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ABSTRACT Cyclic �-sheet decapeptides from the tyrocidine group and the homolo-
gous gramicidin S were the first commercially used antibiotics, yet it remains unclear
exactly how they kill bacteria. We investigated their mode of action using a bacterial
cytological profiling approach. Tyrocidines form defined ion-conducting pores, induce
lipid phase separation, and strongly reduce membrane fluidity, resulting in delocalization
of a broad range of peripheral and integral membrane proteins. Interestingly, they also
cause DNA damage and interfere with DNA-binding proteins. Despite sharing 50% se-
quence identity with tyrocidines, gramicidin S causes only mild lipid demixing with mi-
nor effects on membrane fluidity and permeability. Gramicidin S delocalizes periph-
eral membrane proteins involved in cell division and cell envelope synthesis but
does not affect integral membrane proteins or DNA. Our results shed a new light on
the multifaceted antibacterial mechanisms of these antibiotics and explain why resis-
tance to them is virtually nonexistent.

IMPORTANCE Cyclic �-sheet decapeptides, such as tyrocidines and gramicidin S,
were among the first antibiotics in clinical application. Although they have been
used for such a long time, there is virtually no resistance to them, which has led to
a renewed interest in this peptide class. Both tyrocidines and gramicidin S are thought
to disrupt the bacterial membrane. However, this knowledge is mainly derived from
in vitro studies, and there is surprisingly little knowledge about how these long-
established antibiotics kill bacteria. Our results shed new light on the antibacterial
mechanism of �-sheet peptide antibiotics and explain why they are still so effective
and why there is so little resistance to them.
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Cyclic �-sheet peptides produced by soil bacilli were among the very first antibiotic
substances in clinical application and are still used today. One of the most impor-

tant pioneering antibiotics was tyrothricin, a mixture of polypeptide antibiotics pro-
duced by Brevibacillus parabrevis (1). Although discovered 10 years after penicillin,
tyrothricin was actually the first antibiotic preparation that was commercially produced
for clinical use, 2 years before penicillin became commercially available. In fact, the
success of tyrothricin inspired the reinvestigation of penicillin as a potential antibiotic
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drug, after penicillin had been deemed unstable, difficult to produce, and of no medical
interest (2). Two years after the commercialization of tyrothricin, gramicidin S was
discovered in the Soviet Union, where it was extensively used to treat gunshot wounds
inflicted on the battlefields of World War II (3). Gramicidin S belongs to the same
antibiotic class as tyrothricin but is produced by Aneurinibacillus migulanus (4). Both
compounds display strong hemolytic potential and are limited to topical applications
but are still used today, e.g., for superficial skin and throat infections (5–10). The
imminent public health threat posed by multidrug-resistant microbial pathogens has
rejuvenated investigations of these topical antibiotics for new medical applications.
One of the major components of tyrothricin is the tyrocidines, cyclic �-sheet decapep-
tides (Fig. 1A and B) (4) with potent activity against several important pathogens,
including the Gram-positive bacterium Listeria monocytogenes (11, 12), the pathogenic
fungus Aspergillus fumigatus (13) and yeast Candida albicans (14), and the human
malaria parasite Plasmodium falciparum (15). Thus, they have promising potential for
broader applications than the current usage of tyrothricin. Gramicidin S, which shares
50% sequence homology with the tyrocidines (Fig. 1C), is highly active against Gram-
positive staphylococci and enterococci, as well as Gram-negative Escherichia coli and
Pseudomonas aeruginosa (16). This remarkable potency, and the fact that there is
virtually no resistance to these old peptide antibiotics (17), has sparked a renewed
interest in extending their clinical applications (9, 18), and considerable efforts have
been undertaken to develop analogues with lower hemolytic potential (12, 19–25).

Despite this renewed attention, there is very little information on how exactly
tyrocidines kill bacteria (15, 26). Based on an early in vitro study using artificial

FIG 1 Peptides used in this study and their effects on the growth of B. subtilis. (A to C) Tyrocidine A (A), tyrocidine C (B), and gramicidin S (C) (left panels, skeletal
structure models; right panels, stick models). Tyrocidines consist of a conserved cyclic decapeptide structure of the consensus sequence cyclo(D-Phe1-Pro2-
X3-D-X4-Asn5-Gln6-Tyr7-Val8-Orn9-Leu10). Analogues of the tyrocidines containing either Phe3-D-Phe4, Trp3-D-Phe4, or Trp3-D-Trp4 at the variable dipeptide unit
X3-D-X4 (red) are referred to as tyrocidine A, B, or C, respectively. Gramicidin S [cyclo(Val8-Orn9-Leu10-D-Phe1-Pro2)2] is composed of two repeat moieties of the
conserved pentapeptide sequence of the tyrocidines (blue). Three-dimensional structures of the peptides are derived from the work of Munyuki et al. (93)
(tyrocidines) and Stern et al. (99) (gramicidin S). (D) Growth of B. subtilis exposed to 1� MIC of the peptides (5.4 �g/ml tyrocidine A, 2.7 �g/ml tyrocidine C,
and 1 �g/ml gramicidin S). Cells were grown until early exponential phase prior to addition of compounds. The arrow indicates the time point chosen for further
mode-of-action analysis (10 min).
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liposomes, it is assumed that tyrocidines permeabilize membranes, induce lipid phase
separation, and increase fluidity of the hydrocarbon part of the lipid bilayer (26). How
these effects are achieved and whether these observations are relevant for the in vivo
situation are unknown. Studies with L. monocytogenes and the filamentous plant fungi
Fusarium solani and Botrytis cinerea confirmed membrane permeabilization by tyroci-
dines (11, 27). However, there is evidence that these peptides also target �-glucans in
the fungal cell wall (27), suggesting that there is more to their antimicrobial activity
than only membrane disruption. Importantly, there is almost no further information
available on how these peptides act on bacterial cells, although they have been
clinically used against bacterial infections since 1940 (2). Early studies showed a
reduced oxygen consumption in tyrocidine-treated Staphylococcus aureus (28), and
inhibition of certain NADH-utilizing enzymes of the tyrothricin producer strain (29), but
this has not been followed up.

