Scaling the ConceptCloud Browser to Very Large
Semi-Structured Data Sets: Architecture and Data
Completion

by

Joshua Berndt

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Science (Computer Science) in
the Faculty of Science at Stellenbosch University

Supervisor: Prof. B. Fischer

Co-supervisor: Prof. K. Britz

December 2020

Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

December 2020

Copyright (©) 2020 Stellenbosch University
All rights reserved.

Stellenbosch University https://scholar.sun.ac.za

Abstract

Scaling the ConceptCloud Browser to Very Large
Semi-Structured Data Sets: Architecture and Data
Completion

J. Berndt

Computer Science Division,
Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, 7602 Matieland, South Africa.

Thesis: MSc (Computer Science)
December 2020

Semi-structured data sets such as product reviews or event log data are simul-
taneously becoming more widely used and ever larger. This thesis describes
ConceptCloud, a flexible, interactive browser for semi-structured datasets,
with a focus on the improvements made to accommodate larger datasets, more
intuitive data representation and the enrichment of the underlying data by way
of data-imputation. ConceptCloud makes use of an intuitive tag cloud visu-
alisation viewer in combination with an underlying concept lattice to provide
a formal structure for navigation through datasets without prior knowledge
of the structure of the data or compromising scalability. This scalability is
achieved by the implementation of architectural changes to increase the sys-
tem’s resource efficiency. These changes are demonstrated by way of a case
study on a dataset of wine reviews.

Semi-structured data sets such as product reviews or event log data often
contain a geolocation aspect: for example, the location of the winery for wine
reviews, or the accident location for traffic data. In this thesis, I describe Con-
ceptCloud extensions which allow for the rendering of specialised geolocation
data while providing alternate navigation paths through the dataset. I show
that using biclusters can make the navigation bidirectional, and demonstrate
this approach on a crime data set making use of a geolocation specialised map
viewer.

Semi-structured data often contains implicit information which will be use-
ful in driving data exploration if made explicit. I take advantage of domain

ii

Stellenbosch University https://scholar.sun.ac.za

ABSTRACT iii

ontologies to both allow implicit data in each input data set to be made explicit
and verify and correct inconsistencies allowing for better data exploration. I
demonstrate this approach with a continuation of the wine case study.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

J. Berndt

Rekenaar Wetenskap Afdeling,
Departement Wiskundige Wetenskappe,

Universiteit van Stellenbosch,
Privaatsak X1, 7602 Matieland, Suid Afrika.

Tesis: MSc (Rekenaarwetenskap)
Desember 2020

Semi-gestruktureerde datastelle soos produkbeoordelings of gebeurtenislog-
data word terselfdertyd al hoe meer gebruik en word al hoe groter. Hier-
die tesis beskryf ConceptCloud, 'n buigsame, interaktiewe blaaier vir semi-
gestruktureerde datastelle, met die fokus op die verbeterings wat aangebring
is om groter datastelle te akkommodeer, meer intuitiewe datavoorstelling te
bereik en die verryking van die onderliggende data deur gebruik van data-
berekening. ConceptCloud maak gebruik van 'n intuitiewe tag-wolkvisualisering-
kyker in kombinasie met 'n onderliggende konseprooster om 'n formele struk-
tuurte bou vir navigasie deur datastelle sonder voorafkennis van die struktuur
van die data of om die skaalbaarheid in die gedrang te bring. Hierdie skaal-
baarheid is bereik deur die implementering van argitektoniese veranderings om
die stelsel se hulpbrondoeltreffendheid te verhoog. Hierdie verbeterings word
by wyse van 'n gevallestudie op 'n datastel van wynoorsigte gedemonstreer.

Semi-gestruktureerde datastelle soos produkbeoordelings of gebeurtenislog-
data bevat 'n ligginggewing-aspek: byvoorbeeld die ligging van die wynmakery
vir wyn resensies, of die ongelukligging vir verkeersdata.

In hierdie tesis beskryf ons 'n ConceptCloud-uitbreiding wat voorsiening
maak vir gespesialiseerde ligginggewing-data, aangesien ons almal navigasie-
paaie deur die datastel wissel.

Ons wys dat die gebruik van biclusters die navigasie in twee rigtings kan
laat plaasvind en demonstreer hierdie benadering op 'n misdaaddatastel wat
gebruik maak van 'n gespesialiseerde geolokasie-kaart kyker.

Semi-gestruktureerde data bevat dikwels implisiete inligting wat nuttig sal
wees om data-eksplorasie te dryf as dit kan eksplisiet gemaak word. Ons benut
die domeinontologieé om beide implisiete data in elke insetdatastel eksplisiet
te laat maak as ook teenstrydighede te verifieer en te korrigeer, wat beter

iv

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL v

data-eksplorasie moontlik maak. Ons demonstreer hierdie benadering deur 'n
gevallestudie met wyn data.

Stellenbosch University https://scholar.sun.ac.za

List of Publications

[1] BERNDT, J. AND FISCHER, B. AND BRriTz, K. Scaling the ConceptCloud
browser to large semi-structured data sets, HAL 2018

2] pu Torr, T. AND BERNDT, J. AND BRrITZ, K. AND FISCHER, B. Con-
ceptCloud 2.0: Visualisation and Exploration of Geolocation-Rich Semi-
Structured Data Sets ceur-ws.org 2019

vi

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

Thank you to my supervisors, for all the effort, guidance and motivation which
was instrumental for the completion of this thesis.
The financial assistance of the Centre for Artificial Intelligence Research

(CAIR) is hereby gratefully acknowledged.

vii

Stellenbosch University https://scholar.sun.ac.za

Contents

[Declarationl i
[Abstract] ii
[Uittreksel iv
[List of Publications] vi
[Acknowledgements| vii
Contents| viii
[List of Figures| ix
(1__Introduction| 1
[LI _Thesis Goald 4
(L.2__Server-Based Architecturel 4
(1.3 ConceptCloud Data Navigation| 5
(1.4 Data Imputation| 7
[L5_ Structure of thesid 11
(1.6 Summary| 12
2 Background| 13
[2.1 Formal Concept Analysis|. 13
2.2 FCA Based Data Exploration Tools 17
2.3 ConceptCloud| 22
[2.4 Natural Language Processingl 29
[2.5 Description Logic And Ontologies| 31
2.6 Summary| 42
3__Server Based Architecturel 43
B.1 Overviewl. e 43
[3.2 Scalable ConceptCloud Architecturel. 46
[3.3 System Extensibility| 50
3.4 Data Presentationl. 0L 52

Stellenbosch University https://scholar.sun.ac.za

[3.0 Experimentso 54
[3.6 Wine Review Data Case Study| 55
[3.7 Maps Extension| oL 61
[3.8 Map-Viewer Implementation| 64
[4 Ontology Driven Data Imputation| 72
M1 TIntroductionl 72
4.2 General Approach|. o000 73
4.3 Vocabulary Mapping Between FCA and DI} 75
(4.4 Algorithm| o 7
[4.5 Implementation details| 87
4.6 Case Study| 88
4.7 Free Text Data-lmputation|. 93
(4.8 Summary| 96
6__Conclusions| 97
[b.1 Summary| 97
.2 Future worklo 99
.3 Conclusionl.o oo 100
[Bibliography| 103
A] 107
AT Setup|. 107
List of Figures
(1.1 Semi-structured JSON object showing wine data.| 2
[1.2 ConceptCloud tag cloud and context table displaying semistruc- |
[tured data tor the JUnit GIT repository.| 3
[1.3 ConceptCloud Tag Cloud showing the ‘tullfilename’ attribute for |
| the JUnit repository| 6
(1.4 Example Chenin Blanc wine JSON object with missing datal . . . 8
(1.5 Example wine taxonomy| 9
(1.6 Meronomy for wine example 10
(1.7 Thesaurus for wine example| 10

ix

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES X

p1

Subtable of a binary context showing attributes for the wine objects |

Mont Destin Range Chenin Blanc 2007 and Bersig Estate Chenin |

[Blanc 2006/ 14
[2.2 Example concept lattice for the ongoing wine example, showing |
[possible complex concepts CBS and CBW|. 16
[2.3 Large FCART context table for a data set of 1849 wine objects| . 18
[2.4 Large FCART concept lattice for a data set ot 1849 wine objects|. 19
[2.5 Conkxp binary context table for a data set of 1849 wine objects| . 20
[2.6 ConceptCloud tag cloud and many-valued context table for a data |
[set of 1849 wine objects| 22
[2.7 ConeptCloud navigation user interface with numerically labelled |
[components|o 24
[2.8 Navigation component interaction architecturel 26
[2.9 Example home screen of original web application ConceptCloud |
| implementation for a reduced size wine review dataset.| 27
[2.10 Example focussed concept tag cloud of original web application |
| ConceptCloud implementation for a reduced size wine review dataset.| 27
[2.11 Example focused concept tag clouds of original web application |
| ConceptCloud 1mplementation for a reduced size wine review dataset.| 28
[2.12 Multiple example focused concept tag clouds of original web appli- |
[cation ConceptCloud implementation for a reduced size wine review |
[dafasef] 29
[2.13 Merlot JSON object with a free-text wine review / blurb| 30
[2.14 Results of key-phrase extraction performed on the blurb of Figure |
I 775 1 | 31
[2.15 Example relationships between a winery, wine and a town based on |
| the ongoing wine example]o 34
2.16 SROZQ syntax and semantics| 40
[2.17 Possible interpretation Z of the domain information presented in |
| Chapter 2| 41
[3.1 Initial ConceptCloud System architecture as implemented by Gillian |
| Greene 1n “Interactive tag cloud visual-ization of software version |
| control repositories” [I18].| oo oo 45
[3.2 Updated ConceptCloud system architecture including the addition |
| of a fixed data source and caching database.| 48
[3.3 ConceptCloud Auto-complete functionality for ‘Merlot” search input| 49
[3.4 Updated navigation component How diagram showing search func- |
| tionality and Database cache interaction with a ConceptCloud user| 50
[3.5 ConceptCloud external API architecture showing the external API |
| controller’s interaction with the rest of ConceptCloud’s components.| 51
[3.6 ConceptCloud external API’s interaction with ConceptCloud’s nav- |

1gation components.| 52

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xi
[3.7 Table showing measured response times of old and new Concept- |
[Cloud architectures for listed user actions. 54
[3.8 ConceptCloud tag cloud showing Wine review with no linearisation| 56
[3.9 ConceptCloud tag cloud showing linearised Wine review datal 56
[3.10 ConceptCloud stickied ‘Points’ viewers for points values 87-94f . . 57
[3.11 ConceptCloud stickied ‘Points” viewers for points values 87-94 fil- |
| tered by vintage and varietal|o Y
[3.12 Normalised per window vintage and varietal viewers across points |
[for cabernet sauvignon.|. Lo 58
[3.13 Normalised per window vintage and varietal viewers across points |
[for Pinot Noir.|l 58
[3.14 Normalised per window vintage and varietal viewers across points |
| for Chardonnay.|. 59
[3.15 Context table showing South African crimes with objects selected| — 62
[3.16 Formal concept Lattice without any objects selected for tormal con- |
| text items in Figure[3. 159 63
[3.17 Formal Concept Lattice with objects selected| 63
[3.18 ConceptCloud map viewer for crime datal. 65
[3.19 ConceptCloud map viewer and tag cloud showing the Greater Cape |
[Town area bicluster) 68
[3.20 ConceptCloud map viewer and tag cloud showing the Greater Jo- |
| hannesburg area bicluster.| 69
4.1 Example Chenin Blanc wine JSON object with missing data] . . . 73
4.2 Example Cabernet Sauvignon JSON object| 74
4.3 Possible Interpretation Z of the domain information presented in |
| Chapter 2l 80
44 DI-Attributes for mDCBO7 individuall. 81
4.5 Protege view of inferred Wine individual’s detaill 84
4.6 Protege view of interred Winery individual’s detail 84
4.7 mDCB07 JSON object tollowing data imputation process| 86
1.8 Inferred attributes for mDCBO7 individuall 86
4.9 Data imputation alongside ConceptCloud architecture| 87
[4.10 Variance introduced by data-imputation| 89
[4.11 Wine review data main tag cloud| 89
4.12° Wine review data main tag cloud linearised| 90
{4.13 Points viewers for 87-94 normalised by country|. 90
[4.14 Vintage and varietal viewers for points 87-94} 91
4.15 Red wine viewers for points 87-94f 91
[4.16 White wine viewers for points 87-94|. 92
[4.17 Example key phrases for some W review text| 94
{4.18 Example key phrases for some W review text| 95

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

In the current information age, the availability of increasingly large data sets
and semi-structured information has become increasingly prevalent [7]. Semi-
structured data[5] refers to data which does not conform to the rigid structur-
ing of relational data, but still contains some form of self-describing metadata.
Semi-structured data has moved to the forefront of the web data sphere, where
the growth of the web has driven the growth of semi-structured data exponen-
tially with regard to availability and size. This is seen with the increased use
of both XML and JSON data, the latter becoming increasingly widespread
with the increase in JavaScript based web applications.

Semi-structured data can be modelled in graph-like or treelike structures.
These structures actively lend themselves towards data browsing, as described
by Buneman [5]. This browsing or exploration allows users to step through
the data without prior knowledge of the structure or schema of the data.

Figure gives an example of a semi-structured JSON [I1] data object.
We see that the object contains metadata describing its attributes, in this case,
giving their titles alongside their values. Data sets typically consist of many
such objects; wherein each attribute may contain further subobjects.When
presented with many such objects, for instance, a software repository with
many thousands of commits such as a JUnit [12] repository, one needs an
exploration tool to gain a holistic overview of the data set.

Several data exploration and visualisation tools based on concept lattices,
specialising in the analysis of unstructured and semi-structured data, exist,
and are explored in Section [2.2]

The main flaw with most of these tools is that they scale poorly, either
due to visualisation of the entire concept lattice lattice [4], [35], or the context
table as a whole. The performance cost of the visualisation of an entire lattice
becomes prohibitively expensive. For a tool to be able to scale to analyse
increasingly large semi-structured data sets, it must either be highly optimised
towards the particular data set or it must avoid paying the performance cost
of the visualisation.

This scaling can be achieved by providing an alternate scalable visualisation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2
{
"name": "Stark-Condé: Cabernet Sauvignon °‘Three Pines’’ 2007",
"winery": "Stark-Condé",
"location": "Jonkershoek Valley",
"region": "Stellenbosch",
"country": "South Africa",
"varietal": "Cabernet Saubignon",
"vintage": "2007",
"price": "42",
"points": "91",
"reviewer": "Michael Franz",
"reviewyear": "2010",
"review": "Intense and deeply flavorful, this is a dramatic

wine that grabs one’s attention and doesn’t let go.

Perhaps its most impressive aspect is its aromatic complexity,
as notes of dark berries, cassis, smoke, pine needles and
eucalyptus all show themselves quite notably. Full-bodied,
with plenty of tannin and oak, this is a wine for pairing
with assertive foods like grilled lamb."

+s

Figure 1.1: Semi-structured JSON object showing wine data.

that can represent the data without having to display it in its entirety.

The tool chosen which represents the alternate visualisation technique is
ConceptCloud [17]. ConceptCloud is a visualisation and exploration tool for
semi-structured data sets, that makes use of a tag cloud based visualisation to
represent an aggregated view of the semi-structured data.

ConceptCloud

ConceptCloud was initially built as an interactive tool for browsing Git and
SVN software repositories [16}[I8]. These repositories are rich in semi-structured
data due to the inherently structured nature of the software version control
domain. In summary, items in a software repository are tagged with self-
describing metadata by both the author and the version control software itself,
providing both highly structured and unstructured metadata. This metadata
rich domain proved to be the ideal application domain for ConceptCloud’s
initial development. ConceptCloud makes use of formal concept analysis [13]
to structure semi-structured data hierarchically in a concept lattice. Con-
ceptCloud uses this concept lattice as an underlying navigation structure, and
presents the data in the form of an interactive tag cloud, as seen in Figure|1.2]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

O ConceptCloud Browser

«
Navigation: ™ Rl
12002 2007 2007/12 2008 2009 2009/04 2009/05 2010 2011 2011/09 2012 2012/11 2013 2013/01 2013/10 2014

20154 Add Added
Branch Build Changes Class Code Com
Exception Fix
Friday From Github Issue Javadoc Junit eck Kcooney Ke ey Make Ma
2062 objects ntag cloud Master Merge Message Method Monday Name Notes
Pull Release Remove
Request Saturday E Sunday Test
Thursday
Tuesday txt Up Updated Use Version Wednesday

reision arectory fename e

Figure 1.2: ConceptCloud tag cloud and context table displaying semistruc-
tured data for the JUnit GIT repository.

where it is used to visualise repository data for the JUnit repository. The inter-
active tag cloud visualisation allows for selection and deselection of tags which
correspond to objects and attributes in the concept lattice, further explained
in Sections and respectively. This selection and deselection of tags cor-
responds to stepping through the underlying concept lattice by maintaining
an updated focus concept, in a process that is referred to as explorative search.
The explorative search process allows for exploration of a semi-structured data
set without constricting the user to predefined search paths or requiring prior
knowledge of the underlying structure of the data.

ConceptCloud differs in its visual representation of the data, as it does not
attempt to represent the formal concept lattice directly, but rather provides a
tag cloud based representation of the items within the context lattice. How-
ever, ConceptCloud still allows the user to make use of the formal concept
lattice to draw additional insight from the data. ConceptCloud achieves this
by representing data as an interactive tag cloud, that allows the users to step
through the concept lattice by selection and deselection of tags. ConceptCloud
provides a context table linked to the currently selected tag within the Tag
Cloud. The context table and tag cloud are dynamically updated as the cur-
rently selected tag within the tag cloud is updated, that is the selection of
tag(s) changes.

ConceptCloud’s application to Large data sets (e.g., the ACM Digital Li-
brary, see [10]) has shown limitations in its original client-based architecture,
in terms of both scalability, flexibility and extensibility.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.1 Thesis Goals

The main goal of this thesis is to enrich the explorative search process in the
ConceptCloud tool, by (i) improving the tool’s scalability and flexibility, (ii)
improving the support of visualisation for specific datasets, and (iii) improving
ConceptCloud’s ability to handle less well-curated semi-structured datasets.

To achieve this these goals, I developed three main additions to Concept-
Cloud, each contributing towards and required for the end goal of making
ConceptCloud a more robust and adaptable software tool, capable of providing
the user with a more flexible and intuitive visualisation and data exploration.
These improvements yield a more flexible and intuitive visualisation and data
exploration than both previous versions of ConceptCloud, and related tools in
the same domain.

The first significant addition to ConceptCloud covered is a substantial
refactoring and redesign of the underlying architecture. The goals of the ar-
chitectural updates were to allow for larger semi-structured data sets to be
explored, to allow ConceptCloud to become agnostic to the data sets it ac-
cepts, and finally to enable the provision of ConceptCloud’s back-end explo-
rative search, to a data set as a service to external visualisations or completely
separate projects.

The second lays the foundations for the addition of navigational support for
specialised geolocation data viewer for ConceptCloud [9]. Substantial optimi-
sations to allow this viewer to represent large data sets and provide additional
means of on the fly data aggregation for explorative search. The goal of this
is to illustrate the extensibility and robustness of the extended ConceptCloud
architecture while showing the feasibility of enriching the explorative search
process by adding improved data specific visualisation and data aggregation
functionality.

The third and final addition is support for supplementing the input data set
with an ontology, allowing for attribute completion within the lattice, leading
to improved exploration of the input data. The goal of this is to demonstrate
the feasibility of enriching the explorative search process by enriching the un-
derlying data.

1.2 Server-Based Architecture

With the general shift to an Internet Of Things world, the availability of
ever-larger data sets has become a norm [7], leading to a growth in size and
availability of semi-structured data to be explored by ConceptCloud. As such,
ConceptCloud has to adapt to this new demand in scalability to stay relevant.

ConceptCloud was initially adapted to support a much larger data set in
[10], wherein specific tailored changes were made to the architecture to support
the exploration of the ACM Digital Library. Although effective, the changes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

made to the architecture where specific to ACM Digital Library data sets and
did not translate to other data sets. Thus the goal of the final architecture
shift was to adapt the tailored changes made for the Digital Library data set to
apply to any semi-structured data set, large or otherwise. This would require
the proposed architecture to be configurable to each new data set with minimal
effort by the user.

The ConceptCloud tool has grown and been developed over the course of

the past seven years. As such, there is a large overhead period for a devel-
oper when they wish to extend the system. For non-architectural changes this
overhead is especially tedious as the developer only requires the output data
from the ConceptCloud tool to build a visualisation, how the data is provided
may be of little concern or consequence to their work. I aim to provide an API
to developers which allows them access to the unique navigational exploration
functionality provided by ConceptCloud as a service, which is based on their
input data and provides them with the data corresponding to the underly-
ing concept lattice they are currently focused on. This approach would aid
further developers on the project in the creation of further visualisations and
extensions based on ConceptCloud’s interactive tag based data exploration
functionality.
This leads to the first research question: Can a scalable version of Concept-
Cloud that is generic in the data it accepts be built? We already know we can
build a scalable version if it is very specialised but in this thesis that function-
ality will be migrated to a flexible and configurable implementation whilst still
being able to provide this data to external sources.

1.3 ConceptCloud Data Navigation

ConceptCloud provides the user with a default tag cloud visualisation, which,
while effective at visualising general data sets, does not take any advantage
of the class of data being explored. That is, each data set is provided with
a single visualisation. ConceptCloud’s default visualisation also only allows
for data to be aggregated across the underlying many-valued context table’s
attribute classes and attribute-values. The default tag cloud visualisation does
not provide any way to aggregate data when those values and classes are not
present or are incomplete. For example, in Figure [1.2] if T wished to see all of
the lattice items which were added to the software repository on a weekend,
I would be unable to. While the concepts for days of the week exist in the
underlying many-valued context table, there is no explicit concept for weekend
or weekday which aggregates these days of the week.

This shortcoming is due to tag cloud based navigation requiring a tag to be
present and selectable for it to be used in navigation. In the above example,
I would require a weekday and weekend tag, corresponding to the underlying
weekday or weekend concepts.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

&> conceptCloud Browser

«
Navigation: - L] e i T | (2 LIEALTE]

Figure 1.3: ConceptCloud Tag Cloud showing the ‘fullfilename’ attribute for
the JUnit repository

Furthermore, consider the ConceptCloud Tag Cloud screen of the JUnit
software repository, shown in Figure [I.3] If one wanted to select a view of all
Java packages used in the project, an attribute which does not explicitly exist,
one would have to aggregate across the full filename and directory attributes.
While technically possible, this operation is unwieldy and exceedingly slow.

The best approach to resolve this problem would be to provide a specialised
viewer, or the ability to implement a specialised viewer, for instance, a file tree
to more naturally enable navigation of the data by an attribute that links to
a sense of locality.

More generally this problem frequently occurs in both tag cloud and lattice
visualisation. That is, the location of items within the lattice and Tag Clouds
does not by default correspond to the item’s locality attribute in the domain of
interest. This makes inferring or exploring along these locality-based bounds
increasingly difficult. It is important to note here that the notion of locality
does not refer to the position of the tag representation in the tag cloud but
rather the position of the concept within the underlying concept lattice itself.

Item or tag positioning in tag cloud visualisation is either random, based
on tag size, or alphabetical. Items or concepts within a formal concept lattice,
as covered in Section [2.1] are organised into the lattice based on their inclusion
of concepts. These concepts don’t need to have any locality-based attribute to
determine their placement.

This problem can be compounded by an inability to select regional clusters
where no such segregating or clustering attribute or concept exists.

It should also be possible to provide a method to aggregate data together,
along these locality-based bounds, without changing the underlying data set.
Which should be demonstrable with a specialised viewer.

One obvious choice to display this approach is the exploration of location
rich data. That is to allow the aggregation of items by their geolocations and
use a specialised viewer to show the usefulness of this approach.

An intuitive visualisation to provide for this domain would be an interactive

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

map alongside a tag cloud. This representation of a location is far more useful
than a text-based longitude or latitude, or even a place name, as it instantly
provides the relative context between two items based on their location.

An interactive specialised viewer of this kind allows for data exploration
which can be done from a geographically based context, whilst making use of
the underlying data aggregation which I wish to demonstrate.

This leads to the second research question: Is it possible to provide ar-
chitectural support for specialised visualisations which in turn provide a more
intuitive representation of more domain-specific data sets while making use
of the flexible aggregation of the underlying data.A map-based visualisation
demonstration would allow for data to be aggregated based on its locality
and combining multiple relative localities into larger groups, demonstrating
the underlying aggregation capabilities while also displaying the architectural
support for specialised viewers. This lets us take advantage of the naturally
occurring biclusters in the data. The map-based visualisation approach allows
us to easily combine these biclusters across geographic bounds, to create new
areas of interest without the need for additional attributes separating the data
into these areas of interest.

1.4 Data Imputation

ConceptCloud’s data exploration is heavily reliant on the quality of the input
data. Often with man-made semi-structured data there are missing explicit
attributes as they are implicitly present elsewhere. While this is acceptable
when a person is working with the data, it is far more difficult to overcome
these shortcomings with a lattice-based exploration. This is because without
an attribute being explicitly present in an object’s context, the object will
simply not be included in the part of the lattice the aforementioned attribute
is located in. Exploration of this location on the lattice will logically then not
include exploration of this object.

An easy example of this comes up in the wine review data set, as shown
in Figure [I.4. A person generally knows a Chenin Blanc is a white wine,
and that Stellenbosch is in South Africa. It follows that a wine with the
attributes Chenin Blanc and Stellenbosch should too have the attributes South
Africa and white wine, and thus South African White Wine. But unless this
is explicitly stated in the input data ConceptCloud will not include the object
in the South African White Wine’s portion of the lattice, even though the
attribute is implicitly present.

This is the case in Figure [I.4] wherein the wine type attribute is missing, as
well as the Country attribute, even though the attributes are stating that the
wine is a Chenin Blanc from Stellenbosch. ConceptCloud does not know that

a Chenin Blanc is a white wine, nor that Stellenbosch is a location in South
Africa.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 8

{
"wine_id": "11689",
"gsreater_then_three": "3 Star Rating Or More",

"greater_then_two_point_five": "2.5 Star Rating Or More",
"greater_then_two": "2.0 Star Rating Or More",
"prod_name": "Mont Destin",

"winery": "Mont Destin",

"range_name": "Mont Destin range",

"prand": "Chenin Blanc",

llWlnetype n : nn s

"vintage": "2007",

"name": "Mont Destin Mont Destin range Chenin Blanc 2007",
llcapll : llcorkll s

"variant_1": "Chenin blanc",

"variant_1_percent": "100",

llotherll : IINO n s

|lpricell: l|59ll,

"margin_rating": "3.5",

"vintage_rating_100": "",

"vintage_rating": "3.0",

"blurb": "O6 less beguiling than pvs, still ample charms through
at 14.5% alc, with pineapple & mineral signature.",

"winemaker": "Samantha Biirgin, advised by Bruwer Raats (Jan 2003)",
"viticulturist": "Bertus de Clerk since 2006",

"additional_info": "7ha (cab, cinsaut, grenache, mourvédre, shiraz,
viongnier) 15t/1000cs 80% red 20% white",

"wine_of_origin_wine": "Stellenbosch",

"wine_of_origin_producer": "Paarl",

"region": "",

"area": "Stellenbosch",

"Country": "",

"alcohol": "13.5",
"blend": "Not Blended"
3,

Figure 1.4: Example Chenin Blanc wine JSON object with missing data

We wish to extend ConceptCloud to accept supplementary data to enable
this form of reasoning and attribute completion. The most obvious choices of
supplementary data types are taxonomies, thesauri and ontologies.

The taxonomy referred to in the context of this thesis is that of a hier-
archical tazonomy or containment hierarchy. This taxonomy is most easily

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 9

conceptualised as a Concept Hierarchy, a tree of concepts and subconcepts
linked by each child being a subconcept of the parent with an ‘is a’ relation.
In our example we have the following Concept Hierarchy:

White Wine ’ ‘ Red Wine ’ ‘ Town ’ [Province ’ [Country ’

Winery
Chenin Blanc

Figure 1.5: Example wine taxonomy

Figure|L.5|shows a summarised taxonomy for the wine data shown in Figure
[1.4] each arrow denotes a ‘is a’ relation, that is a Chenin Blanc is a White wine,
is a wine, is a thing. In our location subtree, we begin to have some trouble
with the lack of expressivity in the ‘is a’ relation. We intuitively know that
a wine has a winery and that there is a relation between a country, a winery,
a town and a province. That is, in our example shown in Figure we see
the Wine, ‘Mont Destin, Mont Destin range Chenin Blanc 2007’ has a winery,
and has an area Stellenbosch, and we know that Stellenbosch is in the Western
Cape, which is in South Africa.

To state that information however, we need more information, that we can-
not express in just a taxonomy. A meronomy, that is, a hierarchical structure
that makes use of ‘has a’ relations could be used in stating some of the infor-
mation in our example, as shown in Figure[L.6] A wine has a winery, a winery
has a town, a province has a country. In our example this would be ‘Mont Des-
tin, Mont Destin range Chenin Blanc 2007 has a winery ‘Mont Destin’ which
has a town or area ‘Stellenbosch’, which has a province ‘Western Cape’, which
has a Country ‘South Africa’. However, it is clear that the ‘has a’ relation in
‘Wine has a Winery’ has a different meaning from ‘has a’ in ‘Province has a
Country’; the former being ‘has origin’, and the latter meaning ‘is located in’.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 10

[Wine H Winery H Town H Province H Country J

Figure 1.6: Meronomy for wine example

With this example in mind, it is beginning to become apparent we will re-
quire a more expressive relationship between words. We need to map the word
‘town’ to ‘area’ as in our data set shown in Figure[1.4] we see that Stellenbosch
is given as an area, even though we know it is a town. A thesaurus is typically
able to bridge this type of gap. Thesauri typically contain hierarchical infor-
mation in a similar way to taxonomies, that is, information is ordered into
some sort of hierarchy. Still, the ordering typically makes use of ‘is broader’
or ‘is narrower’ terminology, however, we can view this as a parent-child type
relation, as in a taxonomy organised with ‘is a’ relations. Thesauri differ in
that they are able to provide an ‘equivalence’ expression between concepts.

