "angle" + toString(Ang) + "end";

 //print result

 DebugPrint("Pickup Position --> X: "+ PosX + " Y: "+

PosY + " Z: " + PosZ + " Angle: "+ Ang);

Stellenbosch University http://scholar.sun.ac.za

105

 COIL_LOCATE.Result = 0; //result is a PASS

 }

 else

 {

//case where all sensors failed to locate the part

//set inspection result to FAIL

 COIL_LOCATE.Result = -1;

 //prepare failure result to be returned

 output = "pass" + "false" + "end";

//print failure message

 DebugPrint("Pickup Position not found.");

 }

 }

 RegisterWriteString(25, output); //write result to register

 //indicate inspection completion

 byte b = 1;

 int stat = RegisterWriteByte(110,b);

 }

}

Stellenbosch University http://scholar.sun.ac.za

106

Appendix E: KUKA robot functionality

E.1 Calibration functions
The KUKA robot controller provides built-in functions for the calibration of tools and

workspaces. These calibration functions are useful for hardware relocations during

reconfiguration. The use of the functions is described in this section.

The tool calibration function allows for the easy calibration of the robot motion for a tool

attached at the tool interface. This entails the definition of the Tool Centre Point (TCP) by

manually moving the tool to a specified point from different directions, as is shown in Figure

E 1. The robot position can then be given in terms of the position of the TCP. This calibration

was done to allow the monitoring of the position of the gripper fingers. This tool also allows

for the storage of calibration information of different tools. Different gripper configurations

can then be calibrated in advance, which means that a manual gripper reconfiguration only

requires the appropriate tool to be selected in the control software. This approach could

decrease subsystem ramp-up time significantly.

Figure E 1: The sequence of steps required for the calibration of a new tool (KUKA

Robot Group, 2007).

The definition of workspaces (referred to as bases) is also very useful in pick-„n-place

applications. The origin and orientation information of a specified area can be calibrated by

manually moving the TCP of the robot to certain positions in the area (depicted in Figure E

2). This allows the specification of a coordinate system to a base - eliminating the

dependence on global coordinates. This was used to specify pick-„n-place coordinates on the

presentation platform of the singulation unit, the part magazines and the fixtures mounted on

Stellenbosch University http://scholar.sun.ac.za

107

the pallets. The definition of base coordinate systems simplifies subsystem reconfiguration

involving the relocation of hardware positions, as only the origin coordinates of the hardware

workspace needs to be updated.

Figure E 2: Sequence of steps required for the calibration of a workspace (KUKA Robot

Group, 2007).

E.2 KUKA KRL programs
The KUKA controller allows for the construction of customised control programs in the KRL

software platform. The code of three constructed programs is presented in this section.

E.2.1 MAIN()
DEF MAIN()

;---

; this program controls the pick and place

; actions of the robot by obtaining coordinate

; data through serial communication and then

; selecting appropriate robot motion sets.

;---

;---initialization---

 MW_T=#ASYNC ;---ASYNC -> does not wait for empty buffer

 MR_T=#ABS ;---not sure between ABS or COND

 TIMEOUT = 30.0

 REC_DATA[] = " "

 POSX[] = "000000"

 POSY[] = "000000"

Stellenbosch University http://scholar.sun.ac.za

108

 POSZ[] = "000000"

 ANG[] = "000000"

 PLACE_POSX[] = "000000"

 PLACE_POSY[] = "000000"

 PLACE_POSZ[] = "000000"

 PLACE_ANG[] = "000000"

 POS_X = 0.0

 POS_Y = 0.0

 POS_Z = 0.0

 ANG_R = 0.0

 PLACEPOS_X = 0.0

 PLACEPOS_Y = 0.0

 PLACEPOS_Z = 0.0

 PLACE_ANGLE = 0.0

 COMMAND[] = " "

 LOAD = FALSE

 REMOVE = FALSE

 CLEAR = FALSE

 HANDLE = 0

 TEST = 1

 DONE[] = "FALSE"

;--------------------

;---main program---

;--------------------

 HANDLE = OPEN_CHNL(3)

 LOOP

 GET_COORDS()

 POS_X = CONVERT_S2R(POSX[])

 POS_Y = CONVERT_S2R(POSY[])