In contrast to the tyrocidines, the interaction of gramicidin S with model membrane
systems has been well investigated, and the consensus is that the drug partitions into
the membrane at the interface between phospholipid head groups and fatty acid
chains, thereby disturbing lipid packing, leading to membrane collapse at high con-
centrations (30–32). However, there is an ongoing dispute on whether it forms discrete
pores or destroys the membrane in a detergent-like manner and whether membrane
permeabilization occurs at all at concentrations relevant for bacterial killing (31, 33–37).
Unfortunately, since the majority of early studies on gramicidin S were performed in the
middle of the 20th century in the Soviet Union, most reports are available only in
Russian and not easily accessible to the international scientific community. One of these
early studies described inhibition of proteins in the membrane of its producer strain
(38), and recently, it was shown that gramicidin S interferes with the membrane binding
of the cell wall synthesis enzyme MurG and the electron transport chain protein
cytochrome c (39). It has also been reported that both gramicidin S and the tyrocidines
bind to DNA in vitro, suggesting an alternative or additional killing mechanism (40–43).

The structural homology of gramicidin S and tyrocidines suggests that these peptide
antibiotics kill bacteria in the same way. To investigate this, we performed an in vivo
mode-of-action study employing a recently established bacterial cytological profiling
method that makes use of a broad array of fluorescently labeled proteins (44). This
study revealed that tyrocidines and gramicidin S kill bacteria by surprisingly different
mechanisms.

RESULTS
Cell wall integrity. To assess whether the variable aromatic dipeptide unit of the

tyrocidine peptides makes a difference for their in vivo mechanism, we used both
tyrocidine A (Phe3-D-Phe4) and tyrocidine C (Trp3-D-Trp4) (Fig. 1A and B). The tyrocidines
have been proposed to bind to fungal cell wall components (27), and gramicidin S was
shown to affect cell wall integrity in Bacillus subtilis (37). To study how effectively these
antibiotics weaken the bacterial cell wall and cause lysis, we followed the optical
density (OD) of B. subtilis cells treated with MICs of the compounds (Fig. 1D). At this
concentration, a fraction of the tyrocidine-treated cells lysed after 15 to 20 min of
treatment but the culture recovered after approximately 60 min. Gramicidin S treat-
ment did not lead to cell lysis but completely halted further growth. However, at 2�

MIC, all three peptides caused lysis and no regrowth could be observed (see Fig. S1 in
the supplemental material). Such cell lysis suggests that these antibiotics somehow
affect the integrity of the cell wall. Since we wanted to analyze the immediate
growth-inhibiting effects of the peptides, instead of pleiotropic lysis effects, we per-
formed further experiments after 10 min of treatment with 1� MIC (unless otherwise
noted), when no strong reduction of the optical density was observed (Fig. 1D).

To further examine the effects on cell wall integrity, we employed an organic
fixation method that is indicative of holes in the peptidoglycan layer, typically related
to impaired synthesis of the cell wall precursor lipid II (45). In line with an earlier study
(39), gramicidin S clearly affected cell wall integrity as seen from the protoplast
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protruding through cell wall breaches (Fig. 2A). However, this phenotype was not
observed for tyrocidines A and C, suggesting a clear mechanistic difference from
gramicidin S. In fact, transmission electron microscopy revealed that the tyrocidines
caused severe cellular damage, intracellular content leakage, and lysis of cells, whereas
gramicidin S-treated cells showed only subtle cell shape alterations but no major signs
of lysis or physical cell damage (Fig. 2B).

Membrane permeability. The current belief is that both the tyrocidines and
gramicidin S form pores in the cell membrane (26, 31, 33–37). However, for the
tyrocidines this has actually never been shown in bacteria, and the pore-forming ability
of gramicidin S is heavily disputed (31, 33–37). Therefore, we examined the effects of
these peptides on membrane permeability in detail. First, we determined the effects of
the peptides on the membrane potential using the membrane potentiometric dye
DiSC(3)5. Tyrocidines A and C led to immediate strong depolarization of B. subtilis cells
already at 0.5� MIC (Fig. 3A). Inhibitory concentrations of gramicidin S (1� MIC) only
gradually and partially depolarized B. subtilis cells. Full depolarization was achieved only
at 2� MIC, a concentration causing cell lysis (Fig. S1). These results suggest that the
tyrocidines form membrane pores while gramicidin S does not.

To further characterize the ability of the peptides to generate distinct ion-
conducting pores, we performed in vitro conductivity measurements. This allowed us to
follow single-ion current events in a planar model lipid system mimicking Gram-
positive membranes (3:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol
[POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine [POPE]). In line
with our in vivo data, we observed a number of conductivity events for tyrocidines A
and C at low, nanomolar concentrations (Fig. 4A). Current transitions peaked at 2 pA for
tyrocidine A and 3.5 pA for tyrocidine C, corresponding to calculated conductance
values of 20 pS and 35 pS, respectively (Fig. 4B). These conductance events are
representative of several single-membrane pores that stay open for up to several
seconds. Conductance events induced by gramicidin S were observed only at concen-
trations leading to membrane collapse (5 �M, Fig. 4A), lasted only milliseconds, and
exhibited a broad range of amplitudes (Fig. 4A), which is indicative of general bilayer
distortion. Similar behavior has been reported for gramicidin S in diphytanoyl phos-
pholipid bilayers (31). These results show that both tyrocidine A and tyrocidine C

FIG 2 Effects of tyrocidines and gramicidin S on the cell wall. (A) Impact on cell wall integrity. B. subtilis 168 was treated with peptides for 10 min and
subsequently fixed in a 1:3 mixture of acetic acid and methanol. This fixation method leads to extraction of the protoplast through holes in the peptidoglycan
layer (arrow) when synthesis of the cell wall precursor lipid II is impaired (37, 45). Since this fixation method can sometimes lead to quick lysis of heavily
damaged cells, we examined both 0.5� MIC (nonlytic) and 1� MIC of the tyrocidines but did not find membrane extrusions under both conditions. Bar, 2 �m.
(B) Transmission electron microscopy pictures of B. subtilis 168 treated with 1� MIC of the peptides for 10 min. Bar, 0.5 �m.
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induce discrete long-lived ion-conducting pores, while gramicidin S did not exhibit
pore-forming capacity in our system.