Location

White Wine

{ J
: Blended Wine
¥
Winery e Town -3 Province -3 Country
Chenin Blanc

Figure 1.7: Thesaurus for wine example

Figure shows the wine example in a thesaurus. The solid down arrows
indicate the bottom term being more specific than the term above, while the
double-headed solid arrow shows equivalent terms, as is the case with Town
and Area. The dotted arrows denote a related to relation. The problem with
only a thesaurus for the ConceptCloud application is we wish to mine these
relationships for additional information, as such, we will require more specific
relationships then ‘is related to’, as that gives us very little information to
work with. It follows then from our wine example that we will at very least
require something that has at least the expressivity of both a thesaurus and a
meronomy.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 11

This need for expressivity leads us to an ontology. While more heavyweight
then our previous examples, an ontology has far more expressive relationships
we can use to supplement the existing information. Additionally, ontologies
support further reasoning functions for data inference, which can be used to
drive the data imputation process, where data imputation refers to the en-
richment of the underlying data set, by way of adding in additional data for
existing items.

This leads to the third research question: How can an ontology be paired
with a reasoner and a ConceptCloud interface in order to enrich the formal
concept lattice based data set with entailed and inferred attributes?

Semi-structured data often contains free-text attributes which may pro-
vide additional information to be used in the attribute completion process.
This information may come from simple key-phrase extraction if the free-text
corresponds to a more controlled vocabulary or more advanced data extrac-
tion and reasoning techniques covered in Section [£.4] T extract these extra
attributes from the free-text to allow for them to be used explicitly in the data
exploration architecture.

The data imputation changes are aimed at improving the quality of the
data exploration by providing improvements to the underlying data.

1.5 Structure of thesis

This introduction provides the context and problem statement and presents
the research goals of this thesis. Chapter 2 provides further background into
the formalisms and related work used in this thesis. A brief overview of formal
concept analysis, its application to semi-structured data, lattice generation and
lattice-based navigation, are given. Related work, other formal concept anal-
ysis based data exploration tools, as well as ConceptCloud, are presented by
way of use case examples. A brief overview of the natural language techniques
used in ConceptCloud as well as their application to an example dataset is
shown. Finally, the description logic formalism and reasoner used are covered.
The description logic is presented alongside an example ontology.

Chapter |3| covers the architectural changes made, maintenance performed,
extensions to the API, and the context for the changes, with a brief description
of the current system implementation. A short evaluation of the effect on
run-time the architectural changes caused is provided. This is followed by a
typical ConceptCloud use case for a large semi-structured data set, wherein
a brief investigation is performed to illustrate the general functionality of the
ConceptCloud tool.

Finally, architectural support for a specialised map-based visualisation is
presented, the changes in search functionality, data representation, the advent
of bicluster based navigation in ConceptCloud. A brief data set exploration

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 12

of Crime Data in South Africa, demonstrating the underlying support for
specialised viewers and alternate data aggregation is also included.

Chapter 4 covers the data imputation extensions made to the Concept-
Cloud tool. The context for the extensions is provided, and the general ap-
proach to data extraction from the ontology and lattice are covered. A more
specific approach and algorithm are presented, followed by further implemen-
tation details and a case study.

Chapter 5 covers the extended evaluations for each extension to Concept-
Cloud. Results for each evaluation are presented alongside an analysis and
discussion.

Chapter 6 covers the conclusions drawn from the work conducted in this
thesis as well as recommendations for future work and possible further research
highlighted by the work done in this thesis.

1.6 Summary

In this chapter, we covered a brief introduction to ConceptCloud, the formal
concept analysis based semi-structured data exploration tool.

We have established the scope of this thesis, that is the three main updates
added to ConceptCloud to enable improved data exploration by improving the
underlying architecture on which ConceptCloud runs, ConceptCloud’s ability
to visualise specialised data and the quality of the data driving the exploration.

A structure outlining the contents of the chapters in the thesis was provided
alongside a short list of the published works.

Publications

This work has lead to the aforementioned publications, Scaling the Concept-
Cloud browser to large semi-structured data sets [3], based on the work covered
in Chapter |3, primarily focused on Sections [2.3H3.4]

ConceptCloud 2.0: Visualisation and Exploration of Geolocation-Rich Semi-
Structured Data Sets [9] co-authored with Tiaan Du-Toit is based on work
covered in Sections B.7H3.8

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background

This background chapter covers a basic introduction to the core formalisms
used in ConceptCloud and this thesis, each section providing an introduction
and a brief motivation for the use of the formalism in ConceptCloud.

2.1 Formal Concept Analysis

Formal concept analysis (FCA) is a theory of data analysis that uses lattice-
theoretic methods to investigate abstract relations between objects and their
attributes. In FCA information is represented as a binary cross table, or con-
text, where the rows denote objects, and the columns denote attributes. The
incidence relation [indicates which objects in the table have which attributes.

Definition 1. A binary formal context is a triple (O, A,Z) where O and A
are sets of objects and attributes, respectively, and T C O x A is an arbitrary
incidence relation.

Based on the data presented in the wine example in Figure [1.4] we could
consider identifying the following objects and attributes:

O :={Mont Destin range Chenin Blanc 2007,
Bergsig range Chenin Blanc 2006}

A :={wine_id,prod_name,winery,range_name,brand,
winetype,vintage,name,cap,variant_1,variant_1_percent,
variant_2, variant_2_percent,other,price,margin_rating,vintage rating_100,
vintage_rating,blurb,winemaker,viticulturist,additional _info,

wine_of origin_wine,wine_of_origin_producer,region,area,country,
alcohol,blend}

13

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 14

However, since a binary formal context has binary attributes, rather then
many-valued attributes, for example, an attribute that has values from an
entire domain, i.e. strings or integers, I have to flatten each attribute-value
pair into a new attribute that each object either could or could not have. In
a binary cross table this is indicated by the presence of a cross. A subsection
of this flattened context is presented below in Figure [2.1

wine_id varietal: vintage: | vintage: area: area:
Chenin Blanc 2006 2007 Stellenbosch | Worcester

Mont Destin range

Chenin Blanc X X X
2007

Bergsig Estate

Chenin Blanc X X X
2006

Figure 2.1: Subtable of a binary context showing attributes for the wine objects
Mont Destin Range Chenin Blanc 2007 and Bersig Estate Chenin Blanc 2006

The corresponding formal context for the subtable presented in Figure 2.1
is as follows:

O :={Mont Destin range Chenin Blanc 2007,
Bergsig range Chenin Blanc 2006}
A :={varietal:Chenin Blanc, vintage:2006, vintage:2007, area:Stellenbosch,
area:Worcester}
Z :={(Mont Destin range Chenin Blanc 2007, varietal:Chenin Blanc),
(Bergsig range Chenin Blanc 2006, varietal:Chenin Blanc),
(Mont Destin range Chenin Blanc 2007, vintage:2007),
(Bergsig range Chenin Blanc 2006,vintage:2006),
(Mont Destin range Chenin Blanc 2007, area:Stellenbosch),
(Bergsig range Chenin Blanc 2006,area:Worcester)

}

Concept flattening refers to the process of turning a many valued context,
into a binary context. That is, for each possible a € A, with v;...v, € a, |
create new attributes with the form a,, ...a,, € A. This process is sometimes
referred to as nominal conceptual scaling.

An example of this can be seen in Figure 2.1} where the vintage value pairs
were mapped to vintage:2006, vintage:2007. For each possible vintage value,
each wine_id object could either have, (as indicated by an X) or not have (as
indicated by an empty cell in the binary cross table).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 15

Definition 2. Let (O, A,Z) be a context, O C O, and A C A. The common
attributes of O are defined by a(O) = {a € ANo € O : (0,a) € T}, the
common objects of A are denoted by w(A) = {o € O|Va € A: (0,a) € T}.

Formal concepts are pairs of sets of objects and attributes (O, A), where
O C O and A C A, such that O is the set of all objects that have all attributes
from A and A is the set of attributes that are common to all objects in O.

Taking our flattened example from Figure [2.1| we can see for the objects:

O :={Mont Destin range Chenin Blanc 2007,
Bergsig range Chenin Blanc 2006}
(2.1)

The common attribute is {varietal:Chenin Blanc}, and the common objects for
the attribute set A = varietal:Chenin Blanc, are O.

Definition 3. Let C be a context. Then ¢ = (O, A) is called a concept of C
iff a(0) = A and w(A) = O. 7o(c) == O and ma(c) == A are called
extent and intent of c, respectively. The set of all concepts of C is denoted by
B(C).

Let CB = (O, A) as in the example above. Then CB is a concept of the
context given in Figure 2.1] Further let CBS := (A, E) where
A := {Mont Destin range Chenin Blanc 2007} and
E := {varietal: Chenin Blanc, area: Stellenbosch, vintage:2007}. And let CBW :=
(C, D) where
C' := {Bergsig range Chenin Blanc 2006} and
D := {varietal: Chenin Blanc, area: Worcester, vintage:2006}. Then both CBS
and CBW are concepts. Concepts are partially ordered by the inclusion of
extents such that the extent of a concept includes the extent of all of its
subconcepts; dually, the intent of a concept includes the intent of all its super-
concepts.

Definition 4. Let C be a context, c; = (O1, A1), co = (Oq, Ag) for c1,co €
B(C). Then c; and ¢y are ordered by the subconcept relation, written ¢; < ¢y
iff O1 € Oq or equivalently, As C Ay. The structure of B(C') and < is denoted
by B(C).

Clearly both CBS and CBW are subconcepts of the concept CB. That can
be read as Chenin Blancs from Stellenbosch and Chenin Blancs from Worcester
are both Chenin Blanc subconcepts.

The basic theorem of FCA states that the structure induced by the concepts
of a formal context and their ordering is always a complete lattice [13]. Such
concept lattices have strong mathematical properties and reveal structural and
hierarchical properties of the original data. They can be computed automat-
ically from any given relation between objects and attributes. The greatest

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 16

lower bound or meet and least upper bound or join can also be expressed by
the common attributes and objects.

;

CB:Chenin Blanc

WC: Worcester

/

CBS: Chenin Blanc

CBW: Chenin Blanc
From Stellenbosch From Worcester

N

Figure 2.2: Example concept lattice for the ongoing wine example, showing
possible complex concepts CBS and CBW

A possible lattice for the concepts CB, CBS,CBW is shown in Figure
above. The lattice is left incomplete for ease of illustration. The important
thing to note is the lattice position of the Chenin Blanc subconcepts, CBS
and CBW, that is, Chenin Blancs from Stellenbosch and Chenin Blancs from
Worcester respectively, in relation to the Chenin Blanc Concept CB. Addi-
tionally, one can note that the location based subconcepts CBS,CBW are also
below corresponding parent location concepts, which in this case, denotes all
the objects with attributes Stellenbosch or Worcester, respectively. That is:

STB := (w(Stellenbosch), Stellenbosch)
WC := (w(Worcester), Worcester)

The concepts in the lattice range from the top to bottom concepts. Where
the top concept is all objects with attributes shared by all objects (usually
the empty set) in the context, and the bottom is all objects that have all the
attributes in the context (usually the empty set).

Theorem 1. Let C be a context, then B(C) is a complete lattice, called the
concept lattice of C. Its meet and join operation for any set {(A;, B;)|i € I} C

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 17

B(C) of concepts are given by:

A0, A) =((0, aw(|] A1)

el el i€l
V(0. Ai) =(w(a(| J0:).(4A)
el i€l i€l

Each attribute and object has a uniquely determined defining concept in
the lattice. The defining concepts can be calculated directly from the attribute
or object, respectively, and need not be searched in the lattice.

Definition 5. Let B(O, A,Z) be a concept lattice. The defining concept of
an attribute a € A is the greatest concept ¢ such that a € mwa(c) holds, and
is denoted by p(a). The defining concept of an object o € O is the smallest
concept ¢ such that o € wo(c) holds, and is denoted by o (o).

Efficient algorithms exist for the computation of the concept lattices and
the meet and join of concepts in the lattice [36]. For a detailed introduction
to FCA see [13].

2.2 FCA Based Data Exploration Tools

Formal concept lattice based visualisation and data exploration tools have
existed for many years. Generally however, all share the same fundamental
flaw, they visualise the lattice directly and thus scale poorly. Larger lattices
can become exceedingly memory intensive, and progressively less intuitive as
they scale in size. These scaling issues are mainly a direct consequence of
each software tool trying to maintain the entire concept lattice. This becomes
prohibitively resource-intensive for large data sets.

Three data exploration tools are explored with the goal of illustrating their
usage on a larger dataset and the scaling issues they encounter.

FCART

The Formal Concept Analysis Research Toolbox (FCART) was designed in
2014, specifically for the analysis of semi-structured, and unstructured data [4].
FCART provides the user with tools for iterative analysis of their data with
adjustable data queries and analytic artefacts. It allows the user to read in
their data in semi-structured or lattice format and creates a binary context.
It then allows for the creation of a concept lattice to visualise the data.
While FCART is able to process large data files, with some delay even
their initial versions processed lattices with 20000 concepts, the binary con-
text and visualisations produced do not provide the user with any holistic

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 18

intuition to the data. This is due to the visualisations of the entire data set
becoming too cluttered for the user to be able to discern not only the labels
in the visualisation but the links between labelled items. Further exploration
of the data requires prior knowledge of the data to form data queries properly.
Properly formed data queries, or zooming into small subsets of the data can
provide some understanding of the contents of these sub data sets. However
it still becomes difficult to link these subsets to each other, which leads to
understanding isolated subsets of the data.

For illustration purposes I ran the FCART tool on a subset of our wine
data set, with 1849 wine objects, and objects having 66 attributes. When this
is inserted into FCART the mapping to a binary cross table results in 6526
binary attributes. This is as each possible value for each of the 66 many-valued
(unflattened) attribute classes is mapped to a class value pair representation
in the binary cross table. This leads to an attribute explosion for free-text
fields, as they could potentially all be unique in value, leading to each object
having a unique attribute. This makes using the context table unintuitive and
cumbersome, additionally leading to very poor performance.

Initial objects and attri... X || i~ Context |=Z Line Diagram |, Concepts
L 23 47005 L6 Lo 70 L 85009 1100 110 122 0 13 0 140 180 o 167 o 17 1 180 192 0 20: o 20 e 220 231 o 241 . 250260 .. 27: .. 281 ... 29

= |1: 1248
2:784 X
3: 1111 X

NEEREEE
NouawN e
cgm
58z
$3 =

I
8

FEEES
2y

<

G

8
>

52¢
8
232
273

1789

369

1380 30: 1141
84

SISISISISNISISISISISISSISSINSISSISISISISIS)
AR
]
]

8

~ <M

Objects - 1849 (Selected - 1849), Attributes - 6526 (Selected - 6526), Concepts - 28821

Figure 2.3: Large FCART context table for a data set of 1849 wine objects

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 19
0
1849
1 Ik 1 1 1 1
19 37 |p6 10 187 868 | p1 |3 133
2 z 2 2 2 2 |2
400 bl 28 8 136 || 337 allk Ik 63 |58
3 3 3 3 3 3 3] 3]
5 aH:z 2 F Hes7 g2 & |l 3] 20 [1] 42
! 4 alls 5|8
| 3 2 2210 2 2 2 2 |4
5 5 12 5 |5 5 5 [11 12 || 12] 8 2 13
2 2 1 2 |2 af 1 1 1] 2 1
ifsfizfs |z 8|l 12 12 12 13 p3
211 [2 3 1 1 1 1 1
1| 12 12| 12 12 12 M1z [f 15 || 1] 11 12 13 [12
a 1 NENOE 1 1 1 1 1 11 1
CHIEEE EREER I B R EE EERLE 15 13 13
' B E 5 IEE 1 [1 0 ER K 1
12] 13 I3 |14 7 13 h4 15 13 16 19 18
1] 1 1 1 1 | 1 1 1 |11 T
|
|3k E 15 [14
1 1 1

Figure 2.4: Large FCART concept lattice for a data set of 1849 wine objects

As we can see in Figure the context table, note the scroll bars in the
corners. This context table is relatively sparse and rather large, bearing in
mind that this is for objects with roughly 60 many-valued attributes. Figure
shows the lattice generated for the data set. Note that there are 6526
attributes, and although visualizing a two-dimensional lattice of this size is
exceedingly difficult, a lattice is generated and may be queried. It is however
incapable of providing any intuition of our data, as the majority of the attribute
and object labels in the lattice cannot be properly displayed, and the density
of the links between lattice items cause them to display as a black wall from
which individual links cannot be discerned.

The only recourse is then to find the attributes of interest in the exceedingly
large flattened list, deselect all other attributes and focus only on the selected

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 20

ones. In this way you can ‘zoom’ in and out of the selected concepts.

This operation, while valuable, is still fairly difficult to perform as you
need to sift through all the flattened attributes to find the binary pairs, such
as those in Figure 2.1} of interest.

ConExp

Conexp or Concept Explorer is a concept lattice and context generation tool
developed from 2000. It allows the user to explore binary contexts and visualise
them in a lattice [35]. It was never made to scale to large numbers of concepts
.

ConExp was chosen as it provides the ability to generate an implication
base. An implication base, of completed data only, would be useful to use
to enrich the incomplete data, an operation which is part of the goal of this
thesis.

I used the same data set with 1849 wine objects, as with FCART, Conexp
was able to visualise the context table but unable to generate a lattice.

DRS DRT DRU DRV, DRW DRX DRY DRZ DSA DsB bsc DSD DSE DSF DSG DSH DsI
South AL, |Bratasiu... |Plantage... [Bianchi _ |Potel-Avir...| Sparkiin... |cimbing:... |nton Ba...|2012 Unus is ... |frisk 2010 Thisis a.. |95 s the pr... |Madfish: ... |Chateau
X X
X
X X
X

X
X

X
X
X
X

Figure 2.5: ConExp binary context table for a data set of 1849 wine objects

As we see in Figure[2.5]T have the same visualisation problems with a binary
context table as in Figure 2.3] Displaying as a binary context table means I

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 21

have to display each possible attribute-value combination in the table, leading
to attribute explosion, and a poor visual representation of our data.

As previously mentioned, ConExp does provide the ability to compute
a Duquenne-Guigues base of implications [25], that is, a minimal base of
implications that hold across the context. The implications generated by the
ConExp tool are of the following form:

No (Number Of objects) Premise Conclusion
Where ‘No’ simply denotes the number within the implication base, and the
premise and conclusion are sets of attribute names that occur within each.

It is important to note that as ConExp processes only binary contexts,
the mapping of a semi-structured data set into a binary context, which maps
each possible attribute value to a new attribute which each object may or may
not have, also profoundly impacts the performance of the generation of the
implication base. Additionally, this operation appears to be single-threaded,
which leads to it scaling exponentially in time with the exponential attribute
growth in the context.

As such, I was unable to generate an implication base for the wine data set
example.

ConceptCloud

ConceptCloud differs in its visual representation of the data but still allows
the user to make use of the formal concept lattice to draw additional insight.
ConceptCloud achieves this by representing data as an interactive tag cloud,
that enables the users to step through the concept lattice by selection and
deselection of tags. Once again, I made use of the small wine data set with 1849
wine objects, each with 66 many-valued attributes. ConceptCloud provides us
with a tag cloud visualisation and a context table.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 22

O ConceptCloud Browser

«

Navigation: ‘Showing only a subset of all possible tags: use the search boxes o select ags that are unavaliable in the tag cloud

‘Search Tags:

Load ConsL seript: 101.52.02.520032004 2005 2006 2007 2008 200920102011 201220132014 20152016 3.03.54.04.5

L.Choosefle | Nole chosen André van Dyk (Oct 2002) Bonnievale Bowen Botha (Jan 1982) Briaan Stipp (May 2005) Calitzdorp Cape
Town Clive Trent (Jul 1992) Constantia D Daan Joubert Darling
Durbanville Elgin

Frans smit Franschhoek Hennie Visser (2007, Vinpro consultant) Hermanus

Johan Pienaar (consultant) Johann Smit Kuils River Lutzville Malmesbury Martin Moore (Nov 1998)

Nicky Versfeld (consultant) NT
Paarl Paul Wallace Prince Albert
fonSize(10-49 Rawsonville Riebeek-Kasteel Robertson

Somerset West Stellenbosch sip stephan Joubert (2006) Theo Basson

N Vintage argi Vintage
Wine Label Name Vintage | Region Ratng Rating Wine Maker Rating Blurb

KWV Wines Classic Collection Shy but smooth 2016, satisfying solo but

2016 78 25 25

Kwv wi
Merlot 2016

2016 needing a

2016 paar 78 20 Alcia Rechner (Jun 2012) 25

Dl soft

.) but
urgershof Burgershof range
Burgershof Burgershof rang lummy fruit, charmingly fresh. jucy.

bt 2016 Robertson 7 25 Hennle Reynecke (Jan 1979) 25

Figure 2.6: ConceptCloud tag cloud and many-valued context table for a data
set of 1849 wine objects

ConceptCloud makes use of the lattice for explorative search only, as such,
it does not generate the entire lattice at any time. ConceptCloud makes use
of the Colibri java library to generate only segments of the lattice it requires.
These sections of the lattice are used and disposed of at each navigation step.
As such, it is easily able to step through and visualise the data. Additionally,
the Context table ConceptCloud displays, is a multi-valued context, so each
attribute may have any particular value, which is more human readable than
a binary context, and has the benefit of being far less taxing to display. Figure
shows the multi-valued context table, where instead of attempting to dis-
play each possible attribute-value combination I display only the attribute, and
the object’s attribute value, in this example, Attribute:Vintage Value:2016
is displayed instead of Attribute:Vintage2016, Value: X.

2.3 ConceptCloud

As mentioned in Sections , and ConceptCloud [17] is a visualisation and
exploration tool for semi-structured data sets, such as software revision control
metadata or product reviews. ConceptCloud uses a concept lattice [I3] built
from the data set as underlying navigation structure but presents the data
itself in the form of a tag cloud which concisely summarises the user’s current
selection in one view and allows further navigation through tag selection and
deselection, without constricting them to predefined search paths.
ConceptCloud [17] allows the user to navigate, via tag clouds, through a
data set in what is known as an explorative search. This type of exploration re-
quires no predefined knowledge of the domain or data set. The user iteratively

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 23

selects an attribute or object tag in a tag cloud, and the ConceptCloud system
adjusts the tag cloud to display all other tags attached to objects possessing
the selected attribute tag(s). This is achieved by maintaining a focus concept
from which a tag cloud is created.

Definition 6. The focus concept ¢ = (O, A) is the concept whose extent is the
set of objects that share the set of currently selected attributes, F', within the
tag cloud, such that a(w(F)) = ma(c) = A.

The focus concept can be further refined by iteratively adding elements to
F. When an additional attribute is added to F, I update the focus concept by
computing the meet, as per Theorem (1| (see Section , of the current focus
concept ¢ and the concept introduced by the additional attribute. In Section
3.2 we will discuss how this was changed.

The explorative search process corresponds to the process of stepping through
a concept lattice, wherein the selection of an attribute moves us to the point in
the lattice where all linked objects contain that attribute. As I select further
attributes, I move further down the lattice. If I deselect an attribute, I move
back up the lattice and have access to a different set of attributes and objects.
This corresponds to the refinement of the focus concept by adding and remov-
ing elements from F. This approach was tested in a user study conducted in
[10] and found that users were able to answer complex scientometric questions
using ConceptCloud with a mean correctness of 73%, with the users’ prior
research experience having no statistically significant effect on results. This
was shown to be a strong positive result and is discussed in [18].

ConceptCloud presents the data in the form of a tag cloud, where the
frequency of each tag’s attribute within the lattice, is taken to denote the
tag’s importance. Each tag cloud is a word cloud-like window, wherein all
of the objects and attributes in the lattice are represented as tags, words
whose size denote their importance within this window. More specifically in
ConceptCloud, each tag’s size in a tag cloud is based on the frequency of its
occurrence within the subselection of the data set, coloured differently based
on its category (namely the type value of the attribute or object).

Tag clouds are constructed by taking the extent of the focus concept ¢ =
(O, A), then for each 0; € O, determining its defining concept ¢; (see Definition
5). I then collect all the intents of these defining concepts. These are the
attributes I display in the tag cloud. Finally, I add the objects to the tag
cloud so that they may be directly selected or searched within the tag cloud.

The initial focus concept has no selected attributes, and thus the tag cloud
created from it will contain tags representing all attributes and objects. For-
mally we have (here & denotes multiset union):

Definition 7. The tag cloud from a concept ¢ = (O, A) € B(C) is defined as
7(c) = O 0 ma(a(0)).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 24

By constructing the tags in the tag cloud, we induce subconcepts of the
focus concept, from which the tag cloud was derived, and all concepts having

a non-bottom meet with that focus concept.

ConceptCloud User Interface

O ConceptCloud Browser

«

Navigation:
bone 2
“ Senvosen | 3
Stellenbosch (as region)
load XML Fie Stellenbosch (as wine_of_origin_wine) ®[[@]x]
|~ stellenbosch (as wine_of_origin_producer) [—— - o
Load ConsL Seript: Simonsberg-Stellenbosch (as wine_of_origin_wine) Demersionten Wines ter Setmeyer o
Shansaia] No fle chosen Simonsberg-Stellenbosch (as wine_of_origin_producer) e Donne v‘n’u:"r . o S) -
Stellenbosch/Western Cape (as wine_of_origin_producer)
Westem Cape/Coastal/Stellenbosch (as wine_of_origin_producer) Ok Husseimanr 4+ Diride Mouton (Jun 2010) Discontinued
Stellenbosch Hills Wines (as prod_name) . . Div van Niekerk (1980) Domaine

Stellenbosch Merlot (as brand)

Stellenbosch/Coastal (as wine_of_origin_producer) Caete

Domein Doomiaal
Donovan Diedericks (Apr 2008) Doolhof Wine Estate

Dornier Wines Douglas Green
Douglas Muzengeza (2008) & Kudzai Mwerenga (2009 DP Burger (Apr 1991) DP Burger (Apr 1991) DP Burger (May 1992) Drakensig Wines.
T = J[v[e][afE o _[E] 45 [[E[x[=][% [][¥][a][a]a o _[E] 0 R [@[x[~][T |- [Y][*][a]Ar v _v[#]3s HEEE
Font Size (10- 41) o Constantia B Hemanus xds o Pasrt SOMerset West suixd wievie B0t River Cape TounvSandion Ceres Constantia Durbanville e e Ceres Constantia Darling Durbanville Elgin
- Stellenbosch eon Franschhoek Hermanus Kuils River vainesoury PAAI prispsi Franschhoek FranscanoskiRoertson cassas Hermanus Hout Bay
oo Somerset West sanos Stellenbosch Paarl sonvile Rebeek We
Wellington Riel eel Robertson e SOMeErset West
4 arvora SLEIIENDOSCh sitervoseneim Tubagh Tuvsarporenie
itersorp iecers Wellington worceste
Viowge | Margn
* Viage | Rogion Raing | Raing | WineMaker 5
2016) 25 25
KW Wines Laborle ange Merlot 2016 201 u 3s 20
Backsberg Estate Cotars Kosher range Merot 0, - . 2o ., 2s

Figure 2.7: ConeptCloud navigation user interface with numerically labelled
components

The navigation user interface consists of the following components shown in

Figure 2.7}

e The main window (1) wherein the tag clouds are displayed. On initial
execution, this displays the initial tag cloud viewer with the default fo-
cus. The tag cloud within the main window displays the top 5000 most
relevant tags. A user selecting a tag in this window causes the focus
concept to be recalculated and the viewer to then display the point in
the lattice wherein the updated focus concept is relevant.

e The Navigation Menu (2) provides the user with various utilities relating
to saving the lattice as well as uploading a ConSL script [16] to automate
the display of the viewers. The further options allow the user to change
the scaling of the tags within the tag cloud viewers.

e Search Functionality (3) was introduced as only the top 5000 tags are
displayed in the main window, the user may wish to interact with tags
that are not currently displayed. As the user inputs their search terms,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 25

ConceptCloud displays an auto-completed list of terms and their cate-
gory. This is done by making use of the caching database. Selecting one
of these terms updates the focus concept, and as a result, the main win-
dow together with any other tag cloud viewer that contains the selected
term as its focus concept. This action is identical to if they were to select
a displayed tag in the main window. It is important to note that the
reduction of displayed tags and the search functionality were not part
of the original ConceptCloud web application implementation, and were
introduced as part of the scalable architecture covered in Chapter

o Sticky Tag Cloud Viewers (4) are subwindows of the main window that
contain each displayed tag cloud, and once created always appear below
the main window, they can however be moved from their initial position.
Each Sticky Tag Cloud Viewer contains the displayed tags for the sticky
concept for that viewer, referred to as the sticky tag. A sticky tag is an
object or attribute to which the viewer is fixed. Selecting a new focus
concept will adjust these windows to use the union of the sticky and
selected focus concept as their focus concept. The sticky tag is displayed
next to the Tag Cloud viewer’s menus in red. The menus exist to adjust
the display of the contained tags. These viewers allow the user to have
multiple differentiated views, e.g., viewing the ratings of wines across
multiple vintages, with a window for each vintage or rating.

e The Table View (5) displays the underlying context table for the concept
lattice connected to the initial tag cloud viewer. Selecting and deselecting
tags will cause this to update to reflect the concept table corresponding
to the concept lattice of the focus concept(s). In many datasets there
are multitudes of attributes for each object in the context table. Often
too many attributes to display concisely. The attributes to be displayed
in the Table View can be configured to solve this. The results appear in
a fixed page size list, further easing resource usage.