 POS_Z = CONVERT_S2R(POSZ[])

 ANG_R = CONVERT_S2R(ANG[])

 PLACEPOS_X = CONVERT_S2R(PLACE_POSX[])

 PLACEPOS_Y = CONVERT_S2R(PLACE_POSY[])

 PLACEPOS_Z = CONVERT_S2R(PLACE_POSZ[])

 PLACE_ANGLE = CONVERT_S2R(PLACE_ANG[])

 LOAD = STRCOMP(COMMAND[], "LOAD", #CASE_SENS)

 REMOVE = STRCOMP(COMMAND[], "RMVE", #CASE_SENS)

 IF LOAD == TRUE THEN

 PART_PICKUP(PART_ID,POS_X,POS_Y,POS_Z,ANG_R)

 PART_PLACE(PART_ID,PLACEPOS_X,PLACEPOS_Y,PLACEPOS_Z,PLACE_ANGLE)

 GOTO NEXT

 ENDIF

IF REMOVE == TRUE THEN

 PART_REMOVE(PART_ID,POS_X,POS_Y,POS_Z,ANG_R)

 GOTO NEXT

ENDIF

Stellenbosch University http://scholar.sun.ac.za

109

 NEXT:

 IF ($IN_HOME1 == TRUE) OR ($IN_HOME2 == TRUE) OR ($IN_HOME3 == TRUE) THEN

 DONE[] = "TRUE"

 ELSE

 HALT

 ENDIF

 SERIAL_WRITE(DONE[], HANDLE)

 CLEAR = STRCLEAR(REC_DATA[])

 ;CLEAR = STRCLEAR($DATA_SER3)

 WAIT FOR $DATA_SER3 == 0

 WAIT SEC 1

 ENDLOOP

 HANDLE = CLOSE_CHNL(3,HANDLE)

END

DEF GET_COORDS()

 ;---read coordinate string---

 OFFSET = 0 ;---read from first character

 WAIT FOR $DATA_SER3 > 0

 CREAD(HANDLE, SR_T, MR_T,TIMEOUT, OFFSET, "%S", REC_DATA[])

 IF (SR_T.RET1 <> #DATA_END) THEN

 HALT

 ENDIF

 ;--------------------------------

 ;---break up coordinate string---

 ;--------------------------------

 ;initialise counters

 COUNT = 1

 SPEC = 1

 OFFSET_1 = 0

 CMD = 0

 PX = 0

 PY = 0

 PZ = 0

 PA = 0

 PPX = 0

 PPY = 0

 PPZ = 0

 PPA = 0

 WHILE COUNT <= SR_T.LENGTH

 IF REC_DATA[COUNT] == 'H23' THEN

 SPEC = SPEC + 1

 COUNT = COUNT + 1

 OFFSET_1 = OFFSET_1 + 1

 ENDIF

 SWITCH SPEC

 CASE 1

 CMD = CMD + 1

 SREAD(REC_DATA[],STAT,OFFSET_1,"%01s", COMMAND[CMD])

 CASE 2

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01d", PART_ID)

Stellenbosch University http://scholar.sun.ac.za

110

 CASE 3

 PX = PX + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", POSX[PX])

 CASE 4

 PY = PY + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", POSY[PY])

 CASE 5

 PZ = PZ + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", POSZ[PZ])

 CASE 6

 PA = PA + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", ANG[PA])

 CASE 7

 PPX = PPX + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_POSX[PPX])

 CASE 8

 PPY = PPY + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_POSY[PPY])

 CASE 9

 PPZ = PPZ + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_POSZ[PPZ])

 CASE 10

 PPA = PPA + 1

 SREAD(REC_DATA[],STAT, OFFSET_1,"%01s", PLACE_ANG[PPA])

 CASE 11

 ;reached end of the string

 DEFAULT

 HALT

 ENDSWITCH

 COUNT = COUNT + 1

 ENDWHILE

END

E.2.2 PICKUP_PART()
DEF PICKUP_PART1(POS_X: IN,POS_Y: IN,POS_Z: IN,ANG_R:IN)

;---declaration---

REAL POS_X,POS_Y,POS_Z,ANG_R

REAL S_PREP ;specified offset distance

REAL X_PREP, Y_PREP, ANG_PREP

EXT BAS(BAS_COMMAND :IN, REAL :IN)