To gain insight into whether tyrocidine pores are small ion channels or large
membrane pores that allow big organic molecules to pass through, pore formation was
assessed by following the influx of the fluorescent dye propidium iodide, which enters
bacterial cells only through membrane lesions large enough for the bulky molecule to
pass (46). Both tyrocidine A and tyrocidine C rapidly formed large pores in B. subtilis
cells (Fig. 3B). Cells treated with gramicidin S did not show any propidium iodide influx,
not even at bacteriolytic concentrations (2� MIC) (Fig. 3B; Fig. S1).

Taken together, both in vivo (Fig. 1 to 3) and in vitro (Fig. 4) experiments strongly
indicated that at inhibitory concentrations tyrocidines A and C, but not gramicidin S,
form large, ion-conducting pores. The slow and incomplete depolarization by grami-
cidin S (Fig. 3A) suggests rather a limited increase of passive membrane permeability.

Membrane protein localization. At MICs, gramicidin S did not fully depolarize the
cell membrane (Fig. 3A) and even at supra-MICs, it did not lead to large membrane
lesions (Fig. 3B). It is therefore plausible that other vital processes must be disturbed
that, together with limited depolarization and impairment of the cell wall (Fig. 2A and
3A), will eventually lead to cell death. It is also well known that the membrane potential

FIG 3 Tyrocidines but not gramicidin S form membrane pores in vivo. (A) Membrane potential
measurements of exponentially growing B. subtilis 168 cells using the membrane potential-sensitive
fluorescent probe DiSC(3)5. Tyrocidines A and C were applied at 0.5� and 1� MIC, and gramicidin S was
applied at 1� and 2� MIC. The red arrow indicates the time point of antibiotic addition. (B) Membrane
permeability for propidium iodide. Exponentially growing cells were treated with peptides for 5 min. For
the tyrocidines, 0.5� MIC (nonlytic) and 1� MIC were used; gramicidin S was applied at 2� MIC (2 �g/ml,
lytic concentration). SDS at 0.01% served as a positive control. Strain, B. subtilis 168. au, arbitrary units.
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is required for the localization of peripheral membrane proteins involved in cell division
and cell morphology (47), and pore formation by the tyrocidines is likely to affect
different essential cellular processes. To investigate whether insertion of gramicidin S
and the tyrocidines affects membrane proteins differently, we examined the localiza-
tion of fluorescent membrane protein fusions involved in a variety of cellular processes.
Figure 5A shows peripheral membrane proteins that can be used as reporters for
dissipation of the membrane potential. The cell division proteins MinD and DivIVA
require the membrane potential for their localization at the membrane (44, 47), while
localization of the phospholipid synthase PlsX is independent of the proton motive
force (44). In line with membrane depolarization, all three peptides delocalized MinD
and DivIVA, whereby the tyrocidines caused a more diffuse cytoplasmic fluorescence
signal, while gramicidin S induced stronger clustering of the proteins at the cell
periphery (Fig. 5A). Interestingly, the phospholipid synthase PlsX completely lost its
membrane localization after treatment with both the tyrocidines and gramicidin S.
Since PlsX does not depend on the membrane potential, its delocalization demon-
strates that the peptides have other effects on the membrane than only interfering with
the barrier function of the cell membrane.

The cell wall-damaging effect of gramicidin S has been attributed to detachment of
the peripheral peptidoglycan synthesis enzyme MurG, involved in the last steps of lipid

FIG 4 Conductivity measurements in model membranes. (A) Conductivity measurements in POPG-POPE
(3:1) planar model membranes with an artificial transmembrane potential of 100 mV. Representative
recordings of single-channel currents of tyrocidine A and tyrocidine C are shown. No ion conductance
events were observed for gramicidin S up to concentrations leading to membrane collapse (5 �M). Note
the different peptide concentrations and the different y scales. (B) Single-channel current transition
amplitude histograms of tyrocidine A (gray) and tyrocidine C (red) in POPG-POPE (3:1) membranes
recorded at 100 mV. Normalized frequency refers to the number of times that a pore with a specific
current amplitude was observed and is displayed as a fraction of the maximum count. Data from 8
independent membranes and 158 single-channel transitions for tyrocidine A and 12 independent
membranes with 560 single-channel transitions for tyrocidine C are shown.
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II synthesis (39). To test whether the localization of this protein and other cell wall
synthesis proteins is affected by the tyrocidines, we examined the localization of MurG,
the transmembrane lipid I synthase MraY, and the actin homologue MreB, which
coordinates lateral peptidoglycan synthesis (48, 49). As shown in Fig. 5B, MurG com-
pletely lost its membrane localization after treatment with all three peptides. However,
MraY was clustered into huge foci by tyrocidines A and C, while gramicidin S did not
show a clear effect. MreB is known to delocalize after membrane depolarization (47, 50).
After treatment with the tyrocidines and, to a lesser extent, also with gramicidin S,
MreB localized into discrete clusters distributed all over the cell membrane (Fig. 5B), a
peculiar effect not seen before with membrane-targeting antibiotics (44, 47, 50).