Navigation Architecture

An explorative search in ConceptCloud is the process whereby the user selects
and deselects tags in a tag cloud allowing them to step through the underlying
concept lattice. The user is additionally able to create subwindows, which
are additional tag cloud viewers with sticky tags. These subwindows have
one attribute set for it and will display the related subsection of the concept
lattice. Selecting a new focus concept from a tag in any of the viewer windows,
including the initial tag cloud, causes the selected tag union with the stickied
tag for each window (as the tag represents either an attribute or an object), to
become the focus concept of each viewer. The related portion of the lattice is
displayed if the sticky tag and new focus concept are not disjoint. Otherwise,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 26

Recompute Other Displayed Tag
Clouds
Get new Focus
Select/Deselect Tag Concepts
Concept Lattice

Concept Lattice

Open File Recalculate focus concept

~]

Display Tag Cloud
in Window

Create Initial Contex A
and Tag Cloud

Default Focus

Viewer Builder

Figure 2.8: Navigation component interaction architecture

an empty viewer window is displayed. The architecture of the navigation
subsystem is outlined in Figure 2.8

Select / Deselect Tags The user clicks a tag within one of the displayed tag
clouds. This then causes all tag cloud windows to take this new selected tag
and use it to recalculate their focus concept. This update causes each tag cloud
window /viewer to request the relevant section of the underlying concept lattice,
should it exist, from their controllers. A new tag cloud is then constructed
by the viewer builder and displayed, in the case of multiple concepts, if no
intersection in the lattice between these concepts exists, an empty tag cloud
is displayed in the corresponding viewer. Deselection of a tag is when the
user clicks the highlighted red tag in the tag cloud. This deselection removes
it from all the tag cloud window’s focus concept and updates the lattice for
each window accordingly.These actions correspond directly to the explorative
search mentioned in Section 2.3

Wine Review Usage Example

In Figure 2.9/ I show ConceptCloud running on a small wine review dataset of
1849 wine reviews. At this point we are at the point wherein ConceptCloud has
created and displayed the initial context table and tag cloud. The explorative
search process, further covered in Section 2.3] dictates we need to now select
an attribute or tag. ConceptCloud will then update the tag cloud to display
the new focus concept.

ConceptCloud does this by recalculating the focus concept in the under-
lying lattice, and then displaying the related tags, and hiding those tags that

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 27

O ConceptCloud Browser

«
Navigation:

Home
Open User Guide
Download XML File

Load ConSL Script:
Choosefile No file chosen

Load ConSL Script

1849 objects in tag cloud

Font Size (8 - 45)

O | Selected Tags:
Implied Tags:

[~] R[>
2001 2002 2003 2004 2005 2005 2006 2006 2007 2007 2008 2008 2009 2009 20102010 2011

201120122012 2013 2013 2014 2014 2015 84 85 86 87 88 89 9091 9293 9495 96 57 argentina
australia austria Beaujolais, Burgundy bonarda burgundy Cabernet Franc Cabernet Sauvignon canada

carmenere chardonnay chile care vatiey france grenache Gruner
Veltliner naipo vatey Malbec mendoza
merlot mourvedre muscat New South Wales Nv Petit
Verdot Pinot Grigio Pinot Gris Pinot Noir riesling roussanne salta Sauvignon Blanc
semillon Shiraz soutn austraia SOUth Australia south Eastern Australia Southeastern Austratia syrah tannat tasmania
torrontes victoria vidal viognier Western Australia ‘
%
vies [i ey [=
e oo ooVt Lo s a9 ® oned, k. o 200 Losiosse
s oo Cohagi Vet Hodenda .58 » Ity he cverytin.. xecs, sy . MiaelFrarz 2075 o Hcinda .
o oo Cohagi Vel Eilan:Came... 9 " oo o . 1, .. G O, Bogd 2010 oran 208 enione
o o Cohagi Vo Emians: Gop.. 8 ® i eclcic b of ..., et .. Gardd 0. oy 209 P——— antra
s e Cohagus Vel Gono S omn.. 9 ® Anscten v, .., bl Pl Likacs 2012 0 Goro s
s o Cochagi Vtoy GoroSurPhot... 0 ® Canealyspoan . ik, i o MetaeiFarz 2012 s o0 conor
s o Cohagu Vel ConoSursPint... 9 " i forsed .. il . .. ireiApsian 2073 Pt 202 Gorosr
s oo Cohagi Vtoy Gosa S Car.._ 80 ® i s Carmin...carsloty ... Wil pson 200 s 200 casashn
s o Cohagu Vel Gosa S Ca.. 89 @ s sl Crmén..campleniy. .. Mol Agsion 2510 - casasha
s o oo Vtoy G mor 2100 50 ® Toa Gl e complsy,cor WirolFrre 2010 o o0 -

Figure 2.9: Example home screen of original web application ConceptCloud
implementation for a reduced size wine review dataset.

are no longer relevant to the focus concept.
This corresponds to Figure[2.10] wherein I selected the Cabernet Sauvignon

varietal tag.

C) ConceptCloud Browser

«

Navigation:
Home
Open User Guide

Download XML File

Load ConSL Script:
Choose file No file chosen

Load ConSL. Seript

387 objects in tag cloud

Font Size (7 - 35)

— |

[© | selected Tags:
XCabernet Sauvignon
Implied Tags:

- [@e v alal20:5 3 X S @ %

2003 2004 2005 2006 2006 2007 2007 2008 2008 2009 2009 2010 2010 2011 2012 2013 2014 2015 25 87 88 89 90 91 92 93 accents

acidity aged aging alcohol american argentina argentina aromas australia australia balanced beautifully berry best better black blackberries
blackberry blend bodied bordeaux bottle bottling bright cab cabernet cabernet Franc Cabernet Sauvignon cabernets carmen

carmenere cassis cedar character cherries cherry chile chile chilean chocolate clearly cocoa complex complexity

concentrated dark deep deeply delicious dense depth dried elements eucalyptus even excellent fine finish firm first flagship flavor flavored flavors
forward franc french fresh fruit fruits full good grapes great herbal herbs hint hints impressive intense interesting juicy layered
little lovely malbec malbec margaret medium mendoza merlot merlot mint
new note Notes nuances 0ak over palate plenty plum point price quality range re real red reds region rich ripe river
robust ruby SAUVIgNON shiraz shiraz showing smoke soft south South Australia spice spices spicy structure structured style subtle supple sweet
syrah syrah tannin tannins texture three two valley value vanilla varietal vintage Western Australia when while Wine wines with without
wood world would year years yet you your

N

]
. s s
e [w— [— [=
ez e Cobgus Vil Lo Vs .9 0 O P——— .
s e R w st en...ut, o Garla .oy 2000 i ——— omtana
a2 e Conma ey 2Brorers 99T 60 o T ——————— ———- 26ovens
un e CobgusVlay Ertar:Cabr..88 " At amoun. s it am..Grsa .80 2010 camaner,Ca.. 208 .
hen e oy Castar gl . 60 e Hers aringn.desnatn, o, Rn ook 2015 cmenee, ca.. 2012 Castor g il
ero e Comhgus Vel et Cater.. 9 o st . v 1. Mo Pz 2013 cavemet s, 201 et
g i .. 2 2 mas iyt oo vy PodLkacs 2008 Cabama S 200 et
! o o Fica e .. 2 2 man Anewney .. e, e, PadLacs 200 P —— rea oo
o e ool 2.8 % Abnd o0 . it s . PaaLbacs 2007 comenre. oy, 002 -
S Finca e .22 % rands T 0. s ey . Wios A 2008 CabamaSaw.. 200 -

Figure 2.10: Example focussed concept tag cloud of original web application
ConceptCloud implementation for a reduced size wine review dataset.

ConceptCloud is also able to visualise multiple points in the lattice at any
time. It does so by allowing the user to open multiple tag clouds, each with

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 28

their own focus concepts. These tag clouds are all linked to the focus concept
of the main tag cloud viewer, that is, while each may have a separate focus
concept, all those focus concepts are all subconcepts of the focus concept in
the main tag cloud viewer. We see this in Figure the main focus concept
is that of {varietal: Cabernet Sauvignon}, and the focus concepts in the
subsequent tag clouds are {varietal:Cabernet SauvignonNvintage:2004},
{varietal: Cabernet Sauvignonvintage: 2005} and
{varietal: Cabernet Sauvignon N vintage:2006} respectively. Each of
which is a child concept of {varietal:Cabernet Sauvignon}. Here the con-
cepts of each tag cloud are subconcepts of the main tag cloud’s focus concept

as per Definition [7]

O ConceptCloud Browser

«

L - x[”
N::I:jnom 2004 2005 2006 2006 2007 2008 2008 2009 2013 88 89 90 91 92 acidity alcohol aromas australia balanced berry
pen Ui Gt best black blackberry blend bettle cabernet Cabernet Sauvignon carmenere cassis cedar character cherry chile
complexity dark deep delicious excellent fine finish firm flavor flavors french fruit full good grapes great herbal herbs
poumeRs KL Fle impressive malbec malbec mendoza merlot merlot new notes oak over
'-Z:'::“N"SSLN?"“;:‘C’MSEH palate price re red rich ripe sauvignon shiraz shiraz soft South Australia spice structure style subtle syrah syrah tannins
texture value Western Australia while Wine wines With without world would years you .

~ | 2004 ||~ 2005 X 7|~ 2008 X7

2004 2006 2007 2008 88 89 90 91 92 aromas australia 2005 2007 2008 2009 75 86 88 89 90 acidity are 2006 2008 2009 87 88 90 91 acidity aged alcohol
387 objects in tag cloud balanced berry best black blackberry blend aromas balanced berry black blackberry blend balanced berry black blackberry blend
bottle cab cabernet Cabernet Sauvignon cassis bright cabernet Cabernet Sauvignon cabemets | cabernet Cabernet Sauvignon carmen carmenere
el) cedar chile chocolate complex complexity dark deep | " cedar cherry chile clearly complexity dark deep | cassis cherries cherry chile chilean
delicious depth elegant even excellent fine finesse finish flavor nt fine finish flavor flavored flavors fruit complexity concentrated dark delicious depth dried even excellent
© Selected Tags: flavors focused fresh fruit good great herbal good grapes great herbs impressive juicy lend fine finish firm first flavor flavors french fruit full
XCabernet Sauvignon herbs hints intense little maipo margaret mendoza merlot merlot go0d herbal herbs impressive intense little
Implied Tags: merlot merlot mint | Mint new New South Wales notes oak overdone plum price malbec malbec mendoza merlot merlot
new note NOtes oak palate price real red reds ripe | ™" " red reds ripe santa sauvignon new note NOtes nuances 0ak over
N shiraz smoke soft South Australia spice spices spicy structure subtle
river sauvignon shiraz shiraz showing smoke soft ia spice spices spicy palate plenty price re red restrained rich richness
sweet syrah syrah tannin tannins texture textured value Western | ripe rpeness SAUVIGNON seems shiraz shiraz South Australia
South Australia spice spicy structure style subtle supple sweet o N
) 3 Australia whiff while WiN€ wines With without wood world yet | spice subtle syrah syrah tannin tannins texture two value while
tannins valley value vineyards Western Australia wine . . .
3 you wine wines With would years you
wines With without world years you , . .
X
Dvines] [wines][name] [wines]fprice] [
reviewyear]
3 agre @ 2 2009 Cabemet Sauig...2008
" agre @ 2 2009
2 agrek @ 50 2009
5 agre B 2 2009 Cabemet Sauig...2008 Finca Decero
b el % 2 mendoza Look no urher ... complexiy . fnit 2009 2006 Finca Decero
ass chle Colchagua Valey Los Vascos: Res... 89 2 ABordeauxste...lush il herb... Paul Lukacs 2009 syrah, Cabermet... 2006 Los Vascas

Figure 2.11: Example focused concept tag clouds of original web application
ConceptCloud implementation for a reduced size wine review dataset.

The main tag cloud viewer can therefore be used to drive the explorative
search process, as further covered in Section [2.3. By updating its focus con-
cept, the main tag cloud viewer will force all the subsequent tag cloud viewer
subwindows to update their focus concepts to remain subconcepts of the main
tag cloud viewer’s focus concept. We see this in Figure[2.12] The main window
focus concept has been updated to display the concept defined by the set
{varietal:Cabernet Sauvignon,location:australia}. This in turn forced
the three vintage windows to have to include location:australia and
varietal:Cabernet Sauvignon to remain subconcepts of the main window
focus concept. That is, as per Definition [6] the sub viewer’s focus concepts
shown in the windows with stickied vintage: 2004, 2005, 2006, tags, each have
a set of currently selected attributes F, each of these sets F, have been updated

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND

29

to include the binary concept location:australia, the extent for these F-sets
is then changed, and each subconcept is recalculated.

C) ConceptCloud Browser

«

Navigation:
Home
Open User Guide

Download XML File

Load ConSL Script:
Choose fie No file chosen

Load CanSL Serpt

172 objects in tag cloud

Font Size (10 - 35)
—

© | Selected Tags:
Xaustralia
XCabernet Sauvignon
Implied Tags:

X7

2003 2004 2005 2006 2006 2007 2008 88 89 90 91 92 acidity aged alcohol aromas australia australia australian balanced berry best black

blackberry blend bodied bright cab cabernet Cabernet Sauvignon cassis character cherry chocolate complex complexity coonawarra dark

deep depth eucalyptus excellent fine finish firm flavor flavors french fresh fruit

margaret merlot merlot

mint new note notes oak over palate

good great herbal herbs impressive intense
price red region rich ripe river

sauvignon shiraz shiraz south South Australia spice structure style subtle tannin tannins texture two value Western

Australia while wine wines With without would years you .

~ | 2004 X
2004 2006 2007 2008 87 89 90 acidity aromas australia
australia australian balanced barossa berry best better
black blackberry blend bright cabernet Cabernet
Sauvignon cassis cedar character chocolate concentration
coonawarra dark deep delicious elegant estate even excellent
fine finesse finish flavor flavors focused fresh fruit
good great herbal herbs hints intense little
margaret merlot merlot
mint new note notes
oak palate real red ripe river sauvignon
shiraz shiraz showing smoke soft South Australia southern
spice spicy structured style subtle supple sweet tannins

~ | 2005 X7

2005 2007 2008 86 88 89 90 acidity aromas australia
australia balanced berry blackberry blend bodied bottling
bright cab cabernet Cabernet Sauvignon cabernets
cedar character clearly complexity coonawarra dark deep dried

edges flavor flavors fruit good herbs.
juicy merlot
mint New South Wales notes oak
personality plum plush point price re red reds refined region reserve
rich ripe river rosemount
sauvignon shaw shiraz shiraz
smoke soft South Australia South Eastern Australia spice spices spicy
structure subtle tannin tannins texture textured two upon varietal
vivid weight western Western Australia whiff while Wine wines

with without wood years you

~ | 2006 X7

2006 2008 2009 87 88 91 acidity aged alcohol australia
balanced berry black blend cabernet Cabernet
Sauvignon cherries concentrated dark fine finish flavors fresh
Fruit fruits fruity
herbal herbs hot impressive intensity interesting large leafy little malbec

malbec merlot merlot
mint new notes 0ak over palate penfolds

given good grange grapes grilled

plenty plums point price range recalling red restrained rich ripe
az shiraz South

ripeness robust rounds Sauvignon

Australia spice st steak style subtle sweetness tannin tannins tarry
traditional two varietal varieties weight Western Australia when while

wide wine wines with would years yet you

western Western Australia wine

vineyards
winemaker wines With world would years yet you young . . .
X
[wines]ireview] pwines]
{wines] wines]iname] Lwinos]fprice] h
(pi) reviewyear]
m s Langhome Creek.Bleasdale Vineya...87 0 Soun Australa T = 2000 Gabemet Sauvig... 2008 Blcasdale Vinoya
593 s er Gape Mentelle:5...90 19 2007 s fanc... 2008 Gape Mentelle
st - ¢ Chalce Bidge: ... 91 " Westom Australla This blend o Sh... by , passes , h...Gerald D, Boyd 2008 syrah , Cabermet 2006 Chalcs Bridge
06 wai hronberg: Cab... 91 & South Ausirala Among the mst .. races , coppern...Gerald D Boyd 2008 Gabomet Saug... 2008 ansenborg
08 s i Jim Barry: Caber...88 2 Soutn Australia Tris wine sports . spors , it pl... Michael Franz 2009 Gabemet Sauvg... 2008 sim Barry

Figure 2.12: Multiple example focused concept tag clouds of original web ap-
plication ConceptCloud implementation for a reduced size wine review dataset.

2.4 Natural Language Processing

Semi-structured data very often have large free-text components. These com-
ponents often contain insights into the data we wish to take advantage of, but
cannot do with formal means as we lack the specification for what type of
information may be contained in the data.

The field of natural language processing provides mechanisms to extract
information from such free-text. Maintaining the semantic meaning of the
text whilst removing ambiguity are the main goals of the natural language
processing we wish to perform.

ConceptCloud makes use of the Stanford CoreNLP library to perform its
natural language processing tasks [26]. These include the following:

Tokenization Split the text into words, compound words are broken up into
their parts, isn’t becomes is n’t for example, that is T'(isn't) = {is, n't}.
Each token is split based on its context.

Sentence Splitting Break down the input free-text into sentences to be pro-
cessed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 30

Named Entity Recognition Annotates known named entities in a body of
text.

Key-Phrase Extraction Break text down into separate phrases.

Stemming Reduce derived or inflected words back down to a root or stem
form regardless of whether the stem itself is valid.

Lemmatization Group words together to be analysed as a single item, nor-
malises each word to a valid root based on its dictionary form.

{

"wine_id": "5731",

"prod_name": "Anura Vineyards",

"brand": "Merlot",

"vintage": "2004",

"wine_label_name": "Anura Vineyards Merlot 2004",
"cap": "Cork",

"margin_rating": 3.5

"vintage_rating_100": '"null",

"vintage_rating": 3.5,

"blurb": "Bottled version of sullen sample 04 (***1/2) shows a
leaner, edgier style with sour plum & herbaceous nuances.
Taut tannins make it better suited as a food wine. 15 mths Fr

oak. Pvsly tasted was fragrant 02. This, above, Simonsberg-Paarl

wo.",
"winemaker": "Tymen Bouma & Carla van der Mescht (Jan 2002)",
"viticulturist": "Hannes Kloppers (Oct 1997)",

"additional_info": "Est 1990, 1stBB 2001, Closed Easter Fri/Mon,
Dec 25/26 & Jan 1, Fee R15 (cheese & wine), Lilly Pad Restaurant
(see Eat out section), Tours by appt, Farm Produce sold, 118 ha

(cab, malbec, merlot, mourvedre, sangiovese, shiraz), 600 tons
total 450 tons / 35000 cs own label 80% red 20% white",

"estate": "O",

"bottling": "1",

"name": "Paarl",

"area": "null",

"details": "null",
"further_remarks": "null",
"blend": "Blended"

},

Figure 2.13: Merlot JSON object with a free-text wine review / blurb

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 31

{

"Blurb keyphrases": "sullen sample , sour plum , sour ,
plum , herbaceous , herbaceous naunces , sour plum &
herbaceous nuances , Taut tannin , fragrant , Bottled
version , leaner , edgier style , food wine ,
Simonsberg-Paarl WO , Simonsberg , Paarl , WO"

Figure 2.14: Results of key-phrase extraction performed on the blurb of Figure

ZAE

The primary use case for NLP in ConceptCloud is to pre-process free-text
attributes within semi-structured data sets. An example of one such free-text
attribute is the blurb attribute of the Merlot wine JSON object shown in
Figure [2.13]

In our example, tokenization would split each item in the blurb into sep-
arate tokens or word items. In the example presented in Figure the
final sentence would be tokenized into the following comma-space delimited se-
quence: This , above , Simonsberg Paarl W0. Note here the hyphenated
words are split. This is a configuration choice specifically made for this data
set. The sentence splitting component applied to the same example splits on
full stops and quoted full stops only. This process would then split all quoted
sentences away from the sentence in which they reside. This operation becomes
important when determining the subject for each sentence.

Key-phrase extraction of on the blurb yields the following phrases.

It is important to note here the key-phrase extraction will contain phrases
that are subphrases of other extracted phrases, this may seem redundant but
becomes useful when matching on extracted phrases. This can however lead to
inconsistencies or false positives. As with this example, the difference between
sour plum and sour lead to very different interpretations of the wine’s flavour
profile.

I cover this topic and the problems it introduces in both Chapters [3] and [4]

2.5 Description Logic And Ontologies

Ontologies in mathematics and computer science refer to a repository of do-
main information, most often describing some collection of entities, relations,
functions, axioms and instances [24]. Ontologies allow for formal reasoning to
be performed over a domain and on data from the domain. This reasoning
capability makes them ideal to supplement the existing data in ConceptCloud.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 32

Description Logics

Description Logics (DLs) are a family of knowledge representation formalisms
used in the modelling of ontologies. Description Logics vary in expressivity
from that of very inexpressive, to near the expressivity of first order logic.
Description logics are in fact usually a fragment of first order predicate logic,
many being fragments of first order two variable logic, where the description
logic is expanded to include counting quantifiers [24].

Description logics are generally focused on decidable fragments, unlike gen-
eral first order logic, wherein logical inference is undecidable. Decidability is
almost regarded as a prerequisite to calling a formalism a description logic [30].

As logical formalisms, description logics are equipped with formal seman-
tics precisely specifying the meanings of description logic ontologies, allowing
for logical deduction to infer additional information from statements in an
ontology.

In ConceptCloud I wish to take advantage of this inferential capability
to turn implicit information contained in the textual attributes within our
concept lattice and ontology, into explicit textual attributes within the formal
concept lattice. The basis of the implementation relies on the OWL2 API [27],
which has a strong relation to the SROIQ description logic [20].

In this section, I cover the basics of description logics and their relation
to OWL, followed by a brief introduction to the HermiT reasoner used in
ConceptCloud.

SROIQ Description Logic Introduction

Description logics provide us with the tools to model the relationships between
sets of objects, and between objects within our data sets, or domains of interest.

DLs are languages used to describe concepts, roles and individuals. The
meaning of concepts are sets of individuals, roles are the binary relations be-
tween these individuals, and individual names are single individuals in the
domain.

To avoid confusion the following description logic terms will henceforth be
referred to by their OWL syntax: DL concepts will be referred to as class
descriptions, DL roles will be referred to as object properties, when presented
in conjunction with their FCA counterparts. Otherwise, the prefix DL or FCA
will be used before each term.

We use the description language SROZQ [20], as it shares many common-
alities with OWL2 [27], which is used extensively in the integration of ontology
based data imputation into ConceptCloud, as explained in Chapter

The SROZQ DL concept language consists of the following fundamental
components:

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 33

e A set N7 of individual names which correspond to first order logic (FOL)
constants, these are all names used to denote individuals in the domain
which we describe. In our wine example from Figure the winery
‘Stark-Condé’, or the country ‘South Africa’ are both examples of DL
individual names.

e A set N of DL concept names, these are types, classes or categories
of entities in the domain. In the previous wine example, ‘winery’ and
‘country’ are both examples of DL concept names (atomic class descrip-
tions).

e A set Nz of role names (object properties), that denote the relationships
between individuals in the domain. An example relationship may be:

(Stark-Condé,South Africa):locatedIn

A SROZQ ontology consists of sets of axioms expressed in the language of
the description logic that are separated into three main groups:

TBox The TBox or Terminological box consists of all axioms describing the
relationship between DL concepts (class descriptions).

ABox The ABox or Assertion box consists of all assertions describing named
individuals (OWL object instances).

RBox The RBox or Role box consists of all axioms describing the properties of
roles and the relations to other roles (OWL object property axioms).

RBox Axioms

A SROZQ RBox specifies the relationships and interdependencies between
DL roles in the knowledge base.

Given a set of Nz of DL role names, a role is either of the form r or r~
or u, where wu is the universal role and r~ denotes an inverse role, that is
Inv(r) :==r~ and Inv(r~) :=r. Where (z,y) € Inv(r) & (y,z) €r

Given a set R of roles, and r, s € R, a role inclusion axiom (RIA), or role
composition axiom, is a statement of the form rio...r, C r wherery...7,,r €
R. As a special case of role composition, where n = 1 we have simple role
inclusions r C s.

In our example wine domain, we may wish to express relationships between
a wine farm, its location and the wine it makes, as shown in Figure [2.15]

With this example in mind we would have the following:

madeBy o LocatedIn € madeAt
isLocationO f o makes C made At~

A finite set of role inclusion axioms is known as a role hierarchy. In a role
hierarchy one can distinguish between complex and simple roles, that is to
distinguish between roles formed by a role chain or role inclusion axioms when

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 34
Mount
/ Destin \
isLocationOf / \ madeBy
locatedIn makes

Stellenbosch ¢ madeAt Chenin Blanc

Figure 2.15: Example relationships between a winery, wine and a town based
on the ongoing wine example

n > 1, and those formed by simple role inclusions. Complex, or non-simple
roles are defined as follows:

1. Each role r occurring on the right in a role inclusion axiom r; o
..., £ r where n > 1 is non-simple.

2. Each role r occurring in a simple role inclusion s C r with a non-
simple s is non-simple.

3. If r is non-simple then its inverse role Inv(r) := r~ is also non-
simple.

4. No other role is non-simple.

For a set of non-simple roles R™ of our role hierarchy R, we define all simple
roles R* as the following: R® := R\ R".

Given our example roles we have the following role hierarchy:

isRegionOf C isLocationOf
isWineryOf C isLocationOf
isLocationOf C locatedIn™
makes C isMadeBy ™
isRegionOf o makes C regionMakes
isWineryOf o makes C wineryMakes
isLocationOf o makes C locationMakes

locatedIn o locatedIn C locatedIn

By condition 1 of the definition of non-simple rules we have that the roles,
regionMakes, wineryMakes, locationMakes are non-simple. By 1 we have that
the role locatedIn is non-simple as we have the axiom locatedIn o locatedln T

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 35

locatedlIn, this in turn gives us that the inverse LocatedIn™ is non-simple by 3.
As none of the other roles expressed in the role hierarchy are built off of these
non-simple roles, or their inverses, they must be simple by 2,3 and 4 above.

For SROZQ to maintain decidability role hierarchies are restricted to reg-
ular role hierarchies. A role hierarchy is regular if there exists a strict partial
ordering < on non-simple roles in R such that s < r if and only if s~ < r, and
each role inclusion axiom is of the following form:

1. rorCr

2. Inv(r)Cr

3. §510...8,Cr

4. rosjo...s, Cr
5.8 0...8,0rCr

Here r € Np is a non-inverse role name r, and s; < r for i = 1...n when s; is
non-simple.

A SROZQ RBox is a union of a DL role-hierarchy (OWL object property
hierarchy) and a finite set of DL role characteristics. A role characteristic is a
statement of the form:

1. Ref(r) role r is reflexive
2. Dis(s,s') roles s, s" are disjoint
3. Asy(s) role s is asymmetric

Where s, s" are simple roles and r may be simple or non-simple. A SROZQ
RBox is regular if its role hierarchy is regular.

TBox Axioms Given a SROZOQ RBox, R, DL-concepts are defined as fol-
lows:

1. Each concept name C' € N is itself a concept

2. T (Top) is a concept, used to quantify all objects in our domain.
3. L (Bottom), is a concept of which no object in the domain may
be an instance

4. Each Individual name Ind, ... Ind, € N7 is itself a concept known
as a nominal concept

5. If A and B are concepts then so too is their intersection or con-
juction A D

6. If A and B are concepts then so too is their union or disjunction
AUD

7. If A is a concept then so too is its negation = A

8. For a role r and a concept A the existential quantification Jr.C' is
a concept

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 36

9. For a role r and a concept A the universal quantification Vr.C' is
a concept

10. For a simple role r, a natural number n, and a concept A we
have the following concepts:

e dr.Self self restriction
e < n r.C At-least restriction
e > n r.C' At-most restriction

At-least and at-most restrictions are known as cardinality restrictions or qual-
ified number restrictions.

Let C be the set of all DL concepts, then general concept inclusion axioms
(GCIs) are axioms of the form A C B for DL concepts A, B € C. GClIs are
often referred to as subsumption or is-a relations, that is, in the GCI A C B
A is subsumed by B or A is-a B. These relations may be chained to form a
subsumption hierarchy. This links back to the thesaurus notion in Figure [1.5]
where we have Chenin Blanc C WhiteWine, W hiteWine T Wine, Wine C
Thing. That is, a Chenin Blanc is a White Wine, which is a Wine which is a
Thing.

A SROZQ TBox is a finite set of concept inclusion axioms.

ABox An ABox or assertion box is made up of individual assertions, state-
ments which pertain to named individuals, unlike the TBox which may pertain
to all individuals.

For individuals 4,7 € Nz, C € N¢, r € N, individual assertions have the
following forms:

1. C(7) is a concept assertion, i is an instance of concept C

2. r(i,j) is a role assertion, i is linked to j by role r.