DECL FRAME PICK_POS

DECL FRAME PREP_POS

DECL FRAME ORIENT

;--------------------

;---initialization---

;--------------------

BAS(#INITMOV,0)

PICK_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0}

PICK_POS.X = POS_X

PICK_POS.Y = POS_Y

PICK_POS.Z = POS_Z

S_PREP = 40.0

ANG_PREP = 90 - ANG_R ;calculate entry angle

X_PREP = S_PREP*SIN(ANG_PREP) ;calculate x offset

Y_PREP = S_PREP*COS(ANG_PREP) ;calculate y offset

PREP_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0}

PREP_POS.X = PICK_POS.X + X_PREP

Stellenbosch University http://scholar.sun.ac.za

111

PREP_POS.Y = PICK_POS.Y - Y_PREP

PREP_POS.Z = PICK_POS.Z

ORIENT = {X 0,Y 0,Z 0,A 0,B 0,C 0}

ORIENT.A = ANG_PREP

$TOOL = TOOL_DATA[2]

$ORI_TYPE = #CONSTANT

DONE[] = "TRUE"

;----------------------------

PTP $AXIS_HOME[1]

PTP {AXIS: A1 -99.5, A2 -74, A3 110,A4 0, A5 -36,A6 0}

LIN BASE_DATA[2]:PREP_POS

PTP_REL ORIENT

LIN BASE_DATA[2]:PICK_POS

SERIAL_WRITE(DONE[], 3)

GET_CONFIRM(3)

WAIT SEC 2

LIN BASE_DATA[2]:{X 0,Y 0,Z 100,A 0,B 0,C 0}

PTP $AXIS_HOME[1]

END

E.2.3 PLACE_PART()
DEF PLACE_PART1(PLACEPOS_X: IN,PLACEPOS_Y: IN, PLACEPOS_Z: IN, PLACE_ANG: IN)

;---declaration---

REAL PLACEPOS_X,PLACEPOS_Y,PLACEPOS_Z,PLACE_ANG

REAL S_PREP ;specified offset distance

REAL X_PREP, Y_PREP, ANG_PREP

EXT BAS(BAS_COMMAND :IN, REAL :IN)

DECL FRAME PLACE_POS

DECL FRAME PREP_POS

DECL FRAME ORIENT

;--------------------

;---initialization---

;--------------------

BAS(#INITMOV,0)

PLACE_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0}

PLACE_POS.X = PLACEPOS_X

PLACE_POS.Y = PLACEPOS_Y

PLACE_POS.Z = PLACEPOS_Z

PREP_POS = {X 0,Y 0,Z 0,A 0,B 0,C 0}

PREP_POS.X = PLACE_POS.X

PREP_POS.Y = PLACE_POS.Y

PREP_POS.Z = PLACE_POS.Z + 80

ORIENT = {X 0,Y 0,Z 0,A 0,B 0,C 0}

ORIENT.A = PLACE_ANG

$TOOL = TOOL_DATA[2]

$ORI_TYPE = #CONSTANT

DONE[] = "TRUE"

;----------------------------

Stellenbosch University http://scholar.sun.ac.za

112

PTP_REL ORIENT

LIN BASE_DATA[3]:PREP_POS

LIN BASE_DATA[3]:PLACE_POS

SERIAL_WRITE(DONE[], 3)

GET_CONFIRM(3)

LIN BASE_DATA[3]:PREP_POS

PTP $AXIS_HOME[2]

END

CHAR WRITE_STRING[]

INT HANDLE

INT COUNT

;---initialization---

MW_T = #ASYNC

COUNT = 1

;---program---

CWRITE(HANDLE,SW_T,MW_T,"%s",WRITE_STRING[])

IF (SW_T.RET1 <> #CMD_OK) THEN

 HALT

ENDIF

END

DEF GET_CONFIRM(HANDLE :IN)

 INT HANDLE

 COUNT = 1

 MR_T=#ABS ;---not sure between ABS or COND

 TIMEOUT = 30.0

 CONFRM[] = " "

 TRUESTRING[] = "TRUE"