The actin homologue MreB has been implicated in the formation of fluid membrane
microdomains, so-called regions of increased fluidity (RIFs), which play a role in spatial
organization of cell envelope synthesis (44, 50, 51). This made us curious whether the
peptides would also affect the distribution of bacterial flotillin proteins involved in the
formation of specific rigid membrane domains (known as lipid rafts in eukaryotes) (52,
53). While the integral flotillin FloA was not affected by any of the peptides, the
peripheral flotillin FloT was clearly detached from the membrane by tyrocidines A and
C but not by gramicidin S (Fig. 5C). FloT interacts with many membrane-associated
proteins (54), and the separation from its interaction partners by dissociation from the
membrane is likely to affect multiple cellular processes, including membrane organi-
zation, fluidity, respiration, protein secretion, membrane transport, signal transduction,
and autolysin activity (53, 56–58).

Since gramicidin S was shown to reduce ATP levels in B. subtilis (39) and tyrocidines
reduced oxygen consumption in S. aureus (28), we also examined their effects on the

FIG 5 Delocalization of membrane proteins labeled with GFP. (A) Reporter proteins for membrane depolarization. Membrane
localization of MinD and DivIVA requires the membrane potential, whereas membrane binding of the peripheral membrane
protein PlsX is independent of the membrane potential. (B) Localization of proteins associated with cell wall synthesis. In
contrast to MreB, localization of the peripheral MurG and integral MraY proteins is not reliant on the membrane potential. (C)
Localization of flotillins involved in the organization of lipid rafts. FloA is an integral membrane protein, and FloT is a peripheral
membrane-associated protein. (D) Localization of proteins involved in membrane-bound energy generation. AtpA and SdhA
are the peripheral subunits of the ATP synthase and succinate dehydrogenase, respectively. Arrowheads indicate regions from
which AtpA and SdhA are fully excluded. B. subtilis strains were grown in LB with appropriate inducer concentrations (see
Table S1) and treated with peptides in early exponential growth phase for 10 min. Bar, 2 �m.
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localization of AtpA, the peripheral subunit of the ATP synthase, and SdhA, the flavoprotein
subunit of the succinate dehydrogenase (complex II) of the respiratory chain. These
transmembrane protein complexes are unaffected by membrane potential-dissipating
drugs like carbonyl cyanide m-chlorophenylhydrazone (CCCP) and valinomycin, and
also the membrane-targeting antibiotic daptomycin (44, 47). Surprisingly, both AtpA
and SdhA partially lost their membrane association after treatment with the tyrocidines
(Fig. 5D), explaining inhibition of electron transport chain enzymes reported in an early
study (29, 59). In contrast, gramicidin S had no marked effect on the localization of
these proteins, suggesting that its effect on cellular ATP levels is probably due to
delocalization of cytochrome c (39) and partial membrane depolarization.

Gel-phase domains. Interestingly, many of the tyrocidine-treated cells displayed
large areas from which AtpA and SdhA were excluded (Fig. 5D, arrowheads; Fig. S2, left
panels; and Fig. S3A). It seems as if these empty areas might have been caused by
plasmolysis of the cell membrane due to partial release of cytoplasmic content.
However, the corresponding phase-contrast images did not indicate that these were
partially empty cells (Fig. 5D and Fig. S2, right panels). To examine the effects of the
peptides on the cell membrane in more detail, we employed superresolution structured
illumination microscopy (SIM) and stained the cell membrane with MitoTracker green,
a very bright fluorescent membrane stain that provides excellent SIM contrast (60). As
shown in Fig. 6A, a 10-min incubation with the tyrocidines resulted in strongly
fluorescent foci (open arrows) but also regions that were completely unstained (closed
arrows). Gramicidin S-treated cells did not cause gaps in the fluorescent membrane
stain but some small fluorescent membrane foci. When we expressed green fluorescent
protein (GFP), it became apparent that many of the tyrocidine-treated cells lost their
cytosolic GFP signal (Fig. 6B), indicating leakage of cellular content. Cells were coun-
terstained with the red fluorescent membrane dye Nile red, which showed similar gaps
in its fluorescent stain (Fig. 6B) as observed with MitoTracker green (Fig. 6A). Impor-
tantly, these gaps were also observed in cells that still contained their cytoplasmic GFP
(Fig. 6B and Fig. S3B), indicating that these gaps are not caused by the absence of cell
membrane due to lysis. The only remaining explanation for the absence of both
fluorescent membrane dyes as well as membrane proteins is that these membrane
areas are in a rigid, gel-phase state that excludes most dyes and proteins (61). Although
stabilization of gel-phase domains by antimicrobial peptides has been observed in vitro
(62, 63), to the best of our knowledge, such domains have not been documented
before in bacterial cells.

Accumulation of membrane material. Cells stained with membrane dyes and
treated with gramicidin S, and especially with tyrocidines A and C, showed membrane
patches that were highly fluorescent (Fig. 6A and B and Fig. S3B and C). In the case of
the tyrocidines, these membrane patches seemed to partially displace the cytoplasmic
GFP signal (Fig. 6B, arrowheads), suggesting that the increased fluorescence signal is
caused by an accumulation of membrane material (44, 50, 64). Formation of this extra
membrane material can be caused by overactivation of fatty acid synthesis (65).
However, when either fatty acid synthesis or protein synthesis was blocked with
triclosan or chloramphenicol, respectively, bright membrane patches were still ob-
served upon peptide treatment (Fig. S3D). Alternatively, these membrane accumula-
tions can be caused by plasmolysis due to a loss of turgor pressure and cell shrinkage,
as shown by plunging cells in a sucrose solution (Fig. 6B, bottom panel) (66). To confirm
that tyrocidines A and C cause cell shrinkage, we performed a time-lapse experiment
using cells stained with the membrane dye FM5-95. As shown in Fig. 6C, membrane
patches are formed within minutes, rapidly followed by reduction of the GFP signal in
their immediate proximity and cell shrinkage. Thus, tyrocidines induce large fluorescent
membrane invaginations (patches) by causing a loss of turgor and subsequent cell
shrinkage.