3. —r(i, j) negated role assertion

4. 1 =~ j individual equality 7 is j, that is the names for ¢ and j cor-
respond to the same individual

5. i % j individual inequality

A SROZQ ABox is a finite set of individual assertions. We call it exis-
tentially reduced if it only contains roles and concepts that correspond to role
and concept names respectively. That is each concept C € Ng and each role
re NR

A SROIQ knowledge base KB is the union of a regular Rbox R, a TBox
T and an ABox for R, A. Elements of the KB are referred to as axioms.
We denote the individual names, concept names and role names of the KB by

Ne(KB), N7 (KB) and Ng(KB) respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 37

For the sake of illustration I will develop a simple Wine Ontology as we
continue. The following will be some foundational axioms for it.

TBox Axioms
T=A
RedWine = Wine M 3 hasColour.{red}
WhiteWine = Wine M 3 hasColour.{white}
RoseWine = Wine M 3 hasColour.{rose}
RedWine U WhiteWine LI RoseWine T Wine
Winery C d locatedIn.Location
Location C d locatedIn.Region
Region C d locatedIn.Country
Winery L Region U Country LI Location C Place
. Wine M HlocatedIn.{SouthAfrica} T SouthAfricanWine
10. SouthAfricanWine C 3 locationMakes.{SouthAfrica} M Wine
11. T T Wine U Colour U Place

}

Our first 3 axioms state that the concepts named RedWine, WhiteWine and
RoseWine all correspond to Wine concepts which have the role hasColour with
the instance of a corresponding Colour concept. Our fourth axiom states that
RedWines, WhiteWines and RoseWines are all subconcepts of a Wine, we can
read this as a RedWine is a Wine, a WhiteWine is a Wine etc.

The fifth to seventh axioms state that a Winery is a located in an existing
location Location, a location is located in an existing Region and a Region
is located in an existing Country respectively. The ninth axiom states that
wineries, regions, countries and locations are all places. Axiom 10 states that
a wine located in the individual SouthAfrica is a South African wine. The
eleventh axiom states that a SouthAfricanWine is a Wine that is made at an
existing location in SouthAfrica. The final axiom states that everything in our
ontology is either a Wine, a Colour or a Place.

—

©oNS O WwN

ABox Axioms

A=A
petersMerlot:RedWine
samsSauvignonBlanc:WhiteWine
rosiesRose:RoseWine
mattsMerlot:RedWine
South_Africa:Country
mattsMerlot ~ petersMerlot
white:Colour, red:Colour, rose:Colour
red % white, white % rose, rose % red

[y

N WD

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 38

}

Our first four ABox statements are concept assertions, which assert that the
individuals, named in brackets are instances of the preceding concepts, i.e Pe-
ter’s Merlot is a red wine. The sixth axiom states that the named individuals,
‘mattsMerlot’” and ‘petersMerlot’ refer to the same individual. We can think
of this as Matt and Peter having the same Merlot wine. Our seventh axiom
states that red, white, rose are all instances of the Colour concept. Our final
axiom states that the Colour individuals red, white and rose are disjoint.

RBox Axioms Given our previous role hierarchy we may have the following
RBox:

R={

1. WineryMakes™ = madeAtWinery

2. makes = isMadeBy~

3.locatedIn o locatedIn T locatedIn

}

The first role axiom states that the inverse of a wine being made a winery
is a winery making a wine. The third role axiom states that the role locatedIn
is transitive. It is important to note that our ontology usually does not fully
specify a particular situation it is meant to describe, our intended meaning of
the ontology is only derivable from it’s ontological axiom, and not it’s identifier
names. In our above example, even though we have Matt’s Merlot as an
individual wine, there is no guarantee an individual Matt does (or does not)
exist.

Description logic semantics generally consider all possible situations wherein
our ontological axioms hold, we keep unspecified information open, this is
known as the open-world assumption.

Description Logic Semantics

Formal Description Logic semantics revolves around the central idea of provid-
ing a semantic counterpart for consequence relation which determines whether
a particular axiom follows, or is entailed by, a set of axioms. Our notion of se-
mantics is defined in a model-theoretic way, that is by defining the set theoretic
notion of an interpretation of the axioms in an ontology.

Interpretation

Formally, an interpretation Z provides:

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 39

e A domain, a non empty set AZ representing the entirety of all individu-
als or things in the universe about which the axioms are being expressed.

e An interpretation function -z which provides a mapping between the do-
main and the axioms by providing:

A corresponding individual in the interpretation for each individual
a in the ontology, Va € N; : -(a) = a* : ¥ € AT

A corresponding set of domain elements in the interpretation for each
concept name in the ontology. That is VA € N : -(A) = AT : AT C AT

A corresponding set of ordered pairs of domain elements for each role
name in the ontology. Vr € Ny : -(r) = rf C AT x AT

DL Complex Concept and Role semantics

Recall that a complex concept C was defined as a concept built up from one
or more atomic concepts, eg., C: AN B, C :=-Aor C:=3dr.A.

An example of this is for the complex concept RedWine, where we have
built a new concept from the atomic concept wine, and the atomic concept
defined by all colour objects having the instance value red as colour. That is
RedWine = Wine M3hasColour.{red}.

In Figure [2.16] we present an extended table of SROZQ semantics and
syntax.
As the interpretation Z fixes the meanings of all the entities in the ontology
we can say with certainty whether each axiom in the ontology holds in the
interpretation Z. If an axiom « holds in Z we say that « is satisfied in Z or Z
models « that is Z | a.

More specifically an axiom holds in Z if the following is true [30]:

Definition 8.

1. A role inclusion or role composition axiom RAxiom:= ryo...r, C r,
RAxiom is true in the interpretation I if it has a direct r path that tra-

verses these roles r1,...r, in order, that is rfo...orl Crl.

RAxiom holds true in I if for all 6, ..., € AT where
(61,02) € vt ... (6,1, 0,) € L holds, that (01, 0,) € T is also satisfied.

2. A subsumption axiom A T B is satisfied by an interpretation I if every
instance of A is also an instance of B, that is AT C B”.

3. For concept assertion axiom C(a) to hold true in I each individual with
the name a must be an instance of C, that is that a* € C7.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 40
Syntax Semantics

Atomic Concept A Al C AT

Concept Negation -A AT\ AT

Bottom Concept 1 0

Top Concept T AT

Concept Disjunction AUB AT U B?

Concept Conjunction ANB AT N B

Universal Quantification VR.A {x||Vy(z,y) & R* or y € AT}
Existential Quantification JR.A {z||Fy(z,y) € R* and y € AT}
Atomic Role Ra RE C AT x AT

Inverse Role R~ {(y,x) € AT x AT||(x,y) € RT}
Universal Role U AT x AT

Nominals {ny,...,nm} {nf, ... nkt}

At least restriction >mS.A | {z|#{y: (v,y) € ST andy € AT} >m
At most restriction <mS.A {z||#{y : (z,y) € ST and y € AT} <m
Local Reflexivity 35.Sel f {z||(z,z) € R*}

Figure 2.16: SROZQ syntax and semantics

4. A role assertion aziom r(a,b), holds true in an interpretation T if the
individuals a and b are connected in T by r, that is (a’, bI> erl.

5. A role disjointness aziom Dis(ry,) holds true in an interpretation I if
every pair of domain individuals 61,0, € AT which are connected by 1,
are not connected by ro, that is that the roles ri,r9 are mutually exclusive

and ¥ nrl = (.

6. And equality statement aziom a = b holds true in an interpretation T if
the individuals a,b refer to the same individual in the domain, a*@ = b,

7. T is a model of —r(a,b) if it is not a model of r(a,b).

8. T is a model of a % b if it not a model of a =~ b.

For an ontology O if each axiom a € O T |= o then 7 |= O, then 7 is a
model of O. We say that O is consistent if it has at least one model.
We say that « is a consequence of O if it holds in every model of O. That

is O entails a, O = a.

An axiom that holds in all possible interpretations or situations that satisfy
the ontology, is referred to as a logical consequence.

As we add axioms to the ontology we tighten the constraints on any inter-
pretations of the ontology, leading to fewer models, the converse holds true,
where there are fewer models of an ontology there are more axioms that hold
in all models, and more logical consequences follow from the ontology.

We represent our interpretation of the axioms and domain outlined previ-

ously in Figure [2.17]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 41

Given the above interpretation, we see that our TBox axiom, 4. RedWine
LI WhiteWine LI RoseWine C Wine, holds, each wine concept is a subconcept of
the wine concept. We see that as in our ABox we have that each of, Peter's
Merlot, Matt's Merlot, Rosies Rose are red and rose wines respectively. We have
that South Africa is a country and our colours are all distinct individuals.

Wine? AZ
m hasColour [Colour?

s T
Rose WineZ, . Location
Country
Rosies’ Rose” RegionI
/ Winery?
White Wine locakednZ South
makes” Paar]? ‘ocedn Africa

Chenin B%_
Mont Destif Mont Destin® .
atedIn? -| locatedI
Qlirl BlancZ \JocatedIn }S)tellgl ocatedln j
osc

Figure 2.17: Possible interpretation Z of the domain information presented in
Chapter

SROZIQO and OWL

OWL follows closely to the description logic SROZQ for which entailment
of axioms is decidable, with structural restrictions, as shown above in Figure
2. 10l

SROIQ is an extension of ALC [24] adding in transitive roles (S), com-
plex role axioms (R), nominals (O), inverse roles (Z), and qualified number
restrictions (Q) [20].

OWL is a knowledge representation language formalised by W3C, I make
use of an OWL 2 based API to interact with our ontology. We require that
our ontology’s axioms are able to be expressed in SROZQ, ensuring that our
entailment is decidable and our reasoning terminates.

If in our original wine example we had Rose = WhitelMRed we could express
the same in OWL as EquivalentClasses(Rose, ObjectIntersectionOf(White,Red)).

In most cases, there are corresponding OWL operator names for each de-
scription logic syntax component.

In Chapter [4 we describe an algorithm for the enrichment of semi-structured
datasets focussed around mapping row items from the context table as de-
scribed in Section to OWL individuals, with a corresponding mapping
between FCA attributes and OWL object property assertion axioms.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 42

HermiT

In Section [2.5] we discussed semantics and semantic reasoning, and how we
would link axioms together to infer new information from our ontology.

Automatic semantic reasoners have existed for many years. Informally
semantic reasoners are software engines that are able to read in sets of axioms
and infer logical consequences from them.

When selecting a reasoner to integrate into ConceptCloud the chief deciding
factors were to find one which will be easy to integrate, that is, is implemented
in Java, the same language as ConceptCloud and conforms to the OWL API. If
possible, it should too be able to process multiple different ontologies of varying
expressivity, to allow ConceptCloud to process many differing ontologies to
supplement the existing input semi-structured data.

The HermiT reasoner conforms to each of these requirements, it implements
the OWL2 java API and has been shown to be able to process many ontologies
of varying expressivity [32]. HermiT is one of the few reasoners that is able to
perform both object and data property classification—reasoning tasks, which
are required by ConceptCloud, as explained in Chapter [Section [£.4]

2.6 Summary

In this chapter, I covered a basic introduction to the basis of concepts used in
this thesis. Each section focussed mainly on establishing the theory required
to understand the techniques used in the development of the ConceptCloud
tool.

Section [2.1| covers an introduction to Formal Concept analysis and its’ use
in establishing the formal concept lattice driven explorative search process
used in ConceptCloud. This explorative search process provides the core func-
tionality for ConceptCloud, enabling users to explore their data sets without
prior knowledge of the internal structure of the data, while still allowing the
user to gain knowledge contained in the underlying structure.

Section [2.2] covered related work in the field of data exploration tools, as
well as introducing the ConceptCloud tool. The tools, ConExp, FCArt and
ConceptCloud are presented, and the strengths and shortcomings of each were
given. The shortcomings of ConceptCloud and their resolutions form the basis
of this thesis.

Section covers the natural language processing techniques used in Con-
ceptCloud; these are further expanded on in Chapter [4]

We then cover an introduction to description logics and their applications
in Section [2.5] T introduce the basics of description logic syntax and semantics
and lead into an introduction to OWL, which forms the basis of our tech-
nical implementation of formal reasoning into ConceptCloud. The extended
implementation detail is covered in Chapter []

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Server Based Architecture

As discussed previously, semi-structured datasets have become progressively
larger, while incorporating more and more domain-specific information. An
example of this is the rise of geolocation rich data.

Thus arises the problem of ConceptCloud needing both to scale to accom-
modate these larger datasets and provide support for specialised visualisations
of domain specific data.

This chapter discusses the re-factorisation of the initial ConceptCloud code
base and additions, improvements and expansions made to the software.

3.1 Overview

ConceptCloud began as an interactive browser-based tool for Git and SVN
repositories [16, [18]. ConceptCloud has been extended to accept further semi-
structured data sets in XML and JSON files. However, its application to
large data sets (e.g., the ACM Digital Library, see [10]) has shown the lim-
itations of its original client-based architecture. I have thus re-designed and
re-implemented the system to use a new server-based architecture, which also
necessitated some user interface changes. In this chapter, I describe the new
architecture and interface and show that it yields 10x performance improve-
ments. Specifically, I present the original architecture of the ConceptCloud
System, the limitations of the original implementation, changes made, and
preliminary experimental results over a wine review data set.

Shift In Application Domain

The initial implementation of the ConceptCloud system was geared towards
exploration of the metadata of software repositories [I7, [I§]. As such it was
not built with scaling in mind since the metadata within a software repository
forms a comparatively small semi-structured dataset. When the use of the
application shifted from analysis of these repositories to analysis of other semi-

43

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 44

structured data sets [10], it became apparent that some of the design choices
initially made were no longer feasible. One such choice was to have each tag
cloud display tags representing all attributes and objects without any limit.
The lack of a display limit also exists in the displayed representation of the
context table, which too will display all attributes and objects. In practice,
this is increasingly resource intensive for larger datasets.

Further use of the ConceptCloud tool drove it toward being used on ever-
growing semi-structured datasets, such as academic paper libraries, academic
conference data, and finally to the domain I am mostly working on, wine review
information. As such, the ConceptCloud tool needed a shift in its architecture
to better accommodate the larger data sets, as the previous versions, in which
the entire data set was represented on the client side in the tag-cloud windows,
was becoming far too memory intensive and no longer practically feasible for
the larger, and in some senses more general data sets. The first change in this
architecture was done by Gillian Greene for the ACM paper library data set
[10]. The main shift was moving to have only a limited subset of the tags
displayed in the client’s front end window and search functionality assisted by
a database cache for access to the non-displayed items in the data set. In this
way, the user is still able to navigate through the larger overall lattice with
an explorative search as before, but the user now does so by viewing a much
smaller subset of the data in the front end.

This version of ConceptCloud was explicitly written for the ACM publi-
cation database. At a high level, this approach was generalised and then the
general implementation was used for the wine data domain.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 45

Description of the Generalised ConceptCloud

Architecture
i hr interaction *

User User

Repository

Selection
Server

Repository
Server

Access File In

o A
Table Concept Lattice L _
Data. Extraction Management Builder Repository
Repository

Save
o _ Store/Load Viewer

T Store/Load

Context - /_____.\
TS Context F Viewerj
~

Table

Figure 3.1: Initial ConceptCloud System architecture as implemented by
Gillian Greene in “Interactive tag cloud visual-ization of software version con-
trol repositories” [18].

The original ConceptCloud architecture was as in Figure [3.1]

Data Extraction Responsible for the retrieval of data from the data reposi-
tory. This component stems from the original ConceptCloud implemen-
tation, which was focused on the analysis of software repositories, this
component would fetch and process the data from a software repository.
It was later adapted to accept data in the form of semi-structured data
files. To accomplish data extraction, the user must provide subsystem
with some specifications for the extracted data, most commonly a doc-
ument type definition or DTD file alongside the semi-structured input
data.

Table Management Responsible for the creation of a context table from the
extracted data, as well as loading an existing context table either from
the file-system or the data extracted from the repository.

Concept Lattice Builder Responsible for the creation of a concept lattice
from the Context table.

Navigation Responsible for the creation of Tag-Cloud viewers. These are the
Tag Clouds through which the user interacts with the underlying concept
lattice and exploratively searches through the dataset.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 46

As the initial ConceptCloud system was stable and achieved its goals, it
made sense to retain as much of the existing architecture and implementation
as possible. However, it was still necessary to update some of the components
to work with the different underlying architecture goals, more significant sep-
aration of the data in the client, allowing for larger data sets to more easily
be worked with, as well as separating the data stored in the live application to
memory and into a SQL database, which allowed for a clearer caching strategy
and more responsiveness in the search functionality.

Initial Maintenance

In 2017 it was announced that the primary build tool of the Play! framework,
the Typesafe Activator Project, was being deprecated and moved to mainte-
nance mode. Following this, the Play! framework project moved away from
using the Activator Build Tool, as in its earlier versions, to using Simple Build
Tool, SBT. This alongside the updates in the Play! framework from version
2.2, to 2.6 required a substantial refactor of the ConceptCloud codebase.

This included changes to support Google Guice dependency injection. This
required the shift of many of the older static Java classes to a dynamic object
orientated model, which caused a knock-on effect of classes needing to be
refactored and updated. Additionally, many of the dependencies had to be
revised and updated where possible.

3.2 Scalable ConceptCloud Architecture

To reduce the resource intensive nature of ConceptCloud, changes to the initial
implementation had to be made. A fixed-sized subset of all tags was selected to
represent the underlying concept lattice. This, in turn, necessitated a way for
the user to interact with tags that may not be displayed in the initial window.
The logical choice was to incorporate autocomplete based search functionality
as mentioned in Section [2.3] For this to function correctly, a caching structure
and separation of the data in memory was required. For this, I implemented
a PostgreSQL database, in which the database tables are generated based on
the structure of the input dataset. The number of tags in a tag cloud was
limited to the top 5000 tags, by frequency in the extent of the focus concept
for that tag cloud. This limit was imposed to maintain a functional interface
and not overwhelm the user. Additionally, the attributes to be displayed in
the context table representation was configured and limited. The context table
representation, known as the table view, limits the displayed results but allows
the user to page through the list of all results. Finally the system creates its
concepts on the fly, meaning that the overhead of creating the full lattice is
avoided. This allows for generally responsive tag cloud creation and rendering.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 47

The architectural changes presented are a generalisation of the architec-
ture used in [I0], a highly specialised version of ConceptCloud used to visu-
alise the the ACM Digital Library. This dataset, at the time of writing, has
over 4 million records. The scalable ConceptCloud Architecture presented is
not specialised to any specific dataset and may be used for any well formed
JSON dataset, or CSV dataset. It will correctly generate the required caching
databases and create the required tag clouds. Additionally the user interface
was updated to better function with the new architecture.

The largest architecture change is that the system takes a pre-input dataset
in the form of a properly formatted JSON file, or CSV file for very large
inputs. This differs from the original architecture in that each client using
the application will be looking at the same dataset, as apposed to each client
uploading a different smaller dataset to work with each time they access the
server. First time execution of the new ConceptCloud system will perform key
phrase extraction on fields in the dataset specified by the configuration file,
this is only the very first execution from the very first client, on this initial
run the system will also generate and populate the required postgres databases
and database tables.

Note the changes to the data extraction modules, shown in Figures |3.1
and [3.2] the data is purely encapsulated in a properly formed JSON or CSV
file. The Data extraction modules then use the file to generate the caching
databases for the system. Additionally the context table is built in memory,
page by page based on the currently focused concept, and not output to a file.

The CSV approach allows for batched database insertion and has a far
smaller memory footprint. This is as for very large JSON input the validators
have to open the entire file into memory, to ensure the syntax is correct and the
braces are all matched. For a C'SV file only the header and the current line of
input need to be held in memory for validation, allowing for batched input into
the database and a far lower memory footprint in the data validation phase.

Description of Updated System Architecture

In conjunction with the descriptions given above an adjusted architecture di-
agram showing the component interaction for a normal project execution is
presented in Figure [3.2]

As reflected in Figure [3.2] the main architectural changes are the chang-
ing of the data-source from a software repository to a JSON or CSV semi-
structured input, the addition of the project execution scripts and the caching
database.

Fundamentally the functionality of the ConceptCloud tool remain the same,
the user selects a semi-structured data source, uploads it to ConceptCloud.
The uploaded data is then extracted and the initial lattice and context tables
are prepared, the tag clouds are presented to the user. The user then enters
the navigation loop.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 48
User Initialises %‘?' inieraction
User
Executes Perform Search Hash lookup
Populate
) Project
Selection Execution —
Script
/’l - - H\.
. Data Table .| Concept Lattice L
Json Data Extraction Management 7 Builder Navigation
Source \ | T
- Store/Load
R Store/Load

Context -
Tabie Caontext
Table

Figure 3.2: Updated ConceptCloud system architecture including the addition
of a fixed data source and caching database.

Data Source The user uploaded data source, either a JSON or CSV data
source. Now a single data source for all clients, as apposed to earlier
ConceptCloud implementations that had multiple data-sources.

Project Execution Script The project execution script houses the initial
first run configuration for the project, the location of the data source
(if a CSV datasource is selected, batch input will always be performed),
the fields in which key-phrase extraction should be performed and the
columns to be used in the displayed context table.

Data Extraction Responsible for the retrieval of data from the Data repos-
itory. The extraction system now gets all of the structure required to
generate the caching database and extract the data from the input data
itself. Additionally this component performs the keyphrase extraction
and any require NLP operations on the data before passing the data
through to the table management and lattice builder operations.

Table Management Responsible for the creation of a context table from the
extracted data, as well as loading an existing context table from the file-
system. The context table displayed is limited to the context for the
context table objects relevant to the 5000 displayed tags.

Concept Lattice Builder Responsible for the creation of a concept lattice
from the Context table. Only generates the relevant subsections of the
lattice as required by the navigation parameters determined by the nav-
igation component.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 49

Navigation Responsible for the creation of the Tag-Cloud viewers. These
are the Tag Clouds through which the user interacts with the underlying
concept lattice and exploratively searches through the dataset. The tags
are now limited to the top 5000 results related to the user selected tags.

Scalable Navigation Architecture

The core idea of the scalable architecture was to limit the cost of displaying
all the tags within the dataset, while still providing access to all of the data
where required.

I imposed a tag limit of 5000 displayed tags. This is then at worst the
linear cost of the creation and display of 5000 tags, no matter the size of
the underlying dataset. To access the underlying dataset an autocomplete
search function was added. This auto completes the input and suggests the
tag’s category in which to search, this adds further granularity to the search
results and narrows the size of the search result. In turn this lowers the cost of
displaying the result and allows us to lower the frequency of having to select
the top 5000 tags from result sets greater then 5000.

For example, in a free text rich dataset, such as that of the wine reviews
dataset, further covered in Section [3.6) when key phrase extraction is per-
formed often the extracted phrases may be identical to the values of a partic-
ular attribute category, for example ”Merlot” is both a varietal and a phrase,
it becomes useful to segment the two, as in Figure [3.3] This in turn allows
for each search result to be logically equivalent to a tag, which allows for a
natural integration with the existing navigation architecture.

Search Tags:

‘ Merlot| |

Merlot (as varietal)

~Merlot (as review_phrases)
Cabernet Sauvignon and Merlot (as review_phrases) 1996 1998 1999 2000 2001
Merlot and Cabemet Franc (as review_phrases)
California Merlot (as review phrases)

. » Adelaide Hills ! Alexander Va
10 % Merlot (as review_phrases) : .
—. stria Barbaresco E Barbera d'Alba Barbera d'a
Merlot and Syrah (as review_phrases) i
. - " E Bolgheri
Merlot 's (as review_phrases) lforni liforni o
Napa Valley Merlot (as review_phrases) Calatayud Californmia California California €
Cabernet and Merlot (as review phrases} Chablis ler Cru Chablis Grand Cru Chablis Premier Cru CF
v LNIanT CHIAnU CIZSSICU Lniant Ciassico Hiserva Chile Clare Valley Clarksburg
Coonawarra Comas Cotes du Rhone Crozes-Hermitage Cotes de Provence Cotes
Dry Creek Valley Cundee Hills E
Finger Lakes France Franciacorta Frankland Rive
3 Gigondas

Figure 3.3: ConceptCloud Auto-complete functionality for ‘Merlot’ search in-
put

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 50

By making the search results equivalent to a tag I can allow the selection
of a search result and the selection of a tag to be identical in their resulting
output. This equivalence is displayed in the updated navigation architecture in
Figure 3.4, The user selecting a tag from search or directly from the tag cloud
leads to the same event loop. The focus concept of the main tag cloud viewer
is recalculated and updated, then each of the subviewers have their tag clouds
recalculated. This is done by recalculating each sub viewer’s focus concept,
and then calculating the subsections of the lattice to which each focus concept
corresponds. These lattice subsections are then used to update the existing tag
cloud values. This data then goes through the viewer builder which generates
each tag cloud for display and exploration.

The user can then search, or interact with, the resulting tags, which would
cause the system to step through the event loop again as described above.

Recompute Other Displayed Tag

Clouds
Select/Deselect Tag Get new Focus

From TagCloud Concepts Concept Lattice

Select/Deselect Tag

From Search
Display Tag Cloud

Search Functionality
in Window

Load Result From Cache Update Focused Concept

Recalculate focus concept]
¥ Concept Lattice

L/

Concept Lattice

(S

Default Focus
Display Updated Viewers

Viewer Builder

Update Related Viewers——

Figure 3.4: Updated navigation component flow diagram showing search func-
tionality and Database cache interaction with a ConceptCloud user

3.3 System Extensibility

The updated ConceptCloud system was written in such a way as to be as
generic as possible, in this way it should be relatively simple to swap in different
datasets. This is achieved by having the system generate as many of the
resources for the dataset to be used as possible. This includes the java ebean
[6] model for the caching database.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 51

Extented API

The external facing ConceptCloud API allows the developer to de-couple the
explorative search process as described in Section from the ConceptCloud
API. This is achieved by providing functionality that provides the user with
the data traditionally represented within a tag cloud, as well as providing the
data corresponding to the process of selecting and de-selecting tags.

External Server

Perform Search Hash lookup

Respond To User

Interact with external
i Server [Visualisation

Request Focused [External Server
Lattice Data nctionali

fu

Request lattice data for

- current Tag Selection
Selection Execution

Scrip Request data via Retum Wrapped
Search functionality Data To
~— - Concept Lattice External Server
Json Data Builder
Source \
b d Store/Load External Api
Store/Load Get new Focus Controller

Concepis

Request Focused :I
C%r:ﬁ;“ ‘ 'L Lattice Data
Context
Table

Recalculate focus concept

Return Focused
Lattice Data

JsonData Builder

Return Json Tag Data

Figure 3.5: ConceptCloud external API architecture showing the external API
controller’s interaction with the rest of ConceptCloud’s components.

Figure [3.5| shows the updated architecture for the external facing API, it
shares most of the components with the architecture shown in the updated
ConceptCloud architecture shown in Figure [3.2l The main functional differ-
ence is that instead of the lattice being provided to a front end tag cloud
builder, it is translated into JSON format and wrapped in CORS headers and
sent to the requesting server. The program flow for navigation, as seen in Fig-
ure (3.6} is from a server component is functionally identical as before shown in
Figure [2.8] the server receives either a blank request for the top of the lattice,
as before, and responds with data corresponding to the most relevant tags in
the top of the lattice within the tag limit size. Or the server receives a request
with a selected tag hash and a list of already selected tags, in the order in
which they were selected, and responds with the tags representing the relevant
portion of the lattice.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 52

A ‘ Respnrid To User

Interact with external Server / Visualisation

External Server
functionality

R L Recalculate focus concept
Request data via Request lattice data for
Search functionality current Tag Selection
External Api —>| Concept Lattice
Contmiler Get new Focus
Concepts 4>| Concept Lattice

Concept Lattice

Search Functionality

Update Focused Concept

Request Data From Cache
| Return Json Tag Data Default Focus

,"-l-_
65&35‘;; D . Return Focused
[Cache MELL Daies Lattice Data

Figure 3.6: ConceptCloud external API’s interaction with ConceptCloud’s
navigation components.

The user interacts with the external server or service, that server then
requests data from the ConceptCloud external facing API, each tag has a hash
which is required to identify the selected item in the lattice, the extended API
hands this request to a lattice builder which then updates the focus concept of
the lattice, builds the new section of the lattice and sends the resulting data
to the JSON Data Builder, this databuilder then serialises the Tag data into
tag information and frequency of occurance in the resulting lattice into JSON
format. This data is then wrapped in CORS headers and sent back to the
ConceptCloud external API and then the requesting server.

3.4 Data Presentation

As stated in Section [2.3, ConceptCloud represents data as interactive tags.
Each of these tag i is scaled by minimum and maximum font sizes f,,;, and
fmaz in relation to its count ¢; in relation to the minimum and maximum counts
in the context table, t,,;, and t,,.., yielding:

(fmax - fmzn) X (tz - tmm)

tma:c - tmzn

size(i) = + fonin — 1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 53

This was originally created to ensure that tags with lower counts remain
visible. But for larger datasets where there is a much larger variance between
the minimum and maximum values this tends to squash the larger tags down
and does not capture the magnitude of the variance. Functionality was added
to re-scale all tags currently displayed in the Tag viewers, by different forms
of either linearisation or normalisation.

Linearisation

I removed the maximum size and added a variable scaling factor, I kept a mini-
mum fontsize ensuring nothing totally disappears. This provides the user with
a simple linear scaling purely scales by the font scale and the tag’s frequency
t;.

size(i) = fontscale x t; + 1

Normalisation

The normalisation functionality is split into global normalisation or per win-
dow normalisation, it should be made clear that the domain of these scaling
functions is only on the displayed tags. This scaling is performed on the initial
tag size.