 ;---read confirm string---

 OFFSET = 0 ;---read from first character

 WAIT FOR $DATA_SER3 > 0

 CREAD(HANDLE, SR_T, MR_T,TIMEOUT, OFFSET, "%S", CONFRM[])

 IF (SR_T.RET1 <> #DATA_END) THEN

 HALT

 ENDIF

 WHILE (COUNT < 5)

 IF (CONFRM[COUNT] <> TRUESTRING[COUNT]) THEN

 HALT

 ENDIF

 COUNT = COUNT + 1

 ENDWHILE

END

Stellenbosch University http://scholar.sun.ac.za

113

Appendix F: JADE agent program example
As an example of a JADE agent program, the Java code of the Camera agent program is

presented in this appendix.

//==========================//

//====== Camera Agent ======//

//==========================//

//Imports

import java.io.IOException;

import java.io.StringReader;

import java.net.InetAddress;

import java.net.Socket;

import java.net.UnknownHostException;

import java.util.logging.Level;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.*;

import org.xml.sax.*;

import org.apache.ecs.xml.*;

import jade.content.*;

import jade.content.lang.Codec.CodecException;

import jade.content.lang.sl.*;

import jade.content.lang.*;

import jade.content.lang.xml.*;

import jade.content.onto.Ontology;

import jade.content.onto.OntologyException;

import jade.content.onto.basic.*;

import jade.core.*;

import jade.core.behaviours.CyclicBehaviour;

import jade.core.behaviours.OneShotBehaviour;

import jade.domain.DFService;

import jade.domain.FIPAException;

import jade.domain.FIPAAgentManagement.DFAgentDescription;

import jade.domain.FIPAAgentManagement.ServiceDescription;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import jade.util.Logger;

import ontology.impl.*;

import ontology.FeedingMultiagentOntology;

public class CameraAgent extends Agent {

 // definition of codecs and ontology

 private Codec slCodec= new SLCodec();

 private Codec xmlCodec=new XMLCodec();

 private Ontology ontology;

 // definition of network communication

 private InetAddress IPaddress = null;

 private int port = 0;

 private Socket clientSocket = new Socket();

 private Duration duration = new Duration();

 private Integer time = 10; //dummy time variable

 protected void setup(){

 System.out.println("New camera agent created.");

Stellenbosch University http://scholar.sun.ac.za

114

 // ontology instantiation

 try{

 ontology=FeedingMultiagentOntology.getInstance();

 }

 catch (Exception oe){

 oe.printStackTrace();

 }

 // register codecs and ontology

 getContentManager().registerLanguage(slCodec);

 getContentManager().registerOntology(ontology);

 // register agent services with the Directory Facilitator

 DFAgentDescription dfd = new DFAgentDescription();

 dfd.setName(getAID());

 ServiceDescription sd = new ServiceDescription();

 sd.setType("Camera");

 sd.setName(getLocalName()+"Camera");

 dfd.addServices(sd);

 try{

 DFService.register(this, dfd);

 }

 catch (FIPAException fe){

 fe.printStackTrace();

 }

 // get IP address and port number of camera effector

 try {

 IPaddress = InetAddress.getLocalHost(); //IP address of Camera LLC

program

 port = 7220; //listening port of Camera LLC program

 } catch (UnknownHostException ex) {

 Logger.getLogger(CameraAgent.class.getName()).log(Level.SEVERE, null,

ex);

 }

 //=== Agent Behaviour ===

 addBehaviour(new requestReceiver());

 addBehaviour(new actionPerformer());

 }

 protected void takeDown(){

 // Deregister from the yellow pages

 try {

 DFService.deregister(this);

 }

 catch (FIPAException fe) {

 fe.printStackTrace();

 }

 System.out.println("Camera "+getAID().getName()+" terminating.");

 }

private class requestReceiver extends CyclicBehaviour{

 public void action(){

 MessageTemplate mt =

MessageTemplate.MatchPerformative(ACLMessage.CFP);

 ACLMessage msg = myAgent.receive(mt);

Stellenbosch University http://scholar.sun.ac.za

115

 if(msg != null){

 System.out.println("CFP received.");

 ACLMessage reply = msg.createReply();

 if(time != null){

 reply.setPerformative(ACLMessage.PROPOSE);

 reply.setContent(String.valueOf(time.intValue()));