Impact on membrane fluidity. No signs of plasmolysis were observed with gram-
icidin S (Fig. 6B), in line with the fact that this antibiotic does not cause rapid cell lysis
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at inhibitory concentrations (Fig. 1D). However, gramicidin S also caused highly fluo-
rescent membrane patches. Irregular membrane staining of fluorescent membrane
dyes has been observed before when cells were treated with the membrane antibiotic
daptomycin and the proton ionophore CCCP, and the irregularly stained areas were
identified as highly fluid membrane domains, which increase the fluorescence of
membrane dyes and can also accommodate more dye (50, 64). To examine whether
these bright fluorescent membrane patches are fluid lipid domains, we used the
membrane dye DiIC12, which displays a strong affinity for fluid membranes, including
RIFs, due to its short hydrocarbon tail (50, 67, 68). Indeed, after treatment with

FIG 6 Tyrocidines and gramicidin S cause aberrant membrane staining and plasmolysis. (A) SIM images of B. subtilis 168 stained with MitoTracker green. Note
the unstained membrane areas (arrowheads) and bright lipid accumulations (arrows) in cells treated with tyrocidines A and C. See also Fig. S5A for quantification
of membrane patches. (B) Tyrocidines induce membrane invaginations. SIM images of B. subtilis bSS82 expressing cytosolic GFP from the strong ribosomal
PrpsD promoter were stained with Nile red. Sucrose (20%) was used to induce osmotic upshock and used as a control for plasmolysis (bottom panel). (C)
Tyrocidines cause plasmolysis. Time-lapse images of B. subtilis bSS82 cells treated with tyrocidines A and C. Membranes were stained with the nontoxic
membrane dye FM5-95. Arrows indicate membrane patches and corresponding areas with reduced intracellular GFP. Bars, 2 �m. Experiments were performed
in early exponential log phase using 1� MIC of the peptides.
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gramicidin S the natural distribution of RIFs was severely disturbed, and the dye
accumulated in one or two large patches per cell (Fig. 7A). The same patches were
observed in cells treated with the tyrocidines (Fig. 7A), and they seem to correspond to
the large membrane invaginations caused by plasmolysis (Fig. 6). Presumably, fluid
membrane domains are more likely to invaginate due to the higher flexibility of fluid
lipids.

To confirm that these large DiIC12-stained membrane patches are indeed more
fluid, we employed laurdan generalized polarization (GP). The fluorescence membrane
dye laurdan shifts its fluorescence spectrum depending on the amount of water
molecules in the bilayer, and laurdan GP can therefore be used as a measure of
phospholipid head group spreading and fatty acid chain flexibility (69, 70). As shown in
Fig. 7B, this assay confirmed that the membrane patches (open arrows) have an
increased fluidity compared to the bulk membrane (filled arrows). When we quantified
laurdan GP in the patches and the remaining membrane, it became apparent that not

FIG 7 Effect of tyrocidines and gramicidin S on membrane fluidity. (A) Fluid lipid domain (RIF) staining with DiIC12. (B) Laurdan GP microscopy
indicating local fluidity differences. Filled arrows indicate the cell membrane; open arrows indicate fluid membrane patches. (C) Quantification
of membrane fluidity from laurdan microscopy pictures. The minimum GP within the membrane patch and the average GP in the lateral
membrane were measured in individual cells. (D) Changes in overall membrane fluidity measured by laurdan GP in microtiter plate cultures. The
membrane fluidizer benzyl alcohol served as a positive control. The arrow indicates the time point of antibiotic addition. Error bars represent
standard deviations of the mean of three replicate experiments.
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only did the peptides cause fluid membrane patches but this also led to a rigidification
of the rest of the membrane (Fig. 7C).

To gain insight into how fast these fluidity changes happen, laurdan GP was
measured spectroscopically in batch culture. We found that there was a rapid (2-min)
reduction of membrane fluidity when the peptide antibiotics were added (Fig. 7D),
indicating that this is a direct effect of peptide-membrane interaction and not a
bacterial adaptation strategy, which would require the induction of specific enzymes and
thus take more time. In line with our laurdan microscopy data, the overall membrane
rigidification was stronger for tyrocidines A and C than for gramicidin S (Fig. 7D), supporting
our notion that the tyrocidines change the physical parameters of the lipid bilayer in a
different way than gramicidin S.

Protein delocalization is independent of MreB. Previous work suggested that RIFs
are formed by MreB polymers, both in B. subtilis and in E. coli (50, 51). All three peptides
caused clustering of MreB (Fig. 5B); therefore, we examined whether these MreB
clusters are responsible for the large DiIC12-stained RIFs that emerge upon addition of
the peptide antibiotics (Fig. 7A). Interestingly, the GFP-MreB clusters did not overlap
DiIC12 clusters, both in the case of gramicidin S and in the case of the tyrocidines
(Fig. 8A). Thus, the peptide antibiotics are able to form artificial RIFs without the help
of MreB. To confirm this, we tested a triple deletion strain lacking MreB and its
homologues MreBH and Mbl. Indeed, in such mutant cells the addition of gramicidin S
and the tyrocidines still resulted in large DiIC12-stained membrane patches (Fig. S4).