Global Normalisation FEach tag is scaled by its count ¢; normalised against
either its occurrence in all tag clouds displayed t¢«cmeneC or by the counts of
all tags displayed, t9¢ scaled by a flat scaling parameter FlatScale.

t;

tqccurrenceG:| + 5
)

size* (i) = [size(i) x

size * (i) = {FlatScale X t%] +5

(2

Per Window Normalisation FEach tag is scaled by its count ¢; normalised
against the counts of all tags in its local tag cloud, t¢L scaled by a flat scaling
parameter, FlatScale.

t:
size(i) = {FlatScale X t—l] +5

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 54
User Old New
Action Architecture (ms) | Architecture (ms)

Initial Rendering 4863 378
Category Change 182 42

New High Volume Tag Render 7822 488
New Medium Volume Tag Render 4904 374
New Low Volume Tag Render 4218 314

Figure 3.7: Table showing measured response times of old and new Concept-
Cloud architectures for listed user actions.

3.5 Experiments

To show the difference in the architectures, I ran a series of experiments with
a typical application driven semi-structured dataset. A series of typical user
actions were taken, automated and then timed to display the differences in
execution times for the different architecture.

The dataset used, contained 16306 wine reviews, where each review has
the following attributes: name, varietal, vintage, review year, review, reviewer,
points, price, country, location, region, winery, review phrases. Where the final
field, review phrases, is a keyphrase extraction of the review field. This dataset
was chosen as it succinctly displays the difference in performance between the
two architectures.

For the experiments the following actions serve as our experiments; initial
rendering and the creation of new windows for high, medium and low volume
tags. All times given are in milliseconds. These are all run on a machine with
the following processing specifications, a 6th Generation Intel Core i7-6700HQ
(3.5GHz) and 8Gb DDR4 2133Mhz.

For each architecture, the server and client response times are measured.
The results, averaged across 20 runs were as follows: The user actions carried
out involved the following; changing the category filter to varietal, creating a
new tag cloud with the United States as the high volume tag (count of 5335),
creating a new tag cloud with 2005 vintage as the medium volume tag (count
of 1782) and creating a new tag cloud with 2001 as a vintage for the low volume
tag (count of 190).

We note that for each action the execution time is in each case at least an
order of magnitude faster for the server-based architecture when compared to
the same operation on the old architecture, on an identical dataset. The large
speedup is due to the much lower resource cost of the new architecture, as I
am no longer rendering the entire dataset, but only the top 5000 tags and a
far smaller table view.

Even when rendering fewer than 5000 tags, the fact that the initial cloud
and table view are so resource intensive in the old client-based architecture

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 55

means creating any additional tag clouds will suffer. The new server based
architecture does not have have this issue.

3.6 Wine Review Data Case Study

In this section a case study on wine reviews is conducted. The purpose of this
case study is to illustrate the functionality and robustness of the implemented
architecture while providing an insight into a typical ConceptCloud use case.

Data

The dataset used was a set of 16306 Wine Reviews for 5 star wines, (points
ranging from 82 to 100), from the years 2005 to 2016. The vintages reviewed
were from 1995-2014. The wines come from 22 different countries or states.
Each review has 14 attributes. This dataset was selected as it did not run on
the previous architecture, a short investigation into the data illustrating the
new ConceptCloud Architecture is conducted below.

We wish to see if with no prior knowledge of the dataset, is it possible to
find common trends just by an explorative search, and if so do these trends
provide further insight into the data, or provide us with questions for further
study.

Main View

In Figure the default Wine Review Data Main Tag Cloud view is shown,
and we immediately note the issue discussed in Section [3.4) we are unable to
discern the differences in size between each tag, if we really focus we can see
that Italy, France and the United States are the highest contributing countries
in our dataset. But discerning any difference between the these is not possible
by a simple eye test. Hovering over each we see their counts, 2144, 2579 and
5335 respectively.

In Figure the linearised Wine Review Data Main Tag Cloud view is
shown, the linearisation causes the major trends in the data to become more
apparent, we note that the United States tag is roughly twice the size of that
of the Italy and France tags, as we expect from the linearisation function. We
note too that the bulk of our wine reviews scored in the range of 87-94 points.

ConceptCloud allows for the isolation of specific concepts and the visual-
isation of extra tag clouds for them. In Figure I break down the points
range 87-94 into 8 distinct viewers, each viewer represents a section of the
lattice where the focus concept is the selected red points tag, these views have
been linearised to help us note any trends.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 56

C) ConceptCloud Browser

«

Navigation:

Load ConSL Script:
Ghoose fle | No fle chosen

Font Size (10 - 29)
[

‘Showing only a subset of al possible tags: use the search boxes (o select ags that are unavallable i the tag cloud
Search Tags:

[J

[
1010011121314 151617 18 19 20 2001 2002 2003 2004 2005 2005 2006 2006 2007 2007
2012 3201320142014 521222324 252627282930323334353638394

20092010201020112011
75808586 87 8889990 90

91929394 95 96 97 Albarino Alexander Valley Alsace Anderson Valley Argentina Australia Bar Barolo Blanc de Blancs Bordeaux Burgundy Cabernet
Franc Cabernet Sauvignon California California California Carignan Camneros Castilla y Leon Central Coast Champagne Chardonnay Chenin Blanc
Chianti Classico Chile Columbia Valley Dry Creek Valley Ed McCarthy France Gerald D. Boyd Germany Greece Grenache Italy
James Tidwell Linda Murphy Loire Valley Malbec Marguerite Thomas Marlborough Mary Ewing-Mulligan McLaren Vale Mendocino County Mendoza Merlot

Michael Apstein Michael Franz Monterey Monterey County Napa Valley Napa Valley New Zealand NV Oregon Paso Robles Paul
Lukacs Petit Verdot Petite Sirah Piedmont Pinot Grigio Pinot Gris Pinot Noir Portugal Rhone Valley Rich Cook Riesling Rioja Robert Whitley Russian
River Valley sangiovese Santa Barbara County Santa Lucia Highlands Santa Ynez Valley Sauvignon Blanc Semillon Shiraz Sonoma Coast Sonoma
County Sonoma County Sonoma Valley South Africa South Australia Spain Syrah Tempranillo Tina Caputo Tuscany United States Veneto Viognie
W. Blake Gray Washington Wayne Belding Western Australia Willamette Valley Zinfandel

Wine Name 4 Vintage - Region Country - Points - Winery Review

E2i0: Merlot NV % Argentina | 85 Ezo

ulary fch or deep. It does, however, offer pure, varitally
n
e I v, | menaaa - e alcoholic Malbecs--and you are welcome to them. As for mysel, Il take
Familia Mayol: Malbec NV %% Mend Argentina | o1 Kl not full of sug.

‘Sonoma-Cutrer: NV % Argentina

Figure 3.8: ConceptCloud tag cloud showing Wine review with no linearisation

O ConceptCloud Browser

«

Navigation:

Load ConSL Script:
Choose fle | No file chosen

Font Size (10- 29)
[

Figure 3.9:

Shouing only a subset of use tne searcn tags tat are
Search Tags:
[= |
18 19 20 2001 2002 2003 2004 2005 2005 2006 2006 2007 2007 2008 2008 2009 2009 2010 20102011 2011 2012 2012 2013 2013 2014
2042015 2 we087888990..91 92 9394 55 5057 suwro der Valley A 1 Valley Argentina Australia exoera Bardo
o BT Cabernet Sauvignon California california.. & — peane Chardonnay e s
i Gl Chlle Coimbia Valley Dy Cresk Valey ed mecanhy FTANCE Gerald D. Boyd cemany e sierecte IEAIY sanes raves tnca < Marguerite Thomas Maborough ver

T Michael Apstein Michael Franz vonterey wowe e naps vatey Napa Valley new zeaimnarv

s Paul Lukacs e

Sven Piedmont prot g Pt s PINOL NOIF poruga e viey Rich Cook riesiing Rioja RODEIT WHhitley russian River Valley susecse san
Sauvignon Blanc semicn stira sast SONOoma County Sonoma County s

‘South Afica Sout

United States... ..o

a Spain Syrah rempranio Tina Caputo Tuscany

‘Wine Name 4 Vintage = Region Country - Points - Winery Review

}) Thisis not an especially complex wine. Nor s t particularly rch or deep. It does, however,offer pure, varietaly
Elor Merlot NV W Argenina | 5 Edo e Meriot flavor, soft annins, and a harmonious fiish.

BT w Mendoza g | @ o B e e o Mall:if‘sg——a\m You are weicome o them. As for myself, Il take.

ull of savory flavor but thankully not ull of

Sonoma-Cutrer: NV n Argentina Sonoma-Cutrer

ConceptCloud tag cloud showing linearised Wine review data

In our linearised views we see that the highest density are 88,89,90,91
points. Amongst these we see that United States is the largest in each. The
two main reviewers in each are Michael Apstein and Michael Franz.

In our linearised Views if I isolate vintage and varietal we are easily able to
see, as per Figure that Cabernet Sauvignon, Chardonnay and Pinot Noir
are the most common varietals across our points break down, it is somewhat

more difficult

however to isolate how each performed over the years. The

ConceptCloud Scaling architecture does however allow us to extend the views
to the entire points range, 82 - 100, and isolate a varietal. I do this for Cabernet
Sauvignon, Pinot Noir and Chardonnay in Figures respectively.

Each of these Figures have been normalised as per the nor-
malisation discussed in Section This normalisation adjusts the size of the
tags in each window relative to the total count for each window. This allows

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE

57

california California chardonnay France Gerald D.
Boyd Italy Michael Apstein Michael Franz Paul
Lukacs Pinot Noir Robert Whitley Sawignon Blanc

Sonoma County Spain Syrah Tina Capueo UINItE

Cabernet Sauvignon California California
Chardonnay France Gerald D. Boyd italy
Marguerite Thomas Michael Apstein Michael
Franz Napa valley Paul Lukacs Pinot Noir Rich Cook

<] e & R[] F]Fd e Rl
- 5 20 2004 2005 2006 2006 2007 2007 5 17 15 20 2003 2004 2005 2006 20062007 202003 2004 2005 2006 2006 2007 *
2005 2006 2007 2008 2008 2009 2003 2010 2010 2011 2011 2012 2012 2007 2008 2008 2009 2009 2010 2010 2011 2011 2009 2009 2010 2010 2011 2011 2012
California Chardonnay France Italy Michael Apstein Michael
Franz Rober Whtey Tina Caputo United States 8 8 8 9
5 Australia Burgundy Cabernet Sauvignon 2012 2012 201 2 Austraiia

2012 2013 2013 2014 2015 2;

Australia Burgundy Cabernet Sauvignon California
California chardonnay France Gerald b. Boyd

Marguerite Th

9 1 Burgundy Gabemet Sauvignon California

California chardonnay France Gerald D. Boyd Italy
s Michael Apstein Michael Franz napa
@cs Pinot Noir Rich Cook Robert Whitley

wignen Blanc Sanoma County syiah UNited States

Burgundy Cabernet Sauvignon California California
Chardonnay France Geraid D. Boyd Italy Michael
Apstein Michael Franz Napa Valley Pinot Noir Rich
Cook Rabert Whitley Sonoma County syrah URited
States

States

Robert Whitley Sauvignon Blanc Sonoma County Spain . .
States . Italy Marguerite Thomas Michael Apstein
syan e capuo United States .
Michael Franz Napa valiey Newzeaiand nv Paul Lukacs
Pinot Noir Rich Cook Riesiing Robert Whitley Russian River Valley
Sauvignon Blane Sonoma County South Austraia Spain Syrah Tina
e ey UNIted States
‘ ‘ » i« |« >
- - - .
MK K|~ 02 K|~ 1 RAELS Rl
20 2004 2005 2006 2006 2007 2007 2008 2008 20092009 = | 2004 2005 2006 2007 2008 2008 2009 2009 - | 2004 2006 2007 2008 2009 2010 2011 2012 2012 2013 2013 2014 =
2010 2010 2011 2011 2012 2012 2013 2013 2014 2015 25 2009 2010 2011 2012 2012 2013 2014 2015 D 2015 94 Barolo Burgundy Cabernet S
9 2 N - Chardonnay France ltaly Michael Apst
2 013 2014 2015 awignon California California Chardonna
2010 2011 2011 2012 012 2013 2055 0L 200 o ! Piedmont Pinot Noir Rich Cook R Russian River Valley

France Italy Michael Apstein Michael Franz pinot
Noir Rich Cack Rabert Whitley Senoma County United

Sonoma County United States

Figure 3.10: ConceptCloud stickied ‘Points’ viewers for points values 87-94

~ |87

2008 2009 2010 2011 2012 2013 2014 Abaing
rranc Cabernet

ik Barbers Bonsrda Cbern

K|
1958 2000 2001 2002 2003 2004 2005 2006 2007

ere Chardonnay chenin

®[<
200020 2002 2003 2004 2005 2006~
2007 2008 2009 20102011 2012

2013 2014 Abaino s
Cabernet Sauvignon carga:

Chardonnay cren

88

ca

at ebbolo NV

Thurgau & a
 Pinot Grigio Pinot Gris

oscato o
Petit Verdot Petie S
Pinot NOIF pinctage primitue Ri€sling roussanne.
sangovese SAUVIGNON BIaNC semiton shraz
Syrah Tempranillo Torro

idal Viogier Zi

tes Tour: Verdelho

89

ko Barbera Bianc de siancs sons, gl

aenata caverne e CaDEINEL S@UVignon

Sauvignon Blan
Tempranilo Torones Tou

Pinot

27
s s 2s00 2001 2002 2003 2004 2005 2006
2007 2008 2009 20102011 2012 2013 201¢

% R~

wome 1008 1000 200 2001 2002 2003 2004 2005 2006)

2007 2008200920102011 2012
2013 2014 sginico Albarino ameis

e CADEINET SAUVIGNON
Chardonnay.

ssyriko Barbera Blanc de Blancs danc de i

nenin Blanc c

inot Grigio PAnot Gris

Pinot NOIr - Riesling rou
Sauvignon Blanc iraz Syrah »

rortes Touriga Nacioral ver 1 Viagrier Zinfandel

e sagrantn Sangiovese

Tempranilo

sem

>

2007 2008 20092010 2011 2012

Chardonnay coen s

Frilanc Fums Blanc G

-« Sauvignon Blanc

raura Zinfande!

1996 1900 2000 2001 2002 2003 2004 2005 2006

2013 2014 Agiasic rbera
Cabernet Sauvignon.

1984 1995 1996 1097 1998 1999 2000 2001 2002 2003

2004 2005 2006 2007 2008 2009

Pinot NOIr srous.

Riesling ro
Blan

Cabernet Sauvignon

yriko Barbera Blanc de Siancs &

- 1992 1895 1996 1998 1998 2000 2001 2002 2003 2004 2005 2006
2007 2008 2009 2010 2011 2012 2013 2014 sico
= Chardonnay E
o

‘ 3 »if e yi
4 4 4 4

~Je1 R[] o2 IR B IR B B[
BN 199 1957 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 ~

2010 2011 2012 2013 2014 Abarine Sarbera Blanc de &l
Cabernet Sauvignon

me Blanc. Gewr
Nebbiolo NV Pel

Figure 3.11: ConceptCloud stickied ‘Points’ viewers for points values 87-94
filtered by vintage and varietal.

us to more easily see the larger year tags even for years with very few reviews.

In Figure We can see an almost linear trend in vintage to review
score, which is what we would expect as the dataset’s review years were from
2005-2016. That is that as the points score increases, the vintage year grows,
even in our normalised views, which adjust the sizes to avoid a bias to higher
volume years. One would expect a linear improvement in wine score as time
progresses as the wine makers release better vintages, which is what we see,
interestingly the cellaring time, that is the difference between the year the

wine was reviewed and its vintage begins to decrease. Figure |3

13| shows there

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 58

X[~]es B B X[]~]es X[]se EJFd|

U200 4 1 20042005 | 2020200520 | #2002005zms2007 | 0 2005 005

2008 2009 2012 2013 Cabernet Sauvignon
2008 2009 cabernet sauvignon 2007 2008 2009 2011 Cabernet Sauvignon NV

Cabermet Sauignon

i« i v« ’
4 P § P 4
e R [w RZ[I= R[> [=2
o 20022003 2004 2005 2006 | 1on oo 2002 20032004 2005 F1| e 1 002002 2003 2004 2005 *| o w0 200220032004 2005 *| o zms 2002 2003 2004 20052006
2007 2008 2009 2010 2011 20122 = 2006 2007 2008 2009 2015 2011 2020 2006 2007 2008 2009 2010 2011 2012 2013 2006 2007 2008 2009 2010 2011 2012 2653 2007 2008 2008 2010 2011 2012 2013
Cabermet Sauvignon - - CAhernat Sanvianan - Cabemnet Sauvignon - « Cabernet Sauvignon - Cabernet Sauvignon -
‘ i« i« v i« ’
P P 4 P 4
[T w2 [R[2[]= RZ[]= ®[2[] =2
a0 10 2001 2002 2003 2004 2005 < 002 2003 2004 2005 2006 = 1228 2001 2002 2003 2004 2005 2006 2007 “| 1522 2000 2001 2002 2003 2004 2005 2006 2007 = o0z 2002 2003 200¢ 2005 2006 2007 -
2006 2007 2008 2009 2010 2011 2007 2008 2009 2010 2011 2012 2015 20082009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013 2010
2012 .. Cabernet Sauvignon Cabemet Sauvignon Caberet Sauvignon Cabermet Sauvignon 2008 2009 2011 2012 Cavemet
° < - - Sawignon -
‘ vl i« i« i« ,
P P 4 P
[=] o X[]es X[~]o0 X[~ 10 X7
1007 2001 20073 2004 2005 2006 2007 = . -
2004 2006 2007 2008 2009 2004 2005 2012
2022009 2010 2011 2012
Gabermet Sauvignon -| 2010 2012 cavemet sawignon f— S -
‘ » »i« v ,
4 ‘ p P

Figure 3.12: Normalised per window vintage and varietal viewers across points
for cabernet sauvignon.

e R[] = B[] R[] B[] P
2005 - 2005 : 2006 "| 2003 20042005 2006 2008 2012 | 20032004 20052006
2006 || 2004 2007 | 2005 2013 20142 2007 e 2010 231 2052 Pl
Noir
pina i 2011 Pinot Noir
2007 v e = - o o .
« » [|« [» |« »
P 4 P P 4
[~ o7 K[|]es X[-8 Eir B EIFd B X[
200220022004 2005 2006 2007 | o2 w2 2004 20052006 2007 2008 5| s ooa 2005 2004 2005 2006 2007 5| s 20 2032004 2005 2006 2007 2008 5| 2004 2005 2006 2007 2008 |
2008 2009 z010 2011 2012 2013 2014 NV 2009 2010 2011 2012 2013 2012wy 2008 2009 2010 2011 2012 2013 201 2015 2009 2010 2011 2012 2013 zeu: NV 2009 20102011 2012 2013 zua4 e
Pinnt Nnir h DirnAt NlAir - MNicn~d Rlain M — - 8 —_ P =
“ » I » [« rif » 14 »
BE &[] X[[R’[Z[2% [[]% ®[<
50 133 2002 2003 2004 2005 2006 2007 2| 1035 2002 2003 2000 2005 2006 2007 2008 = 1352 20m 2003 2004 20052006 2007 2008 2| 1095 2002 2001 2005 2006 2007 2008 2009 2010 | 1005 2004 2005 2006 2007 2008 2000
2008 2009 2010 2011 2012 2013 P H
20920102011 2012 2015 v 2009 2010 2011 2012 2013 1 v 201120122013 Pinot Noir 20102011 2012 2015 Pinot Noir
Nin~+ 82 —~- Coan- & 82 - hd
« i« » |« [« » |« 3
P P P P P
[=] e P NE] EiF RS K[|~ 100 il
19902007 2005 20092010 | 1986 2001 2002 2003 2007 B B
2011 2012 2013 pinot nox 2009 2012 NV pinot Nor
« » N « » - Rl > - “ » -
P 4 P 4

Figure 3.13: Normalised per window vintage and varietal viewers across points
for Pinot Noir.

is progress toward a similar linear trend with regards to Pinot Noir scores over
time, but the bulk of the scores are still from the pre 2009 period. This may
be due to Pinot Noir having a higher cellar time, but this requires further
investigation.

Figure has a similar trend to the Pinot Noir, growth towards a newer
vintage at higher point thresholds, but the ranges from 82-92, and 97 and up
are dominated by the pre 2009 vintages.

This leads to the question of, as the point values increase, does the cellar
time increase?

To further investigate this I retrieved our data and calculated the cellar
time for each wine across the review points range. I then average the cellar
times per point value, to see if there is a linear trend as we suspect from our
explorative search.

Stellenbosch University https://scholar.sun.ac.za

|~ 82 X[|~]83 X|7|~]8a X| S| -8 L IFd AR X2
2004 2o 2006 2007 ocoe
20042005 200520062007 | 200520062007 2008 | 20042005 2006 2007 2000
Chardonnay NV 2009 2010 2011 2012 Char donnay NV
hardornay chardonnay 2011 chardonnay
k=l e ®||-]e LIl ML LEd Rl LEa R %2l
2002005 2006 2007 s 2004 2005 2006 2007 200 2004 2005 2006 2007 2004 2005 2006 2007 2003 2004 2005 2006
2008 2009 2010 2001 20 2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013 2016 2008 2009 2010 2011 2012 2013 214 2007 2008 2009 2010 2011 2012 2013
2009 20102012 2012 sz s Chardonnay w Chardonnay v Chardonnay v Chardonnay v
(=] e Blo| -] LI By K[| -] [Ed Mg #l2|
. 2 2003 2004 2005 2006 2004 2005 2006 1996 199 1999 2002 2003 2004 2005 2006 2007 2008 1996 108 2002 2003 2005 2006 2007 2008 2008 1996 1555 2002 2003 2004 2 o
2007 2008 2009 2010 2011 2012 2007 2008 2008 2010 2011 2012 20020102011 2012 2013 20102011 20122013 soos sc10 00 2012 2013 s00e
2013 Chardonnay NV
2013 chardonnay NV Chardonnay NV Chardonnay Chardonnay NV
|~]e7 R~ R~ oo %] -] 100 27
1995 1996 2004 2007 2008 1996 2008
s Chardonnay e

2009010 | 109620002007

Figure 3.14: Normalised per window vintage and varietal viewers across points
for Chardonnay.

In Table 3.1 the average cellar time, where cellar time is the time between
the vintage and the review year, is shown against the point distribution of the
dataset, for Cabernet Sauvignon, Pinot Noir and Chardonnay respectively. Ta-
ble 3.2 shows the frequencies across across the point distribution for Cabernet
Sauvignon, Pinot Noir and Chardonnay.

We note a linear increase in the cellar time across all three wines as the point
values increase, which corresponds to our ConceptCloud screens in Figures
[3.12[3.13t [3.174] This points the notion that in this data there is a relationship
between the increased cellar time and the increased review score that may
warrant further investigation.

A further point of investigation may be to perform this comparison, not for
isoloated varietals but for varietals grouped into red and white wines respec-
tively. Though this would require some corpus of domain specific information
to perform the classification into red or white wine varietals.

Future Work

I showed that changes made resulted in a large speedup that made using large
datasets feasible. For future work there are plans to move the ConceptCloud
application from a client server application using a web client, to a client server
with a mobile client.

The planned future work relating to system usability is to dockerize the
ConceptCloud project, and to automate the remaining manual steps described
in Section [A.1] This would allow users with little to no programming experi-
ence to be able to use the project on their datasets.

The approach here should be to build a docker container for the Concept-
Cloud project, allowing the required dependencies to be bundled in with the
ConceptCloud system, this then effectively removes the need for the user to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 60
Poi- | Cabernet | Pinot | Char-
. . Poi- | Cabernet | Pinot | Char-

nts | Sauvignon | Noir | donnay _)

nts | Sauvignon | Noir | donnay
82 2 2 1.5

82 1 4 2
83 2.5 1.75 1 23 5 A 4
84 2.22 1.92 1.29 34 9 12 .
85 2.86 1.8 1.75

85 21 9 16
86 2.9 2.2 1.9

86 30 40 34
87 2.64 2.14 1.9

87 104 85 116
88 3.06 2.32 2

88 175 158 196
89 3.28 2.28 2.06

89 241 181 226
90 3.38 2.46 2.25

90 404 309 359
91 3.39 2.53 2.4

91 240 209 191
92 3.74 2.69 2.58

92 233 227 182
93 3.58 2.62 3.04

93 152 149 116
94 3.7 2.69 2.68

94 132 114 81
95 3.81 2.72 3

95 120 89 63
96 3.69 2.98 4.37

96 55 42 26
97 3.67 3.18 6.18

97 36 17 11
98 3.73 3.33 7.5

98 15 12 4
99 2 X 6
100 3 x X %9 L 0 2

100 3 0 0

Table 3.1: Average Cellar Time in

Table 3.2: Frequency against points
for Cabernet Sauvignon, Pinot Noir
and Chardonnay

years against Points for Cabernet
Sauvignon, Pinot Noir and Chardon-
nay

install anything apart from docker and its dependencies. Within the docker
build script part of the setup described in Section can be performed. The
remaining part should then be handled with a shell script, merely taking in
the name of the JSON file in which the dataset sits.

Conclusion

In this subsection I have shown that it is possible to make use of Concept-
Cloud to gain insights into a dataset with no prior exposure to it, by way of
explorative search. Additionally I was able to use a far larger dataset then
previously possible.

The investigation did however highlight the need to integrate a domain
specific corpus of information, to aid in adding complex concepts, such as the
cellar time attribute to our lattice, or to separate varietals into white and red
wines.

A more in depth study could be conducted to compare the performance of
the various countries across our points range.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 61

3.7 Maps Extension

In order to showcase the extensibility of ConceptCloud and its ability to process
different data sets, the base architecture was modified to include an interactive
Map interface. The addition of the map viewer itself was done in conjunction
with another masters student Tiaan Du Toit, thesis forthcoming. The core
of the work covered in this thesis is the back end support for the map based
viewer and the data aggregation.

The main motivation behind this specific extension is the emergence of
semi-structured data sets that incorporate some geolocation aspect, for ex-
ample, the location of the winery for wine reviews, or the accident location
for traffic data. With the rapid increase in always-on, embedded GPS de-
vices, such geolocation aspects are becoming more prevalent. This abundance
presents the opportunity to perform more widespread knowledge discovery
across further domains by exploring the geolocation aspect of the data, but
also demands a different analytic approach [22] — clearly, textually displaying
latitude and longitude in a tag cloud is not optimal. Historically, maps have
most commonly been used to visualise the geolocation aspects of such data
sets, my first challenge was thus how do I support a specialised map visualisa-
tion in a tag cloud based data exploration tool?

Although maps are immediately useful for visualising the geolocation as-
pect of data, this geolocation aspect further allows for a new way to aggregate
data, that is along a locality that is not explicit. Can I aggregate data across
non-explicit boundary points?

Another aspect of these semi-structured data sets with geolocation aspects,
is that the speed at which this data is being generated is increasing, resulting in
larger and larger sets. This fact requires that the visualisation and exploration
tool be highly scalable in order to process extremely large data sets.

With maps providing a time-tested method of exploring the geolocation
aspect of data, and tag clouds providing an effective method for facilitating
knowledge discovery and data visualisation for semi-structured data, the over-
all goal of this section is therefore to merge these two proven methods into an
integrated and scalable package.

Biclusters

When working with geolocation rich large semi-structured data sets there of-
ten exist biclusters formed from the geolocation aspect of data. Ordinarily
a bicluster is defined to be a pair (A,B) of inclusion-maximal sets of objects
and attributes such that almost all objects in A have almost all attributes
in B. This technique has been implemented and applied successfully to mine
numeric data sets[21].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 62

A Dbicluster of tags in a numeric context would be all tags whose many
valued context tables’ numeric attribute falls within a certain tolerance. Il.e
all wines whose grapes grow between 18-32 degrees Celsius.

A bicluster of geolocation data would in this case have a forced inclusion
of the geolocation attribute on all objects in A, as well as the numerical val-
ues of the geolocation attribute all being within some tolerance, which would
correspond to each object being in a similar location on a map. l.e all wines
from a particular region on a map, or all wines from areas near the coast on a
map.

I explore and group together these naturally occurring biclusters and mine
them to view common trends where possible, as described in Section[3.8] These
biclusters are used to generate a new tag cloud which can be mined further.

Disjunctive selection

In order to expand on the geolocation exploration and maintain a single focus
IR navigation algorithm [19], Boolean disjunctive selection is utilised. This
techniques involves modifying the underlying context table of the lattice by
making use of an OR operator in the query sent to the server and generating a
new temporary concept lattice of only the selected objects from the data set.
These are either from objects in the bicluster, or objects picked by the user, or
further, entire biclusters selected by the user. In Figure [3.16]I present a new
running example based on crimes, as these datasets were both very large and
had readily available geolocation aspects to be explored.

Mossel | Stellen- | Paarl | Ash- | Ars- | Kidnap- || Select-
Bay bosch ton | on ping ed
1 X X
2 X X X
3 X X
4 X X
5) X X X

Figure 3.15: Context table showing South African crimes with objects selected

Computing the Boolean OR of two or more objects involve assigning a
new "meta’-tag to the selected objects, and in doing so, generating a new
temporary lattice on the fly. This new lattice consisting of the merged objects
becomes the focus of the new tag cloud window, and the user is free to explore
the desired objects without introducing concept broadening [19)].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 63

Figure 3.16: Formal concept Lattice without any objects selected for formal
context items in Figure [3.15]

[anappina] oy

Mossel Bay

[
[

Stellenbosch

-

-

| \
[Gimes) [eime]

Figure 3.17: Formal Concept Lattice with objects selected

Without disjunctive selection, the join of the focus and the attribute con-
cept of ”"Kidnapping” would return the top concept in the lattice and our new
lattice would contain attributes of other types (such as ”Arson”), as can be
seen in Figure By using the boolean OR operation I am able to retrieve
all crimes that are only of the ”Kidnapping” OR ”Arson” types along with
the attributes these crimes possess. This allows the user maximum control in
selecting only the formal objects which the user wishes to further explore.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 64

3.8 Map-Viewer Implementation

Map Visualisation

Geolocation data has most intuitively been displayed on maps for hundreds of
years, making a map based visualisation the obvious choice to display geolo-
cation data. A map based viewer allows the user to most easily distinguish
the differences in geolocation values by providing them with an intuitive rep-
resentation of the spacial dimensions of the data.