 }

 else{

 reply.setPerformative(ACLMessage.REFUSE);

 }

 myAgent.send(reply);

 System.out.println("Camera Agent sent Proposal to

requesting Agent.");

 }

 else{

 block();

 }

 }

 }

 private class actionPerformer extends CyclicBehaviour{

 private String action = "";

 private String dataIn = null;

 public void action(){

 MessageTemplate mt =

MessageTemplate.MatchPerformative(ACLMessage.ACCEPT_PROPOSAL);

 ACLMessage msg = myAgent.receive(mt);

 if(msg != null){

 System.out.println("Camera received ACCEPT_PROPOSAL from

requesting Agent.");

 addBehaviour(new taskInspect(msg));

 block();

 }

 else{

 block();

 }

 }

 }

 private class taskInspect extends OneShotBehaviour{

 private Position pos = new Position();

 private PlacePosition placepos = new PlacePosition();

 ACLMessage msg = null;

 public taskInspect(ACLMessage inMsg){

 super();

 msg = inMsg;

 }

 public void action(){

 if (msg == null){

 this.done();

 }

 try{ //when message is !null

 ContentElement ce = null;

 //extract the content of the message

Stellenbosch University http://scholar.sun.ac.za

116

 ce = getContentManager().extractContent(msg);

 Action act = (Action) ce;

 if (act.getAction() instanceof Inspect){ //confirms

that action is "Inspect"

 if (msg.getPerformative() ==

ACLMessage.ACCEPT_PROPOSAL){ //if the proposal was accepted by the Task Agent

 ACLMessage reply = msg.createReply();

 Inspect task = (Inspect) act.getAction();

 //instantiation to get required part type

 Part pa = (Part) task.getPart();

 if (inspectPart(pa)){

 reply.setPerformative(ACLMessage.INFORM);

 //reply.setContentObject((Position)

pos);

 try {

 PicknPlace result = new

PicknPlace(); //initialize task with part type and duration

 result.setPart(pa);

 result.setDuration(duration);

 result.setPosition(pos);

 result.setPlacePosition(placepos);

 Action actn = new Action();

 actn.setAction(result);

 actn.setActor(myAgent.getAID());

 getContentManager().fillContent(reply,

actn);

 }

 catch (CodecException Ce) {

 Ce.printStackTrace();

 }

 catch (OntologyException oe) {

 oe.printStackTrace();

 }

 System.out.println("Inspection data

sent to requesting Agent by Camera Agent...");

 }

 else{

 reply.setPerformative(ACLMessage.FAILURE);

 System.out.println("Failure

notification sent by Camera Agent...");

 }

 send(reply);

 }

 else{ //cannot understand message -> wrong type!

 ACLMessage reply = msg.createReply();

//create reply

 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);

 send(reply);

 }

 }

 else{ //an error occurred with the extraction of the

message content

 System.out.println("No message could be

extracted!");

 }

Stellenbosch University http://scholar.sun.ac.za

117

 }

 catch (Exception ce){

 ce.printStackTrace();

 }

 }

 private Boolean inspectPart(Part pa){

 String dataIn = null;

 //an xml message must now be sent to the camera to initiate the

inspection

 //composing xml string using Jakarta ECS

 XML task = new XML("TASK");

 task.addElement("INSPECT"); //should be INSPECT

 XML part = new XML("PART_TYPE");

 part.addElement(String.valueOf(pa.getName()));

 XML reciever = new XML("CAMERA");

 reciever.addElement(task);

 reciever.addElement(part);

 XML inspect = new XML(getAID().getLocalName()); //creates xml that

starts with name of agent (based on xml standard in this program)

 inspect.addElement(reciever);

 XMLDocument doc = new XMLDocument();

 doc.addElement(inspect);

 //check whether network socket is still connected

 try{

 System.out.println("IP address: " + IPaddress.toString() +"

Port: " + port);

 clientSocket = new Socket (IPaddress, port);

 }

 catch (Exception e){

 e.printStackTrace();

 }

 while(!clientSocket.isConnected()){

 }

 System.out.println("Client socket connected...");

 //now send the composed message

 try{

 System.out.println("Sending message to camera effector to

inspect part...");

 byte[] outByteString = doc.toString().getBytes("UTF-8");