To our surprise, untreated MreB triple mutant cells also showed some small RIFs
(Fig. S4). This is in disagreement with what we have reported previously (50). An
in-depth analysis revealed that DiIC12-stained RIFs become visible only during loga-
rithmic growth and disappear when cells enter the stationary phase of growth, despite
the fact that MreB is still present in the stationary phase (Fig. S4 to S6 and Text S1). This
growth-phase-dependent occurrence of RIFs explained the differences from our previ-
ous finding. Based on this and previous studies, we propose that MreB is not involved
in establishing RIFs but rather helps to organize them along the cell axis.

Peptides induce fluid lipid domains by stabilizing the liquid crystalline phase.
The previous results suggested that both tyrocidines and gramicidin S induce fluid lipid
domains independently from the MreB cytoskeleton. To confirm that the observed
fluidity changes are a direct cause of peptide-lipid interaction, we tested whether the
peptides influence phase separation behavior of model lipid membranes using 31P
solid-state nuclear magnetic resonance (NMR). As before, we used 3:1 POPG-POPE
model membranes to mimic Gram-positive bacterial cell membranes. To exclude the
possibility that the observed effects correspond to head group demixing rather than
transition from liquid crystalline to gel phase, we additionally tested pure POPE bilayers.
All three peptides stabilized the liquid crystalline (fluid) phase in both model mem-
brane systems (Fig. S7). For the tyrocidines, similar effects have been described before
in model membranes made of dielaidoylphosphatidylethanolamine (DEPE) (26), and
gramicidin S has been shown to have a preference for more-fluid membranes (32). The
NMR data indicate that the generation of fluid lipid domains is a direct cause of
peptide-lipid interaction and suggest a model in which the peptides preferentially
insert into fluid lipid domains like RIFs and increase their local fluidity. The DiIC12 and
laurdan data suggest that these domains also attract more flexible (fluidizing) lipid
species, further increasing local fluidization.

Membrane proteins localize to fluid domains. The relatively bulky membrane-
targeting domains of most peripheral membrane proteins need a certain flexibility of
the lipid bilayer for their binding and insertion into the membrane (71). Similarly, the
hydrophobic surface area of transmembrane proteins causes an inherent preference of
these proteins for areas of a particular membrane thickness and fluidity (72). It is
therefore likely that the segregation of lipids into fluid and rigid (membrane) domains
by the tyrocidines and gramicidin S (Fig. 7B) is responsible for the observed delocal-
ization of membrane proteins (Fig. 5). To investigate this, we examined the localization
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of MraY (transmembrane) and AtpA (peripheral subunit of a transmembrane complex)
in relation to fluid lipid domains stained with DiIC12. MraY clearly overlapped DiIC12
clusters caused by the tyrocidines and gramicidin S, suggesting that this protein
preferentially partitions from the rigidified membrane regions into fluid membrane
patches (Fig. 8B). AtpA has been used as a reporter for cell membrane invagination (44,
50), and it does not accumulate in fluid lipid domains caused by antibiotics (50) (also
MP196, Fig. 8B). In line with membrane invaginations due to plasmolysis caused by the
tyrocidines but not by gramicidin S (Fig. 6), AtpA showed a substantial overlap with the
tyrocidine-induced DiIC12 clusters but not with clusters induced by gramicidin S
(Fig. 8C).

FIG 8 Overlap of GFP-tagged proteins with fluid membrane domains. (A to C) Colocalization of MreB (A), MraY (B), and AtpA (C) with DiIC12 was
tested after a 10-min treatment with tyrocidine A, tyrocidine C, and gramicidin S. Open arrows indicate fluid membrane patches induced by the
peptides. Closed arrows indicate membrane areas from which both DiIC12 and AtpA are excluded. (D) Effects of the unrelated antimicrobial
peptides daptomycin and MP196. Cells were treated with 1 �g/ml daptomycin (in LB supplemented with 1.25 mM CaCl2) or 10 �g/ml MP196. B.
subtilis strains were grown in LB supplemented with appropriate inducer concentrations (Table S1) and treated with peptides in early exponential
growth phase for 10 min. Bar, 2 �m.
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To compare the effects of the tyrocidines and gramicidin S with those of other
membrane-targeting peptides, we performed the same costaining experiment with
two well-studied antimicrobial peptides, the lipopeptide daptomycin, which selectively
inserts into RIFs and tightly aggregates them into rigid clusters (44), and the small
cationic peptide MP196, which disturbs membrane architecture and depolarizes the
membrane by inhibiting the respiratory chain (39). In line with an earlier study (44),
daptomycin only slightly affected the localization of MreB and had no effect on MraY
and AtpA localization (Fig. 8B). On the other hand, MP196 caused MreB clusters that
overlapped aggregated RIFs, which is typical for depolarizing compounds (50). MraY
also accumulated in the DiIC12-stained membrane patches, whereas AtpA localization
was unaffected. These effects are quite different from what was observed with the
tyrocidines and gramicidin S, indicating that these old peptide antibiotics disrupt the
bacterial cell membrane by thus-far unique mechanisms.

Influence on the chromosome. Although the bacterial cell membrane is consid-
ered the key target of both the tyrocidines and gramicidin S, in vitro experiments have
shown that these antibiotics also interact with DNA (40–43). However, it has never been
shown whether this DNA-binding activity plays a role in vivo. To investigate this, we
stained the bacterial chromosome with the DNA-binding dye 4=,6-diamidino-2-
phenylindole (DAPI). Cells treated with tyrocidines A and C showed a clear condensa-
tion of the nucleoid (Fig. 9A). As a control, we treated cells with CCCP but did not
observe any nucleoid condensation, indicating that this is not a mere effect of mem-
brane depolarization (Fig. 9A). Since nucleoid condensation occurred rapidly (�2 min)
and coincided with shrinking of the cells, it is possible that loss of turgor pressure plays
a role in tyrocidine-induced nucleoid condensation. In fact, an osmotic upshock can
lead to plasmolysis, nucleoid compaction, and dissociation of RNA polymerase from the