Given that ConceptCloud organizes data into context tables of objects and
attributes, our map representation would then be the map based visualisation
of the set of all objects in O that have geolocation attributes. This corresponds
to the notion of a formal concept. For a focus concept ¢ := (O, A) we have
that for a subconcept of the focus concept M := (X,|Y) where X is the set of
all objects which contain attributes with geolocation data, and Y is the set of
all attributes for all objects in X.

Technical Implementation

The maps viewer implementation makes use of the Google Maps JavaScript
API to render a fully interactive map and generate markers based on the
objects’ geolocation attribute, where available. The markers then function the
same as a tag in the tag cloud and corresponds to an exploratory search as
described in [18].

The software allows for two-way filtering between the word cloud and map
window. The user may start exploration of the concept lattice by either select-
ing an attribute in the word cloud which will update the cloud as described
above as well as update the map window to display only the objects with that
selected (focus) attribute. Alternatively, the user may select an individual
marker which will drill down the concept lattice to that specific formal object
and update the word cloud with only that object and its attributes, as well as
removing all other markers from the map.

The map and marker objects generated by the Google Maps API [§] are
populated by a single specialised ConceptCloud server call. The ConceptCloud
tool allows the user to pre-configure the data attributes they wish to appear in
each map pin object, allowing for a far smaller, and therefore more responsive
server call to create each marker. The ConceptCloud server returns a set of
objects, containing at least an identifier and the geolocation, from which a
Google Maps marker object is created and populated with the pre-configured
attributes of that object.

When working with larger data sets or data sets that contain multiple ob-
jects in close proximity, an issue arises where densely populated regions on
the map become difficult to navigate. To maintain a functional user interface,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 65

AssaultDrug Related Crimes Murder
Other Property Damage Robbery

Sexual Crimes Theftt

L

Figure 3.18: ConceptCloud map viewer for crime data

the generated markers are clustered automatically within a shifting geoloca-
tional tolerance, based on the current zoom level of the map. This clustering
is handled by an external JavaScript library [29] that automatically clusters
the markers and displays a count of the markers in each cluster.

The location of the rendered cluster on the map is the location of the last
marker added to that cluster. Smaller clusters are also clustered into bigger
clusters at higher zoom levels. The user may make use of these clusters to
generate a new tag cloud that can then be further explored.

This bicluster corresponds to a smaller lattice created from the main lattice,
with its own focus concept derived from the main focus concept, that can be
navigated through independently of the main lattice.

The user is able to create tag clouds to visualise the data contained in a
selection of a single, or multiple biclusters.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 66

Architecture changes

ConceptCloud makes use of a Postgresql database back end. PostGIS is an
extension for Postgres that converts standard latitude and longitude into spe-
cialised data types using a specific SRID, either geographic or geometric, de-
pending on whether the user is dealing with 2D or 3D shapes, in order to
execute more advanced geographically optimised queries.

The extension allows the user to index these new geometric data types
and group them according to their real world locations, allowing for faster
querying/look up when making use of PostGIS query methods/functions.

In order to make full use of the PostGIS data transformation and in-
dexing/clustering I use the ST_D_within method which takes 3 parameters,
namely a latitude, a longitude and a radius/distance measured in SRID. The
latitude and longitude are then converted to a geometry data type.

Making use of the location of the Google Maps viewer window as a starting
point for our server call, initially we pass the centre coordinates of the map
viewer to the server, together with the zoom level of the viewer. We make
a server call and return only pins that are visible to the user. The size of
the visible map in the Google Map viewer depends on the actual size of the
window. Using the dimensions of this viewer, we then calculate the visible
radius in km/2. We then use this distance together with the zoom level and
centre coordinates of the map viewer to get map pins that are visible to the
user. We keep track of movement in the map viewer and do a server call
whenever the map is idle to fetch newly visible pins.

Result of these changes

These changes enabled the ConceptCloud system to now process massive
datasets, while providing support for a developer to be able to implement an
explorative search visualiser of their own. This functionality is demonstrated
with the maps viewer in a case study below. Finally the architecture changes
and separation of the explorative search functionality allows for viewers to be
implemented on mobile devices.

Case Study

Data set

The semi-structured data set used in our investigation involves the official
SAPS type [34] and count of the various crimes reported to every police station
in South Africa for the year of 2006. This data set contains over 2.2 million
unique crime incidents, each containing the type of crime, the station at which
the crime was reported and finally, the year in which the crime was reported.
For privacy reasons the geolocation of each crime is the latitude and longitude
of the police station at which it was reported.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 67

This large data set also allowed me to test the robustness of the software
tool as well as its scalability. In my testing it became apparent that the Google
Maps APIT [§] is a limiting factor, since it adds marker objects to the map
individually before being clustered by the third-party library. This process is
highly memory intensive, and the web browser becomes unresponsive when
exceeding 250 000 markers, although with the map viewer closed the rest of
the ConceptCloud tool ran no differently to the previous case study in this
chapter. Thus it was decided that the investigation would be conducted on a
random subset of the total data set, limited to a representative 10%, or 229
070 crime objects only.

Exploration

I make use of the most powerful exploratory functionality of the software tool
by selecting multiple naturally occurring, automatically generated biclusters.
By right-clicking a cluster on the map, a new tag cloud window is created
containing only the attributes of the objects in that cluster. This new word
cloud is then used for further exploration. The size of the generated clusters
can be modified by changing the zoom level of the map. I make use of these
biclusters to investigate a case study that would be difficult and unintuitive to
accomplish using traditional exploratory tools.

A prevalent issue found in geolocation data sets is the limiting effect of
pre-imposed borders on the data. These borders are typically political or
geographical. Often the data does not correspond directly to these borders.
Crime data is a good example of this, where crimes are not restricted by
political borders but perhaps by natural or socio-economic borders instead.

Generally any quantitative or statistical data collected is automatically
confined to these borders. Any query on the data involving unique intersections
of these borders become very complex, but the improvements made to the
ConceptCloud architecture provide a solution to this problem. By allowing
the user to freely select biclusters to explore, they are not restricted by these
boundaries.

In order to demonstrate this functionality, I investigate the crimes reported
at police stations in and surrounding the two biggest cities in South Africa,
namely Cape Town and Johannesburg. The data was aggregated by selecting
all the biclusters in the greater surrounding area, which was then used to gen-
erate a new bicluster based, that is a new lattice with only the tags occurring
in the biclusters was generated and used to power the tag cloud’s explorative
search, which in turn was used to drive the investigation in the case study.

Results

Results are presented in two screenshots of the tag cloud viewer as well as
the map viewer in ConceptCloud used to demonstrate the flexibility of the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 68

additions to ConceptCloud.

The following two screenshots show the crime biclusters for the regions
around each of the biggest cities in South Africa, namely Cape Town, Johan-
nesburg (I include Pretoria in the Johannesburg region). I purposefully select
crime biclusters that do not fall strictly within the municipal or political bor-
ders of these regions, but rather select them based on proximity. I determine
the three highest occurring crime categories and crime types for each region. I
exclude ” All theft not mentioned elsewhere” from our crime types comparison
due to the vague nature, and resulting inflated incident count, of this type.

“““";" "E\‘&" DUl ILLE EEE 2
Map Saielive ;Q - Qm m 1%
A KRAAJ £ Hottentots-Holland - [EXH
m N Mountain
- Catchment Area ®
‘ s Neew O [J—
CENTURY CITY o e Priel
o — m L d
m fiiaa | | ‘ anque:
GOO| Stellenbosch
4 — . Q mm Farms fm Kvlemore
ng-n\ Stel sch
ca anassrwa RY Q
P : i N ILS RIVER
fable Kleingeluk
\ untain r 2] e HH - o
N fonal Park RONDEBOSCH I MATROOSFONTEIN R0z] TECHNO PARK Jonkershoek
b — m Nature Reserve
i En
ch = BLUE uu@(
=] = e
m

GREEN POINT

Hottentots-Holland
Mountain
Raithby Catchment Area

LLANOUONO WYNBERG 1Ry

C}B" CONSTANTIA ‘ZE
k @ [lass PHILIPPI ey T P
aa MITEHELLS PLAIN Qmm.m e
GRASSY PARK m m O GOLF ESTATE
Nt el - &

MUIZENBERG m

NOORDHOEK a
& S D
Im

RETIAMES

1|+ ==

Sir Lowry's

\ L Pass
Map data ©2018 AHIGIS (P1y) Ltd, Google | Terms of Use _ Report a map error

Google
=]
All theft not mentioned elsewhere Assault with the intent to inflict grievous bodily harm
Assualt ATHLONE BELLVILLE BISHOP LAVIS Burglary at non-residential premises Burglary at
residential premises CAPE TOWN CENTRAL CLAREMONT Commercial crime Common assault
Common robbery DELFT Drug Related Crimes Drug-related crime ELSIES RIVER GOODWOOD
GRASSY PARK GUGULETHU HARARE KHAYELITSHA KLEINVLEI KRAAIFONTEIN KUILSRIVIER
Malicious damage to property MANENBERG MILNERTON MITCHELLS PLAIN NYANGA Other
PAROW Property Damage RAVENSMEAD Robbery Robbery unspecified Robbery with aggravating
circumstances SEA POINT Sexual Crimes Sexual offences Sexual offences unspecified Shoplifting
SOMERSET WEST STELLENBOSCH STRAND TABLE VIEW T heft Theft of motor vehicle and
motorcycle Theft out of or from motor vehicle WOODSTOCK

Figure 3.19: ConceptCloud map viewer and tag cloud showing the Greater
Cape Town area bicluster.

Cape Town Bicluster: The biclusters selected for Cape Town contains
29099 individual crime incidents. From the newly generated tag cloud viewer
generated from these biclusters, I determine that the " Theft”, ” Assault” and
"Robbery” crime categories occur most frequently in the selected objects.
From Figure [3.191 also determine that, ”Theft from a motor vehicle” is the
most common reported crime in this region (2930 crime objects), followed by

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 69

”Burglary at a residential premises” (2851 crime objects) and lastly ” Common
Assault” (2354 crime objects). If required, I can explore these crimes further
and drill down to a single object.

g

- v & e -
[Harespoor g Q Rayton Oﬁ S
Bokkraa @ tran.n — o
o1 Centurion Q aimeral Qna\ah\ani
ca

Der o
iy - —
' @ /
Ga-Mogopa 4 0.
I T 5
& ®

on
pe=
o urg —_ q
Pusfontein " B D) . ®

Venters [12] prings’ \ J v

o7 o \ o Westonaria e O — = 8

i e Cadgiaguille T8 Q Qlal \Qw eandra
(=
k.}nmn 'y B 5 ikerbosrand Ay ‘.ﬂ A >
e — Nature Reserve Al k)
J = e
Yszeenigi 5]
— i o L Charl Cilliers
P room Vandh
Vaal Oewer Grey{38)tad Morgenzon
Hartbeesfontein S i & = I '
dorp G = : +
k }Orhney Scandinavia 'Qs o L, < = Moolfor
Onft] -
12] Viljcenskroon Weiveld Oranienile =

Google Vredefort o . - .

Az lap data ©2018 AfriGIS (Pty) L1, Google Terms of Use Report aumap eror

All theft not mentioned elsewhere arson Assault Assault with the intent to inflict grievous bodily harm
Attempted murder e woy Burglary at non-residential premises Burglary at residential premises carjacking
Commercial crime Common assault Common robbery Driving under the influence of alcohol or drugs Drug Related
Crimes Drug-related crime lllegal possession of firearms and ammunition Malicious damage to property Murder Murder
Other Property Damage Robbery rRobbery at non-residential premises Robbery at residential premises robbery of cash in transit
Robbery unspecified Robbery with aggravating circumstances Sexual Crimes Sexual offences Sexual

offences unspecified Shoplifting stock-thett | Nt Theft of motor vehicle and motorcycle Theft out of or from
motor vehicle Trio Truck hijacking

Figure 3.20: ConceptCloud map viewer and tag cloud showing the Greater
Johannesburg area bicluster.

Johannesburg Bicluster: Next I investigate biclusters in the greater Jo-
hannesburg region. Our selection contains 75 969 individual crime incidents,
and once again the " Theft”, ” Assault” and "Robbery” crime categories occur
most frequently in our new tag cloud viewer shown in Figure[3.20] I also deter-
mine that ”Burglary at a residential premises” (87 271 crime objects) occurs
most frequently in this region, followed by ”"Common Assault” (6675 crime
objects), and ” Assault with the intent to inflict grievous bodily harm” (6643

crime objects).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 70

Discussion

National Trends
Cape Town

I observed that Cape Town has a far higher average incidence of Drug Related
Crimes than the rest of the country. This was hypothesised to be due to
depressed socio-economic issues in the Cape flats and the increased influence
of the use of ”Tik” in the area at the time[l4]

Johannesburg

The Johannesburg bicluster was observed to be very similar to the National
Averages. Theft, Robbery and Assault were the major crime categories com-
mitted, and by drilling deeper, I found that the most frequent crime type in
this region to be Burglary at a residential premises. This corresponds to a re-
port from 2006 that suggested that this was due to a strike of security guards
in Gauteng, and an increase in the police countermeasures to other forms of
robbery. [2§]

Conclusions

By exploring the semi-structured crime data set using ConceptCloud’s tag
viewer, and exploiting the geolocation aspects of that data in the integrated
map viewer, I demonstrate the flexible nature of ConceptCloud. It allowed for
the an entirely new visualisation while still maintaining the core explorative
search functionality, and allowed the viewers to interact seemlessly with each
other. ConceptCloud also allowed me to explore the data using a method not
easily achieved in any other software tool, by ignoring explicit borders and
aggregating the data based on its map viewer displayed locality.

Although I have proven the functionality of the ConceptCloud software, a
systematic usability study is still required to determine the intuitiveness and
ease of use of the software , similar to the methods used in [10].

As stated in Section [3.8] when making use of data sets exceeding 250 000
objects, the browser did become unresponsive. After some investigation it was
determined that that the Google Maps API [§] is a limiting factor, as it is
very resource intensive. The ConceptCloud software itself proved to be highly
scalable, processing the full 2.5 million object data set without any error or
decrease in performance.

Future Work

Further studies can be conducted by making use of the ConceptCloud software
tool in conjunction with other geographically rich data sets such as winery or

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERVER BASED ARCHITECTURE 71

traffic data. This will allow researchers and domain professionals to gain a
deeper understanding of their data sets and mine it in a unique way.

In addition, some improvements can be made to the software tool in the
form of front end marker caching in order to improve performance on larger
data sets. These improvements would include using a webcaching system to
improve responsiveness for larger datasets. This will allow for a quick retrieval
of data for large datasets.

Another aspect of this study that can be expanded upon is the preprocess-
ing of the data before it is entered into the ConceptCloud software. By making
use of a formal domain ontology, certain attributes of the semi-structured data
set can be made more coherent. In addition to this, attributes that implicitly
follow from the explicitly stated attributes of an object can be inferred [2, 33].

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Ontology Driven Data
Imputation

Semi-structured data is often sampled from human input data, which may
often contain implicit information which will be useful in driving data explo-
ration if made explicit.

We wish to take advantage of domain-ontologies to both allow implicit data
in each input data set to be made explicit and verify and correct inconsistencies
allowing for better data exploration.

4.1 Introduction

ConceptCloud is a semi-structured data exploration tool; as such, the benefits
gained by the exploration of the data used are primarily determined by the
quality of the input data.

As an example, recall Figure from Section [[.4] and a similar example
shown below in Figure 1.1} Here I am once again working with the wine
dataset, and looking at Chenin Blanc Wines from Stellenbosch. I intuitively
know that I am looking at a subset of South African white wines, I know
this because of the implicit knowledge that a Chenin Blanc is a white wine,
and Stellenbosch is in South Africa. Suppose I wished to see this subset of
wines compared to the greater set of South African White Wines, that is, all
wine objects having a region, area or location attribute South Africa, and a
varietal Chenin Blanc. Unless the data items in my subset explicitly contain
the attribute South African White Wine, I would not be able to visualise this
in the ConceptCloud tool.

Suppose no FCA concept exists for this grouping. The lattice will not
contain a subset of the overall dataset with the shared implicit attribute, South
African White Wines, as no such concept exists explicitly. This shortcoming
in many input datasets gives rise to the requirement to allow the user to

72

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 73

"name":"Mont Destin Mont Destin range Chenin Blanc 2007",
"winery":"Mont Destin",

"location": "Stellenbosch",
Hregionll : nn

n Country" : nn

"varietal": "Chenin Blanc",

"vintage": "2007",
llpricell: Il12|l’
"points": "70",

"reviewer": "Michael Apstein",
"reviewyear": "2008",
"review": "06 less beguiling than pvs, still ample charms

through 14.5% alc, with pineapple & mineral signature."

Figure 4.1: Example Chenin Blanc wine JSON object with missing data

enable ConceptCloud to supplement their dataset with extra knowledge to
make navigation by these implicit properties possible.

4.2 General Approach

The act of making implicit properties or information explicit has been primarily
covered in both formal logic, and knowledge engineering [31]. As explained in
Section[I.4] an ontology in the same domain of information as our input dataset
therefore serves as a natural source of the explicit properties for our data.

My general approach is to allow the user to input a domain ontology, which
I will use to complete the formal context as far as possible.

Implicit Information

Implicit information refers to information that follows from the explicit infor-
mation available in domain ontologies and data sources, and which is acces-
sible through logical consequence, or entailment. In ConceptCloud, I break
this down into two categories, namely controlled vocabulary information and
free-text information. Controlled vocabulary information refers to information
contained within fixed attributes with controlled values. For example, given
a wine, it will have a varietal, this varietal can only have a value from a well
defined and highly constrained set of terms, for example, the wine presented
below in Figure [4.2]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 74
{
"name": "Stark-Condé: Cabernet Sauvignon °‘Three Pines" 2007",
"winery": "Stark-Condé",
"location": "Jonkershoek Valley",
"region": null,
"country": "South Africa",
"varietal": "Cabernet Sauvignon",
"vintage": "2007",
"price": "42",
"points": "91",
"reviewer": "Michael Franz",
"reviewyear": "2010",
"review": "Intense and deeply flavorful, this is a dramatic

wine that grabs one’s attention and doesn’t let go. Perhaps
its most impressive aspect is its aromatic complexity, as
notes of dark berries, cassis, smoke, pine needles and
eucalyptus all show themselves quite notably. Full-bodied,
with plenty of tannin and oak, this is a wine for pairing
with assertive foods like grilled lamb."

Figure 4.2: Example Cabernet Sauvignon JSON object

The values of these items will often lead to the exposure of further im-
plicit information. For example, given a Cabernet Sauvignon varietal, I know
the wine must then be a red wine, as the varietal concept value ‘Cabernet
Sauvignon’ exposes the wine colour concept value ‘red’. Here the depth of the
implicit information available is entirely determined by the constraints of the
knowledge base in use. If in our knowledge base we have that all Red wines in
our domain are from the Cape Winelands region, then we must have that our
wine with the Cabernet Sauvignon varietal must too have the Cape Winelands
region. Alternatively that the region our wine is from must be contained in
the Cape Winelands region, (if of course, all wines are from a region in our
knowledge base).

Free-text refers to information contained in a non controlled vocabulary,
which is presented as a free-text attribute within our formal context. Here,
the implicit information must first be extracted into a controlled vocabulary
before our algorithm can process it.

For example, refer to the review attribute of Figure 1.2 the text present
here is uncontrolled and does not conform to any particular fixed vocabulary.
In fact, in the case of wine reviews, the text is intentionally obfuscated. The
added ambiguity is introduced to avoid repetition between reviews.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 75

There is still implicit information present here, with the wine described
as intense and deeply flavourful, I know this refers to the taste, but there is
never an explicit reference to taste as such. So extracting these implied subject
properties can be difficult.

Somewhat easier to extract is implicit information with explicit subjects,
here I know precisely what the descriptors are tied to, this process is more
straightforward when I have a matching free-text subject and FCA attribute
pair. For example, the phrase “aromatic complexity, as notes of dark berries,
cassis, smoke, pine needles and eucalyptus” all refer to the aroma of the wine.
This phrase can then be extracted and added to the aroma attribute of the
wine, provided you have natural language processing that is powerful enough
to link each of the aroma attributes to the aroma subject. The phrase would
ideally match a many-valued formal context table attribute named aroma.

4.3 Vocabulary Mapping Between FCA and
DL

To access the implicit information available from the ontology, I will need to
access the statements made explicit by logical consequence.

To achieve this implicit information access, these entailments must first be
calculated with an automatic reasoning process. The HermiT reasoner makes
this process available to us [32].

However, for the reasoner to calculate the entailments of our FCA at-
tributes, I must first map them to either ABox assertions or 7T Box class de-
scriptions.

The most intuitively simple and straight forward version of this mapping
problem is to make the implicit information contained in the controlled vocab-
ulary. Where I have a match between an FCA attribute, and a corresponding
description logic concept assertion, class description or object property asser-
tion axiom describing the FCA attribute within the domain of the knowledge
base.

Most often this corresponds to matching a particular FCA attribute to a
DL concept, class description or object property assertion, recall Section [2.5]
here there is a clear link between the FCA attributes, and the assertions or class
descriptions. The operation linking the FCA attribute to the corresponding
DL vocabulary member or symbol is relatively simple. There is a direct match
between the controlled vocabulary terms used in both the class name or class
description, contained within the aforementioned DL vocabulary member or
symbol, and the FCA attribute.

As such, mapping controlled vocabulary FCA attributes to existing DL
vocabulary, and mapping the corresponding logical consequences is the first
goal for our data imputation operation. The second is to match controlled

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 76

vocabulary FCA attributes to DL vocabulary members (class descriptions and
ABox assertions) where there is an indirect link between the two. That is,
the terminology in either the DL vocabulary member or FCA attribute is a
member of a controlled vocabulary wherein a list of synonyms exist and can
be used to link the two. However, this may lead to inconsistencies as there is
no longer a direct match between the axiom and attribute. It would be far
safer to add an explicit equivalence axiom to the ontology, backed and verified
by domain knowledge.

Finally, the mapping requires mining the free text, or uncontrolled vocab-
ulary of a many-valued context table attribute, such as a review and linking
to DL vocabulary members within the input ontology. This mapping has an

inherent reliance on the natural language processing available. This is covered
in Section

Specific Approach

My specific approach to ontology data imputation is to mirror the formal
context attribute data into the ABox of the input ontology. Data is mapped
into the ontology; we perform inference with our reasoner and extract the
logical consequences back into our formal context.

Given our input ontology, I map the DL-concepts from the class hierarchy,
the available object property assertion axioms and data properties to FCA
attributes, and their potential values. That is, from the class hierarchy, a
subclass with no children is a potential value, and its parent a potential FCA
attribute. We then use natural language processing, namely the Stanford Core
NLP library, to check all attributes in our formal context table against an
N-gram of potential attributes in the ontology class hierarchy. From this, we
create a mapping between the formal context table attributes and the ontology
classes and data types.

Suppose there is a free-text attribute in the formal context table. In that
case, I analyse it with key-phrase extraction guided by our potential attributes
and values to continue expanding our map between formal context table at-
tributes and ontology vocabulary members.

I then use this mapping to create new individuals with the aforementioned
object property, class and data property assertions. Next, I add the new indi-
viduals to the ontology. In this way, the first part of the data reflection from
many-valued FCA context table to ontology has been completed. Following
this, we use the reasoner to calculate our inferred assertions for each individual
and map each back to the corresponding many-valued context table object en-
try. We take care to only add data properties to these individuals that already
exist in the ontology, as such only the ABox of the ontology is being expanded.
This precaution is taken to maintain consistency across the ontology.

After each individual is added to the ontology, all implicit properties are
calculated, and then an expanded ontology is produced.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 77

This expanded ontology is then mined for each individual. Any attributes
in the ontology not present in the formal context table are added to the individ-
ual in the formal context table. In this way, I add FCA attributes which follow
from our ontology to each corresponding FCA object in the formal context.

4.4 Algorithm

The basic overview of the algorithm can be seen on an architectural level in
Figure 1.9 Based on the user-specified configuration parameters, the system
will perform reasoning on the input data.

The data imputation controller mainly handles the reasoning process. This
controller reads in the data set and formal context table data, as well as the
ontology vocabulary (inclusive of all individuals and their related ABox asser-
tions). It then makes use of the NLP controller to mine and perform key-phrase
extraction on the formal context table data. The data imputation controller
then uses this NLP data to link FCA attributes to the corresponding ontology
vocabulary, that is class assertions and descriptions, object property assertion
axioms and data property assertion axioms within the domain ontology.

This mapping happens for each object in the formal context. The controller
then adds each applicable ontology vocabulary item to the object, which then is
added as an individual in the formal context table. These axioms representing
the new individual and its attributes are then added to the ontology and
verified for consistency by the reasoner. If an individual cannot be added to
the formal context table, the reasoner provides a justification for the failure
and logs it. This full failure would occur when none of the ABox axioms can
be added to the individual as they each fail the reasoner consistency checks.

Once each object in the formal context table has been added to the ontol-
ogy with its corresponding .4Box axioms, the reasoner computes the inferred
ontology. The inferred ontology is then mined against each object in the formal
context table, the data imputation controller then adds the extra applicable
attributes to the formal context table, and the data repository.

Once this data enrichment process is complete, the user is able to perform
navigation as before, as described in Section [2.3]

The algorithm is described in detail below:

Algorithm

The algorithm comprises of three main phases, attribute and axiom mapping,
ontology enrichment and inference and ontology mining and lattice completion.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 78

Attribute And Axiom Mapping

The attribute and axiom mapping algorithm computes a list of target at-
tributes and values from the formal context table data. These are then mapped
to OWL classes and individuals, respectively. For an item in the context ta-
ble, each of its existing attributes and attribute values is checked against the
list of OWL object property assertion axioms. That is, for some context item
X with the many-valued context pair varietal:Chenin Blanc the algorithm
will search for all axioms associated with Chenin Blanc. The first set of ax-
ioms it checks against are object property assertion axioms. In our example
it would find the axiom X, C'heninBlanc:hasVarietal. It then saves this target
assertion in a list against the context table item. The algorithm makes use of
a template-based approach, that is for the set of many-valued context pairs,
a mapping to object property assertion axioms will be used. As an item is
present in the context table, I know that we should be working with is-a or
has-a relations. For example for many-valued context pair location:Paarl
the algorithm would match location:Paarl to the object property assertion
axiom X, Paarl:hasLocation.

As a further step, the system will create a secondary list for items for
which no individual exists. That is, given location:Paarl, if no individual
Paarl, which is of the OWLClass Location, (determined off of the range of
the hasLocation object property assertion), exists in the system, an individual
Paarl, with OWLClass location, will be added to the list of axioms to add to
the ontology. These secondary individuals are later referred to as independent
individuals as they can be added independently of the addition of the individual
whose assertion spawned them. In the case of X, Paarl:hasLocation, I call X
the dependent individual.

Suppose later in our axiom mapping, in the class assertion axiom mapping
phase described below; I ran into the many-valued attribute pair town:Paarl,
then the axiom Paarl:Town would be added to the list of axioms to add to the
ontology.

Following the mapping of object property axioms, class assertion axioms
and data property assertion axioms are mapped in the same way.

For the context pair WhiteWine: X the algorithm matches the class as-
sertion axiom X:WhiteWine. Following the above assertions I then have that X
in the ontology is a white wine, which has location Paarl and has the varietal
Chenin Blanc.

Ontology Enrichment and Inference

Once a context table item has been completely mined for possible attributes,
the two sets of axioms are added to the ontology. First, all individuals that

are not the context table item itself, (a wine in our running example) are
added. In this way, I would first add the individual Paarl and its OWLClass

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 79

location attribute to the ontology. Then the context table item with its axioms
is added. To achieve this, a new OWL individual is created, then each axiom
is added to the individual, with a consistency check. If an axiom fails the
consistency check, it is not added to the individual and thus the ontology.

This consistency check process is to ensure that while I am altering our
ontology by adding new individuals, I am doing so in a manner that does not
compromise the consistency of the ontology.

Once the many-valued context table item has been added to the ontology,
the algorithm will then mine the next item in our many-valued context table for
axioms, build the corresponding OWL individual, and any related individuals,
and add them to the ontology. This is performed until the context table is
exhausted.

Once all individuals from the context table have corresponding ontology
individuals, the inferred ontology is computed by the reasoner.

Lattice Completion

The lattice completion algorithm mines data from the inferred ontology and
makes use of it to complete the dataset used to generate the lattice. That
dataset is then used as described before in Section 3.2l

The lattice completion algorithm reads in each item in the formal context
table, and for each formal context table object, does a corresponding call to
the reasoner of the inferred ontology for the individual corresponding to the
formal context table object.

If that object exists in the ontology, a secondary call to the reasoner is
performed to fetch all of its attributes. These attributes are then added to the
formal context table attributes for the object and written to a new data file.

Once each object’s extended attributes have been added to the file, Con-
ceptCloud reloads its data using the enriched data set.