 //set format

 clientSocket.getOutputStream().write(outByteString, 0,

outByteString.length);

 System.out.write(outByteString); //trying to print what is sent

to camera

 System.out.println("Message sent to camera effector...");

 byte[] inByteString = new byte[300] ;

 int numOfBytes =

clientSocket.getInputStream().read(inByteString);

 String inString = new String(inByteString, 0, numOfBytes, "UTF-

8");

Stellenbosch University http://scholar.sun.ac.za

118

 dataIn = inString;

 System.out.println("Recieved string of length: " + numOfBytes);

 System.out.println(inString);

 clientSocket.close();

 }

 catch (IOException io){

 io.printStackTrace();

 }

 String oc = ParseXMLString(dataIn, "DONE"); //parsing of inspection

result data

 Boolean inspected = Boolean.parseBoolean(oc);

 if (inspected){

 float x = Float.valueOf(ParseXMLString(dataIn, "X")); //parses

xml string for value of X

 float y = Float.valueOf(ParseXMLString(dataIn, "Y")); //parses

xml string for value of Y

 float z = Float.valueOf(ParseXMLString(dataIn, "Z")); //parses

xml string for value of Z

 float angle = Float.valueOf(ParseXMLString(dataIn, "ANGLE"));

//parses xml string for value of ANGLE

 pos.setXPos(x);

 pos.setYPos(y);

 pos.setZPos(z);

 pos.setAngle(angle);

 }

 return inspected;

 }

 public String ParseXMLString (String xmlRecords, String findText){

 String xmlStart = "CAMERA";

 String stringToReturn = "";

 try {

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 DocumentBuilder db = dbf.newDocumentBuilder();

 InputSource is = new InputSource();

 is.setCharacterStream(new StringReader(xmlRecords));

 Document doc = db.parse(is);

 NodeList nodes = doc.getElementsByTagName(xmlStart);

 // iterate the entries

 for (int i = 0; i < nodes.getLength(); i++) {

 Element element = (Element) nodes.item(i);

 NodeList name = element.getElementsByTagName(findText);

 Element line = (Element) name.item(0);

 System.out.println(findText +

getCharacterDataFromElement(line));

 stringToReturn = getCharacterDataFromElement(line).toString();

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

Stellenbosch University http://scholar.sun.ac.za

119

 return stringToReturn;

 }

 public String getCharacterDataFromElement(Element e) {

 org.w3c.dom.Node child = e.getFirstChild(); //Node formula classes with

jade.core.Node

 if (child instanceof CharacterData) {

 CharacterData cd = (CharacterData) child;

 return cd.getData();

 }

 return "?";

 } //method to parse xml strings ends here

 }

}

Stellenbosch University http://scholar.sun.ac.za

120

Appendix G: IEC 61499 function block networks

Figure G 1: Function block network of the FB_SUPERVISOR device.

Stellenbosch University http://scholar.sun.ac.za

121

Figure G 2: Function block network of FB_SPVR_CONTROL composite function block.

Stellenbosch University http://scholar.sun.ac.za

122

Figure G 3: Function block network of the COMMAND_SELECT resource.

Stellenbosch University http://scholar.sun.ac.za

123

Figure G 4: Function block network of the LOAD_1 resource.

Stellenbosch University http://scholar.sun.ac.za

124

Figure G 5: Function block network of SINGULATION_UNIT device.

Stellenbosch University http://scholar.sun.ac.za

125

Figure G 6: Function block network of DAQ device.

Stellenbosch University http://scholar.sun.ac.za

126

Figure G 7: Function block network of DAQ_CONTROL composite function block.

Stellenbosch University http://scholar.sun.ac.za

127

Figure G 8: Function block network of CAMERA device.

Stellenbosch University http://scholar.sun.ac.za

128

Figure G 9: Function block network of CAM_CONTROL composite function block.

Stellenbosch University http://scholar.sun.ac.za

129

Figure G 10: Function block network of the ROBOT device.

Stellenbosch University http://scholar.sun.ac.za

130

Figure G 11: Function block network of the ROBOT_CONTROL composite function block.

Stellenbosch University http://scholar.sun.ac.za