FIG 9 Influence of tyrocidines and gramicidin S on the bacterial chromosome. (A) Tyrocidines cause condensation of the nucleoid within
2 min. CCCP was included as a control for depolarization. DNA was stained with DAPI. Strain, B. subtilis 168. (B) Localization of
DNA-associated proteins (see main text for details). B. subtilis strains were grown in LB with appropriate inducer concentrations (see
Table S1) and treated with peptides in early exponential growth phase for 10 min. The ribosomal subunit protein RpsB was chosen as
control for a cytosolic protein not associated with the nucleoid. Bars, 2 �m.
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DNA (73). Therefore, we examined the localization of RNA polymerase by tagging its
subunit RpoC with GFP. As shown in Fig. 8B, RNA polymerase remained attached to the
nucleoid but seemed to cluster. To test whether the peptides influence DNA replication,
we examined the localization of the DNA replication regulator ParB (Spo0J) (74, 75) and
the DNA polymerase subunit DnaN. The ribosome subunit RpsB was included as a
cytosolic control protein. Both tyrocidines caused a complete detachment of ParB from
the origin of replication (Fig. 9B). DnaN remained attached to the chromosome but
exhibited some clustering toward the center of the cells after treatment with tyrocid-
ines A and C (Fig. 9B). The same effect is seen with the gyrase inhibitor ciprofloxacin
(60), which causes arrest of the replication fork (76). RpsB, which is not associated with
DNA, was not affected by the peptides. To examine whether the peptides cause DNA
damage, we looked at the localization of RecA. Upon DNA damage, this repair protein
forms large nucleoprotein filaments (77, 78). As shown in Fig. 8B, RecA formed clear foci
after treatment with tyrocidines A and C. In contrast to the tyrocidines, gramicidin S had
no effect on the localization of any of these proteins. These results indicate that the
tyrocidines also target the bacterial DNA, resulting in inhibition of DNA replication and
DNA damage, whereas gramicidin S does not show any DNA-targeting activity in vivo.

Activity against persister cells. Antibiotic tolerance caused by nongrowing per-
sister cells is an important problem in antibacterial therapy as it leads to chronic and
recurrent bacterial infections (79). Membrane-active compounds have been suggested
as treatment options for such persistent infections (80). Since the tyrocidines and
gramicidin S affect multiple cellular processes, including the cell membrane, we tested
the potential of the peptides to kill nongrowing overnight cultures of B. subtilis and S.
aureus that have been used as simple model systems for persister cells (81, 82). As
shown in Fig. 9A, ampicillin and chloramphenicol were highly active against growing B.
subtilis and S. aureus cultures (Fig. 10A). However, overnight cultures were completely
resistant to 9-h treatment with these antibiotics. In contrast, both the tyrocidines and
gramicidin S were highly efficient in killing nongrowing B. subtilis cells (Fig. 10B). A 9-h
incubation with the tyrocidines killed 90% to 99% of nongrowing S. aureus cells,
whereas gramicidin S achieved a CFU reduction of as much as 5 log units (Fig. 10C),
underlining the clinical potential of the peptides.

DISCUSSION

There is a considerable amount of literature on how antimicrobial peptides interact
with model membrane systems (26, 30, 31, 83, 84). However, only very limited infor-
mation is available on how these antibiotics affect bacterial cells in vivo, even for
tyrocidines and gramicidin S, the oldest natural peptide antibiotics in clinical use (2, 3).
Here, we report the first comprehensive in vivo mode of action study of these cyclic
�-sheet decapeptides and show that they act very differently, despite sharing 50%
sequence homology.

Both the tyrocidines and gramicidin S affect membrane fluidity, membrane poten-
tial, and the localization of essential peripheral membrane proteins. However, the effect
of tyrocidines on the cell membrane is much more severe, leading to membrane pores,
phase separation into fluid membrane foci and rigid gel-phase domains, membrane
invaginations, and delocalized transmembrane proteins.

We noticed only subtle differences between tyrocidines A and C. Tyrocidine C
preferentially causes ion channels with higher current amplitudes, while tyrocidine A
showed a broader distribution of current amplitudes in model membranes. Tyrocidine
C possesses bulkier amino acid side chains (Trp-D-Trp) than tyrocidine A (Phe-D-Phe) at
the variable aromatic dipeptide unit (Fig. 1A and B), which could indicate a stronger
spreading of membrane lipids and therefore higher pore-forming capacity. In line with
this, tyrocidine C was more active against B. subtilis and S. aureus than tyrocidine A,
suggesting that pore formation is an important part of the mechanism of action of
these peptides.

Gramicidin S appeared to work very differently than the tyrocidines. Gramicidin S
does not form discrete membrane pores, affects only the localization of peripheral
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membrane proteins, and does not form overt gel-phase domains. However, like the
tyrocidines, it does form large fluid membrane domains independent of MreB. Early in
vitro studies have proposed lipid phase separation for the mechanism of gramicidin S
(90), which is supported by our NMR results. The microscopic images of DiIC12-stained
fluid domains show for the first time that lipid demixing does indeed occur in vivo.

FIG 10 Activity against growing and nongrowing cultures of B. subtilis 168 and S. aureus 8325. (A) MIC(s)
against B. subtilis, the model organism used in this study, and the pathogenic Gram-positive bacterium
S. aureus. MICs for B. subtilis were additionally determined in a test tube assay to exactly match the
conditions for mode-of-action experiments. (B) Log10 CFU reduction of nongrowing B. subtilis and S.
aureus cultures treated with ampicillin and chloramphenicol. (C) Log10 CFU reduction of nongrowing B.
subtilis and S. aureus cultures (stationary overnight cultures).
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It is curious that gramicidin S, which shares half of its sequence with the tyrocidines
(Fig. 1A to C), has such different effects on the cell membrane. Both tyrocidines and
gramicidin S insert superficially into the membrane, namely, at the interface between
phospholipid head groups and fatty acid chains (32, 91, 92). However, these studies
have been performed in different membrane systems, and at least for gramicidin S, it
is known that affinity and penetration depth depend on both lipid head group
composition and membrane fluidity (32). A systematic comparative study will be
needed to reach a final conclusion on the differences in membrane interaction between
these peptide antibiotics. Tyrocidines possess four aromatic residues, while gramicidin
S has only two phenylalanine residues. Furthermore, both tyrocidines A and C form
dimers, while dimerization of gramicidin S is deemed unlikely (91, 93). Therefore, one
might speculate that the bulkier side chains of tyrocidines together with dimerization
lead to stronger lipid spreading and, thus, more pronounced membrane effects than
those of gramicidin S.