Inference Example

Recall our example domain and interpretation from Section presented in
Figure 2.17, and again below in Figure [4.3]

Also, recall entailment for a knowledge base defined as in Section [2.5

and that a model is a satisfying interpretation of the knowledge base as
defined as in Definition [8

We will now run through the reasoning process followed for the wine indi-
vidual Mont Destin Chenin Blanc.

Note in Figure Mont Destin appears both as a Chenin Blanc wine and
as a Winery. Similarly, Chenin Blanc appears both as an individual, and as a
concept name. Ambiguities like this frequently arise in wine review data, and
the mapping algorithm must handle the disambiguation thereof.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 80

Wine? AZ
/m hasColour” ColourI

Matt’s Merlot
Peter’s Merlot?

hasColour”

hasColour

s T
Rose Wine”. . Location
Country
Rosies’ Rose? RegionI
/ Winery?
White Wine locatedInZ. South
makes” Paarl? “ocpecn "Africa;

Chenin BlancZ
Mont Destix#/— Mont Destin®

locatedIn? Stellen-| locatedInZ

Chenin Blanc?
bosch

Figure 4.3: Possible Interpretation Z of the domain information presented in
Chapter

The algorithm processes the individual Mont Destin Chenin Blanc, with its
corresponding context table entry, based on the semi-structured data presented
in Figure [4.1] as follows:

Attribute and Axiom Mapping The goal of the attribute mining portion
of the algorithm is to extract axioms which match up to the context table
data. That is, to form a pairing between an attribute in the context table and
an object property axiom in the OWL ontology.

The axiom mining portion of the algorithm begins by creating a cache of
all possible object property axioms for the target class, in this case, Wine, in
the ontology.

For our example these are as follows:

madeBy
madeAt
hasWinery
hasVarietal
madeBy
hasColour

SEI ANl e

Then I compile a second list of all possible subclasses for our Wine, as
follows:

1. RedWine

2. RoseWine

3. WhiteWine

4. SouthAfricanWine

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 81

Finally these are compared with the list of many-valued context table at-
tributes, presented in Figure [4.4}

A :={name: Mont Destin Mont Destin range Chenin Blanc 2007,
winery:Mont Destin,location:Stellenbosch,region:,
country:, varietal:Chenin Blanc, vintage:2007
price:12, points:78, reviewer:Michael Apstein
reviewyear:2008,review: 06 less beguiling than pvs,
still ample charms though at 14.5% alc,
with pineapple & mineral signature.}

Figure 4.4: DL-Attributes for mDCBO07 individual

The algorithm will then match the available object property axioms to the
many-valued context table attributes to form the following axioms describing
the Wine individual ”Mont Destin Mont Destin range Chenin Blanc 20077,
which will be referred to as {mDCBO07} going forward.

The object property axioms are matched with a template method; that
is, I assume that the object property axioms have a fixed format wherein
a predefined keyword denotes the property. In the current example has is
used.Then all object property axioms are matched to many-valued context
table attributes on the has X form, where X denotes the many-valued context
table attribute. These first template-based mappings are performed with the
following result:

1. {mDCBO07,montDestin}:hasWinery
2. {mDCBO07,cheninBlanc}:hasVarietal

This covers the first layer of information I can mine, that is information
directly linked to our root class individual, the Wine, mDCBO07.

Further information relating to the Winery individual montDestin and the
Varietal individual cheninBlanc may be mined. This is covered later.

Ontology Enrichment and Inference Given the mapping of an individual
to object property axiom, that is:

1. (mDCBO07,montDestin):hasWinery
2. (mDCBO7,cheninBlanc):hasVarietal

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 82

We note that for these axioms to be valid in our ontology the individuals
mDCBO07,montDestin,cheninBlanc must exist.

The second step of the algorithm performs exactly that creation, a lookup
into the individuals in the ontology is performed, if the Wine individual mDCB07
does not exist in the ontology it must be added, so too for the Winery individual
montDestin and Varietal individual cheninBlanc.

If the montDestin winery individual does not exist in the ontology I must
add it, as such, the many-valued context table item needs to be mined for
attributes that tie to a winery in the ontology. These are then mapped to the
montDestin ontology individual in a similar way to how I mapped axioms to
the mDCBO07 Wine individual. This is shown below:

1. (montDestin,Stellenbosch):hasLocation
2. (montDestin,cheninBlanc):makes

The key difference here is for montDestin; I find a target list of axioms,
hasLocation,makes, based on the available axioms in the ontology with domain
Winery, these are then checked against the attributes to find a mapping. Here
as I am dealing with individuals that are one relation away from our root
class individual, in this case, the winery. I only check or add individuals to the
ontology; I do not mine further properties for those individuals. That is to say;
[am not trying to mine further information about the location of the Winery
Mont Destin, only the location itself. In our use case, I assume the further
properties to already be present within the ontology. For example, Mont Destin
has location Stellenbosch / Western Cape; I have ontology information stating
that Stellenbosch or the Western Cape is in South Africa. I am not trying
to determine from my mining, whether Stellenbosch or the Western Cape is
located in South Africa. To go further and to determine the above is future
work and beyond the scope of this thesis.

Finally let’s assume that the Varietal individual cheninBlanc already exists
in our ontology with the following axioms:

1. cheninBlanc:Varietal
2. cheninBlanc:WhiteWine
3. cheninBlanc:d madeAt.Winery

Now I know Chenin Blanc is a varietal, and that it is a white wine.

The algorithm will then find the Varietal individual cheninBlanc, and be
able to use that in the previous object property assertion axiom.

The first step is to add the non-existent independent individual to the
ontology, in this case it would be the Winery individual montDestin, which is
added to the ontology by adding the following axioms to the ABox:

1. montDestin:Winery
2. (montDestin, Stellenbosch):hasLocation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 83

3. (montDestin, cheninBlanc):makes

After each axiom, 1,2,3 above is added, a check is performed to ensure the
ontology remains consistent.

It is important to note that each individual added is assumed to be dis-
tinct, as such, axioms are added to ensure it is distinct to all other individuals
of the same subclass. This is as OWL does not have the unique name assump-
tion. This distinction axiom addition was optimised to be a single large axiom
per subclass that is added after all individuals have been added that sets all
individuals in our ontology subclass to being distinct from each other. The
optimisation was required as setting each individual to distinct from every
other individual from its subclass is exponentially computationally expensive
as I add more individuals to the ontology. That is, for each individual added
axioms were generated to set it to be distinct from every other individual that
existed in our subclass. For example, for the case of mDCBO7 if it were the 12
000’th Wine individual added to the ontology the algorithm would add 11 999
distinct individual axioms to mDCBO07. If another wine mDCB08 was added
after it would then require 12 000 distinct individual axioms, and so forth
for each new individual added. It became far quicker and less cumbersome
to create a single different individual axiom containing all individuals of the
ontology per subclass after all individuals had been added.

Following the addition of the independent individual, the dependent Wine
individual, mDCBO07 can be added to the ontology, ABox with the following
axioms:

1. mDCBO07:Wine
2. (mDCBO07, montDestin):hasWinery
3. (mDCBO7, cheninBlanc):hasVarietal

Following the addition of all individuals to the ontology, the reasoner is
run to compute the inferred ontology.
This brings us to the lattice completion phase of the algorithm.

Lattice Completion Following the reasoner’s computation of the inferred
ontology, the inferred information must be mined and placed back into the
original dataset.

We see an example of this inference in Figures which show the
inferred Wine and Winery individuals respectively.

In Figure 4.5| we see the only inference I have is that our Chenin Blanc
individual, mDCBO07 has been classified as a White Wine. Furthermore we see
that the Winery individual has inferred attributes for isLocatedIn the Country
individual South_Africa and the Region individual Cape_Winelands.

Recalling the attributes available in Figure [4.4] we see I will need to match
the country attributes and add a new subclass attribute for White Wine.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 84

Description: mDCB07

M=
Types

{ Wine

= White_Wine

Same Individual As

Different Individuals

& Bookcliff_Vineyards:_Syrah_Reserve_2012

| JoN
Property assertions: mDCB07 = m[x

Object property assertions
mm hasVarietal CheninBlanc
mm hasWinery montDestin
Data property assertions

Negative chject property assertions

Negative data property assertions

Figure 4.5: Protege view of inferred Wine individual’s detail

Description: montDestin BISEEX
Types
) Winery

Same Individual As

Different Individuals

| Synchronising
Property assertions: montDestin (I =] (]

Object property assertions
muisLocatedIn Stellenbosch
mumakes CheninBlanc
mmisLocatedin South_Africa
mmisLocatedin Cape_Winelands

Data property assertions
Megative object property assertions

Negative data property assertions

Figure 4.6: Protege view of inferred Winery individual’s detail

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 85

In so doing I am no longer only mining the attributes of the base Wine
individual, but also of its object property axiom linked individuals, the Winery
individual Mont Destin in this case.

This approach could be avoided if the underlying ontology was very well-
tailored to the dataset, and made use of rolification [23], to link the attributes
of the independent individual directly to the dependent base individual. The
above approach is further covered in Section [5.2] but as the scope of this thesis
is to show the viability of this form of data imputation and not to fine-tune
an ontology to supplement the dataset, it was not implemented.

The algorithm then takes the list of many-valued attributes from the con-
text table, and compiles a list of target attributes, in the form of many-valued
context table attributes. Secondly, it takes the list of attributes, in the form
of axioms, from the dependent individual, and those from its independent in-
dividuals and compiles a second list and then constructs a mapping between
the many-valued attribute and axiom attribute lists.

When a class or subclass axiom is present in the axiom mapping list has
no corresponding many-valued attribute, in the many-valued context table
attribute list, a many-valued attribute based off of the subclass is added to a
class attribute in the many-valued attribute list and the mapping is completed.
This is as the class attributes are used in ConceptCloud to separate the data
during the navigation process, and as such their addition to a many-valued
attribute is fairly useful, as seen in Section [4.6 An example of this is seen in
Figure where the DL subclass Red Wine has been added to the many-
valued class attribute and can clearly be seen in the tag cloud as a class tag,
of value Red Wine, corresponding to the many-valued context table attribute
class: Red Wine.

After the mapping has been completed, the attributes are added to the
base dataset in JSON format. This is then used as the new dataset for Con-
ceptCloud as described in Chapter [3|

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 86

"name":"Mont Destin Mont Destin range Chenin Blanc 2007",
"winery":"Mont Destin",

"location": "Stellenbosch",
"region": "Cape Winelands",
"country": "South Africa",

"varietal": "Chenin Blanc",

"vintage": "2007",
llpricell: Il12|l’
"points": "70",

"reviewer": "Michael Apstein",

"reviewyear": "2008",

"review": "06 less beguiling than pvs, still ample charms
through 14.5% alc, with pineapple & mineral signature."
"class": "White Wine"

Figure 4.7: mDCB07 JSON object following data imputation process

After this process has been completed on the individual mDCBO07, its JSON
object is as in Figure 4.7]
Here we note the following many-valued context table attributes have been

added:

A" :={region: Cape_Winelands,
country: South_Africa,
class: White Wine

}
Figure 4.8: Inferred attributes for mDCBO07 individual

The mapping is performed by checking the owlclass of the axiom against
the many-valued context attribute, that is, the owclass:country from the in-
dependent individual can only be mapped onto the dependent individual. In
this case mDCBO07, on a match between the class of the range of the axiom
containing the information to be mined from the independent individual, to
the dependent individual’s many-valued context table entry.

That is the ontology axiom A; for the Winery individual, montDestin, linked
to the dependent Wine individual, mDCBO7 by the axiom
(mDCBO07,montDestin):hasWinery, where

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 87
% %&w‘er interaction *
User User

Selection

Data
Extraction

Repository P
pository

Access File In
Repository

Concept Lattice
Builder

Table
Management

Store/Load

Navigation

Save
\iewer

Store/Load

Read in repo data
Supply lattice X
] Readin

Data Cmizil - -
Update with Context Data Context
new Ii)ata Table

Data Imputation
Centroller

Update ontology with K Y

Lattice Data
| ata
Read in ontology Ontology
da‘ta

Figure 4.9: Data imputation alongside ConceptCloud architecture

A := (montDestin, South_Africa):isLocatedIn. Here the individual South_Africa
is a country individual and is therefore mapped to mDCB07’s many-valued
context table attributes, as in Figures [4.7] 4.8

4.5 Implementation details

Architecture

The data-imputation subsystem exists to enrich the underlying data set, as
such, it was built to interact purely with the underlying data set, and aside
from configuration, it has no user interaction. The subsystem fits into the
ConceptCloud system, as shown in Figure [4.9

The three main components of the data-imputation subsystem are the
Data-Imputation Controller, the ontology and the reasoner.

The Data-Imputation Controller, or DIC, is responsible for the orchestra-
tion of the events governed by the algorithm, described in Section [4.4!

Based on the user set configuration, the DIC will begin the data-imputation
process by reading in the many-valued context table data. Following this, the
DIC begins reading in the ontology data; this is then used in conjunction with
the context table data and the reasoner to initiate new ontology individuals
for the target data class, Wine in the previous example. The reasoner is called
at each step of the individual creation to validate the axioms being added with
the individual to the ontology. Once all target data class individuals from the
many-valued context table have been added to the ontology, the reasoner is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 88

then called to calculate the inferred ontology. Once the inferred ontology has
been calculated the DIC then mines this inferred ontology and updates the
underlying source JSON dataset.

Following this, the regular ConceptCloud data extraction pulls the entire
updated dataset into the new context-table and concept lattice. Furthermore,
it generates a new caching database, based off of the updated input dataset.

The user can then explore the updated dataset as previously described in
Section

4.6 Case Study

The case study is once again on the same wine review dataset used previously
in Section (3.6, That is a dataset of 16306 Wine Reviews for 5-star wines,
(points ranging from 82 to 100), from the years 2005 to 2016. The vintages
reviewed were from 1995-2014.

The case study is to illustrate the enrichment of a dataset by ontology-
driven data-imputation as described in Section [4.4]

The ontology used as a basis had a low-class density with 34 classes, the
bulk of which were for South_African_Wine type axioms, where South_African
was replaced with the wine of origin for the wine, with 26 distinct Country
individuals, and 45 distinct region individuals. The ontology also has 100
distinct varietal individuals.

The base T Box and RBox axioms were purposefully made similar to the
running example 7 Box and RBox presented in Section [2.5

Main View

In Figure 4.11] we see the main view of the wine review data following data-
imputation. Again as before discerning between the items by simple eye-test is
difficult, we note that still Italy, France and the United States are the highest
contributing countries in our dataset. Hovering over each we see their counts
are 2144, 2583 and 6734 respectively.

Figure [4.12 shows the linearised view of this main tag cloud. We begin to
see the far more pronounced difference between our country tags, with a large
Red Wine class tag also occurring.

Comparing these results to our previous case study on the same data, we
begin to see some immediate variances in the data, shown in Table

The main cause of these variances was due to the country for each wine
being inferred from the region attribute on the winery.

As the region has the isLocatedIn object property axiom, it lead to the cor-
rect countries being mined from the inferred ontology. This was particularly
prevalent in the cases where the country attribute listed was itself a region in
the original dataset, following the mining of the inferred ontology, the correct

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 89

country would be extracted. An obvious example of this can be seen when I
compare the linearised Figures [3.9 and where the country tag California
is present in Figure [3.9) but barely present in Figure Further inspection
of the data present after data imputation revealed that the country Califor-
nia items only existed due to their region attribute and location and winery
attributes being null.

With either present, due to the transitive nature of the isLocatedIn axiom,
the data imputation would have correctly completed country attribute.

Country Original Count | Post Data Imputation | variance
Italy 2144 2144 0
France 2579 2583 4
United States 5335 6734 1399

Figure 4.10: Variance introduced by data-imputation

O ConceptCloud Browser

«
Navigation: Showing onlya subset of all possible ags: use the search boxes (0 slecttags that are unavaiabl i the tag coud

Search Tags:

ML File - %[’
LontConst.Serpt B 121314151617 18 19 20 2001 2002 2003 2004 2005 2005 2006 2006 2007 2007 2008 2008 2009 2009 2010 2010 2011 =
(Choose e o e chosen 2012 2013 2014 52122232425 282930323334 353638394042454850°¢ 58586 87 88
8999091929394 9596 97 Albarino Alexander Valley Alsace Anderson Valley Argentina Australia Barbera Barolo Blanc de Blancs Bordeaux
Burgundy Caberet Franc Cabernet Sauvignon California California California Carignan Carneros Castilla y Ledn Central Coast Champagne
Chardonnay chenin Blanc Chianti Classico Chile Columbia Valley Dry Creek Valley Ed McCarthy France Gerald D. Boyd
Germany Greece Grenache |taly James Tidwell Linda Murphy Loire Valley Malbec Marguerite Thomas Marlborough Mary Ewing-Mulligan McLaren
Vale Mendocino County Mendoza Merlot Michael Apstein Michael Franz Monterey Monterey County Napa Valley Napa Valley

New Zealand NV Oregon Paso Robles Paul Lukacs Petit Verdot Petite Sirah Piedmont Pinot Grigio Pinot Gris Pinot Noir Portugal Rebecca
Fontsize 10-32) Murphy Red Wine Rhane valley Rich Cook Riesling Rioja Robert Whitley Russian River Valley sangiovese Santa Barbara County Santa
Lucia Highlands Santa Ynez Valley Sauvignon Blanc semillon Shiraz Sonoma Coast Sonoma County Sonoma County Sonoma Valley South
Africa South Australia Spain Syrah Tempranillo Tina Caputo Tuscany United States veneto viognier W. Blake Gray Washington Wayne
Belding Western Australia White Wine willamette Valley Zinfandel

R intage
Wine Name Vintage Region Rating Review

2016 30 2016, ex tank, has pear & melon aromas but the flavours are unexpectedy tart, very dry.

2016 Worcester 25 2016 invites with itsripe m iness; dry & lingering. Quafiabity enhanced by moderate 129% alcohol.

Go-to chenin for many, 2016 (*") packed wih classic flavours of apple, pineapple & cream. From old bushvines, tad less

A Badenhorst Family Wines Secateurs range Chenin Blanc 2016 2016 Maimesbury 35 e e

Figure 4.11: Wine review data main tag cloud

The case study performed previously in Section highlighted the possi-
bility to perform a further comparison between the high points scoring wines
between red and white wine varietals. The baseline is presented below in Fig-
ures Figure shows 8 viewers, each with a points value from
87-94 selected. Here I have normalised by country value, so the country tags
become most prominent, as expected we see that France, Italy and the United
States are the most prominent and that the country tag California, has been
almost entirely removed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 90

O ConceptCloud Browser

«

Navigation subset of

o select tags that

R[]
7 18 19 158 20 o0 001 2002 2003 2004 2005 2005 2006 2006 2007 2008 2009 201020102011 2011 2012 2012 2013 2013 2014 .
Load ConSL Seript:
Gl o e chosen maars s 8788890091 s 004 55 et o Austraia
scno BUIGUNdY Cabernet Sauvignon califomia California caite
hardonnay S S— ot
.France- erald D. Boyd cemany p—— s Italy ™ Largunc
guerite Thomas Wabacush Michael Apstein Michael Franz
. - Napa Valey Napa Valley Sout s i v New Zealand oregon Paso Robles Paul LUkacs - an legmont
o= Pinot NOIF porugar Red WI ne ey oues Rich Cook Riesiing mos RODEIt Whitley Russian River Valley
FontSize (10-18) o Co Blanc 2 SONOMa CoUNty sanoma county s Spain
-.un |ted States - R
N Vintage
Wine Name Vinage | Region Rating Review
J—— w - e Nor is I partulal ich or deep. It does, however,ofe pure, varetaly e Merlot avor, st
Familia Mayol: Malbec NV Y Mendoza 0

Jeoholic Malbecs--and you are welcome fo them. As for mysel, I take this one. Fullof savory

an find bigge
favor but thankully not full of sug.

Figure 4.12: Wine review data main tag cloud linearised

To further investigate the relationship between points, varietals and vin-

tages, I isolated the vintage, varietal and wineclass tags for our points viewers
between 87 and 94.

[+]e x _i/u .ﬂﬂ. = \«_’A/\;[89

2005 2006 2007 2007 2008 87 cus 2004 2005 2006 2006 2007 2007 2008

88 2006 2006 2u0s 2509 201 20102010 203 211 2012 2012 2013
o Mm,France 2000 2000 s aoma 89
Australia b Burgundy Cabernet S P i aroma Australia bit bottie 90
Vichael Franz one Red Vine Red Wi
curgunty Caberne 1 Calformia Caifomia
frish fivor Fran CE acdty age sconst aroma Australia

ey fnish flavor focs FTANCE i

y Gerald D. Boyd grape hint [talY Loire
cunty Spain spice there Tina C

States..... United StateS,... |

White Wine wine ourty Souh Afiea Sl spce

nUnlted
States White Wine White Wine WINE year

waney Cabernet Sauvignon Cabermet Sauvignor
Califormia California case Chardonnay cokor complesdty finish fiavor

s FTances vape fint aly o

Valley ot Marguerite Thos

Valley

Unltéd Statés

ard virage Whte Wine Wite Wine WiMNE wine s year

» i« i« » i« >
P . .
R[Z[= w2 [T R[]
o o o o - 2m2 94 gren California feish ravor *
93 — o
0122012 2013
France .. Ital
. Califomia California crar California tnisn taver FTANCE fut hine - y
one pate e i Rad wine Rober
flavor FraNCe fuit ceraic o soyd gra p:hlnlhﬁ')’t Margue

Geraa D. B ot Ttaly vichaei apstein wi

Michae! A

in Michael Franz Napa Valley
noi Red wme Red wmer

plenty Red Wine Red Wine ich ¢

ey o
Red Wine Red Wine rich
cianc Sonoma County Syran there tauch

e U Nited States
Unl te d Stateswmm MUHItEd U,mUnlted States

vitage Wit Wine wine
\White Wine Wine year St ates wine
Whie e whi wine

ri« »
4 +

Figure 4.13: Points viewers for 87-94 normalised by country

This is displayed in Figure Here we can see the expected trend of Red
wines being more prevalent across all points values, as Red wines are generally
more prevalent in the dataset.

The interesting points are that though they form a lesser part of the dataset

the white wines seem to be over-represented in the 89-92 points range when
compared with their red wine counterparts.

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION

Stellenbosch University https://scholar.sun.ac.za

91

87

o s o 2002 2 2004 2005 2006 2007
2008 2009 2010 2011 2012 2015 2014 Alari

.. Cabernet Sauvignon
amerere ChArdonnay cnenin glanc

aubera

i nache Malbec Merlot Mourvecre
Muscat NV Pt Verdot Petite Sirah Pinot Blanc PINOL Grigi
Pinot Gris PINOL NOI sinciage oo REM WiNnE

Riesling sangiovese Sauvignon Blanc

Semillon Shiraz Syrah Tempranitio e
viognier WHite WINe zinande:

R

3

»

88

200 21 2002 2003 2004 2005 2006 2007 2008
2009 2010 2011 2012 2013 2014 Albarino

de Blancs =

Fume Blanc Gy
Veltiner MalDEC yerce

urztraminer .. Grenache Gruner

eg= METIOt Moscato Mourvedre u.

[Rp———

Red Wine Riesling rousssme Sangiovese

Sauvignon Blanc semillon shiraz Syrah
Tempranillo Torronies

Verdeio s VermEnting

viognier White Wine zinfandel

.

R

Barbera slanc
caberner ane CaDEIMEL SALVIGNON
Carignan camenere ChArdonnay chenin slanc cve-

Nv Petit Verdot Petite Sirah Pinot
Blanc Pinot Grigio Pinot Gris PiNOt NOIT rues rrmue

89
*| 1553 200 oo 2002 2003 2004 2005 2006 2007
2008 2009 2010 2011 2012 2013 2014 Agianica
AIDANNO Ames asym: Barbera Blanc de Blancs Benarsa Cabernet
Franc Cabernet Sauvignon carignan
camenee Ch@rdonnay chenin glanc coaea
me Blanc Gewurztraminer GreNache Gruner veltiner
Malbe: Merlot vo:cwo Mourvedre
Muscat nebbiolo 1 wes NV Petit Verdot Petite
Sirah inot sianco Pinot Blanc Pinot Grigio PiNot GIis e«
e PIN0t Noir e RE Wine
Riesling roussanne sangiovese SAUVigNon
Blanc semillon shiraz spee SYrah ...

Tempranillo orones Touiga Nacional Verdeio e

viegnier White Wine zintandel

3 v

-

R

2010 2011 2012 2013 201
Barbera Blanc de Blancs a.

Albarino Amei: ko
.. Cabernet Franc

Cabernet Sauvignon carignan carmenere
Chardonnay chenin Blanc cranzs s -

Fume Blanc GEWUIZUAMINeT swee GIENache cuner vetiner
Malbec wencia vereoce METIOL Moscat

Nebbiolo e
Giigio Pinot Gris Pinot NOIT prosse REC
Wine Riesling Roussanne

Sangiovese

Tempranillo vurones rouriga Nacionat Verdejo Vermentino va

vwongrWhite Wine zinfandel

R
s 2000 200a 2002 2003 2004 2005 2006 2007 2008 2009

Frlano

1 MoLIVedre muzzst
== Nv Petit Verdot Petite Sirah Pinot Bianc Pinot

Sauvignon Blanc semillon Shiraz Syrah v

3

Semillon Shiraz SYTAN v Tempranillo -

v venens Viognier VWhit€ Wine

Tempranilio =

Wh|te Wlne Zinfandel

Visgnier

White Wine zinfandel

P 4
Mk P4 RS FPARAES) K|]oa E1Pd
2080 1925 192 2000 2001 2002 2003 2004 2005 2006 2007 1350 1337 1350 1588 2000 2001 2002 2003 2004 2005 2006 2007 4| 1555 1950 2953 2000 2001 2002 2003 2004 2005 2006 2007 255 1995 1250 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2008 2009 2010 2011 2012 2013 2014 s Alsrine 2008 2009 2010 2011 2012 2013 261t e Al 2008 2009 2010 2011 2012 2015 21 sy 20102011 2012 2013 014 s e Blanc de Blancs
Barbera Blanc de Blancs = s« - Sbavt:sra BI wchE BI Cat ne C b Bart ;sg: lanc de Blancs .. cat caemare Cabernet Sauv|gnon .
m L argnan abernet Sauvignon
canemet Frane Cabernet Sauvignon abernet Sauvignon cas g Chardonnay [
camenere ChArAONNAY chenin Bianc crianza nme Chardonnay crerin ianc cus rune Fristane Merlot . Nebbiolo v Petit Verdot petie ik
Gew miner Grenache Gruner Veltliner Gewurztraminer Grenache Gruner veltiner Malbec menca we ;
Pinot Noir Red Wine riesi
nencia meriage Merlot Mourvex bbiola Negosmro Merlot wess wourvedre wees Nebbiolo nv Petit VEYdD[Petite -+ Nebbiolo NV Petit Verdot Peite Sirah ra o iesling
o Pt VTGOt Petite Sirah s s it s S R P N Pinot Noir Red Wine Riesling rse Sauignon Blanc W;ﬁ:‘ ;ylfé“ e
. : L vegrier White WINe zience
sinot aris Pinot Noir Red Wine Riesling Red Wine riesling rovssame sangiovese SaUVIgNON BIanG serue: shiraz
Syrah Tempranillo viogrier
Foussanne sangovese SauvVignon Blanc Sangiovese Sauwgnon Blanc semilon shiraz Syrah

Figure 4.14: Vintage and varietal viewers for points 87-94

To see how each varietal is represented within the Red and White wine
wineclasses, I separated them into separate breakdowns shown in Figures

respectively.

Figure 4.15: Red wine viewers for points 87-94

- |87 || |88 EIPd K P4 R x|
oo o0 moen 2002 2003 2004 2005 2006 2007 200 2 2002 2003 2004 2005 2006 2007 2008 133 2000 2001 2002 2003 2004 2005 2006 2007 *| 59 133 2o 20 2002 2003 2004 2005 2006 2007 2008
2008 2009 2010 2011 2012 2013 Barbera Cabemet 2009 2010 2011 2012 2013 1 Barbera Gabernet Franc 2008 2009 2010 2011 2012 2013 =i« Aglianico 2009 2010 2011 2012 2013 s Aglanico Barbera.
rane Cabernet Sauvignon caignan Cabernet Sauvig NON carignan Barbera cabemet Franc CaDErNet cavbemet Franc Cabernet
Grenache Malbec Merlot mourvedre w Petite Sirah i -
ot Red Grenache Malbec Merlot mourvedre nebiois Sauvignon carignan Grenache Sauwgnon Carignan ... Grenache
inot NOIir piotage re.- Petite Sirah Pi [Too— :
i .Petite Sirah PiNOt NOIF onouse prnis Malbec Merlu.l o e Malbec Merlot Mounvedre nebbiolo. Petite
WIiNE sangiovese Syrah rempraniiio Red WiNe sangovese Syrah Petite Sirah PiNOt NOIF piotage) :) Red
Zinfandel) i . sirah PINOt NOIF pinotage RE
Tempranillo e Zinfandel Red Wine sangovese Wi
Syrah Tempranillo Touriga Nacional INE sangiovese Syrah
Zinfandel Tempranillo Touriga naciona Zinfandel
“« » N “« » N « » N « » N
4 P P .
~ |91 K|~ |02 K|~ |03 K|~ oe x|~
1358 2000 2001 2002 2003 2004 2005 2006 2007 2008 133 1530 398 1550 200 2002 2002 2003 2004 20052006 %[s 2000 2001 2002 2003 2004 2005 2006 2007 2008 = 1352 1390 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 4
2009 2010 2011 2012 2015 s Agianico Barbera 2007 200 2000 2010 2011 20126“” sl | 2000 20102011 2012 201 s s Baera 20102011 2012 2013 s setere capernes Frane
cavemet Franc CabErNet Barbeva_cabema ranc Cabernet cavernet rane CaDEINEL Cabernet Sauvignon o ...
SaUVIgNON carignan Grenache Malbec SauVIgNON carignan Grenache e SaAUVIGNON caignan crenache Watbec MO, NebBibIo.. Poiite Sran . PINOL
Merlot Petite Sirah Merlot mourvedre Nebbiolo w Petite Sirah MEOt emscee NEDDIOI0 1 Petie Siah . .
Vourvede ebbelo v PEle |r.a . . . Pinot Noir Red Wine Noir Red Wlne sangiovese SYrah Tempranio
Pinot Noir_ Red Wine | Pinot Noir...Red Wine o s Zfande
sangiovese Syrah Tempranillo -
Sangiovese Syrah Tempranillo s sangiovese SYTAN Tempranillo tauisa vacena Zinfandel
Zinfandel Zinfandel
“« » - “« » - « » - K} » N
P

In Figure we see that Cabernet Sauvignon, Pinot Noir and Syrah are
well represented across all of the points ranging from 87-94. In contrast Merlot
is well represented from 87-91 but drops off reasonably significantly in the
higher points range in comparison to the three other aforementioned varietals.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 92

We also note the vintages 2005-2007, 2009 and 2012 generally outperformed
all others across the points range from 87-94.