Fluid membrane domains are induced by all three peptides both in vivo and in vitro,
showing that this kind of phase separation is not underlying pore formation. Instead,
the formation of gel-phase domains and rigidification of the bulk membrane occurred
only in cells treated with the pore-forming peptides tyrocidines A and C. The interface
between membrane domains of considerably different fluidity constitutes a weak spot
in the lipid bilayer and is assumed to facilitate ion leakage (85–89). It is likely that the
interface between highly fluid membrane domains and the rigidified rest membrane
plays a crucial role in the pore-forming ability of the tyrocidines. However, the exact
mechanism of how the tyrocidines achieve membrane rigidification and induce gel-
phase domains cannot be determined in this study.

Another important difference between gramicidin S and the tyrocidines is that the
latter cause DNA damage and interfere with DNA-binding proteins. Tyrocidines contain
two more aromatic amino acids than gramicidin S (Fig. 1A), and it has been shown that
aromatic amino acids can intercalate between the N bases in DNA and interfere with
N-base stacking interactions (94). Apparently, while gramicidin S is also able to bind to
DNA (42) in vitro, this is not reflected in the in vivo situation.

So far, most antimicrobial peptides are studied in model membrane systems,
resulting in pore formation being the prevailing mechanistic model for these com-
pounds. However, biophysical studies are done with artificial membrane systems,
conditions that fail to capture the complexity of biological membranes (44, 95). Our in
vivo study sheds new light on the antibacterial mechanism of these pioneering cyclic
�-sheet decapeptide antibiotics, revealing a much more multifaceted and complex
mechanism than previously thought. This may explain why both the tyrocidines and
gramicidin S are still so effective after decades of clinical application and why there is
virtually no resistance to them. Interestingly, the effect of gramicidin S on the bacterial
membrane is less severe than that of the tyrocidines, yet gramicidin S is equally as or
even more efficient in killing both growing and nongrowing bacteria. The latter is
interesting, since persistent and recurrent bacterial infections caused by nongrowing
persister cells impose great difficulties in the clinic (79). While classical antibiotics such
as chloramphenicol and ampicillin target biosynthetic processes, they fail to kill non-
growing cells. Therefore, membrane-active antibiotics have been proposed as treat-
ment options for persistent infections (18, 79, 80). Our data on the tyrocidines and
gramicidin S corroborate this. Since the tyrocidines impair the function of the bacterial
membrane at both biosynthetic (cell division, cell wall, membrane, and ATP synthesis) and
structural (flotillin, membrane phase separation, and membrane pores) levels, and addi-
tionally affect DNA packing, cells have little possibility to recover from exposure to these
peptide antibiotics. Gramicidin S has less effect on the cell membrane and no effect on the
bacterial nucleoid, yet it is only slightly less efficient against stationary B. subtilis and much
more efficient against stationary S. aureus cells. S. aureus has a considerably different lipid
composition than B. subtilis in terms of both head groups and fatty acids (96, 97), which
might explain these differences. Our results underline that classic pore formation is not
necessarily a requirement for efficient killing of bacteria.
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MATERIALS AND METHODS
Details on antibiotics, bacterial strains, and experimental procedures can be found in Text S2 in the

supplemental material. A list of B. subtilis strains used in this study is displayed in Table S1. All strains
were grown at 30°C under steady agitation in Luria-Bertani broth (LB). MICs were determined in a
standard serial dilution assay. Growth experiments were carried out in 96-well format in a temperature-
controlled BioTek Synergy MX plate reader under continuous shaking. All mode-of-action assays were
performed with log-phase B. subtilis cells at an OD at 600 nm (OD600) of 0.3 at 30°C under steady
agitation. Unless otherwise noted, cells were treated with 1� MIC of the respective antibiotics for 10 min.
Fluorescence microscopy and staining of cells with fluorescent dyes were carried out as described
previously (44, 60, 98). Electron microscopy was performed using a recently described flat embedding
technique (60). The membrane potential was measured with DiSC(3)5 as described by Te Winkel et al.
(98). Propidium iodide influx and laurdan spectroscopic assays were essentially performed as described
by Müller et al. (44). Electrophysiological and NMR measurements were performed in 3:1 POPG-POPE or
pure POPE, respectively, as described in Text S2. Time-lapse microscopy and SIM were essentially
performed as described by Saeloh et al. (60). Activity against stationary-phase cells was determined using
overnight cultures of B. subtilis and S. aureus. Antibiotic concentrations were adjusted to the higher cell
count, and cells were incubated with antibiotics for 9 h prior to CFU determination.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00802-18.
TEXT S1, DOCX file, 0.02 MB.
TEXT S2, DOCX file, 0.03 MB.
FIG S1, TIF file, 0.2 MB.
FIG S2, TIF file, 0.5 MB.
FIG S3, TIF file, 1.6 MB.
FIG S4, TIF file, 0.5 MB.
FIG S5, TIF file, 1.1 MB.
FIG S6, TIF file, 0.1 MB.
FIG S7, TIF file, 0.7 MB.
TABLE S1, DOCX file, 0.02 MB.
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