Finally, Figure shows the points breakdown for white wine varietals.
Here we see that the Chardonnay and Sauvignon Blanc varietals are well rep-
resented across the entire points range, followed by the Riesling varietal. No-
tably, Chardonnay maintains the strongest presence throughout whilst Sauvi-
gnon Blanc and Riesling drop off in the higher points ranges. Finally, we note
that the distribution of vintages from points ranges 87-92 is fairly even while
for the 93,94 2012 and 2013 seem to be particularly well representing, hinting
that these were good vintages.

A more in-depth study could be done to determine why these particular
white wine vintages scored so highly.

| -8 X[- 88 x| | -|80 x| 7| -] LI
200: 2005 2006 2007 2008 2009 =02 2003 2004 2005 2006 2007 022003 2004 2005 2006 2007 2002 200: 2004 2005 2006 2007
2010 2011 2012 200 Chardonnay | 2008 2009 20102011 20122013204 | 2008 200920102011 2012 2013 20082009201020112012 2013
Chenin Blanc v Pinof . e N N -
RS —— Sauvignon Chardonnay< enin Blanc Fume Blan zouC?hBJ dqnnay Chenin Blanc | 2014 Chardonnay</he,,m Blanc Fume
) Gewurztraminer Gruner Veltiner Moscato NV Fume Blanc Gewurztraminer tin Blanc GewUrziraminer Guuner veitiner M NV
Blanc semiion . viognier WWhite Pinot Blanc Pinot Gris Riesling roussame NV pi “iﬁ\gi Pinot (:uaRl;lslmg pinot stanc PINOL Gris Riesling Roussanne
i S Rroussanne DAUVIgNON Blanc
Wine Sauvignon Blanc semillon r [¢] . Sauvignon Blanc semilon
viognier White Wine Semillon viognier VWHite . .
oanet) ‘ Viognier Wh|te W|ne
Wine
e X| |92 x|~ s X| 7|79 x|
2002 2003 2004 2005 2006 2007 2001 2002 2003 2004 2005 2006 2007 - 2004 2005 2006 2007 2008 2004 2005 2006 2007 2008 2009 2010 2011
20082009 2010201120122013 | 20082009 2010 2011 20122013 2014 200920102011 20122013 2014 20122013 2014.. Chardonnay w..... fume
2014.....Chardonnay cremswe | Chardonnay cenin sian Chardonnay crex : e W Resing
miner Gruner Veltiner NV Gewurztraminer Gruner Veltiner NV . ewurztramines NV Riesling Sauvignon Blanc .« White
Pinot Gris Riesling roussanne pinot Gris Riesling . Roussanne Sauvignon Blanc Wine
Sauvignon Blanc semilon Viognier | Sauvignon Blanc semilion .« viognie e White Wine
White Wine White Wine

Figure 4.16: White wine viewers for points 87-94

Conclusions I was able to remove many location errors in the data, as well
as introduce new subclasses and thus many-valued context table attributes
into the data which helped in the separation of data enabling us to explore
both red and white wine varietals easily.

As such, our data imputation process was successful in enriching the data
by correcting errors and inconsistencies, as well as adding in explicit subclass
attributes for many-valued context table attributes that were previously only
explicit. This was all achieved using only the controlled vocabulary attributes,
all those not the review in the above examples and case study.

The primary issue I encountered was that the approach simply could not
fix heavily missing data. That is if there is no driving attribute to imply
the existence of another within the many-valued context table’s controlled

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 93

vocabulary attributes our approach and algorithm is unable to accomplish
much.

There is still an issue when I am missing many attributes. One approach
one may use is to mine the free-text available in the review attribute.

4.7 Free Text Data-Imputation

Free text data-imputation in this thesis refers to the mining of a body of free
text and linking it to a set of axioms for use in aiding inference tasks. The
use of free text is often coupled with a controlled vocabulary of some kind, for
instance, in the form of attributes of a JSON object in the web space. Often
this body of free text will contain information that is not contained in the
controlled vocabulary.

In this thesis, I wished to mine this data in the case that even after ordinary
data imputation had been performed, there were still many items with null or
empty attributes.

Approach

The approach employed was to perform data-imputation as above. Then per-
form a second pass on the data to specifically checked for empty entries, for
those many-valued context table items I performed key-phrase extraction on
the free-text and then attempted to match the extracted phrases to the avail-
able axioms.

That is, if for some wine W, the key-phrases extracted, in the same way
as was described and demonstrated in Section [2.4] contained the key-phrases
{California, Red Wine}, I perform a lookup of the individual California, check
if there are any available axioms available for it or its independent individuals
and map successfully based off of that. In this case, for California to be used
by the algorithm W; must have an object property such as hasWinery linking
it to Winery individual with no isLocatedIn axiom. Then I can link California to
the independent Winery individual, which can then be mined in the inference
process.

For items directly linked to Wy, the process is somewhat clearer as there is
an axiom with domain Wine, that matches Red Wine, that is W; : RedWine.

The reason for only using this on missing data items is that the approach
is inherently flawed, as it relies on the correctness of the key-phrases being ex-
tracted, and creates an implicit link that is not stated in our ontology between
the individual and the key phrases extracted from the free text, which in turn
can lead to inconsistencies.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 94

Dangers of Approach

I found that the key phrase extraction was inherently flawed as it does not take
the subject of the sentence into account upon extraction. This means that all
the key phrases are assumed to be directly related to the root dependent
individual, or its independent individuals, depending on the available axioms.
This approach is unsafe and may lead to information that is logically consistent
in the ontology, as I never add axioms that lead to inconsistencies. Still, the
information is, however, incorrect.

Consider the following text excerpt for some Wy, “The Red Wine W; has
a far more pleasant rounded nose than that of its sister wine from California
WQ.”

The key phrase extraction will extract the following key-phrases:

KF :={
Red Wine W, Red Wine, Wy,
pleasant rounded nose, rounded nose,

sister wine, California W,
California, W,

}

Figure 4.17: Example key phrases for some W; review text

Here in Figure we can see that even though the key phrase California is
intrinsically linked to the wine W, as California is in a review that is attached
to the many-valued context tale entry Wy, the algorithm will link it to Wy if
it leads to no logical inconsistencies.

This is unlike if the above text excerpt were to say: “Mont Destin’s Red
Wine W; has a far more pleasant rounded nose than that of its sister wine from
California W,.” The key phrases shown in Figure [4.1§ would be extracted.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 95
KF :={
Mont Destin

Red Wine W, Red Wine, Wy,
pleasant rounded nose, rounded nose,
sister wine, California W,
California, W,

}

Figure 4.18: Example key phrases for some W; review text

As in this case both Mont Destin and California would be extracted, the
{W1,Mont Destin}:hasWinery axiom would be added first, followed by {Mont
Destin,California}:isLocatedIn axiom, but as Mont Destin already has an isLo-
catedIn axiom for Stellenbosch which is in turn located in Cape Winelands which
is a distinct region individual from California, it leads to a logical inconsistency
and the second axiom is not added to the ontology.

The issue here is as this approach is being used specifically in the case of
lacking data, due to this innate ability to produce so many false positives,
which may or may not fail a consistency check. The key phrase extraction
process being fairly computationally expensive already, is that there will often
not be enough data present to cause the match to fail a consistency check.
Then I end up in a situation where I have begun to compromise the underlying
ontology as a source of truth, which may lead to invalid data being added to
the base dataset through the imputation process.

As such, this was added to the data-imputation subsystem but disabled for
the case study as it may in its current form, lead to unreliable results.

Possible Solutions

The most obvious solution to this problem is to improve the key-phrase ex-
traction to the point that not only does it only extract phrases linked to the
dependent base individual and its axiomatically linked independent individ-
uals, but explicitly links the extracted phrase to the base individual and the
linked independent individuals.

That is, in the latter of the above examples, Mont Destin would be linked
to W; and California would be explicitly linked to Ws.

This level of NLP processing was left out as it was not in the scope of this
thesis but does present opportunity for future work.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ONTOLOGY DRIVEN DATA IMPUTATION 96

4.8 Summary

In this chapter, I have outlined and described the problems introduced by
implicit information in ConceptCloud, namely that ConceptCloud has no good
way to allow the user to navigate by implicit information, particularly when
this is paired with incompleteness in the data.

I proposed a description logic based approach making use of the OWL2
language to pair highly structured data in the form of an ontology with the
existing semi-structured data present in ConceptCloud’s formal concept lattice
and many-valued context table.

I presented a small case study showing the viability of the approach. I
discussed the changes seen when compared to the case study performed earlier
on the same initial data set.

Finally, T covered free-text data imputation and outlined the initial ap-
proach used and the pitfalls thereof, followed by a short outline of a possible
solution to the problems encountered.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Conclusions

5.1 Summary

This thesis covered improvements and extensions to the ConceptCloud formal
concept analysis based semi-structured data exploration tool.

I established the existing architecture and outlined the shortcomings thereof.
I then outlined the scope of this thesis addressing the original ConceptCloud
implementation’s poor scaling, inadequate support for specialised datasets,
and its inability to supplement the existing dataset.

Additionally, a chapter outlining all the required formalisms was provided.

I summarise each chapter below.

Background

The background chapter provides a background into formal concept analysis
and its application to ConceptCloud. The background provided by way of
example. Wine reviews in a binary context table are used and built upon to
form many-valued contexts, following which I introduce the idea of a formal
concept lattice. The lattice’s intrinsic navigational support is explained. Var-
ious formal concept analysis based data exploration tools are introduced, and
a brief overview and application to a domain dataset to be used in the rest of
the thesis is provided.

Following this ConceptCloud is introduced and brief overviews of the tool’s
functionality, interface and architecture are provided.

I then cover the natural language processing techniques used in Concept-
Cloud.

Finally, the chapter concludes with an introduction to description logics
and ontologies. I primarily focused on the description logic concept language
SROIQ as it is closely related to the OWL2 language and its API, which

formed the basis of the data-imputation implementation.

97

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSIONS 98

Once again by way of wine review running example I introduce the concepts
of a SROZQ ontology and its various components, these were used to outline
a wine domain and ontology later used in Chapter [l I introduce description
logic semantics, once again continuing with the running wine domain example
and provide an interpretation of this domain from which I introduce logical
consequence.

Server Based Architecture

The server-based architecture chapter briefly outlines the maintenance and
refactoring performed, followed by an introduction to the updated scalable
ConceptCloud architecture. The extensibility and architectural support for
specialised viewers making use of ConceptCloud’s explorative search process
as a service is explained. This is followed by an explanation of changes made
to the data representation to aid work with larger datasets.

A small set of experiments displaying the speed-up provided by the new
architecture are shown, followed by a case study on a wine review dataset.

Maps Extension

The maps extension section of the Server-Based Architecture chapter describes
the implementation of a specialised map-based viewer for ConceptCloud, as
well as the implementation of specialised support for biclustering the data
within the map visualisation. This is followed by a large case study on a South
African Crime dataset illustrating the usefulness of the map-based viewer and
data biclustering.

Data Imputation

The data imputation chapter outlines the need to supplement the existing
ConceptCloud data. A general overview of the approach is provided, followed
by quantification of the goals of the chapter. I then provide details of the
specific approach and demonstrate the algorithm used by way of a running
example. The algorithm is broken down into three parts, each of which I go
through describing how the algorithm processes an example wine review data
item. I follow this with an overview of the architecture for the ConceptCloud
data imputation component.

I then give a case study based on the previous wine review case study in
chapter [3] The case study demonstrates the usefulness of the data imputation
component in ConceptCloud.

Finally, I describe the free text data imputation component and the short-
comings thereof.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSIONS 99

5.2 Future work

Description Logic Rolificaton

Description logic rolification is a transformation from a concept to a new role,
such that the rolification of a concept Wine is the new role Rwine defined by
the axiom Wine = JRwjne.Self.

Consider the rule related to our previous ontology.

Wine(x) A hasWinery(x,y) A Winery(y)A
isLocatedIn(y,SouthAfrica) — SouthAfricanWhiteWine(x)

That is for some wine x which has a winery vy, if that winery is located in
South Africa, then z is a South African Wine.

Using rolification I could now translate this rule to something which I can
then translate to OWL2 syntax.

RHhasWinery o RHisLocatedIn.Country % RCountry(SouthAfrica) E SouthAfricanWine

Which I can express as an axiom in OWL2, one would only need to add
these class axioms for each possible country individual in the ontology.

Each of which requires the OWL2 rolification axioms for the involved con-
cepts, and a property chain axiom for the rule.

Since the rolifcation axioms generally have a fixed format, and our inference
would generate a class axiom, which I already mine, I could mine all this
information to enrich the existing ConceptCloud dataset.

I could then easily add to this rolification to express the previously desired
South African White Wine attribute, which would allow for further segmen-
tation of the ConceptCloud dataset, allowing for new levels of comparison
between subsets of the total dataset.

NLP Improvements

Due to the pivotal nature of NLP within ConceptCloud, both for general free-
text phrase extraction, and free-text phrase extraction for the purpose of data-
imputation, any improvements to the overall phrase extraction and natural
language processing component should lead to significant improvements in the
quality of data the ConceptCloud system will be able to produce for itself.

Key-phrase extraction linking phrases to their natural language subjects,
as described in the possible solutions subsection of section [£.7, would allow for
major strides to be made towards reliable free text data-imputation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSIONS 100

Ontology fine-tuning

Fine-tuning the ontology towards the source dataset would lead to the algo-
rithm being able to mine and correct far more of the base dataset.

What is meant by this is the language of the ontology needs to be consistent
with the language of the semi-structured dataset, adding equivalence axioms
for terms to act as a thesaurus would greatly aid this process.

I could also use a finely tuned ontology with explicit geo-location aspects
to enrich a wine dataset with explicit geo-location properties, i.e. GPS coor-
dinates based on the nearby locations or towns. This would, in turn, enable
map-based visualisation of the data set and easy use of the biclustering aggre-
gation.

Algorithm Improvements

The algorithm and implementation of the data-imputation subsystem were
built as a proof of concept. As such, many opportunities exist to improve
performance. The only performance improvements added in the scope of this
thesis were to establish a base level of usability.

5.3 Conclusion

The main goal of this thesis was to enrich the explorative search process in the
ConceptCloud tool, by

1. improving the tool’s scalability and flexibility,
2. improving the support of visualisation for specific datasets, and

3. improving ConceptCloud’s ability to handle less well-curated semi-structured
datasets.

Scalability and flexibility

One of the main problems with the ConceptCloud tool is that it generally
scaled poorly. Specialised versions of the tool existed but these were highly
optimised towards specific datasets.

I generalised the scaling approaches used were able to show a generalised
architecture which showed an order of magnitude speed-up in rendering op-
erations. These results were presented in Proceedings of CARI 2018 (African
Conference on Research in Computer Science and Applied Mathematics [15],
Scaling the ConceptCloud browser to large semi-structured data sets[3].

To further illustrate the scaling improvements. I conducted a case study
on a wine review dataset ConceptCloud was previously unable to process.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSIONS 101

Visualisation Support

ConceptCloud’s default tag-cloud visualisation while being flexible and intu-
itive enough for general datasets poorly visualises specialised data. To address
this, I added support to ConceptCloud for specialised viewers. To display
these architectural changes, I collaborated with Tiaan Du-Toit to implement
a map-based visualisation. Alongside this map-based visualisation, I added
support for data-biclustering, pairs (A, B) of inclusion maximal sets of objects
and attributes, such that almost all objects in A have almost all attributes in
B.

This viewer and approach were successfully utilised to conduct a case study
on South African crimes. The dataset contained 2.2million crimes and 250 000
were displayed in the map viewer.

This case study once again displayed the flexibility of the ConceptCloud
tool as well as its scalability. The specialised map viewer and biclustering
approach allowed for a new and alternate way to group data and perform an
explorative search.

Data-Imputation

The main goal of the data-imputation component of this thesis was to enrich
the explorative search process by improving the underlying data.

To accomplish this goal I wished to take advantage of domain ontologies to
enrich the underlying semi-structured data to make implicit data and correct
inconsistencies, allowing for better data exploration.

In the case study provided, I show the improvements gained by perform-
ing the data imputation. I was able to both make implicit subclasses in the
underlying data explicit and correct inconsistencies in the dataset.

The success of this approach is, however, heavily predicated by the ontol-
ogy. That is, for an ontology that generates many implications based off of
the mined many-valued context table data and is closely linked to the base
dataset; I will have more success. This is as the process relies on natural lan-
guage processing and phrase matching to link formal context attributes and
objects to individuals and axioms. Following that information can only be
inferred based on the axioms which are contained in the ontology. As I am
only adding individuals and object property assertion axioms, I rely on the
existence of pre-existing object properties, classes and subclasses to drive the
inference process.

This requirement on both the natural language processing and the ontology
has revealed opportunities for both future work and research. This research
could explore the results of improvement to the natural language processing
used and the fine-tuning of the ontology.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSIONS 102

Final Conclusions

The work covered in this thesis achieved the goals set for it and provided
insights into possible further research areas.

This work also highlighted that while theoretically the practice of reflecting
formal context data into an ontology is straight forward and simple, in practice
it is heavily reliant on the natural language processing component to perform
the mapping between the formal context attributes and the DL vocabulary.

Improvements can be still be made to much of the ConceptCloud tool and
the additions made provide the basis for these improvements. Ultimately the
ConceptCloud tool is now more flexible and robust than its previous iterations.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

Simon Andrews and Constantinos Orphanides. 2010. Analysis of large
data sets using formal concept lattices. (2010).

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider (Eds.). 2007. The Description Logic Handbook: Theory, Im-
plementation and Applications (2 ed.). Cambridge University Press.

Joshua Berndt, Bernd Fischer, and Arina Britz. 2018. Scaling the Con-
ceptCloud browser to large semi-structured data sets. (2018).

Pavel Braslavski, Nikolay Karpov, Marcel Worring, Yana Volkovich, and
Dmitry I. Ignatov. 2014. 8th Russian Summer School in Information
Retrieval (RuSSIR 2014). SIGIR Forum 48, 2 (Dec. 2014), 105-110.
https://doi.org/10.1145/2701583.2701598

Peter Buneman. 1997. Semistructured data. In Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems. ACM, 117-121.

Rob Bygrave. 2018. Ebean ORM. https://github.com/ebean-orm/
ebean. (2018). Accessed: 2018-05-20.

Min Chen, Shiwen Mao, and Yunhao Liu. 2014. Big Data: A Survey.
Mobile Networks and Applications 19, 2 (01 Apr 2014), 171-209. https:
//doi.org/10.1007/s11036-013-0489-0

Justin Poehnelt Chris Arriola. 2018. Google Maps JavaScript API.
https://developers.google.com/maps/documentation/javascript/
tutorial. (2018). Accessed: 2018-05-20.

Tiaan du Toit, Joshua Berndt, Katarina Britz, and Bernd Fischer. 2019.
ConceptCloud 2.0: Visualisation and Exploration of Geolocation-Rich
Semi-Structured Data Sets. (2019).

Marcel Dunaiski, Gillian J Greene, and Bernd Fischer. 2017. Exploratory
search of academic publication and citation data using interactive tag
cloud visualizations. Scientometrics 110, 3 (2017), 1539-1571.

103

https://doi.org/10.1145/2701583.2701598
https://github.com/ebean-orm/ebean
https://github.com/ebean-orm/ebean
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1007/s11036-013-0489-0
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 104

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

Ecma International. 2013. The JSON Data Interchange Format. Standard
ECMA-404. (Oct. 2013).

Erich Gamma and Kent Beck. 2006. JUnit. (2006).

Bernhard Ganter and Rudolf Wille. 2012. Formal concept analysis: math-
ematical foundations. Springer Science & Business Media.

Janet Gie and Craig Haskins. 2007. CRIME IN CAPE TOWN: 2001-2006.
(2007).

Nabil Gmati, Eric Badouel, and Bruce Watson (Eds.). 2018. Proceedings
of CARI 2018 (African Conference on Research in Computer Science and
Applied Mathematics). Stellenbosch, South Africa. https://hal.inria.
fr/hal-01881376

Gillian J Greene, Marvin Esterhuizen, and Bernd Fischer. 2017. Visual-
izing and exploring software version control repositories using interactive

tag clouds over formal concept lattices. Information and Software Tech-
nology 87 (2017), 223-241.

Gillian J Greene and Bernd Fischer. 2014. Conceptcloud: A tagcloud
browser for software archives. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM,
759-762.

Gillian J Greene and Bernd Fischer. 2015. Interactive tag cloud visual-
ization of software version control repositories. In Software Visualization

(VISSOFT), 2015 IEEE 3rd Working Conference on. IEEE, 56-65.

Gillian J. Greene and Bernd Fischer. 2016. Single-Focus Broadening Nav-
igation in Concept Lattices. In CDUD@CLA.

lan Horrocks, Oliver Kutz, and Ulrike Sattler. 2006. The Even More
Irresistible SROIQ. K7 6 (2006), 57-67.

Mehdi Kaytoue, Sergei O Kuznetsov, Juraj Macko, Wagner Meira, and
Amedeo Napoli. 2011. Mining biclusters of similar values with triadic
concept analysis. arXiv preprint arXiv:1111.3270 (2011).

Slava Kisilevich, Florian Mansmann, and Daniel Keim. 2010. P-DBSCAN:
A Density Based Clustering Algorithm for Exploration and Analysis of
Attractive Areas Using Collections of Geo-tagged Photos. In Proceed-
ings of the 1st International Conference and FExhibition on Computing for
Geospatial Research €#38; Application (COM.Geo ’10). ACM, New York,
NY, USA, Article 38, 4 pages. https://doi.org/10.1145/1823854.
1823897

https://hal.inria.fr/hal-01881376
https://hal.inria.fr/hal-01881376
https://doi.org/10.1145/1823854.1823897
https://doi.org/10.1145/1823854.1823897

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 105

[23]

[27]

[30]

[31]

[32]

[33]

[34]

[35]

Adila Krisnadhi, Frederick Maier, and Pascal Hitzler. 2011. OWL and
Rules. In Reasoning Web International Summer School. Springer, 382—
415.

Markus Krotzsch, Frantisek Simancik, and Tan Horrocks. 2012. A descrip-
tion logic primer. arXiv preprint arXiv:1201.4089 (2012).

Sergei O Kuznetsov. 2004. On the Intractability of Computing the
Duquenne-Guigues Base. J. UCS 10, 8 (2004), 927-933.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky. 2014. The Stanford CoreNLP
Natural Language Processing Toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations. 55-60. http://www.aclweb.
org/anthology/P/P14/P14-5010

Boris Motik, Peter F Patel-Schneider, Bijan Parsia, Conrad Bock, Achille
Fokoue, Peter Haase, Rinke Hoekstra, lan Horrocks, Alan Ruttenberg,
Uli Sattler, et al. 2009. OWL 2 web ontology language: Structural speci-
fication and functional-style syntax. W3C recommendation 27, 65 (2009),
159.

Gareth Newham. 2008. RECLAIMING OUR HOMES? Tackling residen-
tial robbery in Gauteng. SA Crime Quarterly 2008, 23 (2008), 7-12.

Justin Poehnelt. 2018. Marker Clustering Library. https://github.com/
googlemaps/v3-utility-library/tree/master/markerclusterer.
(2018). Accessed: 2018-05-20.

Sebastian Rudolph. 2011. Foundations of description logics. In Reasoning
Web International Summer School. Springer.

Guus Schreiber. 2008. Knowledge engineering. Foundations of Artificial
Intelligence 3 (2008), 929-946.

Rob Shearer, Boris Motik, and Ian Horrocks. 2008. HermiT: A Highly-
Efficient OWL Reasoner.. In OWLED, Vol. 432. 91.

Steffen Staab and Rudi Studer. 2009. Handbook on Ontologies (2nd ed.).
Springer Publishing Company, Incorporated.

Col S. Weber. 2018. SAPS Common Law Offences-Definitions. https:
//www.saps.gov.za/faqdetail .php?fid=9. (2018). Accessed: 2018-06-
29.

Serhiy Yevtushenko, Julian TANE, Tim B KAISER, Sergei OBIEDKOV,
Joachim HERETH, and Heiko REPPE. 2006. ConExp-The Concept Ex-
plorer. (2006).

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://github.com/googlemaps/v3-utility-library/tree/master/markerclusterer
https://github.com/googlemaps/v3-utility-library/tree/master/markerclusterer
https://www.saps.gov.za/faqdetail.php?fid=9
https://www.saps.gov.za/faqdetail.php?fid=9

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 106

[36] Mohammed J Zaki, Ching-Jui Hsiao, et al. 1999. CHARM: An efficient
algorithm for closed association rule mining. Technical Report. Citeseer.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

A.1 Setup

The basic setup for the system is as follows:
1. Create postgres ConceptCloud user ”conceptcloud” with password ”cc”.
2. Create postgres database JsonDB.

3. Modify datasetconfig.json in the project root directory to apply to the
dataset you wish to process, this dataset should also be placed into the
project root directory.

4. Execute ModelGenerator.py, note this reads datasetconfig.json to get the
name of the dataset, so it is imperative that datasetconfig.json is updated
prior to the execution of this python script. The python script creates a
java model from the dataset to be used in querying the database.

5. Finally the user will need to update both TagDisplay.java, getTable-
Datal() to reflect the table data the user wishes to be displayed in the con-
text table. Additionally the headings should be updated in viewer.scala.html,
this will be in the tableview table.

After this execution of the ConceptCloud application with activator run
will cause the ConceptCloud system to generate the database tables required,
populate them, generate the underlying concept lattice, and generate and dis-
play the tagclouds for the underlying lattice.

It should be noted that for any dataset contained in a properly formed
JSON file, see Section for more, this approach will work. The system
will when used correctly generate any required database and lattice, and then
display the top 5000 most relevant tags within a tagcloud.

System Requirements

For a system to run ConceptCloud it is recommended that the user use a unix
based operating system, windows support exists, but using the Play! frame-

107

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. 108

work with sbt on windows requires additional setup. The system additionally
requires the following:

1. Java 8 runtime environment.

2. posgresql, at the time of writing the system was stable on postgresql 10.3

Dataset Constraints

The ConceptCloud system expects the input dataset to be well formed. What
this means is that the input json file conforms to existing json syntax, as seen
at jinsert link to w3schools json syntax here;. And that the file contains data
in the following format:

In this way we can have a JSON object array containing an arbitrary
amount of objects, each containing an arbitrary list of attributes, so long as
the list of attributes is consistent on all objects, if the object has no value for
a particular attribute, as with ObjectTwo AttributeThreeName, it is omitted
by leaving the value empty with empty quotation marks as above.

Configuration File

The JSON configuration file, found in the conf/datasetconfig. json direc-
tory of the project root, denotes the metadata relating to the input dataset,
in the project root, a sample configuration file is shown below: Note that the
names of all fields should be case sensitive. The attributes are the following:

1. datasetFileName The title of the dataset in the project root to be
used.

2. ContextTableColumns The attribute / category titles of the attributes
to be used in the context table below the tagcloud viewers. See Section

2.3 item 2.3

3. KeyPhraseExtractionFields The attribute / category titles of the
attributes on which keyphrase extraction should be performed, perform-
ing keyphrase extraction will create additional new fields with the titles
of attributeName_phrases, in the above example these new categories
would be called blurb_phrases and additional_info_phrases.

4. ExtractKeyphrases A Yes / No flag of whether to perform keyphrase
extraction on the aforementioned keyphrase extraction fields.

	Declaration
	Abstract
	Uittreksel
	List of Publications
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Thesis Goals
	Server-Based Architecture
	ConceptCloud Data Navigation
	Data Imputation
	Structure of thesis
	Summary

	Background
	Formal Concept Analysis
	FCA Based Data Exploration Tools
	ConceptCloud
	Natural Language Processing
	Description Logic And Ontologies
	Summary

	Server Based Architecture
	Overview
	Scalable ConceptCloud Architecture
	System Extensibility
	Data Presentation
	Experiments
	Wine Review Data Case Study
	Maps Extension
	Map-Viewer Implementation

	Ontology Driven Data Imputation
	Introduction
	General Approach
	Vocabulary Mapping Between FCA and DL
	Algorithm
	Implementation details
	Case Study
	Free Text Data-Imputation
	Summary

	Conclusions
	Summary
	Future work
	Conclusion

	Bibliography
	
	Setup

